Deep learning-based electroencephalography analysis: a systematic review
Context. Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due t...
Saved in:
Published in | Journal of neural engineering Vol. 16; no. 5; pp. 51001 - 51037 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/ab260c |
Cover
Loading…
Abstract | Context. Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. Objective. In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations. Methods. Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends. Results. Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About of the studies used convolutional neural networks (CNNs), while used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code. Significance. To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results. |
---|---|
AbstractList | Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question.
In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations.
Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends.
Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About [Formula: see text] of the studies used convolutional neural networks (CNNs), while [Formula: see text] used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was [Formula: see text] across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code.
To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results. Context. Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. Objective. In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations. Methods. Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends. Results. Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About of the studies used convolutional neural networks (CNNs), while used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code. Significance. To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results. Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question.CONTEXTElectroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question.In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations.OBJECTIVEIn this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations.Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends.METHODSMajor databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends.Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About [Formula: see text] of the studies used convolutional neural networks (CNNs), while [Formula: see text] used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was [Formula: see text] across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code.RESULTSOur analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About [Formula: see text] of the studies used convolutional neural networks (CNNs), while [Formula: see text] used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was [Formula: see text] across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code.To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results.SIGNIFICANCETo help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results. Context . Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. Objective . In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain–computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations. Methods . Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends. Results . Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About of the studies used convolutional neural networks (CNNs), while used recurrent neural networks (RNNs), most often with a total of 3–10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code. Significance . To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results. |
Author | Banville, Hubert Roy, Yannick Albuquerque, Isabela Faubert, Jocelyn Gramfort, Alexandre Falk, Tiago H |
Author_xml | – sequence: 1 givenname: Yannick orcidid: 0000-0003-4408-5221 surname: Roy fullname: Roy, Yannick email: yannick.roy@umontreal.ca organization: Université de Montréal Faubert Lab, Montréal, Canada – sequence: 2 givenname: Hubert surname: Banville fullname: Banville, Hubert organization: InteraXon Inc. , Toronto, Canada – sequence: 3 givenname: Isabela surname: Albuquerque fullname: Albuquerque, Isabela organization: Université du Québec MuSAE Lab, INRS-EMT, Montréal, Canada – sequence: 4 givenname: Alexandre surname: Gramfort fullname: Gramfort, Alexandre organization: Université Paris-Saclay Inria, Paris, France – sequence: 5 givenname: Tiago H surname: Falk fullname: Falk, Tiago H organization: Université du Québec MuSAE Lab, INRS-EMT, Montréal, Canada – sequence: 6 givenname: Jocelyn surname: Faubert fullname: Faubert, Jocelyn organization: Université de Montréal Faubert Lab, Montréal, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31151119$$D View this record in MEDLINE/PubMed https://ird.hal.science/ird-03222079$$DView record in HAL |
BookMark | eNp9kU1r3DAQhkVJaT7ae07BtyYQNyPJsq3cQj66hYVe2rOQpVGixSu5kjdh_328ON1DKTnNMDzvMDxzTA5CDEjIKYVvFNr2ijYVLZkQ7Ep3rAbzgRztRwf7voZDcpzzCoDTRsIncsgpFZRSeUQWd4hD0aNOwYfHstMZbYE9mjFFDAaHJ93Hx6SHp22hg-632efrQhd5m0dc69GbIuGzx5fP5KPTfcYvb_WE_H64_3W7KJc_v_-4vVmWRtR8LIXuGqhcJ2XLZO2srbiR1XS8AWsMOtFJaJ12QE1rGAraceNcY3nHm5ZLy0_Ixbx3OkwNya912qqovVrcLJVPVgFnjEEjn-nEns_skOKfDeZRrX022Pc6YNxkxRjnrahaJib07A3ddGu0-81_TU0AzIBJMeeEbo9QULtnqJ1ttTOv5mdMkfqfiPHjpCyGMWnfvxe8nIM-DmoVN2kSn9_Dv_4HXwVUtFZCgaAAVA3W8VfGEaiQ |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac74e0 crossref_primary_10_1109_ACCESS_2023_3293421 crossref_primary_10_1007_s11571_024_10181_2 crossref_primary_10_1038_s41597_022_01280_y crossref_primary_10_1088_1361_6579_abe91e crossref_primary_10_46387_bjesr_1332678 crossref_primary_10_1016_j_neubiorev_2021_11_028 crossref_primary_10_31258_Jamt_2_2_74_84 crossref_primary_10_3390_s23041932 crossref_primary_10_1109_ACCESS_2022_3161489 crossref_primary_10_1109_JIOT_2021_3105647 crossref_primary_10_3390_s21051792 crossref_primary_10_1140_epjs_s11734_025_01587_y crossref_primary_10_1007_s13534_024_00431_x crossref_primary_10_1016_j_bspc_2023_104798 crossref_primary_10_1016_j_compbiomed_2022_105703 crossref_primary_10_1016_j_asoc_2025_112731 crossref_primary_10_1080_10255842_2024_2355490 crossref_primary_10_3389_fpsyg_2024_1326791 crossref_primary_10_1016_j_schres_2023_09_010 crossref_primary_10_1109_JBHI_2023_3281977 crossref_primary_10_1186_s40708_024_00239_6 crossref_primary_10_1088_1741_2552_ada0e4 crossref_primary_10_1109_TNSRE_2024_3447274 crossref_primary_10_1016_j_bspc_2021_102928 crossref_primary_10_1080_09720529_2022_2072419 crossref_primary_10_1038_s41598_024_75263_x crossref_primary_10_1109_TCE_2024_3368569 crossref_primary_10_1088_1742_6596_1727_1_012010 crossref_primary_10_1016_j_bea_2025_100156 crossref_primary_10_1109_JIOT_2021_3057474 crossref_primary_10_3390_bioengineering11040299 crossref_primary_10_3390_app14198828 crossref_primary_10_1016_j_ijpsycho_2023_01_009 crossref_primary_10_1109_TBME_2021_3064794 crossref_primary_10_1016_j_neucom_2023_126901 crossref_primary_10_1088_2631_8695_acd73d crossref_primary_10_1016_j_eswa_2021_114961 crossref_primary_10_1177_14413582221085321 crossref_primary_10_1177_15500594221120516 crossref_primary_10_1016_j_brainres_2024_149423 crossref_primary_10_3390_app10165662 crossref_primary_10_3389_fninf_2024_1494970 crossref_primary_10_1109_TNSRE_2025_3547616 crossref_primary_10_1109_TCDS_2021_3098842 crossref_primary_10_1109_ACCESS_2024_3453039 crossref_primary_10_1088_1741_2552_ac4852 crossref_primary_10_3390_app10051619 crossref_primary_10_58647_DRUGREPO_24_1_0005 crossref_primary_10_1016_j_compbiomed_2024_108681 crossref_primary_10_1371_journal_pone_0269001 crossref_primary_10_1088_1741_2552_ad4f18 crossref_primary_10_3389_fbioe_2024_1448903 crossref_primary_10_1109_TAFFC_2022_3170369 crossref_primary_10_1016_j_compbiomed_2021_104434 crossref_primary_10_1109_JBHI_2022_3205436 crossref_primary_10_1002_hbm_26417 crossref_primary_10_3390_brainsci14080836 crossref_primary_10_1038_s41598_023_34487_z crossref_primary_10_1088_1741_2552_ad3f50 crossref_primary_10_3389_fnhum_2021_645952 crossref_primary_10_1016_j_artmed_2021_102084 crossref_primary_10_2174_1874120702115010090 crossref_primary_10_1088_1741_2552_abda0b crossref_primary_10_1016_j_ymeth_2021_04_017 crossref_primary_10_3389_fnbot_2022_953968 crossref_primary_10_3389_fnins_2023_1156838 crossref_primary_10_1007_s10462_020_09904_8 crossref_primary_10_1016_j_patrec_2023_10_011 crossref_primary_10_1016_j_physrep_2021_03_002 crossref_primary_10_3389_fneur_2022_858333 crossref_primary_10_1007_s12264_024_01247_6 crossref_primary_10_1016_j_cnp_2023_04_002 crossref_primary_10_1016_j_compbiomed_2022_105718 crossref_primary_10_1088_1741_2552_ac73b3 crossref_primary_10_7717_peerj_17622 crossref_primary_10_1088_1741_2552_abe20e crossref_primary_10_1088_1741_2552_ad4743 crossref_primary_10_1016_j_asoc_2024_112301 crossref_primary_10_3389_fnins_2023_1272834 crossref_primary_10_1016_j_bjao_2024_100347 crossref_primary_10_1109_ACCESS_2020_2997681 crossref_primary_10_1186_s42234_020_0040_0 crossref_primary_10_1016_j_iot_2024_101098 crossref_primary_10_1016_j_bandl_2021_104968 crossref_primary_10_1016_j_engappai_2023_106122 crossref_primary_10_3390_bioengineering11080782 crossref_primary_10_1109_TCYB_2021_3052813 crossref_primary_10_1088_1361_6579_ac6049 crossref_primary_10_1109_JBHI_2023_3268729 crossref_primary_10_3390_s20164629 crossref_primary_10_1016_j_bspc_2023_105202 crossref_primary_10_3390_app14167398 crossref_primary_10_1016_j_aei_2022_101868 crossref_primary_10_1016_j_neucom_2021_03_105 crossref_primary_10_3390_s23115051 crossref_primary_10_1016_j_heliyon_2021_e07258 crossref_primary_10_1088_1741_2552_abca18 crossref_primary_10_1038_s41598_022_15830_2 crossref_primary_10_1109_TCBB_2020_3024228 crossref_primary_10_1038_s41598_019_53751_9 crossref_primary_10_1016_j_aei_2020_101180 crossref_primary_10_1038_s41551_023_01029_x crossref_primary_10_3389_fnins_2024_1361486 crossref_primary_10_3390_biomedicines12061283 crossref_primary_10_1007_s11760_022_02399_6 crossref_primary_10_1088_1741_2552_ac6ca9 crossref_primary_10_1155_2022_4134864 crossref_primary_10_3389_fninf_2023_1272791 crossref_primary_10_3390_s19204541 crossref_primary_10_1186_s40708_023_00198_4 crossref_primary_10_1016_j_aei_2023_101978 crossref_primary_10_1016_j_yebeh_2023_109500 crossref_primary_10_3390_electronics10091079 crossref_primary_10_3390_s20123491 crossref_primary_10_3389_fninf_2025_1521805 crossref_primary_10_3389_fpsyt_2023_1310323 crossref_primary_10_1007_s00521_021_06591_6 crossref_primary_10_1016_j_jiixd_2024_06_003 crossref_primary_10_1038_s41598_019_47854_6 crossref_primary_10_1016_j_bspc_2022_104359 crossref_primary_10_3390_electronics12112394 crossref_primary_10_1109_TBME_2022_3201241 crossref_primary_10_3389_fnins_2021_667373 crossref_primary_10_1007_s41870_022_01095_5 crossref_primary_10_1088_1741_2552_ab8345 crossref_primary_10_3389_fnhum_2021_653659 crossref_primary_10_1016_j_bbe_2020_04_004 crossref_primary_10_1109_ACCESS_2023_3322294 crossref_primary_10_1109_ACCESS_2025_3541985 crossref_primary_10_3389_fnbot_2020_582728 crossref_primary_10_1016_j_imu_2021_100548 crossref_primary_10_1109_MSMC_2019_2958200 crossref_primary_10_1109_TNSRE_2021_3071140 crossref_primary_10_1140_epjs_s11734_024_01292_2 crossref_primary_10_1109_TCSII_2022_3177616 crossref_primary_10_1016_j_bspc_2023_105662 crossref_primary_10_1016_j_jik_2024_100517 crossref_primary_10_3390_brainsci12070849 crossref_primary_10_1109_ACCESS_2022_3154899 crossref_primary_10_1016_j_displa_2024_102754 crossref_primary_10_1080_2326263X_2023_2287719 crossref_primary_10_1371_journal_pcbi_1012376 crossref_primary_10_1109_ACCESS_2024_3376254 crossref_primary_10_3389_fncom_2021_551111 crossref_primary_10_1109_ACCESS_2020_2987324 crossref_primary_10_1007_s43538_024_00344_4 crossref_primary_10_1016_j_neuroimage_2022_119056 crossref_primary_10_1111_ejn_14936 crossref_primary_10_1016_j_ebiom_2024_105259 crossref_primary_10_1016_j_neuroimage_2023_120464 crossref_primary_10_3389_fnins_2024_1509358 crossref_primary_10_1109_JBHI_2022_3159531 crossref_primary_10_1109_MSP_2021_3134629 crossref_primary_10_1016_j_eswa_2022_119488 crossref_primary_10_3389_fninf_2019_00074 crossref_primary_10_1109_TCBB_2021_3052811 crossref_primary_10_1140_epjs_s11734_021_00380_x crossref_primary_10_1088_1741_2552_ab6a67 crossref_primary_10_1109_THMS_2022_3189576 crossref_primary_10_1109_TNSRE_2024_3454088 crossref_primary_10_1016_j_bspc_2023_104799 crossref_primary_10_1007_s00521_023_08218_4 crossref_primary_10_1016_j_compbiomed_2022_105871 crossref_primary_10_3390_s20092694 crossref_primary_10_1088_1741_2552_ac2bf8 crossref_primary_10_1088_1741_2552_adaef0 crossref_primary_10_3390_bioengineering10040491 crossref_primary_10_1016_j_bspc_2022_103582 crossref_primary_10_1371_journal_pone_0308631 crossref_primary_10_1088_1741_2552_ac6063 crossref_primary_10_1109_ACCESS_2025_3529357 crossref_primary_10_3389_fncel_2022_845832 crossref_primary_10_3390_bios12060384 crossref_primary_10_3390_s23135930 crossref_primary_10_1007_s10055_023_00818_8 crossref_primary_10_1002_smll_202104810 crossref_primary_10_1109_TBME_2021_3139007 crossref_primary_10_1109_TCDS_2024_3460750 crossref_primary_10_1016_j_clinph_2019_09_031 crossref_primary_10_1038_s41598_022_14894_4 crossref_primary_10_3390_app132312832 crossref_primary_10_3390_s22093331 crossref_primary_10_1007_s11042_024_20205_y crossref_primary_10_1088_1741_2552_ac77be crossref_primary_10_1109_ACCESS_2023_3329678 crossref_primary_10_3389_fnbot_2023_1289406 crossref_primary_10_3390_s21093225 crossref_primary_10_1016_j_bspc_2024_106189 crossref_primary_10_3389_fnins_2022_906616 crossref_primary_10_1016_j_biopsycho_2021_108117 crossref_primary_10_1080_08893675_2025_2480803 crossref_primary_10_3390_e24010102 crossref_primary_10_3389_fninf_2022_1025847 crossref_primary_10_3390_app13179825 crossref_primary_10_1109_ACCESS_2022_3173629 crossref_primary_10_2196_45405 crossref_primary_10_1038_s41598_022_07517_5 crossref_primary_10_1109_TBME_2020_3020381 crossref_primary_10_1109_TCYB_2021_3122969 crossref_primary_10_1088_1741_2552_ad6a8c crossref_primary_10_3390_s21051734 crossref_primary_10_1109_ACCESS_2021_3118971 crossref_primary_10_1088_2057_1976_acde82 crossref_primary_10_1016_j_knosys_2023_110756 crossref_primary_10_1186_s40708_022_00167_3 crossref_primary_10_1007_s13246_020_00925_9 crossref_primary_10_3390_brainsci12091233 crossref_primary_10_1142_S0129065721500325 crossref_primary_10_1088_1361_6501_adb5a8 crossref_primary_10_1038_s41598_021_91286_0 crossref_primary_10_1016_j_neunet_2020_05_032 crossref_primary_10_1088_1741_2552_ab57c0 crossref_primary_10_1088_1741_2552_ac7257 crossref_primary_10_3390_s23020703 crossref_primary_10_3758_s13428_023_02158_6 crossref_primary_10_3390_biomedicines11020327 crossref_primary_10_1016_j_bspc_2021_103070 crossref_primary_10_1109_TCDS_2023_3279262 crossref_primary_10_1016_j_bspc_2025_107554 crossref_primary_10_3390_s23135960 crossref_primary_10_1007_s11831_023_09920_1 crossref_primary_10_3390_app10041525 crossref_primary_10_3390_app14188380 crossref_primary_10_1088_1741_2552_abbd50 crossref_primary_10_1109_ACCESS_2023_3299497 crossref_primary_10_1007_s12021_022_09572_9 crossref_primary_10_1007_s11517_023_02840_z crossref_primary_10_3389_fnhum_2021_643386 crossref_primary_10_1016_j_neuroimage_2024_120559 crossref_primary_10_1016_j_compbiomed_2024_108188 crossref_primary_10_1080_10447318_2024_2311972 crossref_primary_10_1016_j_bspc_2021_103021 crossref_primary_10_1038_s41598_020_65610_z crossref_primary_10_1149_1945_7111_ac5cf2 crossref_primary_10_3390_brainsci11010075 crossref_primary_10_3389_frobt_2022_1013043 crossref_primary_10_1088_1741_2552_abf2e4 crossref_primary_10_1088_1741_2552_acbb2c crossref_primary_10_1016_j_neuroimage_2020_117021 crossref_primary_10_1007_s42535_023_00666_6 crossref_primary_10_1088_1741_2552_ac6d7f crossref_primary_10_1038_s41528_022_00164_w crossref_primary_10_1088_1741_2552_ad88a2 crossref_primary_10_1016_j_bspc_2022_103544 crossref_primary_10_1109_ACCESS_2020_3028139 crossref_primary_10_1109_JBHI_2022_3225019 crossref_primary_10_1016_j_compbiomed_2022_105690 crossref_primary_10_1109_TPAMI_2020_2973153 crossref_primary_10_3389_fnins_2022_859887 crossref_primary_10_1016_j_bpsgos_2024_100423 crossref_primary_10_1016_j_ijhcs_2023_103009 crossref_primary_10_3389_fpubh_2022_909628 crossref_primary_10_3390_app13158747 crossref_primary_10_3390_brainsci10110781 crossref_primary_10_1016_j_neuroimage_2023_120054 crossref_primary_10_1088_1741_2552_ad44d7 crossref_primary_10_3390_math13050729 crossref_primary_10_1109_TNSRE_2024_3417311 crossref_primary_10_1109_ACCESS_2023_3294618 crossref_primary_10_3389_fnbot_2021_692183 crossref_primary_10_3390_s20164485 crossref_primary_10_1016_j_artmed_2023_102738 crossref_primary_10_1016_j_eswa_2024_123717 crossref_primary_10_1016_j_procs_2022_09_367 crossref_primary_10_1007_s11571_020_09603_8 crossref_primary_10_1016_j_procs_2021_09_049 crossref_primary_10_1109_ACCESS_2023_3325283 crossref_primary_10_1016_j_neuroimage_2020_117249 crossref_primary_10_1007_s11760_023_02871_x crossref_primary_10_3389_fncom_2022_868642 crossref_primary_10_1007_s00530_023_01083_0 crossref_primary_10_1007_s10489_022_04414_2 crossref_primary_10_4018_IJAIML_310933 crossref_primary_10_1109_JBHI_2022_3203454 crossref_primary_10_1109_ACCESS_2020_3031447 crossref_primary_10_1016_j_neucom_2022_11_050 crossref_primary_10_1109_JSEN_2021_3057076 crossref_primary_10_1136_bmjopen_2022_066932 crossref_primary_10_3389_fnhum_2021_675154 crossref_primary_10_1007_s00521_020_05624_w crossref_primary_10_1371_journal_pone_0268880 crossref_primary_10_1063_5_0047237 crossref_primary_10_3390_app11041798 crossref_primary_10_1016_j_compbiomed_2020_103814 crossref_primary_10_3389_fnins_2021_566004 crossref_primary_10_1038_s41598_020_73346_z crossref_primary_10_1109_MSP_2021_3074355 crossref_primary_10_1016_j_expneurol_2022_113993 crossref_primary_10_3390_s21165456 crossref_primary_10_1080_2326263X_2022_2140467 crossref_primary_10_1097_YCT_0000000000001009 crossref_primary_10_1088_1741_2552_ac9644 crossref_primary_10_1109_TCDS_2024_3431224 crossref_primary_10_1109_TCYB_2024_3410844 crossref_primary_10_3389_fnagi_2022_849774 crossref_primary_10_1007_s11571_021_09756_0 crossref_primary_10_1016_j_neuroimage_2022_119521 crossref_primary_10_3390_s23146434 crossref_primary_10_1007_s11042_022_12611_x crossref_primary_10_1016_j_bspc_2022_103740 crossref_primary_10_1007_s00521_023_08927_w crossref_primary_10_1016_j_bspc_2021_103102 crossref_primary_10_3389_fneur_2023_1123935 crossref_primary_10_3390_math11234776 crossref_primary_10_1177_14613484221138812 crossref_primary_10_3390_s21196503 crossref_primary_10_1109_JBHI_2021_3049649 crossref_primary_10_1155_2021_5599615 crossref_primary_10_3390_app13084964 crossref_primary_10_1109_ACCESS_2023_3275565 crossref_primary_10_1093_braincomms_fcac218 crossref_primary_10_1007_s42600_023_00321_8 crossref_primary_10_1109_TNSRE_2023_3330922 crossref_primary_10_1109_ACCESS_2021_3094032 crossref_primary_10_1016_j_bspc_2022_103626 crossref_primary_10_1038_s41598_023_43871_8 crossref_primary_10_1152_jn_00221_2022 crossref_primary_10_1186_s40708_021_00133_5 crossref_primary_10_1016_j_tics_2021_04_003 crossref_primary_10_3390_brainsci13030483 crossref_primary_10_3389_fphys_2022_1029298 crossref_primary_10_1016_j_compbiomed_2024_109097 crossref_primary_10_1093_brain_awac340 crossref_primary_10_3389_fnhum_2023_1033420 crossref_primary_10_3390_s23020899 crossref_primary_10_2147_NSS_S336344 crossref_primary_10_1088_1741_2552_ac37cc crossref_primary_10_1109_TITS_2024_3442249 crossref_primary_10_1109_TSMC_2021_3051136 crossref_primary_10_3389_fnins_2024_1293962 crossref_primary_10_1016_j_aei_2024_102971 crossref_primary_10_1088_1741_2552_aca220 crossref_primary_10_1109_JBHI_2020_3022989 crossref_primary_10_1088_1755_1315_706_1_012015 crossref_primary_10_1109_ACCESS_2023_3263477 crossref_primary_10_1007_s10462_021_09986_y crossref_primary_10_1162_imag_a_00189 crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_1109_TNSRE_2023_3254151 crossref_primary_10_1109_TPAMI_2020_2995909 crossref_primary_10_3390_s20247309 crossref_primary_10_3389_fnhum_2020_604639 crossref_primary_10_1016_S2215_0366_21_00165_6 crossref_primary_10_1109_JBHI_2021_3068481 crossref_primary_10_3389_fnins_2024_1507654 crossref_primary_10_3390_app10238662 crossref_primary_10_3390_math11061424 crossref_primary_10_3390_app12146967 crossref_primary_10_1016_j_bspc_2021_103110 crossref_primary_10_3390_bios11120499 crossref_primary_10_3390_biomimetics10030178 crossref_primary_10_1016_j_compbiomed_2023_107517 crossref_primary_10_1109_TCDS_2021_3090217 crossref_primary_10_1016_j_rmed_2024_107809 crossref_primary_10_1088_1741_2552_ac5d69 crossref_primary_10_1109_ACCESS_2024_3360328 crossref_primary_10_1016_j_softx_2021_100951 crossref_primary_10_1155_2020_8846021 crossref_primary_10_1016_j_jneumeth_2021_109339 crossref_primary_10_1080_10255842_2024_2371036 crossref_primary_10_1186_s12984_021_00820_8 crossref_primary_10_1109_ACCESS_2021_3052656 crossref_primary_10_25046_aj070517 crossref_primary_10_1186_s12938_024_01244_w crossref_primary_10_1016_j_eswa_2024_125832 crossref_primary_10_3389_fnins_2020_00918 crossref_primary_10_1016_j_neuroimage_2022_118994 crossref_primary_10_1088_1741_2552_acc613 crossref_primary_10_1109_JPROC_2022_3141367 crossref_primary_10_1007_s13534_023_00309_4 crossref_primary_10_1109_TNSRE_2022_3186442 crossref_primary_10_1162_imag_a_00040 crossref_primary_10_1016_j_nicl_2022_103167 crossref_primary_10_1186_s40779_023_00502_7 crossref_primary_10_3389_fnins_2021_824759 crossref_primary_10_1016_j_jneumeth_2021_109126 crossref_primary_10_1016_j_jneumeth_2021_109367 crossref_primary_10_3389_fnhum_2019_00201 crossref_primary_10_3390_su142113844 crossref_primary_10_3390_app12031695 crossref_primary_10_3390_bioengineering11090926 crossref_primary_10_53759_7669_jmc202404080 crossref_primary_10_3389_fnins_2025_1546559 crossref_primary_10_1088_1741_2552_ac4f9a crossref_primary_10_1016_j_bspc_2024_106020 crossref_primary_10_1007_s11042_023_15664_8 crossref_primary_10_1088_2516_1091_ad8530 crossref_primary_10_3390_app13169233 crossref_primary_10_3390_s20236730 crossref_primary_10_1016_j_bspc_2024_107238 crossref_primary_10_1109_TAFFC_2024_3371540 crossref_primary_10_3390_biomimetics10020118 crossref_primary_10_1109_TNSRE_2022_3228216 crossref_primary_10_1016_j_compbiomed_2023_107893 crossref_primary_10_1109_JIOT_2024_3394244 crossref_primary_10_3389_fneur_2020_554633 crossref_primary_10_31083_j_jin2004083 crossref_primary_10_1007_s11760_022_02293_1 crossref_primary_10_3389_fnhum_2023_1126938 crossref_primary_10_1038_s41597_022_01409_z crossref_primary_10_1109_ACCESS_2022_3195513 crossref_primary_10_1038_s41598_023_36986_5 crossref_primary_10_1016_j_yebeh_2021_108047 crossref_primary_10_3389_fnins_2022_985709 crossref_primary_10_1109_JBHI_2020_3048901 crossref_primary_10_1049_itr2_12041 crossref_primary_10_1016_j_jneumeth_2021_109145 crossref_primary_10_3390_computers9020046 crossref_primary_10_1088_1741_2552_abc902 crossref_primary_10_1109_TBME_2022_3218116 crossref_primary_10_1016_j_bspc_2022_103718 crossref_primary_10_1109_TCSVT_2021_3061719 crossref_primary_10_3390_brainsci14020149 crossref_primary_10_3390_bioengineering10050609 crossref_primary_10_3389_fnhum_2024_1439541 crossref_primary_10_1162_neco_a_01743 crossref_primary_10_1109_TNSRE_2022_3150007 crossref_primary_10_3389_fnins_2021_663101 crossref_primary_10_1177_20552076251323833 crossref_primary_10_1007_s11571_020_09619_0 crossref_primary_10_1016_j_compeleceng_2024_109769 crossref_primary_10_1007_s00034_022_02164_7 crossref_primary_10_1016_j_bspc_2022_103726 crossref_primary_10_3389_fnins_2021_760979 crossref_primary_10_3390_s23052798 crossref_primary_10_3390_bioengineering10060649 crossref_primary_10_1002_cns3_5 crossref_primary_10_3389_frvir_2025_1468971 crossref_primary_10_1016_j_neuroimage_2021_118463 crossref_primary_10_1016_j_eswa_2023_122155 crossref_primary_10_1088_1741_2552_abfa71 crossref_primary_10_3390_s22010167 crossref_primary_10_1016_j_medntd_2023_100213 crossref_primary_10_1016_j_patter_2025_101182 crossref_primary_10_1088_1741_2552_ac6770 crossref_primary_10_1088_1741_2552_acb96e crossref_primary_10_3233_JIFS_191923 crossref_primary_10_1016_j_dsp_2024_104447 crossref_primary_10_1088_1741_2552_acd1b6 crossref_primary_10_3390_brainsci13020268 crossref_primary_10_1088_1741_2552_ac697d crossref_primary_10_1016_j_eswa_2021_116083 crossref_primary_10_3390_s23239588 crossref_primary_10_1016_j_jneumeth_2021_109282 crossref_primary_10_1088_2057_1976_ad4f8e crossref_primary_10_1186_s12938_023_01129_4 crossref_primary_10_3390_s23239352 crossref_primary_10_1088_2050_6120_ad12f7 crossref_primary_10_1016_j_neuroimage_2020_116893 crossref_primary_10_1080_0954898X_2023_2263083 crossref_primary_10_1016_j_compbiomed_2023_107323 crossref_primary_10_1016_j_imu_2020_100454 crossref_primary_10_1016_j_nicl_2023_103482 crossref_primary_10_1109_ACCESS_2021_3091399 crossref_primary_10_3934_mbe_2025004 crossref_primary_10_1109_TAFFC_2022_3170428 crossref_primary_10_1038_s41746_024_01086_9 crossref_primary_10_1080_27706710_2023_2181102 crossref_primary_10_1016_j_neucom_2021_08_018 crossref_primary_10_1007_s40675_023_00253_w crossref_primary_10_1109_ACCESS_2020_3011185 crossref_primary_10_1088_1741_2552_ad8962 crossref_primary_10_1109_JBHI_2021_3138852 crossref_primary_10_1109_ACCESS_2020_2989442 crossref_primary_10_1016_j_aei_2020_101157 crossref_primary_10_1134_S1064226924700359 crossref_primary_10_1016_j_neuroimage_2025_121050 crossref_primary_10_1109_TNSRE_2021_3112167 crossref_primary_10_1016_j_bspc_2021_102993 crossref_primary_10_3389_fnhum_2022_867281 crossref_primary_10_1136_svn_2022_001506 crossref_primary_10_1109_ACCESS_2020_2964050 crossref_primary_10_2196_38440 crossref_primary_10_2147_PHMT_S427773 crossref_primary_10_1109_TNSRE_2020_3048106 crossref_primary_10_3390_s22062284 crossref_primary_10_1109_TVCG_2022_3203099 crossref_primary_10_1016_j_jneumeth_2022_109580 crossref_primary_10_1177_20552076251324456 crossref_primary_10_3758_s13423_021_02034_4 crossref_primary_10_3390_ctn8010013 crossref_primary_10_3389_fnins_2020_00251 crossref_primary_10_48175_IJARSCT_2323 crossref_primary_10_1016_j_adhoc_2020_102178 crossref_primary_10_1109_ACCESS_2024_3447901 crossref_primary_10_1016_j_patcog_2022_108757 crossref_primary_10_1109_JSSC_2024_3446244 crossref_primary_10_3389_fneur_2023_1183810 crossref_primary_10_1016_j_neures_2021_09_002 crossref_primary_10_3389_fcell_2021_669795 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_3390_signals5020013 crossref_primary_10_1016_j_csbj_2023_12_006 crossref_primary_10_1017_S1446181124000178 crossref_primary_10_1142_S0129065723500016 crossref_primary_10_3390_app12168052 crossref_primary_10_1111_exsy_13841 crossref_primary_10_1186_s12984_021_00972_7 crossref_primary_10_1109_TASE_2020_3021456 crossref_primary_10_1016_j_cmpb_2021_106121 crossref_primary_10_1016_j_compbiomed_2021_104969 crossref_primary_10_1088_1741_2552_abcdbd crossref_primary_10_1088_1741_2552_ac115d crossref_primary_10_3390_jcm13195898 crossref_primary_10_3389_fnhum_2023_1134869 crossref_primary_10_1016_j_rcim_2023_102610 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_1136_practneurol_2020_002688 crossref_primary_10_1007_s11227_021_04292_4 crossref_primary_10_1016_j_compbiomed_2022_106088 crossref_primary_10_3233_JIFS_237890 crossref_primary_10_3389_fnrgo_2022_838342 crossref_primary_10_3390_rs13224602 crossref_primary_10_1016_j_ynirp_2025_100242 crossref_primary_10_4012_dmj_2024_052 crossref_primary_10_1109_JBHI_2021_3100297 crossref_primary_10_3389_fninf_2022_871904 crossref_primary_10_1109_TNSRE_2023_3327788 crossref_primary_10_3389_fnhum_2023_1153413 crossref_primary_10_1109_ACCESS_2020_3006907 crossref_primary_10_1109_ACCESS_2023_3266804 crossref_primary_10_1038_s41597_021_01046_y crossref_primary_10_3389_fncom_2021_758212 crossref_primary_10_1109_TBME_2023_3344295 crossref_primary_10_1109_ACCESS_2020_3035347 crossref_primary_10_1021_acsnano_3c06781 crossref_primary_10_1109_TIM_2022_3198441 crossref_primary_10_3390_s21103316 crossref_primary_10_1088_1741_2552_ad200e crossref_primary_10_1016_j_eswa_2024_125303 crossref_primary_10_1016_j_bspc_2023_105032 crossref_primary_10_1002_aelm_202300082 crossref_primary_10_3389_fnins_2023_1280590 crossref_primary_10_1016_j_energy_2024_133476 crossref_primary_10_1088_1741_2552_ac93b4 crossref_primary_10_3390_biomedicines11092370 crossref_primary_10_1016_j_eswa_2023_119969 crossref_primary_10_3390_brainsci9120348 crossref_primary_10_3390_bios10090124 crossref_primary_10_1007_s11042_023_15900_1 crossref_primary_10_1016_j_jneumeth_2022_109498 crossref_primary_10_3390_bios11070203 crossref_primary_10_1109_JBHI_2023_3307870 crossref_primary_10_1016_j_bspc_2021_102957 crossref_primary_10_1016_j_jobe_2023_107305 crossref_primary_10_3390_brainsci10040199 crossref_primary_10_1038_s42256_023_00714_5 crossref_primary_10_1109_RBME_2020_3008792 crossref_primary_10_3758_s13428_020_01516_y crossref_primary_10_1002_eng2_12827 crossref_primary_10_1093_sleep_zsaa077 crossref_primary_10_1016_j_yebeh_2024_109735 crossref_primary_10_1007_s10072_023_06981_9 crossref_primary_10_1016_j_cmpb_2022_106874 crossref_primary_10_1088_1741_2552_acabe9 crossref_primary_10_1109_OJIM_2022_3202555 crossref_primary_10_1016_j_bspc_2021_102983 crossref_primary_10_2174_0118750362298089240820111544 crossref_primary_10_1016_j_bspc_2021_102747 crossref_primary_10_1142_S0129065725500017 crossref_primary_10_1016_j_imu_2023_101284 crossref_primary_10_1016_j_oceaneng_2022_112767 crossref_primary_10_3389_fnins_2020_00290 crossref_primary_10_1109_TNSRE_2023_3336356 crossref_primary_10_3389_fnins_2023_1176344 crossref_primary_10_1007_s42979_024_03488_8 crossref_primary_10_1371_journal_pone_0291186 crossref_primary_10_1016_j_yebeh_2024_109744 crossref_primary_10_1177_15500594221120734 crossref_primary_10_1109_TBME_2023_3274231 crossref_primary_10_1088_1741_2552_abf473 crossref_primary_10_26599_BSA_2022_9050014 crossref_primary_10_1016_j_neucom_2020_10_104 crossref_primary_10_1038_s41597_023_02650_w crossref_primary_10_1007_s00415_022_11283_9 crossref_primary_10_1016_j_bspc_2021_102981 crossref_primary_10_1088_1741_2552_ad19ea crossref_primary_10_1007_s00521_020_05125_w crossref_primary_10_1016_j_bspc_2021_102854 crossref_primary_10_1016_j_neunet_2024_106847 crossref_primary_10_1016_j_chaos_2024_114675 crossref_primary_10_1093_sleep_zsac254 crossref_primary_10_3389_fnrgo_2020_602504 crossref_primary_10_1088_1741_2552_ac8dc5 crossref_primary_10_1109_ACCESS_2020_3037658 crossref_primary_10_1109_TOH_2024_3428308 crossref_primary_10_3389_fnhum_2021_700627 |
Cites_doi | 10.1016/j.knosys.2013.02.014 10.1109/SPMB.2017.8257015 10.1155/2018/6058065 10.1109/TNSRE.2017.2733220 10.1016/j.neucom.2014.08.092 10.1093/jamia/ocy064 10.1111/jsr.12169 10.1145/2641190.2641198 10.1088/1741-2560/8/3/036015 10.1142/S0129065716500398 10.1038/nature14539 10.1088/1741-2552/aaaf82 10.1016/j.neuroimage.2017.06.030 10.1109/TNSRE.2017.2721116 10.1080/2326263X.2017.1297192 10.1088/1741-2552/aace8c 10.1038/s41597-019-0104-8 10.1038/sdata.2018.110 10.1109/TPAMI.2010.125 10.1016/j.image.2016.05.018 10.1088/1741-2552/aae5d8 10.1038/s41598-018-21495-7 10.1088/1741-2552/aab2f2 10.1016/j.patrec.2017.05.020 10.1016/j.bspc.2016.11.013 10.1109/SMC.2018.00185 10.1109/ICAC3.2017.8318753 10.1109/TNSRE.2003.814453 10.1016/j.bbe.2018.05.005 10.1007/s11263-015-0816-y 10.1016/j.bspc.2017.12.001 10.1109/ACCESS.2017.2724555 10.1038/sdata.2016.44 10.1093/bja/aev212 10.1177/1087054712460087 10.1109/TVCG.2018.2843369 10.21437/Interspeech.2017-405 10.1016/j.eswa.2016.12.035 10.1007/978-3-319-09330-7_25 10.1109/tnsre.2018.2813138 10.1109/SECON.2017.7925289 10.3390/s18051339 10.1101/240267 10.1088/1741-2560/12/3/031001 10.1007/978-3-319-46672-9_58 10.1016/j.neunet.2018.04.018 10.1109/TNSRE.2006.875642 10.1093/brain/awy251 10.1088/1741-2560/14/1/016003 10.1103/PhysRevE.64.061907 10.1109/TNNLS.2014.2302898 10.1109/BHI.2018.8333399 10.1088/1741-2552/aadea0 10.1109/MLSP.2017.8168133 10.3389/fncom.2015.00146 10.1016/j.jneumeth.2010.07.015 10.3389/fnins.2017.00310 10.1371/journal.pone.0172578 10.1146/annurev-bioeng-062117-120853 10.1007/978-3-319-73600-6_8 10.1109/ACCESS.2018.2833746 10.1016/j.nicl.2017.12.005 10.1109/WCNC.2017.7925709 10.1155/2012/107046 10.1038/nrneurol.2013.279 10.1109/MLSP.2017.8168193 10.1109/RTSI.2016.7740576 10.1109/TCYB.2018.2797176 10.1109/tbme.2018.2872652 10.1371/journal.pone.0178410 10.1155/2015/129021 10.1109/TAMD.2015.2431497 10.2172/1366924 10.3390/app7121239 10.1016/j.clinph.2018.04.248 10.1016/j.neucom.2017.05.002 10.1038/sdata.2016.18 10.1016/j.jneumeth.2016.10.008 10.3390/e18090272 10.1162/neco.1989.1.4.541 10.1007/978-3-319-59153-7_12 10.1002/hbm.23730 10.1038/s41598-017-17562-0 10.1037/h0042519 10.1109/5.726791 10.1109/EMBC.2018.8512249 10.1007/978-3-319-18356-5_24 10.1038/323533a0 10.1016/j.neuroimage.2012.12.051 10.1007/978-3-319-70093-9_80 10.14704/nq.2018.16.6.1666 10.3389/fninf.2015.00016 10.1111/jebm.12266 10.1155/2014/627892 10.1016/j.neunet.2014.09.003 10.1016/j.neucom.2016.06.067 10.1109/T-AFFC.2011.15 10.1109/10.867928 10.1016/j.bspc.2018.02.021 10.1101/302000 10.1016/S0893-6080(98)00010-0 10.1038/s41562-016-0021 10.1109/T-AFFC.2011.25 10.1016/j.cub.2018.11.052 10.1016/j.compbiomed.2018.05.019 10.1109/TBME.2004.827072 10.1016/j.eswa.2018.04.021 10.1109/TBME.2004.826692 10.1016/j.jneumeth.2006.05.033 10.1016/j.sleep.2017.09.031 10.1016/j.ijleo.2016.10.117 10.1088/1741-2560/8/2/025005 10.1109/THMS.2016.2608933 |
ContentType | Journal Article |
Copyright | 2019 IOP Publishing Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 IOP Publishing Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | O3W TSCCA AAYXX CITATION NPM 7X8 1XC |
DOI | 10.1088/1741-2552/ab260c |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Statistics Computer Science |
DocumentTitleAlternate | Deep learning-based electroencephalography analysis: a systematic review |
EISSN | 1741-2552 |
ExternalDocumentID | oai_HAL_ird_03222079v1 31151119 10_1088_1741_2552_ab260c jneab260c |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fonds de Recherche du Québec-Nature et Technologies funderid: https://doi.org/10.13039/501100003151 – fundername: InteraXon Inc. – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RDPJ 514052-17 funderid: https://doi.org/10.13039/501100000038 |
GroupedDBID | --- 02O 1JI 1WK 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN BBWZM CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. O3W P2P PJBAE Q02 RIN RNS RO9 ROL RPA S3P SY9 TSCCA W28 XPP AAYXX ADEQX CITATION NPM 7X8 1XC |
ID | FETCH-LOGICAL-c563t-5ab704fb998296fdd43c94b26c0dccef5b908faf01c8c2e51b3cff7d3b37839d3 |
IEDL.DBID | O3W |
ISSN | 1741-2560 1741-2552 |
IngestDate | Fri May 09 12:24:42 EDT 2025 Fri Jul 11 00:21:48 EDT 2025 Mon Jul 21 06:03:14 EDT 2025 Thu Apr 24 22:52:52 EDT 2025 Tue Jul 01 01:58:39 EDT 2025 Fri Jan 08 09:41:22 EST 2021 Wed Aug 21 03:33:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-5ab704fb998296fdd43c94b26c0dccef5b908faf01c8c2e51b3cff7d3b37839d3 |
Notes | JNE-102815.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-4408-5221 0000-0001-9791-4404 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1741-2552/ab260c |
PMID | 31151119 |
PQID | 2233854825 |
PQPubID | 23479 |
PageCount | 37 |
ParticipantIDs | hal_primary_oai_HAL_ird_03222079v1 crossref_primary_10_1088_1741_2552_ab260c proquest_miscellaneous_2233854825 iop_journals_10_1088_1741_2552_ab260c pubmed_primary_31151119 crossref_citationtrail_10_1088_1741_2552_ab260c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Aboalayon (jneab260cbib001) 2016; 18 Chu (jneab260cbib035) 2017 Supratak (jneab260cbib186) 2017; 25 Perez (jneab260cbib148) 2017 Deiss (jneab260cbib041) 2018 An (jneab260cbib009) 2014; 8590 LNBI Li (jneab260cbib107) 2018 Cecotti (jneab260cbib032) 2014; 25 Völker (jneab260cbib211) 2017 Cecotti (jneab260cbib031) 2011; 33 Ding (jneab260cbib044) 2015; 2015 Oord (jneab260cbib136) 2017 Yepes (jneab260cbib225) 2017 Zhang (jneab260cbib243) 2018 Chiarelli (jneab260cbib034) 2018; 15 Jirayucharoensak (jneab260cbib088) 2014; 2014 Golmohammadi (jneab260cbib058) 2017 Shang (jneab260cbib173) 2017; 73 Frydenlund (jneab260cbib049) 2015; 9091 Lee (jneab260cbib102) 2018 Bigdely-Shamlo (jneab260cbib023) 2015; 9 Teo (jneab260cbib193) 2018; 10 Wilkinson (jneab260cbib216) 2016; 3 Sutskever (jneab260cbib187) 2014; 15 Goodfellow (jneab260cbib061) 2016; vol 1 Wulsin (jneab260cbib218) 2011; 8 Zeiler (jneab260cbib233) 2012 Snoek (jneab260cbib176) 2012 Zhou (jneab260cbib249) 2015; vol 1 Biswal (jneab260cbib025) 2017 Brock (jneab260cbib028) 2018 O’shea (jneab260cbib134) 2017 Morabito (jneab260cbib126) 2016 Raposo (jneab260cbib153) 2017 Kemp (jneab260cbib089) 2000; 47 O’reilly (jneab260cbib137) 2014; 23 Schirrmeister (jneab260cbib166) 2017 Sun (jneab260cbib184) 2016 Zafar (jneab260cbib232) 2017; 12 Turner (jneab260cbib203) 2014 Urigen (jneab260cbib205) 2015; 12 Makeig (jneab260cbib119) 1996; vol 8 Rumelhart (jneab260cbib159) 1986; 323 Tsinalis (jneab260cbib201) 2016 Zhang (jneab260cbib235) 2018 Stober (jneab260cbib182) 2015 Ben Said (jneab260cbib019) 2017 Patnaik (jneab260cbib146) 2017 Pardede (jneab260cbib143) 2015; 10 Ullah (jneab260cbib204) 2018 Vanschoren (jneab260cbib208) 2014; 15 Heilmeyer (jneab260cbib082) 2018 Mehmood (jneab260cbib123) 2017; 5 LeCun (jneab260cbib100) 1998; 86 Gramfort (jneab260cbib065) 2013; 70 Giri (jneab260cbib055) 2016 Liao (jneab260cbib112) 2018 Spampinato (jneab260cbib179) 2017 Engemann (jneab260cbib048) 2018; 141 Loshchilov (jneab260cbib115) 2016 Tang (jneab260cbib191) 2017; 130 Alhagry (jneab260cbib006) 2017; 8 Ben-David (jneab260cbib018) 2007 Yang (jneab260cbib221) 2016; 214 Bashivan (jneab260cbib016) 2015 Zhang (jneab260cbib239) 2018; 1 Parekh (jneab260cbib144) 2018; 841 Normand (jneab260cbib132) 2015 Baltatzis (jneab260cbib014) 2017; 7 Chambon (jneab260cbib033) 2017; 26 Golmohammadi (jneab260cbib059) 2017 Goodfellow (jneab260cbib062) 2014 Giri (jneab260cbib056) 2016 O’Shea (jneab260cbib138) 2018 Hefron (jneab260cbib081) 2017; 94 Lee (jneab260cbib101) 2018 Clerc (jneab260cbib036) 2016 Xu (jneab260cbib220) 2016 Gordienko (jneab260cbib063) 2017 Hao (jneab260cbib072) 2018; 17 Rosenblatt (jneab260cbib155) 1958; 65 Zheng (jneab260cbib247) 2019; 49 Gorgolewski (jneab260cbib064) 2016; 3 Gao (jneab260cbib050) 2018; 16 Dong (jneab260cbib045) 2018; 26 Tabar (jneab260cbib189) 2016; 14 Jayaram (jneab260cbib087) 2018; 15 Hajinoroozi (jneab260cbib071) 2016; 47 Kwak (jneab260cbib093) 2017; 12 Paez (jneab260cbib140) 2017; 10 van Putten (jneab260cbib207) 2018; 129 Liu (jneab260cbib114) 2016 Soleymani (jneab260cbib177) 2012; 3 Major (jneab260cbib118) 2017 Lotte (jneab260cbib117) 2018; 15 Behncke (jneab260cbib017) 2017 Tripathy (jneab260cbib198) 2018; 38 Arns (jneab260cbib011) 2013; 17 Comstock (jneab260cbib038) 1994 Gao (jneab260cbib051) 2015 Lin (jneab260cbib113) 2017 Narejo (jneab260cbib129) 2016; 6 Jas (jneab260cbib086) 2017; 159 Moinnereau (jneab260cbib125) 2018 Van Putten (jneab260cbib206) 2018; 8 Szegedy (jneab260cbib188) 2016 Goodfellow (jneab260cbib060) 2016 Koelstra (jneab260cbib091) 2012; 3 Bu (jneab260cbib029) 2010 Roy (jneab260cbib157) 2018 Zhang (jneab260cbib245) 2017 Almogbel (jneab260cbib007) 2018; vol 7 Volker (jneab260cbib210) 2018 Zhang (jneab260cbib237) 2017; 11 Zheng (jneab260cbib246) 2015; 7 Zhang (jneab260cbib236) 2018; 25 Hussein (jneab260cbib085) 2018 LeCun (jneab260cbib098) 2015; 521 Li (jneab260cbib111) 2018; vol 819 Mohamed (jneab260cbib124) 2011 Alomari (jneab260cbib067) 2013; 4 Längkvist (jneab260cbib095) 2018 Ahmedt-Aristizabal (jneab260cbib004) 2018 Roy (jneab260cbib156) 2019 Zhang (jneab260cbib244) 2018 An (jneab260cbib008) 2016 Yang (jneab260cbib224) 2016 Schwabedal (jneab260cbib170) 2018 Omerhodzic (jneab260cbib135) 2013 Schmidhuber (jneab260cbib168) 2015; 61 Duchi (jneab260cbib047) 2011; 12 Hari (jneab260cbib074) 2017 Munafò (jneab260cbib122) 2017; 1 Kuanar (jneab260cbib092) 2018 Heusel (jneab260cbib083) 2017 Shamwell (jneab260cbib172) 2016; vol 9836 Li (jneab260cbib104) 2014 Shoeb (jneab260cbib174) 2010 Hefron (jneab260cbib080) 2018; 18 Bishop (jneab260cbib024) 1995; vol 92 Acharya (jneab260cbib002) 2017 Thorsten (jneab260cbib195) 2011; 8 Zhang (jneab260cbib240) 2017 Yang (jneab260cbib222) 2018; 43 Zhang (jneab260cbib238) 2018 Yogatama (jneab260cbib229) 2017 Hagihira (jneab260cbib068) 2015; 115 Padmanabh (jneab260cbib139) 2017; 48 Kwon (jneab260cbib094) 2017; vol 474 Nolan (jneab260cbib131) 2010; 192 Biasiucci (jneab260cbib022) 2019; 29 Gulrajani (jneab260cbib066) 2017 Wu (jneab260cbib217) 2018 Sajda (jneab260cbib160) 2003; 11 Palazzo (jneab260cbib142) 2017 Manzano (jneab260cbib121) 2017; 10305 LNCS Zhang (jneab260cbib242) 2018; vol 2 Yin (jneab260cbib228) 2017; 260 Bergstra (jneab260cbib020) 2012; 13 Hajinoroozi (jneab260cbib069) 2015 Page (jneab260cbib141) 2016 Yin (jneab260cbib227) 2017; 33 Shah (jneab260cbib171) 2017 Phan (jneab260cbib150) 2019; 66 Andrzejak (jneab260cbib010) 2001; 64 Li (jneab260cbib109) 2015 Yang (jneab260cbib223) 2015 Hohman (jneab260cbib084) 2018 Russakovsky (jneab260cbib042) 2015; 115 Ruffini (jneab260cbib158) 2018 Robbins (jneab260cbib154) 1951 Zhang (jneab260cbib241) 2017 Drouin-Picaro (jneab260cbib046) 2016 Blankertz (jneab260cbib027) 2006; 14 Sun (jneab260cbib185) 2016 Acharya (jneab260cbib003) 2013; 45 Zheng (jneab260cbib248) 2014 Sors (jneab260cbib178) 2018; 42 Wang (jneab260cbib212) 2018; 10705 LNCS LeCun (jneab260cbib099) 1989; 1 Sturm (jneab260cbib183) 2016 Lotte (jneab260cbib116) 2015 Niso (jneab260cbib130) 2018; 5 Perez-Benitez (jneab260cbib147) 2018 Wang (jneab260cbib213) 2018 Hajinoroozi (jneab260cbib070) 2017; vol 10284 Wen (jneab260cbib215) 2018; 6 Yoon (jneab260cbib230) 2018; 2018 Thodoroff (jneab260cbib194) 2016 Golmohammadi (jneab260cbib057) 2017 Hartmann (jneab260cbib075) 2018 Taqi (jneab260cbib192) 2017 Al-Nafjan (jneab260cbib005) 2017; 7 Manor (jneab260cbib120) 2015; 9 Sakhavi (jneab260cbib161) 2017 Saon (jneab260cbib164) 2017 Berka (jneab260cbib021) 2007; 78 Schalk (jneab260cbib165) 2004; 51 Dharamsi (jneab260cbib043) 2017 Hasib (jneab260cbib077) 2018 Cole (jneab260cbib037) 2018 Kingma (jneab260cbib090) 2014 Pernet (jneab260cbib149) 2019; 6 Patanaik (jneab260cbib145) 2018; 41 Tibor (jneab260cbib196) 2017; 38 Li (jneab260cbib105) 2015; 165 Li (jneab260cbib108) 2018 Truong (jneab260cbib199) 2018 Bashivan (jneab260cbib015) 2016 Congedo (jneab260cbib039) 2017; 4 Nurse (jneab260cbib133) 2016 Waytowich (jneab260cbib214) 2018 Längkvist (jneab260cbib096) 2012; 2012 Stober (jneab260cbib181) 2014 Zhang (jneab260cbib234) 2016 Tieleman (jneab260cbib197) 2012; 4 Aznan (jneab260cbib012) 2018 Sree (jneab260cbib180) 2017 Talathi (jneab260cbib190) 2017 Li (jneab260cbib110) 2017 Schomer (jneab260cbib169) 2012 Vilamala (jneab260cbib209) 2017 Harati (jneab260cbib073) 2014 He (jneab260cbib079) 2015 Truong (jneab260cbib200) 2018; 105 Hartmann (jneab260cbib076) 2018 Sakhavi (jneab260cbib162) 2015 Simonyan (jneab260cbib175) 2014 Xie (jneab260cbib219) 2017; 10637 LNCS Blankertz (jneab260cbib026) 2004; 51 Ghosh (jneab260cbib053) 2018 Li (jneab260cbib106) 2013 Corley (jneab260cbib040) 2018 Schirrmeister (jneab260cbib167) 2017; 38 Salimans (jneab260cbib163) 2016 Naderi (jneab260cbib128) 2010 Castellanos (jneab260cbib030) 2006; 158 Yuan (jneab260cbib231) 2018 Radford (jneab260cbib152) 2018 Giacino (jneab260cbib054) 2014; 10 Morabito (jneab260cbib127) 2017; 27 Tsiouris (jneab260cbib202) 2018; 99 Prechelt (jneab260cbib151) 1998; 11 Ghassemi (jneab260cbib052) 2018; 45 Li (jneab260cbib103) 2017; 47 He (jneab260cbib078) 2018; 20 Lawhern (jneab260cbib097) 2018; 15 Bai (jneab260cbib013) 2018 Yin (jneab260cbib226) 2016 |
References_xml | – volume: 45 start-page: 147 year: 2013 ident: jneab260cbib003 article-title: Automated EEG analysis of epilepsy: a review publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.02.014 – year: 2017 ident: jneab260cbib166 article-title: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology doi: 10.1109/SPMB.2017.8257015 – volume: 2018 start-page: 6058065 year: 2018 ident: jneab260cbib230 article-title: Spatial and time domain feature of ERP speller system extracted via convolutional neural network publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/6058065 – volume: 26 start-page: 324 year: 2018 ident: jneab260cbib045 article-title: Mixed neural network approach for temporal sleep stage classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2733220 – year: 2018 ident: jneab260cbib101 article-title: Time series segmentation through automatic feature learning – year: 2018 ident: jneab260cbib108 article-title: Explicit inductive bias for transfer learning with convolutional networks – volume: 165 start-page: 23 year: 2015 ident: jneab260cbib105 article-title: Feature learning from incomplete EEG with denoising autoencoder publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.092 – volume: 8 start-page: 8 year: 2017 ident: jneab260cbib006 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Int. J. Adv. Comput. Sci. Appl. – start-page: 1 year: 2017 ident: jneab260cbib002 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals – year: 1994 ident: jneab260cbib038 article-title: Mat-multi-attribute task battery for human operator workload and strategic behavior research – volume: 25 start-page: 1351 year: 2018 ident: jneab260cbib236 article-title: The national sleep research resource: towards a sleep data commons. publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocy064 – volume: 23 start-page: 628 year: 2014 ident: jneab260cbib137 article-title: Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research publication-title: J. Sleep Res. doi: 10.1111/jsr.12169 – year: 2013 ident: jneab260cbib135 article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier 2 – start-page: 18 year: 2018 ident: jneab260cbib147 article-title: Development of a brain computer interface interface using multi-frequency visual stimulation and deep neural networks – start-page: 1 year: 2016 ident: jneab260cbib046 article-title: Using deep neural networks for natural saccade classification from electroencephalograms – year: 2016 ident: jneab260cbib060 article-title: Nips 2016 tutorial: generative adversarial networks – volume: 15 start-page: 49 year: 2014 ident: jneab260cbib208 article-title: OpenML: networked science in machine learning publication-title: SIGKDD Explorations doi: 10.1145/2641190.2641198 – volume: 8 year: 2011 ident: jneab260cbib218 article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/3/036015 – volume: 27 start-page: 1650039 year: 2017 ident: jneab260cbib127 article-title: Deep learning representation from electroencephalography of early-stage Creutzfeldt–Jakob disease and features for differentiation from rapidly progressive dementia publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500398 – volume: vol 10284 start-page: 45 year: 2017 ident: jneab260cbib070 article-title: Deep transfer learning for cross-subject and cross-experiment prediction of image rapid serial visual presentation events from EEG data – volume: 521 start-page: 436 year: 2015 ident: jneab260cbib098 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 15 year: 2018 ident: jneab260cbib034 article-title: Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaaf82 – year: 2017 ident: jneab260cbib063 article-title: Deep learning for fatigue estimation on the basis of multimodal human–machine interactions – volume: 159 start-page: 417 year: 2017 ident: jneab260cbib086 article-title: Autoreject: automated artifact rejection for MEG and EEG data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.06.030 – year: 2016 ident: jneab260cbib055 article-title: Combining generative and discriminative neural networks for sleep stages classification – year: 2014 ident: jneab260cbib175 article-title: Very deep convolutional networks for large-scale image recognition – volume: 25 start-page: 1998 year: 2017 ident: jneab260cbib186 article-title: DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2721116 – year: 2017 ident: jneab260cbib058 article-title: Deep architectures for automated seizure detection in scalp EEGs – volume: 4 start-page: 155 year: 2017 ident: jneab260cbib039 article-title: Riemannian geometry for EEG-based brain–computer interfaces; a primer and a review publication-title: Brain–Comput. Interfaces doi: 10.1080/2326263X.2017.1297192 – volume: 15 year: 2018 ident: jneab260cbib097 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – year: 2017 ident: jneab260cbib025 article-title: SLEEPNET: automated sleep staging system via deep learning 1–17 – volume: 6 start-page: 103 year: 2019 ident: jneab260cbib149 article-title: Bids-EEG: an extension to the brain imaging data structure (bids) specification for electroencephalography publication-title: Sci. Data doi: 10.1038/s41597-019-0104-8 – volume: 13 start-page: 281 year: 2012 ident: jneab260cbib020 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – volume: 5 year: 2018 ident: jneab260cbib130 article-title: Meg-bids, the brain imaging data structure extended to magnetoencephalography publication-title: Sci. Data doi: 10.1038/sdata.2018.110 – volume: 33 start-page: 433 year: 2011 ident: jneab260cbib031 article-title: Convolutional neural networks for P300 detection with application to brain–computer interfaces publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.125 – volume: 47 start-page: 549 year: 2016 ident: jneab260cbib071 article-title: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network publication-title: Signal Process.: Image Commun. doi: 10.1016/j.image.2016.05.018 – year: 2017 ident: jneab260cbib074 – volume: 10 start-page: 993 year: 2015 ident: jneab260cbib143 article-title: Adaptive recurrent neural network for reduction of noise and estimation of source from recorded EEG signals publication-title: ARPN J. Eng. Appl. Sci. – start-page: 4 year: 2018 ident: jneab260cbib231 article-title: A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning – year: 2018 ident: jneab260cbib107 article-title: Training on the test set? An analysis of Spampinato et al – year: 2018 ident: jneab260cbib214 article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials doi: 10.1088/1741-2552/aae5d8 – year: 2017 ident: jneab260cbib017 article-title: The signature of robot action success in EEG signals of a human observer: decoding and visualization using deep convolutional neural networks – volume: vol 7 start-page: 256 year: 2018 ident: jneab260cbib007 article-title: EEG-signals based cognitive workload detection of vehicle driver using deep learning – volume: 8 year: 2018 ident: jneab260cbib206 article-title: Predicting sex from brain rhythms with deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-018-21495-7 – start-page: 4 year: 2018 ident: jneab260cbib040 article-title: Deep EEG super-resolution: upsampling EEG spatial resolution with generative adversarial networks – volume: 48 start-page: 38 year: 2017 ident: jneab260cbib139 article-title: Mental tasks classification using EEG signal, discrete wavelet transform and neural network publication-title: Discovery – start-page: 770 year: 2015 ident: jneab260cbib079 article-title: Deep residual learning for image recognition – start-page: 86 year: 2017 ident: jneab260cbib192 article-title: Classification and discrimination of focal and non-focal EEG signals based on deep neural network – start-page: 1086 year: 2016 ident: jneab260cbib141 article-title: Wearable seizure detection using convolutional neural networks with transfer learning – start-page: 3430 year: 2017 ident: jneab260cbib142 article-title: Generative adversarial networks conditioned by brain signals – start-page: 1 year: 2014 ident: jneab260cbib073 article-title: The TUH EEG CORPUS: a big data resource for automated EEG interpretation – volume: vol 92 year: 1995 ident: jneab260cbib024 – volume: 15 year: 2018 ident: jneab260cbib117 article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aab2f2 – year: 2015 ident: jneab260cbib016 article-title: Learning representations from EEG with deep recurrent-convolutional neural networks – volume: 94 start-page: 96 year: 2017 ident: jneab260cbib081 article-title: Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.05.020 – volume: 33 start-page: 30 year: 2017 ident: jneab260cbib227 article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.11.013 – year: 2018 ident: jneab260cbib082 article-title: A large-scale evaluation framework for EEG deep learning architectures doi: 10.1109/SMC.2018.00185 – year: 2017 ident: jneab260cbib146 article-title: Deep RNN learning for EEG based functional brain state inference doi: 10.1109/ICAC3.2017.8318753 – volume: 11 start-page: 184 year: 2003 ident: jneab260cbib160 article-title: A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2003.814453 – volume: 38 start-page: 890 year: 2018 ident: jneab260cbib198 article-title: Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.05.005 – start-page: 2620 year: 2015 ident: jneab260cbib223 article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification – start-page: 1973 year: 2017 ident: jneab260cbib225 article-title: Improving classification accuracy of feedforward neural networks for spiking neuromorphic chips – year: 2018 ident: jneab260cbib085 article-title: Epileptic seizure detection: a deep learning approach – start-page: 6626 year: 2017 ident: jneab260cbib083 article-title: GANs trained by a two time-scale update rule converge to a local nash equilibrium – year: 2018 ident: jneab260cbib075 article-title: EEG-GAN: generative adversarial networks for electroencephalograhic (EEG) brain signals – start-page: 28 year: 2017 ident: jneab260cbib245 article-title: Multi-person brain activity recognition via comprehensive EEG signal analysis – volume: 115 start-page: 211 year: 2015 ident: jneab260cbib042 article-title: ImageNet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – year: 2017 ident: jneab260cbib148 article-title: The effectiveness of data augmentation in image classification using deep learning – volume: 42 start-page: 107 year: 2018 ident: jneab260cbib178 article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.12.001 – volume: 5 start-page: 14797 year: 2017 ident: jneab260cbib123 article-title: Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2724555 – start-page: 104 year: 2018 ident: jneab260cbib077 article-title: A hierarchical LSTM model with attention for modeling EEG non-stationarity for human decision prediction – volume: 3 year: 2016 ident: jneab260cbib064 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci. Data doi: 10.1038/sdata.2016.44 – start-page: 75 year: 2014 ident: jneab260cbib203 article-title: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection – year: 2017 ident: jneab260cbib240 article-title: DeepKey: an EEG and gait based dual-authentication system – start-page: 2234 year: 2016 ident: jneab260cbib163 article-title: Improved techniques for training GANs – start-page: 2818 year: 2016 ident: jneab260cbib188 article-title: Rethinking the inception architecture for computer vision – year: 2017 ident: jneab260cbib057 article-title: Automatic analysis of EEGs using big data and hybrid deep learning architectures – start-page: 568 year: 2018 ident: jneab260cbib210 article-title: Intracranial error detection via deep learning – volume: 115 start-page: i27 year: 2015 ident: jneab260cbib068 article-title: Changes in the electroencephalogram during anaesthesia and their physiological basis publication-title: Br. J. Anaesthesia doi: 10.1093/bja/aev212 – start-page: 2736 year: 2015 ident: jneab260cbib162 article-title: Parallel convolutional-linear neural network for motor imagery classification – volume: 17 start-page: 374 year: 2013 ident: jneab260cbib011 article-title: A decade of EEG theta/beta ratio research in ADHD: a meta-analysis publication-title: J. Attention Disorders doi: 10.1177/1087054712460087 – start-page: 2674 year: 2018 ident: jneab260cbib084 article-title: Visual analytics in deep learning: an interrogative survey for the next frontiers doi: 10.1109/TVCG.2018.2843369 – year: 2016 ident: jneab260cbib036 – year: 2017 ident: jneab260cbib164 article-title: English conversational telephone speech recognition by humans and machines doi: 10.21437/Interspeech.2017-405 – start-page: 1 year: 2016 ident: jneab260cbib220 article-title: Affective states classification using EEG and semi-supervised deep learning approaches – volume: 73 start-page: 220 year: 2017 ident: jneab260cbib173 article-title: Learning from class-imbalanced data: Review of methods and applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.12.035 – start-page: 3907 year: 2016 ident: jneab260cbib226 article-title: Recognition of cognitive task load levels using single channel EEG and stacked denoising autoencoder – year: 2018 ident: jneab260cbib053 article-title: Deep semantic architecture with discriminative feature visualization for neuroimage analysis – volume: 8590 LNBI start-page: 203 year: 2014 ident: jneab260cbib009 article-title: A deep learning method for classification of EEG data based on motor imagery publication-title: Lecture Notes Comput. Sci. doi: 10.1007/978-3-319-09330-7_25 – start-page: 305 year: 2013 ident: jneab260cbib106 article-title: Affective state recognition from EEG with deep belief networks – start-page: 748 year: 2017 ident: jneab260cbib241 article-title: Intent recognition in smart living through deep recurrent neural networks – volume: 26 start-page: 758 year: 2017 ident: jneab260cbib033 article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/tnsre.2018.2813138 – year: 2017 ident: jneab260cbib118 article-title: The effects of pre-filtering and individualizing components for electroencephalography neural network classification doi: 10.1109/SECON.2017.7925289 – year: 2018 ident: jneab260cbib125 article-title: Classification of auditory stimuli from EEG signals with a regulated recurrent neural network reservoir – volume: 10 start-page: 87 year: 2018 ident: jneab260cbib193 article-title: Preference classification using electroencephalography (EEG) and deep learning publication-title: J. Telecommun. Electron. Comput. Eng. – volume: 18 start-page: 1339 year: 2018 ident: jneab260cbib080 article-title: Cross-participant EEG-based assessment of cognitive workload using multi-path convolutional recurrent neural networks publication-title: Sensors doi: 10.3390/s18051339 – year: 2018 ident: jneab260cbib158 article-title: Deep learning with EEG spectrograms in rapid eye movement behavior disorder doi: 10.1101/240267 – volume: 12 year: 2015 ident: jneab260cbib205 article-title: EEG artifact removal state-of-the-art and guidelines publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/3/031001 – start-page: 137 year: 2007 ident: jneab260cbib018 article-title: Analysis of representations for domain adaptation – volume: vol 9836 year: 2016 ident: jneab260cbib172 article-title: Single-trial EEG RSVP classification using convolutional neural networks – year: 2016 ident: jneab260cbib114 article-title: Multimodal emotion recognition using multimodal deep learning doi: 10.1007/978-3-319-46672-9_58 – volume: 105 start-page: 104 year: 2018 ident: jneab260cbib200 article-title: Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.04.018 – year: 2018 ident: jneab260cbib095 article-title: A deep learning approach with an attention mechanism for automatic sleep stage classification – start-page: 1 year: 2018 ident: jneab260cbib076 article-title: Hierarchical internal representation of spectral features in deep convolutional networks trained for EEG decoding – year: 2012 ident: jneab260cbib233 article-title: ADADELTA: an adaptive learning rate method – start-page: 1 year: 2017 ident: jneab260cbib180 article-title: Vowel classification from imagined speech using sub-band EEG frequencies and deep belief networks – volume: 14 start-page: 153 year: 2006 ident: jneab260cbib027 article-title: The bci competition iii: validating alternative approaches to actual bci problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.875642 – volume: 15 start-page: 1929 year: 2014 ident: jneab260cbib187 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 141 start-page: 3179 year: 2018 ident: jneab260cbib048 article-title: Robust EEG-based cross-site and cross-protocol classification of states of consciousness publication-title: Brain doi: 10.1093/brain/awy251 – volume: 14 start-page: 16003 year: 2016 ident: jneab260cbib189 article-title: A novel deep learning approach for classification of EEG motor imagery signals publication-title: J. Neural Eng. doi: 10.1088/1741-2560/14/1/016003 – volume: 64 year: 2001 ident: jneab260cbib010 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.061907 – start-page: 1 year: 2017 ident: jneab260cbib171 article-title: Optimizing channel selection for seizure detection – volume: 25 start-page: 2030 year: 2014 ident: jneab260cbib032 article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2302898 – start-page: 1 year: 2016 ident: jneab260cbib224 article-title: Semi-automated annotation of signal events in clinical EEG data, Engineering Data Consortium, Temple University, Philadelphia, Pennsylvania, USA – start-page: 1 year: 2018 ident: jneab260cbib213 article-title: EEG detection and de-noising based on convolution neural network and Hilbert-Huang transform – start-page: 182 year: 2018 ident: jneab260cbib102 article-title: Generating target/non-target images of an RSVP experiment from brain signals in by conditional generative adversarial network doi: 10.1109/BHI.2018.8333399 – year: 2016 ident: jneab260cbib015 article-title: Mental state recognition via wearable EEG – volume: 841 start-page: 303 year: 2018 ident: jneab260cbib144 article-title: An EEG-based image annotation system publication-title: Commun. Comput. Inf. Sci. – start-page: 5767 year: 2017 ident: jneab260cbib066 article-title: Improved training of wasserstein GANs – volume: 15 year: 2018 ident: jneab260cbib087 article-title: MOABB: trustworthy algorithm benchmarking for BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aadea0 – start-page: 588 year: 2017 ident: jneab260cbib161 article-title: Convolutional neural network-based transfer learning and knowledge distillation using multi-subject data in motor imagery BCI – year: 2017 ident: jneab260cbib209 article-title: Deep convolutional neural networks for interpretable analysis of EEG sleep stage scoring doi: 10.1109/MLSP.2017.8168133 – year: 2016 ident: jneab260cbib194 article-title: Learning robust features using deep learning for automatic seizure detection – volume: 9 start-page: 1 year: 2015 ident: jneab260cbib120 article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI publication-title: Frontiers Comput. Neurosci. doi: 10.3389/fncom.2015.00146 – year: 2017 ident: jneab260cbib043 article-title: Neurology-as-a-service for the developing world – volume: 192 start-page: 152 year: 2010 ident: jneab260cbib131 article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.07.015 – volume: 11 start-page: 1 year: 2017 ident: jneab260cbib237 article-title: Pattern recognition of momentary mental workload based on multi-channel electrophysiological data and ensemble convolutional neural networks publication-title: Frontiers Neurosci. doi: 10.3389/fnins.2017.00310 – year: 2015 ident: jneab260cbib132 article-title: Superchords: the atoms of thought – start-page: 1 year: 2017 ident: jneab260cbib211 article-title: Deep transfer learning for error decoding from non-invasive EEG – year: 2018 ident: jneab260cbib152 article-title: Language models are unsupervised multitask learners – volume: 12 start-page: 1 year: 2017 ident: jneab260cbib093 article-title: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment publication-title: PLoS One doi: 10.1371/journal.pone.0172578 – volume: 20 start-page: 171 year: 2018 ident: jneab260cbib078 article-title: Electrophysiological source imaging: a noninvasive window to brain dynamics publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-062117-120853 – volume: 78 start-page: B231 year: 2007 ident: jneab260cbib021 article-title: {EEG} correlates of task engagement and mental workload in vigilance, learning, and memory tasks publication-title: Aviat. Space Environ. Med. – start-page: 493 year: 2015 ident: jneab260cbib069 article-title: Prediction of driver’s drowsy and alert states from EEG signals with deep learning – start-page: 259 year: 2016 ident: jneab260cbib133 article-title: Decoding EEG and LFP signals using deep learning: heading TrueNorth – year: 2017 ident: jneab260cbib136 article-title: Parallel wavenet: fast high-fidelity speech synthesis – year: 2016 ident: jneab260cbib115 article-title: SGDR: stochastic gradient descent with warm restarts – volume: 10705 LNCS start-page: 82 year: 2018 ident: jneab260cbib212 article-title: Data augmentation for eeg-based emotion recognition with deep convolutional neural networks publication-title: Lecture Notes Comput. Sci. doi: 10.1007/978-3-319-73600-6_8 – volume: 6 start-page: 25399 year: 2018 ident: jneab260cbib215 article-title: Deep convolution neural network and autoencoders-based unsupervised feature learning of EEG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2833746 – year: 2016 ident: jneab260cbib201 article-title: Automatic sleep stage scoring with single-channel EEG using convolutional neural networks – volume: 17 start-page: 962 year: 2018 ident: jneab260cbib072 article-title: DeepIED: an epileptic discharge detector for EEG-fMRI based on deep learning publication-title: NeuroImage doi: 10.1016/j.nicl.2017.12.005 – year: 2017 ident: jneab260cbib019 article-title: Multimodal deep learning approach for Joint EEG-EMG data compression and classification doi: 10.1109/WCNC.2017.7925709 – year: 2012 ident: jneab260cbib169 – year: 2018 ident: jneab260cbib238 article-title: Improving brain computer interface performance by data augmentation with conditional deep convolutional generative adversarial networks – year: 2018 ident: jneab260cbib138 article-title: Investigating the impact of CNN depth on neonatal seizure detection performance – volume: vol 1 year: 2016 ident: jneab260cbib061 – volume: 2012 year: 2012 ident: jneab260cbib096 article-title: Sleep stage classification using unsupervised feature learning publication-title: Adv. Artif. Neural Syst. doi: 10.1155/2012/107046 – volume: 10 start-page: 99 year: 2014 ident: jneab260cbib054 article-title: Disorders of consciousness after acquired brain injury: the state of the science publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2013.279 – volume: 1 year: 2018 ident: jneab260cbib239 article-title: Spatial-temporal recurrent neural network for emotion recognition publication-title: IEEE Trans. Cybern. – year: 2017 ident: jneab260cbib134 article-title: Neonatal seizure detection using convolutional neural networks doi: 10.1109/MLSP.2017.8168193 – volume: 4 start-page: 26 year: 2012 ident: jneab260cbib197 article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude publication-title: COURSERA: Neural Netw. Mach. Learn. – year: 2016 ident: jneab260cbib126 article-title: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings publication-title: IEEE 2nd Int. Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow doi: 10.1109/RTSI.2016.7740576 – volume: 49 start-page: 1110 year: 2019 ident: jneab260cbib247 article-title: Emotionmeter: a multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – year: 2018 ident: jneab260cbib041 article-title: HAMLET: interpretable human and machine co-learning technique – year: 2018 ident: jneab260cbib244 article-title: Know your mind: adaptive brain signal classification with reinforced attentive convolutional neural networks – year: 2018 ident: jneab260cbib170 article-title: Addressing class imbalance in classification problems of noisy signals by using fourier transform surrogates – year: 2017 ident: jneab260cbib229 article-title: Generative and discriminative text classification with recurrent neural networks – volume: 66 start-page: 1285 year: 2019 ident: jneab260cbib150 article-title: Joint classification and prediction CNN framework for automatic sleep stage classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/tbme.2018.2872652 – volume: 12 start-page: e0178410 year: 2017 ident: jneab260cbib232 article-title: Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion publication-title: PLoS ONE doi: 10.1371/journal.pone.0178410 – year: 2017 ident: jneab260cbib035 article-title: Individual recognition in schizophrenia using deep learning methods with random forest and voting classifiers: insights from resting state EEG streams – start-page: 4503 year: 2017 ident: jneab260cbib179 article-title: Deep learning human mind for automated visual classification – volume: 2015 year: 2015 ident: jneab260cbib044 article-title: Deep extreme learning machine and its application in EEG classification publication-title: Math. Problems Eng. doi: 10.1155/2015/129021 – volume: 7 start-page: 162 year: 2015 ident: jneab260cbib246 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Mental Dev. doi: 10.1109/TAMD.2015.2431497 – year: 2017 ident: jneab260cbib190 article-title: Deep recurrent neural networks for seizure detection and early seizure detection systems doi: 10.2172/1366924 – volume: 7 start-page: 1239 year: 2017 ident: jneab260cbib005 article-title: Review and classification of emotion recognition based on EEG brain–computer interface system research: a systematic review publication-title: Appl. Sci. doi: 10.3390/app7121239 – volume: 129 start-page: e98 year: 2018 ident: jneab260cbib207 article-title: Deep learning for detection of epileptiform discharges from scalp EEG recordings publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.04.248 – start-page: 5606 year: 2017 ident: jneab260cbib110 article-title: Dualing GANs – volume: 260 start-page: 349 year: 2017 ident: jneab260cbib228 article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.002 – volume: 45 year: 2018 ident: jneab260cbib052 article-title: You snooze, you win: the physionet/computing in cardiology challenge 2018 publication-title: Comput. Cardiol. – volume: vol 1 start-page: 1127 year: 2015 ident: jneab260cbib249 article-title: End-to-end learning of semantic role labeling using recurrent neural networks – volume: 3 year: 2016 ident: jneab260cbib216 article-title: Comment: The fair guiding principles for scientific data management and stewardship publication-title: Sci. Data doi: 10.1038/sdata.2016.18 – year: 2016 ident: jneab260cbib183 article-title: Interpretable deep neural networks for single-trial EEG classification doi: 10.1016/j.jneumeth.2016.10.008 – year: 2018 ident: jneab260cbib013 article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling – volume: 18 start-page: 272 year: 2016 ident: jneab260cbib001 article-title: Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation publication-title: Entropy doi: 10.3390/e18090272 – year: 2016 ident: jneab260cbib185 article-title: Neural networks based EEG-speech models 1–10 – year: 2016 ident: jneab260cbib056 article-title: Ischemic stroke identification based on EEG and EOG using 1D convolutional neural network and batch normalization – volume: 1 start-page: 541 year: 1989 ident: jneab260cbib099 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 10305 LNCS start-page: 132 year: 2017 ident: jneab260cbib121 article-title: Deep learning using EEG data in time and frequency domains for sleep stage classification publication-title: Lecture Notes Comput. Sci. doi: 10.1007/978-3-319-59153-7_12 – volume: 38 start-page: 5391 year: 2017 ident: jneab260cbib196 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – start-page: 1 year: 2010 ident: jneab260cbib128 article-title: Analysis and classification of EEG signals using spectral analysis and recurrent neural networks – start-page: 975 year: 2010 ident: jneab260cbib174 article-title: Application of machine learning to epileptic seizure detection – volume: 7 start-page: 17292 year: 2017 ident: jneab260cbib014 article-title: Bullying incidences identification within an immersive environment using HD EEG-based analysis: a swarm decomposition and deep learning approach publication-title: Sci. Rep. doi: 10.1038/s41598-017-17562-0 – volume: 65 start-page: 386 year: 1958 ident: jneab260cbib155 article-title: The perceptron: a probabilistic model for information storage and organization publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 86 start-page: 2278 year: 1998 ident: jneab260cbib100 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – start-page: 102 year: 1951 ident: jneab260cbib154 article-title: A stochastic approximation method – volume: vol 8 start-page: 145 year: 1996 ident: jneab260cbib119 article-title: Independent component analysis of electroencephalographic data – year: 2018 ident: jneab260cbib004 article-title: Deep classification of epileptic signals doi: 10.1109/EMBC.2018.8512249 – volume: 9091 start-page: 273 year: 2015 ident: jneab260cbib049 article-title: Emotional affect estimation using video and EEG data in deep neural networks publication-title: Lecture Notes Comput. Sci. doi: 10.1007/978-3-319-18356-5_24 – volume: 323 start-page: 533 year: 1986 ident: jneab260cbib159 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 12 start-page: 2121 year: 2011 ident: jneab260cbib047 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – year: 2017 ident: jneab260cbib153 article-title: Towards deep modeling of music semantics using EEG regularizers – start-page: 443 year: 2016 ident: jneab260cbib184 article-title: Deep coral: correlation alignment for deep domain adaptation – volume: 70 start-page: 410 year: 2013 ident: jneab260cbib065 article-title: Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.051 – start-page: 1 year: 2017 ident: jneab260cbib059 article-title: Gated recurrent networks for seizure detection – volume: 10637 LNCS start-page: 752 year: 2017 ident: jneab260cbib219 article-title: The analysis and classify of sleep stage using deep learning network from single-channel EEG signal publication-title: Lecture Notes Comput. Sci. doi: 10.1007/978-3-319-70093-9_80 – volume: 16 start-page: 789 year: 2018 ident: jneab260cbib050 article-title: EEG classification based on sparse representation and deep learning publication-title: NeuroQuantology doi: 10.14704/nq.2018.16.6.1666 – volume: 9 start-page: 16 year: 2015 ident: jneab260cbib023 article-title: The PREP pipeline: standardized preprocessing for large-scale EEG analysis publication-title: Frontiers Neuroinform. doi: 10.3389/fninf.2015.00016 – year: 2018 ident: jneab260cbib157 article-title: ChronoNet: a deep recurrent neural network for abnormal EEG identification – start-page: 2576 year: 2018 ident: jneab260cbib092 article-title: Cognitive analysis of working memory load from EEG, by a deep recurrent neural network – volume: 10 start-page: 233 year: 2017 ident: jneab260cbib140 article-title: Gray literature: an important resource in systematic reviews publication-title: J. Evidence-Based Med. doi: 10.1111/jebm.12266 – start-page: 1 year: 2018 ident: jneab260cbib217 article-title: Fair deep learning prediction for healthcare applications with confounder filtering – volume: 2014 year: 2014 ident: jneab260cbib088 article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation publication-title: Sci. World J. doi: 10.1155/2014/627892 – year: 2016 ident: jneab260cbib234 article-title: Understanding deep learning requires rethinking generalization – volume: 61 start-page: 85 year: 2015 ident: jneab260cbib168 article-title: Deep learning in neural networks: an overview: read section 6.6 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – start-page: 1 year: 2015 ident: jneab260cbib116 – start-page: 1 year: 2014 ident: jneab260cbib181 article-title: Using convolutional neural networks to recognize rhythm stimuli from electroencephalography recordings – volume: 214 start-page: 1053 year: 2016 ident: jneab260cbib221 article-title: Removal of EOG artifacts from EEG using a cascade of sparse autoencoder and recursive least squares adaptive filter publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.067 – start-page: 1703 year: 2018 ident: jneab260cbib235 article-title: Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface – year: 2014 ident: jneab260cbib090 article-title: Adam: a method for stochastic optimization – volume: 3 start-page: 18 year: 2012 ident: jneab260cbib091 article-title: DEAP: a database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affective Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 47 start-page: 1185 year: 2000 ident: jneab260cbib089 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.867928 – volume: 43 start-page: 148 year: 2018 ident: jneab260cbib222 article-title: Automatic ocular artifacts removal in EEG using deep learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.02.021 – year: 2018 ident: jneab260cbib012 article-title: On the classification of SSVEP-based dry-EEG signals via convolutional neural networks – start-page: 2951 year: 2012 ident: jneab260cbib176 article-title: Practical bayesian optimization of machine learning algorithms – year: 2015 ident: jneab260cbib182 article-title: Deep feature learning for EEG recordings – start-page: 385 year: 2017 ident: jneab260cbib113 article-title: Deep convolutional neural network for emotion recognition using EEG and peripheral physiological signal – start-page: 1 year: 2010 ident: jneab260cbib029 article-title: EEG discrimination using wavelet packet transform and a reduced-dimensional recurrent neural network – volume: 4 start-page: 6 year: 2013 ident: jneab260cbib067 article-title: Automated classification of L/R hand movement EEG signals using advanced feature extraction and machine learning publication-title: Int. J. Adv. Comput. Sci. Appl. – year: 2019 ident: jneab260cbib156 article-title: Machine learning for seizure type classification: setting the benchmark – year: 2018 ident: jneab260cbib037 article-title: Cycle-by-cycle analysis of neural oscillations doi: 10.1101/302000 – volume: 11 start-page: 761 year: 1998 ident: jneab260cbib151 article-title: Automatic early stopping using cross validation: quantifying the criteria publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00010-0 – volume: 1 start-page: 0021 year: 2017 ident: jneab260cbib122 article-title: A manifesto for reproducible science publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-016-0021 – volume: vol 2 start-page: 149:1 year: 2018 ident: jneab260cbib242 article-title: Mindid: Person identification from brain waves through attention-based recurrent neural network – start-page: 1 year: 2018 ident: jneab260cbib243 article-title: Converting your thoughts to texts: enabling brain typing via deep feature learning of eeg signals – start-page: 503 year: 2014 ident: jneab260cbib104 article-title: Deep learning of multifractal attributes from motor imagery induced EEG – volume: 3 start-page: 42 year: 2012 ident: jneab260cbib177 article-title: A multimodal database for affect recognition and implicit tagging publication-title: IEEE Trans. Affective Comput. doi: 10.1109/T-AFFC.2011.25 – volume: 29 start-page: R80 year: 2019 ident: jneab260cbib022 article-title: Electroencephalography publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.11.052 – volume: 38 start-page: 5391 year: 2017 ident: jneab260cbib167 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – volume: 6 start-page: 3131 year: 2016 ident: jneab260cbib129 article-title: EEG based eye state classification using deep belief network and stacked autoencoder publication-title: Int. J. Electr. Comput. Eng. – start-page: 1 year: 2014 ident: jneab260cbib248 article-title: EEG-based emotion classification using deep belief networks – year: 2018 ident: jneab260cbib028 article-title: Large scale gan training for high fidelity natural image synthesis – start-page: 427 year: 2016 ident: jneab260cbib008 article-title: Hand motion identification of grasp-and-lift task from electroencephalography recordings using recurrent neural networks – volume: vol 474 start-page: 96 year: 2017 ident: jneab260cbib094 article-title: Transformation of EEG signal for emotion analysis and dataset construction for DNN learning – volume: 99 start-page: 24 year: 2018 ident: jneab260cbib202 article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.05.019 – volume: 51 start-page: 1034 year: 2004 ident: jneab260cbib165 article-title: Bci2000: a general-purpose brain-computer interface (bci) system publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827072 – start-page: 2672 year: 2014 ident: jneab260cbib062 article-title: Generative adversarial nets – start-page: 90 year: 2018 ident: jneab260cbib112 article-title: Emotion stress detection using EEG signal and deep learning technologies – year: 2018 ident: jneab260cbib204 article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach doi: 10.1016/j.eswa.2018.04.021 – volume: 51 start-page: 1044 year: 2004 ident: jneab260cbib026 article-title: The bci competition 2003 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826692 – start-page: 6289 year: 2011 ident: jneab260cbib124 article-title: Single-trial EEG discrimination between wrist and finger movement imagery and execution in a sensorimotor BCI – volume: 158 start-page: 300 year: 2006 ident: jneab260cbib030 article-title: Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.05.033 – start-page: 1 year: 2015 ident: jneab260cbib051 article-title: Deep learninig of EEG signals for emotion recognition – volume: 41 start-page: 1 year: 2018 ident: jneab260cbib145 article-title: An end-to-end framework for real-time automatic sleep stage classification publication-title: Sleep doi: 10.1016/j.sleep.2017.09.031 – volume: 130 start-page: 11 year: 2017 ident: jneab260cbib191 article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks publication-title: Optik doi: 10.1016/j.ijleo.2016.10.117 – volume: 8 start-page: 25005 year: 2011 ident: jneab260cbib195 article-title: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general publication-title: J. Neural Eng. doi: 10.1088/1741-2560/8/2/025005 – volume: vol 819 year: 2018 ident: jneab260cbib111 article-title: Emotion recognition from EEG Using RASM and LSTM – start-page: 2 year: 2015 ident: jneab260cbib109 article-title: EEG based emotion identification using unsupervised deep feature learning – year: 2018 ident: jneab260cbib199 article-title: Semi-supervised seizure prediction with generative adversarial networks – volume: 47 start-page: 598 year: 2017 ident: jneab260cbib103 article-title: Deep models for engagement assessment with scarce label information publication-title: IEEE Trans. Hum.-Mach. Syst. doi: 10.1109/THMS.2016.2608933 |
SSID | ssj0031790 |
Score | 2.6940086 |
SecondaryResourceType | review_article |
Snippet | Context. Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature... Context . Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature... Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction... |
SourceID | hal proquest pubmed crossref iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 51001 |
SubjectTerms | Applications Computer Science deep learning EEG electroencephalogram Medical Imaging neural networks Other Statistics review Statistics survey |
Title | Deep learning-based electroencephalography analysis: a systematic review |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/ab260c https://www.ncbi.nlm.nih.gov/pubmed/31151119 https://www.proquest.com/docview/2233854825 https://ird.hal.science/ird-03222079 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51y4UL6oNHSqlMBUgczDpxnDj0tIJWCwLKgYrerPhFqUo2ardI_feMY-9WlWjVmw8TP8aP-SYz_gzwyuCaMGhmqJeO0dLVhupSemorjtbKCWeqcMH567dqelR-PhbHK7C3vAsz69PR_w6LkSg4qjAlxMkxYuicIhIuxq1GNG5G8IDLSgbP65D_XBzDPFBPxduQQbpiKUb5vxpu2KTRSciIHGHrt4POwfgcrMGjhBrJJPZxHVZctwGbkw495j9X5A0Z8jiHH-SbMP3oXE_SaxC_aDBTlqTXbsKI-5N2wVNN2kRJ8p605JrTmcT7LI_h6GD_x4cpTe8lUCMqPqei1TUrvUYPqmgqb23JTVPiCA2zxjgvdMOkbz3LjTSFE7nmxvvacs1rxEmWP4HVbta5Z0CYC_FYkyP-rkumsVzkWnBsADe4lzKD8UJjyiQy8fCmxZkagtpSqqBjFXSsoo4zeLv8oo9EGnfI7qIqlmKBAXs6-aJ-n1vFQmSI1c3fPIPXOEcqbbmLOyojN-ROO6fySgkVjiOWq976DF4uJlrh7gohk7Zzs8sLheCJS3TqCpHB07gClt0KPEVoKZqte3bkOTxEtNXETMBtWJ2fX7oXiGjmegdGnw6_7wzr9x_BfuyS |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6xRUJcEFAe4WkQIHEw68Sx43BbUVYLlMKBit6s-EVbQTZqt0j8e8axd1ElqLj5YDvj8djzOWN_A_DMok1YdDM0KM9o7RtLTa0CdZKjt_LCWxkfOH_ck4v9-v2BOMh5Tse3MMshb_2vsJiIgpMK84U4NUUMXVJEwtW0M4jG7XRwYQKXBZcy5m74xL-ut2Ie6afSi8jYQrIcp_xbL-f80uQw3oqcoAT_Bp6jA5pfh2sZOZJZkvMGXPL9Tdie9Xhq_vGLvCDjXc7xJ_k2LHa8H0jOCPGNRlflSM54E0c9HHZrrmrSZVqS16Qjf3idSXrTcgv252-_vFnQnDOBWiH5iorONKwOBk9RVSuDczW3bY0jtMxZ64MwLVOhC6y0ylZelIbbEBrHDW8QKzl-G7b6Ze_vAmE-xmRtiRi8qZnBclUawfEDuMiDUgVM1xrTNhOKx7wW3_UY2FZKRx3rqGOddFzAy02LIZFpXFD3KapiUy2yYC9mu_roxGkWo0OsaX-WBTzHOdJ52Z1e0Bk5V--497qUWui4JbFSowUV8GQ90RpXWAybdL1fnp1qBFBc4cGuEgXcSRawEStyFaG3aO_9pyCP4crnnbnefbf34T5cRfDVpouBD2BrdXLmHyLAWZlHoxH_Btgf73g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+electroencephalography+analysis%3A+a+systematic+review&rft.jtitle=Journal+of+neural+engineering&rft.au=Roy%2C+Yannick&rft.au=Banville%2C+Hubert&rft.au=Albuquerque%2C+Isabela&rft.au=Gramfort%2C+Alexandre&rft.date=2019-10-01&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=16&rft.issue=5&rft_id=info:doi/10.1088%2F1741-2552%2Fab260c&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_ird_03222079v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |