Deep learning-based electroencephalography analysis: a systematic review

Context. Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due t...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 16; no. 5; pp. 51001 - 51037
Main Authors Roy, Yannick, Banville, Hubert, Albuquerque, Isabela, Gramfort, Alexandre, Falk, Tiago H, Faubert, Jocelyn
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.10.2019
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ab260c

Cover

Loading…
Abstract Context. Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. Objective. In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations. Methods. Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends. Results. Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About of the studies used convolutional neural networks (CNNs), while used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code. Significance. To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results.
AbstractList Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations. Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends. Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About [Formula: see text] of the studies used convolutional neural networks (CNNs), while [Formula: see text] used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was [Formula: see text] across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code. To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results.
Context. Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. Objective. In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations. Methods. Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends. Results. Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About of the studies used convolutional neural networks (CNNs), while used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code. Significance. To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results.
Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question.CONTEXTElectroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question.In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations.OBJECTIVEIn this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain-computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations.Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends.METHODSMajor databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends.Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About [Formula: see text] of the studies used convolutional neural networks (CNNs), while [Formula: see text] used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was [Formula: see text] across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code.RESULTSOur analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About [Formula: see text] of the studies used convolutional neural networks (CNNs), while [Formula: see text] used recurrent neural networks (RNNs), most often with a total of 3-10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was [Formula: see text] across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code.To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results.SIGNIFICANCETo help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results.
Context . Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction methodologies to be correctly interpreted. Recently, deep learning (DL) has shown great promise in helping make sense of EEG signals due to its capacity to learn good feature representations from raw data. Whether DL truly presents advantages as compared to more traditional EEG processing approaches, however, remains an open question. Objective . In this work, we review 154 papers that apply DL to EEG, published between January 2010 and July 2018, and spanning different application domains such as epilepsy, sleep, brain–computer interfacing, and cognitive and affective monitoring. We extract trends and highlight interesting approaches from this large body of literature in order to inform future research and formulate recommendations. Methods . Major databases spanning the fields of science and engineering were queried to identify relevant studies published in scientific journals, conferences, and electronic preprint repositories. Various data items were extracted for each study pertaining to (1) the data, (2) the preprocessing methodology, (3) the DL design choices, (4) the results, and (5) the reproducibility of the experiments. These items were then analyzed one by one to uncover trends. Results . Our analysis reveals that the amount of EEG data used across studies varies from less than ten minutes to thousands of hours, while the number of samples seen during training by a network varies from a few dozens to several millions, depending on how epochs are extracted. Interestingly, we saw that more than half the studies used publicly available data and that there has also been a clear shift from intra-subject to inter-subject approaches over the last few years. About of the studies used convolutional neural networks (CNNs), while used recurrent neural networks (RNNs), most often with a total of 3–10 layers. Moreover, almost one-half of the studies trained their models on raw or preprocessed EEG time series. Finally, the median gain in accuracy of DL approaches over traditional baselines was across all relevant studies. More importantly, however, we noticed studies often suffer from poor reproducibility: a majority of papers would be hard or impossible to reproduce given the unavailability of their data and code. Significance . To help the community progress and share work more effectively, we provide a list of recommendations for future studies and emphasize the need for more reproducible research. We also make our summary table of DL and EEG papers available and invite authors of published work to contribute to it directly. A planned follow-up to this work will be an online public benchmarking portal listing reproducible results.
Author Banville, Hubert
Roy, Yannick
Albuquerque, Isabela
Faubert, Jocelyn
Gramfort, Alexandre
Falk, Tiago H
Author_xml – sequence: 1
  givenname: Yannick
  orcidid: 0000-0003-4408-5221
  surname: Roy
  fullname: Roy, Yannick
  email: yannick.roy@umontreal.ca
  organization: Université de Montréal Faubert Lab, Montréal, Canada
– sequence: 2
  givenname: Hubert
  surname: Banville
  fullname: Banville, Hubert
  organization: InteraXon Inc. , Toronto, Canada
– sequence: 3
  givenname: Isabela
  surname: Albuquerque
  fullname: Albuquerque, Isabela
  organization: Université du Québec MuSAE Lab, INRS-EMT, Montréal, Canada
– sequence: 4
  givenname: Alexandre
  surname: Gramfort
  fullname: Gramfort, Alexandre
  organization: Université Paris-Saclay Inria, Paris, France
– sequence: 5
  givenname: Tiago H
  surname: Falk
  fullname: Falk, Tiago H
  organization: Université du Québec MuSAE Lab, INRS-EMT, Montréal, Canada
– sequence: 6
  givenname: Jocelyn
  surname: Faubert
  fullname: Faubert, Jocelyn
  organization: Université de Montréal Faubert Lab, Montréal, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31151119$$D View this record in MEDLINE/PubMed
https://ird.hal.science/ird-03222079$$DView record in HAL
BookMark eNp9kU1r3DAQhkVJaT7ae07BtyYQNyPJsq3cQj66hYVe2rOQpVGixSu5kjdh_328ON1DKTnNMDzvMDxzTA5CDEjIKYVvFNr2ijYVLZkQ7Ep3rAbzgRztRwf7voZDcpzzCoDTRsIncsgpFZRSeUQWd4hD0aNOwYfHstMZbYE9mjFFDAaHJ93Hx6SHp22hg-632efrQhd5m0dc69GbIuGzx5fP5KPTfcYvb_WE_H64_3W7KJc_v_-4vVmWRtR8LIXuGqhcJ2XLZO2srbiR1XS8AWsMOtFJaJ12QE1rGAraceNcY3nHm5ZLy0_Ixbx3OkwNya912qqovVrcLJVPVgFnjEEjn-nEns_skOKfDeZRrX022Pc6YNxkxRjnrahaJib07A3ddGu0-81_TU0AzIBJMeeEbo9QULtnqJ1ttTOv5mdMkfqfiPHjpCyGMWnfvxe8nIM-DmoVN2kSn9_Dv_4HXwVUtFZCgaAAVA3W8VfGEaiQ
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1088_1741_2552_ac74e0
crossref_primary_10_1109_ACCESS_2023_3293421
crossref_primary_10_1007_s11571_024_10181_2
crossref_primary_10_1038_s41597_022_01280_y
crossref_primary_10_1088_1361_6579_abe91e
crossref_primary_10_46387_bjesr_1332678
crossref_primary_10_1016_j_neubiorev_2021_11_028
crossref_primary_10_31258_Jamt_2_2_74_84
crossref_primary_10_3390_s23041932
crossref_primary_10_1109_ACCESS_2022_3161489
crossref_primary_10_1109_JIOT_2021_3105647
crossref_primary_10_3390_s21051792
crossref_primary_10_1140_epjs_s11734_025_01587_y
crossref_primary_10_1007_s13534_024_00431_x
crossref_primary_10_1016_j_bspc_2023_104798
crossref_primary_10_1016_j_compbiomed_2022_105703
crossref_primary_10_1016_j_asoc_2025_112731
crossref_primary_10_1080_10255842_2024_2355490
crossref_primary_10_3389_fpsyg_2024_1326791
crossref_primary_10_1016_j_schres_2023_09_010
crossref_primary_10_1109_JBHI_2023_3281977
crossref_primary_10_1186_s40708_024_00239_6
crossref_primary_10_1088_1741_2552_ada0e4
crossref_primary_10_1109_TNSRE_2024_3447274
crossref_primary_10_1016_j_bspc_2021_102928
crossref_primary_10_1080_09720529_2022_2072419
crossref_primary_10_1038_s41598_024_75263_x
crossref_primary_10_1109_TCE_2024_3368569
crossref_primary_10_1088_1742_6596_1727_1_012010
crossref_primary_10_1016_j_bea_2025_100156
crossref_primary_10_1109_JIOT_2021_3057474
crossref_primary_10_3390_bioengineering11040299
crossref_primary_10_3390_app14198828
crossref_primary_10_1016_j_ijpsycho_2023_01_009
crossref_primary_10_1109_TBME_2021_3064794
crossref_primary_10_1016_j_neucom_2023_126901
crossref_primary_10_1088_2631_8695_acd73d
crossref_primary_10_1016_j_eswa_2021_114961
crossref_primary_10_1177_14413582221085321
crossref_primary_10_1177_15500594221120516
crossref_primary_10_1016_j_brainres_2024_149423
crossref_primary_10_3390_app10165662
crossref_primary_10_3389_fninf_2024_1494970
crossref_primary_10_1109_TNSRE_2025_3547616
crossref_primary_10_1109_TCDS_2021_3098842
crossref_primary_10_1109_ACCESS_2024_3453039
crossref_primary_10_1088_1741_2552_ac4852
crossref_primary_10_3390_app10051619
crossref_primary_10_58647_DRUGREPO_24_1_0005
crossref_primary_10_1016_j_compbiomed_2024_108681
crossref_primary_10_1371_journal_pone_0269001
crossref_primary_10_1088_1741_2552_ad4f18
crossref_primary_10_3389_fbioe_2024_1448903
crossref_primary_10_1109_TAFFC_2022_3170369
crossref_primary_10_1016_j_compbiomed_2021_104434
crossref_primary_10_1109_JBHI_2022_3205436
crossref_primary_10_1002_hbm_26417
crossref_primary_10_3390_brainsci14080836
crossref_primary_10_1038_s41598_023_34487_z
crossref_primary_10_1088_1741_2552_ad3f50
crossref_primary_10_3389_fnhum_2021_645952
crossref_primary_10_1016_j_artmed_2021_102084
crossref_primary_10_2174_1874120702115010090
crossref_primary_10_1088_1741_2552_abda0b
crossref_primary_10_1016_j_ymeth_2021_04_017
crossref_primary_10_3389_fnbot_2022_953968
crossref_primary_10_3389_fnins_2023_1156838
crossref_primary_10_1007_s10462_020_09904_8
crossref_primary_10_1016_j_patrec_2023_10_011
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_3389_fneur_2022_858333
crossref_primary_10_1007_s12264_024_01247_6
crossref_primary_10_1016_j_cnp_2023_04_002
crossref_primary_10_1016_j_compbiomed_2022_105718
crossref_primary_10_1088_1741_2552_ac73b3
crossref_primary_10_7717_peerj_17622
crossref_primary_10_1088_1741_2552_abe20e
crossref_primary_10_1088_1741_2552_ad4743
crossref_primary_10_1016_j_asoc_2024_112301
crossref_primary_10_3389_fnins_2023_1272834
crossref_primary_10_1016_j_bjao_2024_100347
crossref_primary_10_1109_ACCESS_2020_2997681
crossref_primary_10_1186_s42234_020_0040_0
crossref_primary_10_1016_j_iot_2024_101098
crossref_primary_10_1016_j_bandl_2021_104968
crossref_primary_10_1016_j_engappai_2023_106122
crossref_primary_10_3390_bioengineering11080782
crossref_primary_10_1109_TCYB_2021_3052813
crossref_primary_10_1088_1361_6579_ac6049
crossref_primary_10_1109_JBHI_2023_3268729
crossref_primary_10_3390_s20164629
crossref_primary_10_1016_j_bspc_2023_105202
crossref_primary_10_3390_app14167398
crossref_primary_10_1016_j_aei_2022_101868
crossref_primary_10_1016_j_neucom_2021_03_105
crossref_primary_10_3390_s23115051
crossref_primary_10_1016_j_heliyon_2021_e07258
crossref_primary_10_1088_1741_2552_abca18
crossref_primary_10_1038_s41598_022_15830_2
crossref_primary_10_1109_TCBB_2020_3024228
crossref_primary_10_1038_s41598_019_53751_9
crossref_primary_10_1016_j_aei_2020_101180
crossref_primary_10_1038_s41551_023_01029_x
crossref_primary_10_3389_fnins_2024_1361486
crossref_primary_10_3390_biomedicines12061283
crossref_primary_10_1007_s11760_022_02399_6
crossref_primary_10_1088_1741_2552_ac6ca9
crossref_primary_10_1155_2022_4134864
crossref_primary_10_3389_fninf_2023_1272791
crossref_primary_10_3390_s19204541
crossref_primary_10_1186_s40708_023_00198_4
crossref_primary_10_1016_j_aei_2023_101978
crossref_primary_10_1016_j_yebeh_2023_109500
crossref_primary_10_3390_electronics10091079
crossref_primary_10_3390_s20123491
crossref_primary_10_3389_fninf_2025_1521805
crossref_primary_10_3389_fpsyt_2023_1310323
crossref_primary_10_1007_s00521_021_06591_6
crossref_primary_10_1016_j_jiixd_2024_06_003
crossref_primary_10_1038_s41598_019_47854_6
crossref_primary_10_1016_j_bspc_2022_104359
crossref_primary_10_3390_electronics12112394
crossref_primary_10_1109_TBME_2022_3201241
crossref_primary_10_3389_fnins_2021_667373
crossref_primary_10_1007_s41870_022_01095_5
crossref_primary_10_1088_1741_2552_ab8345
crossref_primary_10_3389_fnhum_2021_653659
crossref_primary_10_1016_j_bbe_2020_04_004
crossref_primary_10_1109_ACCESS_2023_3322294
crossref_primary_10_1109_ACCESS_2025_3541985
crossref_primary_10_3389_fnbot_2020_582728
crossref_primary_10_1016_j_imu_2021_100548
crossref_primary_10_1109_MSMC_2019_2958200
crossref_primary_10_1109_TNSRE_2021_3071140
crossref_primary_10_1140_epjs_s11734_024_01292_2
crossref_primary_10_1109_TCSII_2022_3177616
crossref_primary_10_1016_j_bspc_2023_105662
crossref_primary_10_1016_j_jik_2024_100517
crossref_primary_10_3390_brainsci12070849
crossref_primary_10_1109_ACCESS_2022_3154899
crossref_primary_10_1016_j_displa_2024_102754
crossref_primary_10_1080_2326263X_2023_2287719
crossref_primary_10_1371_journal_pcbi_1012376
crossref_primary_10_1109_ACCESS_2024_3376254
crossref_primary_10_3389_fncom_2021_551111
crossref_primary_10_1109_ACCESS_2020_2987324
crossref_primary_10_1007_s43538_024_00344_4
crossref_primary_10_1016_j_neuroimage_2022_119056
crossref_primary_10_1111_ejn_14936
crossref_primary_10_1016_j_ebiom_2024_105259
crossref_primary_10_1016_j_neuroimage_2023_120464
crossref_primary_10_3389_fnins_2024_1509358
crossref_primary_10_1109_JBHI_2022_3159531
crossref_primary_10_1109_MSP_2021_3134629
crossref_primary_10_1016_j_eswa_2022_119488
crossref_primary_10_3389_fninf_2019_00074
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_1140_epjs_s11734_021_00380_x
crossref_primary_10_1088_1741_2552_ab6a67
crossref_primary_10_1109_THMS_2022_3189576
crossref_primary_10_1109_TNSRE_2024_3454088
crossref_primary_10_1016_j_bspc_2023_104799
crossref_primary_10_1007_s00521_023_08218_4
crossref_primary_10_1016_j_compbiomed_2022_105871
crossref_primary_10_3390_s20092694
crossref_primary_10_1088_1741_2552_ac2bf8
crossref_primary_10_1088_1741_2552_adaef0
crossref_primary_10_3390_bioengineering10040491
crossref_primary_10_1016_j_bspc_2022_103582
crossref_primary_10_1371_journal_pone_0308631
crossref_primary_10_1088_1741_2552_ac6063
crossref_primary_10_1109_ACCESS_2025_3529357
crossref_primary_10_3389_fncel_2022_845832
crossref_primary_10_3390_bios12060384
crossref_primary_10_3390_s23135930
crossref_primary_10_1007_s10055_023_00818_8
crossref_primary_10_1002_smll_202104810
crossref_primary_10_1109_TBME_2021_3139007
crossref_primary_10_1109_TCDS_2024_3460750
crossref_primary_10_1016_j_clinph_2019_09_031
crossref_primary_10_1038_s41598_022_14894_4
crossref_primary_10_3390_app132312832
crossref_primary_10_3390_s22093331
crossref_primary_10_1007_s11042_024_20205_y
crossref_primary_10_1088_1741_2552_ac77be
crossref_primary_10_1109_ACCESS_2023_3329678
crossref_primary_10_3389_fnbot_2023_1289406
crossref_primary_10_3390_s21093225
crossref_primary_10_1016_j_bspc_2024_106189
crossref_primary_10_3389_fnins_2022_906616
crossref_primary_10_1016_j_biopsycho_2021_108117
crossref_primary_10_1080_08893675_2025_2480803
crossref_primary_10_3390_e24010102
crossref_primary_10_3389_fninf_2022_1025847
crossref_primary_10_3390_app13179825
crossref_primary_10_1109_ACCESS_2022_3173629
crossref_primary_10_2196_45405
crossref_primary_10_1038_s41598_022_07517_5
crossref_primary_10_1109_TBME_2020_3020381
crossref_primary_10_1109_TCYB_2021_3122969
crossref_primary_10_1088_1741_2552_ad6a8c
crossref_primary_10_3390_s21051734
crossref_primary_10_1109_ACCESS_2021_3118971
crossref_primary_10_1088_2057_1976_acde82
crossref_primary_10_1016_j_knosys_2023_110756
crossref_primary_10_1186_s40708_022_00167_3
crossref_primary_10_1007_s13246_020_00925_9
crossref_primary_10_3390_brainsci12091233
crossref_primary_10_1142_S0129065721500325
crossref_primary_10_1088_1361_6501_adb5a8
crossref_primary_10_1038_s41598_021_91286_0
crossref_primary_10_1016_j_neunet_2020_05_032
crossref_primary_10_1088_1741_2552_ab57c0
crossref_primary_10_1088_1741_2552_ac7257
crossref_primary_10_3390_s23020703
crossref_primary_10_3758_s13428_023_02158_6
crossref_primary_10_3390_biomedicines11020327
crossref_primary_10_1016_j_bspc_2021_103070
crossref_primary_10_1109_TCDS_2023_3279262
crossref_primary_10_1016_j_bspc_2025_107554
crossref_primary_10_3390_s23135960
crossref_primary_10_1007_s11831_023_09920_1
crossref_primary_10_3390_app10041525
crossref_primary_10_3390_app14188380
crossref_primary_10_1088_1741_2552_abbd50
crossref_primary_10_1109_ACCESS_2023_3299497
crossref_primary_10_1007_s12021_022_09572_9
crossref_primary_10_1007_s11517_023_02840_z
crossref_primary_10_3389_fnhum_2021_643386
crossref_primary_10_1016_j_neuroimage_2024_120559
crossref_primary_10_1016_j_compbiomed_2024_108188
crossref_primary_10_1080_10447318_2024_2311972
crossref_primary_10_1016_j_bspc_2021_103021
crossref_primary_10_1038_s41598_020_65610_z
crossref_primary_10_1149_1945_7111_ac5cf2
crossref_primary_10_3390_brainsci11010075
crossref_primary_10_3389_frobt_2022_1013043
crossref_primary_10_1088_1741_2552_abf2e4
crossref_primary_10_1088_1741_2552_acbb2c
crossref_primary_10_1016_j_neuroimage_2020_117021
crossref_primary_10_1007_s42535_023_00666_6
crossref_primary_10_1088_1741_2552_ac6d7f
crossref_primary_10_1038_s41528_022_00164_w
crossref_primary_10_1088_1741_2552_ad88a2
crossref_primary_10_1016_j_bspc_2022_103544
crossref_primary_10_1109_ACCESS_2020_3028139
crossref_primary_10_1109_JBHI_2022_3225019
crossref_primary_10_1016_j_compbiomed_2022_105690
crossref_primary_10_1109_TPAMI_2020_2973153
crossref_primary_10_3389_fnins_2022_859887
crossref_primary_10_1016_j_bpsgos_2024_100423
crossref_primary_10_1016_j_ijhcs_2023_103009
crossref_primary_10_3389_fpubh_2022_909628
crossref_primary_10_3390_app13158747
crossref_primary_10_3390_brainsci10110781
crossref_primary_10_1016_j_neuroimage_2023_120054
crossref_primary_10_1088_1741_2552_ad44d7
crossref_primary_10_3390_math13050729
crossref_primary_10_1109_TNSRE_2024_3417311
crossref_primary_10_1109_ACCESS_2023_3294618
crossref_primary_10_3389_fnbot_2021_692183
crossref_primary_10_3390_s20164485
crossref_primary_10_1016_j_artmed_2023_102738
crossref_primary_10_1016_j_eswa_2024_123717
crossref_primary_10_1016_j_procs_2022_09_367
crossref_primary_10_1007_s11571_020_09603_8
crossref_primary_10_1016_j_procs_2021_09_049
crossref_primary_10_1109_ACCESS_2023_3325283
crossref_primary_10_1016_j_neuroimage_2020_117249
crossref_primary_10_1007_s11760_023_02871_x
crossref_primary_10_3389_fncom_2022_868642
crossref_primary_10_1007_s00530_023_01083_0
crossref_primary_10_1007_s10489_022_04414_2
crossref_primary_10_4018_IJAIML_310933
crossref_primary_10_1109_JBHI_2022_3203454
crossref_primary_10_1109_ACCESS_2020_3031447
crossref_primary_10_1016_j_neucom_2022_11_050
crossref_primary_10_1109_JSEN_2021_3057076
crossref_primary_10_1136_bmjopen_2022_066932
crossref_primary_10_3389_fnhum_2021_675154
crossref_primary_10_1007_s00521_020_05624_w
crossref_primary_10_1371_journal_pone_0268880
crossref_primary_10_1063_5_0047237
crossref_primary_10_3390_app11041798
crossref_primary_10_1016_j_compbiomed_2020_103814
crossref_primary_10_3389_fnins_2021_566004
crossref_primary_10_1038_s41598_020_73346_z
crossref_primary_10_1109_MSP_2021_3074355
crossref_primary_10_1016_j_expneurol_2022_113993
crossref_primary_10_3390_s21165456
crossref_primary_10_1080_2326263X_2022_2140467
crossref_primary_10_1097_YCT_0000000000001009
crossref_primary_10_1088_1741_2552_ac9644
crossref_primary_10_1109_TCDS_2024_3431224
crossref_primary_10_1109_TCYB_2024_3410844
crossref_primary_10_3389_fnagi_2022_849774
crossref_primary_10_1007_s11571_021_09756_0
crossref_primary_10_1016_j_neuroimage_2022_119521
crossref_primary_10_3390_s23146434
crossref_primary_10_1007_s11042_022_12611_x
crossref_primary_10_1016_j_bspc_2022_103740
crossref_primary_10_1007_s00521_023_08927_w
crossref_primary_10_1016_j_bspc_2021_103102
crossref_primary_10_3389_fneur_2023_1123935
crossref_primary_10_3390_math11234776
crossref_primary_10_1177_14613484221138812
crossref_primary_10_3390_s21196503
crossref_primary_10_1109_JBHI_2021_3049649
crossref_primary_10_1155_2021_5599615
crossref_primary_10_3390_app13084964
crossref_primary_10_1109_ACCESS_2023_3275565
crossref_primary_10_1093_braincomms_fcac218
crossref_primary_10_1007_s42600_023_00321_8
crossref_primary_10_1109_TNSRE_2023_3330922
crossref_primary_10_1109_ACCESS_2021_3094032
crossref_primary_10_1016_j_bspc_2022_103626
crossref_primary_10_1038_s41598_023_43871_8
crossref_primary_10_1152_jn_00221_2022
crossref_primary_10_1186_s40708_021_00133_5
crossref_primary_10_1016_j_tics_2021_04_003
crossref_primary_10_3390_brainsci13030483
crossref_primary_10_3389_fphys_2022_1029298
crossref_primary_10_1016_j_compbiomed_2024_109097
crossref_primary_10_1093_brain_awac340
crossref_primary_10_3389_fnhum_2023_1033420
crossref_primary_10_3390_s23020899
crossref_primary_10_2147_NSS_S336344
crossref_primary_10_1088_1741_2552_ac37cc
crossref_primary_10_1109_TITS_2024_3442249
crossref_primary_10_1109_TSMC_2021_3051136
crossref_primary_10_3389_fnins_2024_1293962
crossref_primary_10_1016_j_aei_2024_102971
crossref_primary_10_1088_1741_2552_aca220
crossref_primary_10_1109_JBHI_2020_3022989
crossref_primary_10_1088_1755_1315_706_1_012015
crossref_primary_10_1109_ACCESS_2023_3263477
crossref_primary_10_1007_s10462_021_09986_y
crossref_primary_10_1162_imag_a_00189
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1109_TNSRE_2023_3254151
crossref_primary_10_1109_TPAMI_2020_2995909
crossref_primary_10_3390_s20247309
crossref_primary_10_3389_fnhum_2020_604639
crossref_primary_10_1016_S2215_0366_21_00165_6
crossref_primary_10_1109_JBHI_2021_3068481
crossref_primary_10_3389_fnins_2024_1507654
crossref_primary_10_3390_app10238662
crossref_primary_10_3390_math11061424
crossref_primary_10_3390_app12146967
crossref_primary_10_1016_j_bspc_2021_103110
crossref_primary_10_3390_bios11120499
crossref_primary_10_3390_biomimetics10030178
crossref_primary_10_1016_j_compbiomed_2023_107517
crossref_primary_10_1109_TCDS_2021_3090217
crossref_primary_10_1016_j_rmed_2024_107809
crossref_primary_10_1088_1741_2552_ac5d69
crossref_primary_10_1109_ACCESS_2024_3360328
crossref_primary_10_1016_j_softx_2021_100951
crossref_primary_10_1155_2020_8846021
crossref_primary_10_1016_j_jneumeth_2021_109339
crossref_primary_10_1080_10255842_2024_2371036
crossref_primary_10_1186_s12984_021_00820_8
crossref_primary_10_1109_ACCESS_2021_3052656
crossref_primary_10_25046_aj070517
crossref_primary_10_1186_s12938_024_01244_w
crossref_primary_10_1016_j_eswa_2024_125832
crossref_primary_10_3389_fnins_2020_00918
crossref_primary_10_1016_j_neuroimage_2022_118994
crossref_primary_10_1088_1741_2552_acc613
crossref_primary_10_1109_JPROC_2022_3141367
crossref_primary_10_1007_s13534_023_00309_4
crossref_primary_10_1109_TNSRE_2022_3186442
crossref_primary_10_1162_imag_a_00040
crossref_primary_10_1016_j_nicl_2022_103167
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_3389_fnins_2021_824759
crossref_primary_10_1016_j_jneumeth_2021_109126
crossref_primary_10_1016_j_jneumeth_2021_109367
crossref_primary_10_3389_fnhum_2019_00201
crossref_primary_10_3390_su142113844
crossref_primary_10_3390_app12031695
crossref_primary_10_3390_bioengineering11090926
crossref_primary_10_53759_7669_jmc202404080
crossref_primary_10_3389_fnins_2025_1546559
crossref_primary_10_1088_1741_2552_ac4f9a
crossref_primary_10_1016_j_bspc_2024_106020
crossref_primary_10_1007_s11042_023_15664_8
crossref_primary_10_1088_2516_1091_ad8530
crossref_primary_10_3390_app13169233
crossref_primary_10_3390_s20236730
crossref_primary_10_1016_j_bspc_2024_107238
crossref_primary_10_1109_TAFFC_2024_3371540
crossref_primary_10_3390_biomimetics10020118
crossref_primary_10_1109_TNSRE_2022_3228216
crossref_primary_10_1016_j_compbiomed_2023_107893
crossref_primary_10_1109_JIOT_2024_3394244
crossref_primary_10_3389_fneur_2020_554633
crossref_primary_10_31083_j_jin2004083
crossref_primary_10_1007_s11760_022_02293_1
crossref_primary_10_3389_fnhum_2023_1126938
crossref_primary_10_1038_s41597_022_01409_z
crossref_primary_10_1109_ACCESS_2022_3195513
crossref_primary_10_1038_s41598_023_36986_5
crossref_primary_10_1016_j_yebeh_2021_108047
crossref_primary_10_3389_fnins_2022_985709
crossref_primary_10_1109_JBHI_2020_3048901
crossref_primary_10_1049_itr2_12041
crossref_primary_10_1016_j_jneumeth_2021_109145
crossref_primary_10_3390_computers9020046
crossref_primary_10_1088_1741_2552_abc902
crossref_primary_10_1109_TBME_2022_3218116
crossref_primary_10_1016_j_bspc_2022_103718
crossref_primary_10_1109_TCSVT_2021_3061719
crossref_primary_10_3390_brainsci14020149
crossref_primary_10_3390_bioengineering10050609
crossref_primary_10_3389_fnhum_2024_1439541
crossref_primary_10_1162_neco_a_01743
crossref_primary_10_1109_TNSRE_2022_3150007
crossref_primary_10_3389_fnins_2021_663101
crossref_primary_10_1177_20552076251323833
crossref_primary_10_1007_s11571_020_09619_0
crossref_primary_10_1016_j_compeleceng_2024_109769
crossref_primary_10_1007_s00034_022_02164_7
crossref_primary_10_1016_j_bspc_2022_103726
crossref_primary_10_3389_fnins_2021_760979
crossref_primary_10_3390_s23052798
crossref_primary_10_3390_bioengineering10060649
crossref_primary_10_1002_cns3_5
crossref_primary_10_3389_frvir_2025_1468971
crossref_primary_10_1016_j_neuroimage_2021_118463
crossref_primary_10_1016_j_eswa_2023_122155
crossref_primary_10_1088_1741_2552_abfa71
crossref_primary_10_3390_s22010167
crossref_primary_10_1016_j_medntd_2023_100213
crossref_primary_10_1016_j_patter_2025_101182
crossref_primary_10_1088_1741_2552_ac6770
crossref_primary_10_1088_1741_2552_acb96e
crossref_primary_10_3233_JIFS_191923
crossref_primary_10_1016_j_dsp_2024_104447
crossref_primary_10_1088_1741_2552_acd1b6
crossref_primary_10_3390_brainsci13020268
crossref_primary_10_1088_1741_2552_ac697d
crossref_primary_10_1016_j_eswa_2021_116083
crossref_primary_10_3390_s23239588
crossref_primary_10_1016_j_jneumeth_2021_109282
crossref_primary_10_1088_2057_1976_ad4f8e
crossref_primary_10_1186_s12938_023_01129_4
crossref_primary_10_3390_s23239352
crossref_primary_10_1088_2050_6120_ad12f7
crossref_primary_10_1016_j_neuroimage_2020_116893
crossref_primary_10_1080_0954898X_2023_2263083
crossref_primary_10_1016_j_compbiomed_2023_107323
crossref_primary_10_1016_j_imu_2020_100454
crossref_primary_10_1016_j_nicl_2023_103482
crossref_primary_10_1109_ACCESS_2021_3091399
crossref_primary_10_3934_mbe_2025004
crossref_primary_10_1109_TAFFC_2022_3170428
crossref_primary_10_1038_s41746_024_01086_9
crossref_primary_10_1080_27706710_2023_2181102
crossref_primary_10_1016_j_neucom_2021_08_018
crossref_primary_10_1007_s40675_023_00253_w
crossref_primary_10_1109_ACCESS_2020_3011185
crossref_primary_10_1088_1741_2552_ad8962
crossref_primary_10_1109_JBHI_2021_3138852
crossref_primary_10_1109_ACCESS_2020_2989442
crossref_primary_10_1016_j_aei_2020_101157
crossref_primary_10_1134_S1064226924700359
crossref_primary_10_1016_j_neuroimage_2025_121050
crossref_primary_10_1109_TNSRE_2021_3112167
crossref_primary_10_1016_j_bspc_2021_102993
crossref_primary_10_3389_fnhum_2022_867281
crossref_primary_10_1136_svn_2022_001506
crossref_primary_10_1109_ACCESS_2020_2964050
crossref_primary_10_2196_38440
crossref_primary_10_2147_PHMT_S427773
crossref_primary_10_1109_TNSRE_2020_3048106
crossref_primary_10_3390_s22062284
crossref_primary_10_1109_TVCG_2022_3203099
crossref_primary_10_1016_j_jneumeth_2022_109580
crossref_primary_10_1177_20552076251324456
crossref_primary_10_3758_s13423_021_02034_4
crossref_primary_10_3390_ctn8010013
crossref_primary_10_3389_fnins_2020_00251
crossref_primary_10_48175_IJARSCT_2323
crossref_primary_10_1016_j_adhoc_2020_102178
crossref_primary_10_1109_ACCESS_2024_3447901
crossref_primary_10_1016_j_patcog_2022_108757
crossref_primary_10_1109_JSSC_2024_3446244
crossref_primary_10_3389_fneur_2023_1183810
crossref_primary_10_1016_j_neures_2021_09_002
crossref_primary_10_3389_fcell_2021_669795
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_3390_signals5020013
crossref_primary_10_1016_j_csbj_2023_12_006
crossref_primary_10_1017_S1446181124000178
crossref_primary_10_1142_S0129065723500016
crossref_primary_10_3390_app12168052
crossref_primary_10_1111_exsy_13841
crossref_primary_10_1186_s12984_021_00972_7
crossref_primary_10_1109_TASE_2020_3021456
crossref_primary_10_1016_j_cmpb_2021_106121
crossref_primary_10_1016_j_compbiomed_2021_104969
crossref_primary_10_1088_1741_2552_abcdbd
crossref_primary_10_1088_1741_2552_ac115d
crossref_primary_10_3390_jcm13195898
crossref_primary_10_3389_fnhum_2023_1134869
crossref_primary_10_1016_j_rcim_2023_102610
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1136_practneurol_2020_002688
crossref_primary_10_1007_s11227_021_04292_4
crossref_primary_10_1016_j_compbiomed_2022_106088
crossref_primary_10_3233_JIFS_237890
crossref_primary_10_3389_fnrgo_2022_838342
crossref_primary_10_3390_rs13224602
crossref_primary_10_1016_j_ynirp_2025_100242
crossref_primary_10_4012_dmj_2024_052
crossref_primary_10_1109_JBHI_2021_3100297
crossref_primary_10_3389_fninf_2022_871904
crossref_primary_10_1109_TNSRE_2023_3327788
crossref_primary_10_3389_fnhum_2023_1153413
crossref_primary_10_1109_ACCESS_2020_3006907
crossref_primary_10_1109_ACCESS_2023_3266804
crossref_primary_10_1038_s41597_021_01046_y
crossref_primary_10_3389_fncom_2021_758212
crossref_primary_10_1109_TBME_2023_3344295
crossref_primary_10_1109_ACCESS_2020_3035347
crossref_primary_10_1021_acsnano_3c06781
crossref_primary_10_1109_TIM_2022_3198441
crossref_primary_10_3390_s21103316
crossref_primary_10_1088_1741_2552_ad200e
crossref_primary_10_1016_j_eswa_2024_125303
crossref_primary_10_1016_j_bspc_2023_105032
crossref_primary_10_1002_aelm_202300082
crossref_primary_10_3389_fnins_2023_1280590
crossref_primary_10_1016_j_energy_2024_133476
crossref_primary_10_1088_1741_2552_ac93b4
crossref_primary_10_3390_biomedicines11092370
crossref_primary_10_1016_j_eswa_2023_119969
crossref_primary_10_3390_brainsci9120348
crossref_primary_10_3390_bios10090124
crossref_primary_10_1007_s11042_023_15900_1
crossref_primary_10_1016_j_jneumeth_2022_109498
crossref_primary_10_3390_bios11070203
crossref_primary_10_1109_JBHI_2023_3307870
crossref_primary_10_1016_j_bspc_2021_102957
crossref_primary_10_1016_j_jobe_2023_107305
crossref_primary_10_3390_brainsci10040199
crossref_primary_10_1038_s42256_023_00714_5
crossref_primary_10_1109_RBME_2020_3008792
crossref_primary_10_3758_s13428_020_01516_y
crossref_primary_10_1002_eng2_12827
crossref_primary_10_1093_sleep_zsaa077
crossref_primary_10_1016_j_yebeh_2024_109735
crossref_primary_10_1007_s10072_023_06981_9
crossref_primary_10_1016_j_cmpb_2022_106874
crossref_primary_10_1088_1741_2552_acabe9
crossref_primary_10_1109_OJIM_2022_3202555
crossref_primary_10_1016_j_bspc_2021_102983
crossref_primary_10_2174_0118750362298089240820111544
crossref_primary_10_1016_j_bspc_2021_102747
crossref_primary_10_1142_S0129065725500017
crossref_primary_10_1016_j_imu_2023_101284
crossref_primary_10_1016_j_oceaneng_2022_112767
crossref_primary_10_3389_fnins_2020_00290
crossref_primary_10_1109_TNSRE_2023_3336356
crossref_primary_10_3389_fnins_2023_1176344
crossref_primary_10_1007_s42979_024_03488_8
crossref_primary_10_1371_journal_pone_0291186
crossref_primary_10_1016_j_yebeh_2024_109744
crossref_primary_10_1177_15500594221120734
crossref_primary_10_1109_TBME_2023_3274231
crossref_primary_10_1088_1741_2552_abf473
crossref_primary_10_26599_BSA_2022_9050014
crossref_primary_10_1016_j_neucom_2020_10_104
crossref_primary_10_1038_s41597_023_02650_w
crossref_primary_10_1007_s00415_022_11283_9
crossref_primary_10_1016_j_bspc_2021_102981
crossref_primary_10_1088_1741_2552_ad19ea
crossref_primary_10_1007_s00521_020_05125_w
crossref_primary_10_1016_j_bspc_2021_102854
crossref_primary_10_1016_j_neunet_2024_106847
crossref_primary_10_1016_j_chaos_2024_114675
crossref_primary_10_1093_sleep_zsac254
crossref_primary_10_3389_fnrgo_2020_602504
crossref_primary_10_1088_1741_2552_ac8dc5
crossref_primary_10_1109_ACCESS_2020_3037658
crossref_primary_10_1109_TOH_2024_3428308
crossref_primary_10_3389_fnhum_2021_700627
Cites_doi 10.1016/j.knosys.2013.02.014
10.1109/SPMB.2017.8257015
10.1155/2018/6058065
10.1109/TNSRE.2017.2733220
10.1016/j.neucom.2014.08.092
10.1093/jamia/ocy064
10.1111/jsr.12169
10.1145/2641190.2641198
10.1088/1741-2560/8/3/036015
10.1142/S0129065716500398
10.1038/nature14539
10.1088/1741-2552/aaaf82
10.1016/j.neuroimage.2017.06.030
10.1109/TNSRE.2017.2721116
10.1080/2326263X.2017.1297192
10.1088/1741-2552/aace8c
10.1038/s41597-019-0104-8
10.1038/sdata.2018.110
10.1109/TPAMI.2010.125
10.1016/j.image.2016.05.018
10.1088/1741-2552/aae5d8
10.1038/s41598-018-21495-7
10.1088/1741-2552/aab2f2
10.1016/j.patrec.2017.05.020
10.1016/j.bspc.2016.11.013
10.1109/SMC.2018.00185
10.1109/ICAC3.2017.8318753
10.1109/TNSRE.2003.814453
10.1016/j.bbe.2018.05.005
10.1007/s11263-015-0816-y
10.1016/j.bspc.2017.12.001
10.1109/ACCESS.2017.2724555
10.1038/sdata.2016.44
10.1093/bja/aev212
10.1177/1087054712460087
10.1109/TVCG.2018.2843369
10.21437/Interspeech.2017-405
10.1016/j.eswa.2016.12.035
10.1007/978-3-319-09330-7_25
10.1109/tnsre.2018.2813138
10.1109/SECON.2017.7925289
10.3390/s18051339
10.1101/240267
10.1088/1741-2560/12/3/031001
10.1007/978-3-319-46672-9_58
10.1016/j.neunet.2018.04.018
10.1109/TNSRE.2006.875642
10.1093/brain/awy251
10.1088/1741-2560/14/1/016003
10.1103/PhysRevE.64.061907
10.1109/TNNLS.2014.2302898
10.1109/BHI.2018.8333399
10.1088/1741-2552/aadea0
10.1109/MLSP.2017.8168133
10.3389/fncom.2015.00146
10.1016/j.jneumeth.2010.07.015
10.3389/fnins.2017.00310
10.1371/journal.pone.0172578
10.1146/annurev-bioeng-062117-120853
10.1007/978-3-319-73600-6_8
10.1109/ACCESS.2018.2833746
10.1016/j.nicl.2017.12.005
10.1109/WCNC.2017.7925709
10.1155/2012/107046
10.1038/nrneurol.2013.279
10.1109/MLSP.2017.8168193
10.1109/RTSI.2016.7740576
10.1109/TCYB.2018.2797176
10.1109/tbme.2018.2872652
10.1371/journal.pone.0178410
10.1155/2015/129021
10.1109/TAMD.2015.2431497
10.2172/1366924
10.3390/app7121239
10.1016/j.clinph.2018.04.248
10.1016/j.neucom.2017.05.002
10.1038/sdata.2016.18
10.1016/j.jneumeth.2016.10.008
10.3390/e18090272
10.1162/neco.1989.1.4.541
10.1007/978-3-319-59153-7_12
10.1002/hbm.23730
10.1038/s41598-017-17562-0
10.1037/h0042519
10.1109/5.726791
10.1109/EMBC.2018.8512249
10.1007/978-3-319-18356-5_24
10.1038/323533a0
10.1016/j.neuroimage.2012.12.051
10.1007/978-3-319-70093-9_80
10.14704/nq.2018.16.6.1666
10.3389/fninf.2015.00016
10.1111/jebm.12266
10.1155/2014/627892
10.1016/j.neunet.2014.09.003
10.1016/j.neucom.2016.06.067
10.1109/T-AFFC.2011.15
10.1109/10.867928
10.1016/j.bspc.2018.02.021
10.1101/302000
10.1016/S0893-6080(98)00010-0
10.1038/s41562-016-0021
10.1109/T-AFFC.2011.25
10.1016/j.cub.2018.11.052
10.1016/j.compbiomed.2018.05.019
10.1109/TBME.2004.827072
10.1016/j.eswa.2018.04.021
10.1109/TBME.2004.826692
10.1016/j.jneumeth.2006.05.033
10.1016/j.sleep.2017.09.031
10.1016/j.ijleo.2016.10.117
10.1088/1741-2560/8/2/025005
10.1109/THMS.2016.2608933
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 IOP Publishing Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID O3W
TSCCA
AAYXX
CITATION
NPM
7X8
1XC
DOI 10.1088/1741-2552/ab260c
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Statistics
Computer Science
DocumentTitleAlternate Deep learning-based electroencephalography analysis: a systematic review
EISSN 1741-2552
ExternalDocumentID oai_HAL_ird_03222079v1
31151119
10_1088_1741_2552_ab260c
jneab260c
Genre Journal Article
GrantInformation_xml – fundername: Fonds de Recherche du Québec-Nature et Technologies
  funderid: https://doi.org/10.13039/501100003151
– fundername: InteraXon Inc.
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RDPJ 514052-17
  funderid: https://doi.org/10.13039/501100000038
GroupedDBID ---
02O
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
O3W
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
NPM
7X8
1XC
ID FETCH-LOGICAL-c563t-5ab704fb998296fdd43c94b26c0dccef5b908faf01c8c2e51b3cff7d3b37839d3
IEDL.DBID O3W
ISSN 1741-2560
1741-2552
IngestDate Fri May 09 12:24:42 EDT 2025
Fri Jul 11 00:21:48 EDT 2025
Mon Jul 21 06:03:14 EDT 2025
Thu Apr 24 22:52:52 EDT 2025
Tue Jul 01 01:58:39 EDT 2025
Fri Jan 08 09:41:22 EST 2021
Wed Aug 21 03:33:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-5ab704fb998296fdd43c94b26c0dccef5b908faf01c8c2e51b3cff7d3b37839d3
Notes JNE-102815.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-4408-5221
0000-0001-9791-4404
OpenAccessLink https://iopscience.iop.org/article/10.1088/1741-2552/ab260c
PMID 31151119
PQID 2233854825
PQPubID 23479
PageCount 37
ParticipantIDs hal_primary_oai_HAL_ird_03222079v1
crossref_primary_10_1088_1741_2552_ab260c
proquest_miscellaneous_2233854825
iop_journals_10_1088_1741_2552_ab260c
pubmed_primary_31151119
crossref_citationtrail_10_1088_1741_2552_ab260c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Aboalayon (jneab260cbib001) 2016; 18
Chu (jneab260cbib035) 2017
Supratak (jneab260cbib186) 2017; 25
Perez (jneab260cbib148) 2017
Deiss (jneab260cbib041) 2018
An (jneab260cbib009) 2014; 8590 LNBI
Li (jneab260cbib107) 2018
Cecotti (jneab260cbib032) 2014; 25
Völker (jneab260cbib211) 2017
Cecotti (jneab260cbib031) 2011; 33
Ding (jneab260cbib044) 2015; 2015
Oord (jneab260cbib136) 2017
Yepes (jneab260cbib225) 2017
Zhang (jneab260cbib243) 2018
Chiarelli (jneab260cbib034) 2018; 15
Jirayucharoensak (jneab260cbib088) 2014; 2014
Golmohammadi (jneab260cbib058) 2017
Shang (jneab260cbib173) 2017; 73
Frydenlund (jneab260cbib049) 2015; 9091
Lee (jneab260cbib102) 2018
Bigdely-Shamlo (jneab260cbib023) 2015; 9
Teo (jneab260cbib193) 2018; 10
Wilkinson (jneab260cbib216) 2016; 3
Sutskever (jneab260cbib187) 2014; 15
Goodfellow (jneab260cbib061) 2016; vol 1
Wulsin (jneab260cbib218) 2011; 8
Zeiler (jneab260cbib233) 2012
Snoek (jneab260cbib176) 2012
Zhou (jneab260cbib249) 2015; vol 1
Biswal (jneab260cbib025) 2017
Brock (jneab260cbib028) 2018
O’shea (jneab260cbib134) 2017
Morabito (jneab260cbib126) 2016
Raposo (jneab260cbib153) 2017
Kemp (jneab260cbib089) 2000; 47
O’reilly (jneab260cbib137) 2014; 23
Schirrmeister (jneab260cbib166) 2017
Sun (jneab260cbib184) 2016
Zafar (jneab260cbib232) 2017; 12
Turner (jneab260cbib203) 2014
Urigen (jneab260cbib205) 2015; 12
Makeig (jneab260cbib119) 1996; vol 8
Rumelhart (jneab260cbib159) 1986; 323
Tsinalis (jneab260cbib201) 2016
Zhang (jneab260cbib235) 2018
Stober (jneab260cbib182) 2015
Ben Said (jneab260cbib019) 2017
Patnaik (jneab260cbib146) 2017
Pardede (jneab260cbib143) 2015; 10
Ullah (jneab260cbib204) 2018
Vanschoren (jneab260cbib208) 2014; 15
Heilmeyer (jneab260cbib082) 2018
Mehmood (jneab260cbib123) 2017; 5
LeCun (jneab260cbib100) 1998; 86
Gramfort (jneab260cbib065) 2013; 70
Giri (jneab260cbib055) 2016
Liao (jneab260cbib112) 2018
Spampinato (jneab260cbib179) 2017
Engemann (jneab260cbib048) 2018; 141
Loshchilov (jneab260cbib115) 2016
Tang (jneab260cbib191) 2017; 130
Alhagry (jneab260cbib006) 2017; 8
Ben-David (jneab260cbib018) 2007
Yang (jneab260cbib221) 2016; 214
Bashivan (jneab260cbib016) 2015
Zhang (jneab260cbib239) 2018; 1
Parekh (jneab260cbib144) 2018; 841
Normand (jneab260cbib132) 2015
Baltatzis (jneab260cbib014) 2017; 7
Chambon (jneab260cbib033) 2017; 26
Golmohammadi (jneab260cbib059) 2017
Goodfellow (jneab260cbib062) 2014
Giri (jneab260cbib056) 2016
O’Shea (jneab260cbib138) 2018
Hefron (jneab260cbib081) 2017; 94
Lee (jneab260cbib101) 2018
Clerc (jneab260cbib036) 2016
Xu (jneab260cbib220) 2016
Gordienko (jneab260cbib063) 2017
Hao (jneab260cbib072) 2018; 17
Rosenblatt (jneab260cbib155) 1958; 65
Zheng (jneab260cbib247) 2019; 49
Gorgolewski (jneab260cbib064) 2016; 3
Gao (jneab260cbib050) 2018; 16
Dong (jneab260cbib045) 2018; 26
Tabar (jneab260cbib189) 2016; 14
Jayaram (jneab260cbib087) 2018; 15
Hajinoroozi (jneab260cbib071) 2016; 47
Kwak (jneab260cbib093) 2017; 12
Paez (jneab260cbib140) 2017; 10
van Putten (jneab260cbib207) 2018; 129
Liu (jneab260cbib114) 2016
Soleymani (jneab260cbib177) 2012; 3
Major (jneab260cbib118) 2017
Lotte (jneab260cbib117) 2018; 15
Behncke (jneab260cbib017) 2017
Tripathy (jneab260cbib198) 2018; 38
Arns (jneab260cbib011) 2013; 17
Comstock (jneab260cbib038) 1994
Gao (jneab260cbib051) 2015
Lin (jneab260cbib113) 2017
Narejo (jneab260cbib129) 2016; 6
Jas (jneab260cbib086) 2017; 159
Moinnereau (jneab260cbib125) 2018
Van Putten (jneab260cbib206) 2018; 8
Szegedy (jneab260cbib188) 2016
Goodfellow (jneab260cbib060) 2016
Koelstra (jneab260cbib091) 2012; 3
Bu (jneab260cbib029) 2010
Roy (jneab260cbib157) 2018
Zhang (jneab260cbib245) 2017
Almogbel (jneab260cbib007) 2018; vol 7
Volker (jneab260cbib210) 2018
Zhang (jneab260cbib237) 2017; 11
Zheng (jneab260cbib246) 2015; 7
Zhang (jneab260cbib236) 2018; 25
Hussein (jneab260cbib085) 2018
LeCun (jneab260cbib098) 2015; 521
Li (jneab260cbib111) 2018; vol 819
Mohamed (jneab260cbib124) 2011
Alomari (jneab260cbib067) 2013; 4
Längkvist (jneab260cbib095) 2018
Ahmedt-Aristizabal (jneab260cbib004) 2018
Roy (jneab260cbib156) 2019
Zhang (jneab260cbib244) 2018
An (jneab260cbib008) 2016
Yang (jneab260cbib224) 2016
Schwabedal (jneab260cbib170) 2018
Omerhodzic (jneab260cbib135) 2013
Schmidhuber (jneab260cbib168) 2015; 61
Duchi (jneab260cbib047) 2011; 12
Hari (jneab260cbib074) 2017
Munafò (jneab260cbib122) 2017; 1
Kuanar (jneab260cbib092) 2018
Heusel (jneab260cbib083) 2017
Shamwell (jneab260cbib172) 2016; vol 9836
Li (jneab260cbib104) 2014
Shoeb (jneab260cbib174) 2010
Hefron (jneab260cbib080) 2018; 18
Bishop (jneab260cbib024) 1995; vol 92
Acharya (jneab260cbib002) 2017
Thorsten (jneab260cbib195) 2011; 8
Zhang (jneab260cbib240) 2017
Yang (jneab260cbib222) 2018; 43
Zhang (jneab260cbib238) 2018
Yogatama (jneab260cbib229) 2017
Hagihira (jneab260cbib068) 2015; 115
Padmanabh (jneab260cbib139) 2017; 48
Kwon (jneab260cbib094) 2017; vol 474
Nolan (jneab260cbib131) 2010; 192
Biasiucci (jneab260cbib022) 2019; 29
Gulrajani (jneab260cbib066) 2017
Wu (jneab260cbib217) 2018
Sajda (jneab260cbib160) 2003; 11
Palazzo (jneab260cbib142) 2017
Manzano (jneab260cbib121) 2017; 10305 LNCS
Zhang (jneab260cbib242) 2018; vol 2
Yin (jneab260cbib228) 2017; 260
Bergstra (jneab260cbib020) 2012; 13
Hajinoroozi (jneab260cbib069) 2015
Page (jneab260cbib141) 2016
Yin (jneab260cbib227) 2017; 33
Shah (jneab260cbib171) 2017
Phan (jneab260cbib150) 2019; 66
Andrzejak (jneab260cbib010) 2001; 64
Li (jneab260cbib109) 2015
Yang (jneab260cbib223) 2015
Hohman (jneab260cbib084) 2018
Russakovsky (jneab260cbib042) 2015; 115
Ruffini (jneab260cbib158) 2018
Robbins (jneab260cbib154) 1951
Zhang (jneab260cbib241) 2017
Drouin-Picaro (jneab260cbib046) 2016
Blankertz (jneab260cbib027) 2006; 14
Sun (jneab260cbib185) 2016
Acharya (jneab260cbib003) 2013; 45
Zheng (jneab260cbib248) 2014
Sors (jneab260cbib178) 2018; 42
Wang (jneab260cbib212) 2018; 10705 LNCS
LeCun (jneab260cbib099) 1989; 1
Sturm (jneab260cbib183) 2016
Lotte (jneab260cbib116) 2015
Niso (jneab260cbib130) 2018; 5
Perez-Benitez (jneab260cbib147) 2018
Wang (jneab260cbib213) 2018
Hajinoroozi (jneab260cbib070) 2017; vol 10284
Wen (jneab260cbib215) 2018; 6
Yoon (jneab260cbib230) 2018; 2018
Thodoroff (jneab260cbib194) 2016
Golmohammadi (jneab260cbib057) 2017
Hartmann (jneab260cbib075) 2018
Taqi (jneab260cbib192) 2017
Al-Nafjan (jneab260cbib005) 2017; 7
Manor (jneab260cbib120) 2015; 9
Sakhavi (jneab260cbib161) 2017
Saon (jneab260cbib164) 2017
Berka (jneab260cbib021) 2007; 78
Schalk (jneab260cbib165) 2004; 51
Dharamsi (jneab260cbib043) 2017
Hasib (jneab260cbib077) 2018
Cole (jneab260cbib037) 2018
Kingma (jneab260cbib090) 2014
Pernet (jneab260cbib149) 2019; 6
Patanaik (jneab260cbib145) 2018; 41
Tibor (jneab260cbib196) 2017; 38
Li (jneab260cbib105) 2015; 165
Li (jneab260cbib108) 2018
Truong (jneab260cbib199) 2018
Bashivan (jneab260cbib015) 2016
Congedo (jneab260cbib039) 2017; 4
Nurse (jneab260cbib133) 2016
Waytowich (jneab260cbib214) 2018
Längkvist (jneab260cbib096) 2012; 2012
Stober (jneab260cbib181) 2014
Zhang (jneab260cbib234) 2016
Tieleman (jneab260cbib197) 2012; 4
Aznan (jneab260cbib012) 2018
Sree (jneab260cbib180) 2017
Talathi (jneab260cbib190) 2017
Li (jneab260cbib110) 2017
Schomer (jneab260cbib169) 2012
Vilamala (jneab260cbib209) 2017
Harati (jneab260cbib073) 2014
He (jneab260cbib079) 2015
Truong (jneab260cbib200) 2018; 105
Hartmann (jneab260cbib076) 2018
Sakhavi (jneab260cbib162) 2015
Simonyan (jneab260cbib175) 2014
Xie (jneab260cbib219) 2017; 10637 LNCS
Blankertz (jneab260cbib026) 2004; 51
Ghosh (jneab260cbib053) 2018
Li (jneab260cbib106) 2013
Corley (jneab260cbib040) 2018
Schirrmeister (jneab260cbib167) 2017; 38
Salimans (jneab260cbib163) 2016
Naderi (jneab260cbib128) 2010
Castellanos (jneab260cbib030) 2006; 158
Yuan (jneab260cbib231) 2018
Radford (jneab260cbib152) 2018
Giacino (jneab260cbib054) 2014; 10
Morabito (jneab260cbib127) 2017; 27
Tsiouris (jneab260cbib202) 2018; 99
Prechelt (jneab260cbib151) 1998; 11
Ghassemi (jneab260cbib052) 2018; 45
Li (jneab260cbib103) 2017; 47
He (jneab260cbib078) 2018; 20
Lawhern (jneab260cbib097) 2018; 15
Bai (jneab260cbib013) 2018
Yin (jneab260cbib226) 2016
References_xml – volume: 45
  start-page: 147
  year: 2013
  ident: jneab260cbib003
  article-title: Automated EEG analysis of epilepsy: a review
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.02.014
– year: 2017
  ident: jneab260cbib166
  article-title: Deep learning with convolutional neural networks for decoding and visualization of EEG pathology
  doi: 10.1109/SPMB.2017.8257015
– volume: 2018
  start-page: 6058065
  year: 2018
  ident: jneab260cbib230
  article-title: Spatial and time domain feature of ERP speller system extracted via convolutional neural network
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/6058065
– volume: 26
  start-page: 324
  year: 2018
  ident: jneab260cbib045
  article-title: Mixed neural network approach for temporal sleep stage classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2733220
– year: 2018
  ident: jneab260cbib101
  article-title: Time series segmentation through automatic feature learning
– year: 2018
  ident: jneab260cbib108
  article-title: Explicit inductive bias for transfer learning with convolutional networks
– volume: 165
  start-page: 23
  year: 2015
  ident: jneab260cbib105
  article-title: Feature learning from incomplete EEG with denoising autoencoder
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.092
– volume: 8
  start-page: 8
  year: 2017
  ident: jneab260cbib006
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– start-page: 1
  year: 2017
  ident: jneab260cbib002
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
– year: 1994
  ident: jneab260cbib038
  article-title: Mat-multi-attribute task battery for human operator workload and strategic behavior research
– volume: 25
  start-page: 1351
  year: 2018
  ident: jneab260cbib236
  article-title: The national sleep research resource: towards a sleep data commons.
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocy064
– volume: 23
  start-page: 628
  year: 2014
  ident: jneab260cbib137
  article-title: Montreal archive of sleep studies: an open-access resource for instrument benchmarking and exploratory research
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12169
– year: 2013
  ident: jneab260cbib135
  article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier 2
– start-page: 18
  year: 2018
  ident: jneab260cbib147
  article-title: Development of a brain computer interface interface using multi-frequency visual stimulation and deep neural networks
– start-page: 1
  year: 2016
  ident: jneab260cbib046
  article-title: Using deep neural networks for natural saccade classification from electroencephalograms
– year: 2016
  ident: jneab260cbib060
  article-title: Nips 2016 tutorial: generative adversarial networks
– volume: 15
  start-page: 49
  year: 2014
  ident: jneab260cbib208
  article-title: OpenML: networked science in machine learning
  publication-title: SIGKDD Explorations
  doi: 10.1145/2641190.2641198
– volume: 8
  year: 2011
  ident: jneab260cbib218
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036015
– volume: 27
  start-page: 1650039
  year: 2017
  ident: jneab260cbib127
  article-title: Deep learning representation from electroencephalography of early-stage Creutzfeldt–Jakob disease and features for differentiation from rapidly progressive dementia
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500398
– volume: vol 10284
  start-page: 45
  year: 2017
  ident: jneab260cbib070
  article-title: Deep transfer learning for cross-subject and cross-experiment prediction of image rapid serial visual presentation events from EEG data
– volume: 521
  start-page: 436
  year: 2015
  ident: jneab260cbib098
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 15
  year: 2018
  ident: jneab260cbib034
  article-title: Deep learning for hybrid EEG-fNIRS brain–computer interface: application to motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaaf82
– year: 2017
  ident: jneab260cbib063
  article-title: Deep learning for fatigue estimation on the basis of multimodal human–machine interactions
– volume: 159
  start-page: 417
  year: 2017
  ident: jneab260cbib086
  article-title: Autoreject: automated artifact rejection for MEG and EEG data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.030
– year: 2016
  ident: jneab260cbib055
  article-title: Combining generative and discriminative neural networks for sleep stages classification
– year: 2014
  ident: jneab260cbib175
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 25
  start-page: 1998
  year: 2017
  ident: jneab260cbib186
  article-title: DeepSleepNet: a model for automatic sleep stage scoring based on raw single-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2721116
– year: 2017
  ident: jneab260cbib058
  article-title: Deep architectures for automated seizure detection in scalp EEGs
– volume: 4
  start-page: 155
  year: 2017
  ident: jneab260cbib039
  article-title: Riemannian geometry for EEG-based brain–computer interfaces; a primer and a review
  publication-title: Brain–Comput. Interfaces
  doi: 10.1080/2326263X.2017.1297192
– volume: 15
  year: 2018
  ident: jneab260cbib097
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– year: 2017
  ident: jneab260cbib025
  article-title: SLEEPNET: automated sleep staging system via deep learning 1–17
– volume: 6
  start-page: 103
  year: 2019
  ident: jneab260cbib149
  article-title: Bids-EEG: an extension to the brain imaging data structure (bids) specification for electroencephalography
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0104-8
– volume: 13
  start-page: 281
  year: 2012
  ident: jneab260cbib020
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 5
  year: 2018
  ident: jneab260cbib130
  article-title: Meg-bids, the brain imaging data structure extended to magnetoencephalography
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.110
– volume: 33
  start-page: 433
  year: 2011
  ident: jneab260cbib031
  article-title: Convolutional neural networks for P300 detection with application to brain–computer interfaces
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.125
– volume: 47
  start-page: 549
  year: 2016
  ident: jneab260cbib071
  article-title: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network
  publication-title: Signal Process.: Image Commun.
  doi: 10.1016/j.image.2016.05.018
– year: 2017
  ident: jneab260cbib074
– volume: 10
  start-page: 993
  year: 2015
  ident: jneab260cbib143
  article-title: Adaptive recurrent neural network for reduction of noise and estimation of source from recorded EEG signals
  publication-title: ARPN J. Eng. Appl. Sci.
– start-page: 4
  year: 2018
  ident: jneab260cbib231
  article-title: A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning
– year: 2018
  ident: jneab260cbib107
  article-title: Training on the test set? An analysis of Spampinato et al
– year: 2018
  ident: jneab260cbib214
  article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials
  doi: 10.1088/1741-2552/aae5d8
– year: 2017
  ident: jneab260cbib017
  article-title: The signature of robot action success in EEG signals of a human observer: decoding and visualization using deep convolutional neural networks
– volume: vol 7
  start-page: 256
  year: 2018
  ident: jneab260cbib007
  article-title: EEG-signals based cognitive workload detection of vehicle driver using deep learning
– volume: 8
  year: 2018
  ident: jneab260cbib206
  article-title: Predicting sex from brain rhythms with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21495-7
– start-page: 4
  year: 2018
  ident: jneab260cbib040
  article-title: Deep EEG super-resolution: upsampling EEG spatial resolution with generative adversarial networks
– volume: 48
  start-page: 38
  year: 2017
  ident: jneab260cbib139
  article-title: Mental tasks classification using EEG signal, discrete wavelet transform and neural network
  publication-title: Discovery
– start-page: 770
  year: 2015
  ident: jneab260cbib079
  article-title: Deep residual learning for image recognition
– start-page: 86
  year: 2017
  ident: jneab260cbib192
  article-title: Classification and discrimination of focal and non-focal EEG signals based on deep neural network
– start-page: 1086
  year: 2016
  ident: jneab260cbib141
  article-title: Wearable seizure detection using convolutional neural networks with transfer learning
– start-page: 3430
  year: 2017
  ident: jneab260cbib142
  article-title: Generative adversarial networks conditioned by brain signals
– start-page: 1
  year: 2014
  ident: jneab260cbib073
  article-title: The TUH EEG CORPUS: a big data resource for automated EEG interpretation
– volume: vol 92
  year: 1995
  ident: jneab260cbib024
– volume: 15
  year: 2018
  ident: jneab260cbib117
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aab2f2
– year: 2015
  ident: jneab260cbib016
  article-title: Learning representations from EEG with deep recurrent-convolutional neural networks
– volume: 94
  start-page: 96
  year: 2017
  ident: jneab260cbib081
  article-title: Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.05.020
– volume: 33
  start-page: 30
  year: 2017
  ident: jneab260cbib227
  article-title: Cross-session classification of mental workload levels using EEG and an adaptive deep learning model
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.11.013
– year: 2018
  ident: jneab260cbib082
  article-title: A large-scale evaluation framework for EEG deep learning architectures
  doi: 10.1109/SMC.2018.00185
– year: 2017
  ident: jneab260cbib146
  article-title: Deep RNN learning for EEG based functional brain state inference
  doi: 10.1109/ICAC3.2017.8318753
– volume: 11
  start-page: 184
  year: 2003
  ident: jneab260cbib160
  article-title: A data analysis competition to evaluate machine learning algorithms for use in brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814453
– volume: 38
  start-page: 890
  year: 2018
  ident: jneab260cbib198
  article-title: Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.05.005
– start-page: 2620
  year: 2015
  ident: jneab260cbib223
  article-title: On the use of convolutional neural networks and augmented CSP features for multi-class motor imagery of EEG signals classification
– start-page: 1973
  year: 2017
  ident: jneab260cbib225
  article-title: Improving classification accuracy of feedforward neural networks for spiking neuromorphic chips
– year: 2018
  ident: jneab260cbib085
  article-title: Epileptic seizure detection: a deep learning approach
– start-page: 6626
  year: 2017
  ident: jneab260cbib083
  article-title: GANs trained by a two time-scale update rule converge to a local nash equilibrium
– year: 2018
  ident: jneab260cbib075
  article-title: EEG-GAN: generative adversarial networks for electroencephalograhic (EEG) brain signals
– start-page: 28
  year: 2017
  ident: jneab260cbib245
  article-title: Multi-person brain activity recognition via comprehensive EEG signal analysis
– volume: 115
  start-page: 211
  year: 2015
  ident: jneab260cbib042
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– year: 2017
  ident: jneab260cbib148
  article-title: The effectiveness of data augmentation in image classification using deep learning
– volume: 42
  start-page: 107
  year: 2018
  ident: jneab260cbib178
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.12.001
– volume: 5
  start-page: 14797
  year: 2017
  ident: jneab260cbib123
  article-title: Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2724555
– start-page: 104
  year: 2018
  ident: jneab260cbib077
  article-title: A hierarchical LSTM model with attention for modeling EEG non-stationarity for human decision prediction
– volume: 3
  year: 2016
  ident: jneab260cbib064
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.44
– start-page: 75
  year: 2014
  ident: jneab260cbib203
  article-title: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection
– year: 2017
  ident: jneab260cbib240
  article-title: DeepKey: an EEG and gait based dual-authentication system
– start-page: 2234
  year: 2016
  ident: jneab260cbib163
  article-title: Improved techniques for training GANs
– start-page: 2818
  year: 2016
  ident: jneab260cbib188
  article-title: Rethinking the inception architecture for computer vision
– year: 2017
  ident: jneab260cbib057
  article-title: Automatic analysis of EEGs using big data and hybrid deep learning architectures
– start-page: 568
  year: 2018
  ident: jneab260cbib210
  article-title: Intracranial error detection via deep learning
– volume: 115
  start-page: i27
  year: 2015
  ident: jneab260cbib068
  article-title: Changes in the electroencephalogram during anaesthesia and their physiological basis
  publication-title: Br. J. Anaesthesia
  doi: 10.1093/bja/aev212
– start-page: 2736
  year: 2015
  ident: jneab260cbib162
  article-title: Parallel convolutional-linear neural network for motor imagery classification
– volume: 17
  start-page: 374
  year: 2013
  ident: jneab260cbib011
  article-title: A decade of EEG theta/beta ratio research in ADHD: a meta-analysis
  publication-title: J. Attention Disorders
  doi: 10.1177/1087054712460087
– start-page: 2674
  year: 2018
  ident: jneab260cbib084
  article-title: Visual analytics in deep learning: an interrogative survey for the next frontiers
  doi: 10.1109/TVCG.2018.2843369
– year: 2016
  ident: jneab260cbib036
– year: 2017
  ident: jneab260cbib164
  article-title: English conversational telephone speech recognition by humans and machines
  doi: 10.21437/Interspeech.2017-405
– start-page: 1
  year: 2016
  ident: jneab260cbib220
  article-title: Affective states classification using EEG and semi-supervised deep learning approaches
– volume: 73
  start-page: 220
  year: 2017
  ident: jneab260cbib173
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.035
– start-page: 3907
  year: 2016
  ident: jneab260cbib226
  article-title: Recognition of cognitive task load levels using single channel EEG and stacked denoising autoencoder
– year: 2018
  ident: jneab260cbib053
  article-title: Deep semantic architecture with discriminative feature visualization for neuroimage analysis
– volume: 8590 LNBI
  start-page: 203
  year: 2014
  ident: jneab260cbib009
  article-title: A deep learning method for classification of EEG data based on motor imagery
  publication-title: Lecture Notes Comput. Sci.
  doi: 10.1007/978-3-319-09330-7_25
– start-page: 305
  year: 2013
  ident: jneab260cbib106
  article-title: Affective state recognition from EEG with deep belief networks
– start-page: 748
  year: 2017
  ident: jneab260cbib241
  article-title: Intent recognition in smart living through deep recurrent neural networks
– volume: 26
  start-page: 758
  year: 2017
  ident: jneab260cbib033
  article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/tnsre.2018.2813138
– year: 2017
  ident: jneab260cbib118
  article-title: The effects of pre-filtering and individualizing components for electroencephalography neural network classification
  doi: 10.1109/SECON.2017.7925289
– year: 2018
  ident: jneab260cbib125
  article-title: Classification of auditory stimuli from EEG signals with a regulated recurrent neural network reservoir
– volume: 10
  start-page: 87
  year: 2018
  ident: jneab260cbib193
  article-title: Preference classification using electroencephalography (EEG) and deep learning
  publication-title: J. Telecommun. Electron. Comput. Eng.
– volume: 18
  start-page: 1339
  year: 2018
  ident: jneab260cbib080
  article-title: Cross-participant EEG-based assessment of cognitive workload using multi-path convolutional recurrent neural networks
  publication-title: Sensors
  doi: 10.3390/s18051339
– year: 2018
  ident: jneab260cbib158
  article-title: Deep learning with EEG spectrograms in rapid eye movement behavior disorder
  doi: 10.1101/240267
– volume: 12
  year: 2015
  ident: jneab260cbib205
  article-title: EEG artifact removal state-of-the-art and guidelines
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/031001
– start-page: 137
  year: 2007
  ident: jneab260cbib018
  article-title: Analysis of representations for domain adaptation
– volume: vol 9836
  year: 2016
  ident: jneab260cbib172
  article-title: Single-trial EEG RSVP classification using convolutional neural networks
– year: 2016
  ident: jneab260cbib114
  article-title: Multimodal emotion recognition using multimodal deep learning
  doi: 10.1007/978-3-319-46672-9_58
– volume: 105
  start-page: 104
  year: 2018
  ident: jneab260cbib200
  article-title: Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.04.018
– year: 2018
  ident: jneab260cbib095
  article-title: A deep learning approach with an attention mechanism for automatic sleep stage classification
– start-page: 1
  year: 2018
  ident: jneab260cbib076
  article-title: Hierarchical internal representation of spectral features in deep convolutional networks trained for EEG decoding
– year: 2012
  ident: jneab260cbib233
  article-title: ADADELTA: an adaptive learning rate method
– start-page: 1
  year: 2017
  ident: jneab260cbib180
  article-title: Vowel classification from imagined speech using sub-band EEG frequencies and deep belief networks
– volume: 14
  start-page: 153
  year: 2006
  ident: jneab260cbib027
  article-title: The bci competition iii: validating alternative approaches to actual bci problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.875642
– volume: 15
  start-page: 1929
  year: 2014
  ident: jneab260cbib187
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 141
  start-page: 3179
  year: 2018
  ident: jneab260cbib048
  article-title: Robust EEG-based cross-site and cross-protocol classification of states of consciousness
  publication-title: Brain
  doi: 10.1093/brain/awy251
– volume: 14
  start-page: 16003
  year: 2016
  ident: jneab260cbib189
  article-title: A novel deep learning approach for classification of EEG motor imagery signals
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/14/1/016003
– volume: 64
  year: 2001
  ident: jneab260cbib010
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.061907
– start-page: 1
  year: 2017
  ident: jneab260cbib171
  article-title: Optimizing channel selection for seizure detection
– volume: 25
  start-page: 2030
  year: 2014
  ident: jneab260cbib032
  article-title: Single-trial classification of event-related potentials in rapid serial visual presentation tasks using supervised spatial filtering
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2302898
– start-page: 1
  year: 2016
  ident: jneab260cbib224
  article-title: Semi-automated annotation of signal events in clinical EEG data, Engineering Data Consortium, Temple University, Philadelphia, Pennsylvania, USA
– start-page: 1
  year: 2018
  ident: jneab260cbib213
  article-title: EEG detection and de-noising based on convolution neural network and Hilbert-Huang transform
– start-page: 182
  year: 2018
  ident: jneab260cbib102
  article-title: Generating target/non-target images of an RSVP experiment from brain signals in by conditional generative adversarial network
  doi: 10.1109/BHI.2018.8333399
– year: 2016
  ident: jneab260cbib015
  article-title: Mental state recognition via wearable EEG
– volume: 841
  start-page: 303
  year: 2018
  ident: jneab260cbib144
  article-title: An EEG-based image annotation system
  publication-title: Commun. Comput. Inf. Sci.
– start-page: 5767
  year: 2017
  ident: jneab260cbib066
  article-title: Improved training of wasserstein GANs
– volume: 15
  year: 2018
  ident: jneab260cbib087
  article-title: MOABB: trustworthy algorithm benchmarking for BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aadea0
– start-page: 588
  year: 2017
  ident: jneab260cbib161
  article-title: Convolutional neural network-based transfer learning and knowledge distillation using multi-subject data in motor imagery BCI
– year: 2017
  ident: jneab260cbib209
  article-title: Deep convolutional neural networks for interpretable analysis of EEG sleep stage scoring
  doi: 10.1109/MLSP.2017.8168133
– year: 2016
  ident: jneab260cbib194
  article-title: Learning robust features using deep learning for automatic seizure detection
– volume: 9
  start-page: 1
  year: 2015
  ident: jneab260cbib120
  article-title: Convolutional neural network for multi-category rapid serial visual presentation BCI
  publication-title: Frontiers Comput. Neurosci.
  doi: 10.3389/fncom.2015.00146
– year: 2017
  ident: jneab260cbib043
  article-title: Neurology-as-a-service for the developing world
– volume: 192
  start-page: 152
  year: 2010
  ident: jneab260cbib131
  article-title: FASTER: fully automated statistical thresholding for EEG artifact rejection
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.07.015
– volume: 11
  start-page: 1
  year: 2017
  ident: jneab260cbib237
  article-title: Pattern recognition of momentary mental workload based on multi-channel electrophysiological data and ensemble convolutional neural networks
  publication-title: Frontiers Neurosci.
  doi: 10.3389/fnins.2017.00310
– year: 2015
  ident: jneab260cbib132
  article-title: Superchords: the atoms of thought
– start-page: 1
  year: 2017
  ident: jneab260cbib211
  article-title: Deep transfer learning for error decoding from non-invasive EEG
– year: 2018
  ident: jneab260cbib152
  article-title: Language models are unsupervised multitask learners
– volume: 12
  start-page: 1
  year: 2017
  ident: jneab260cbib093
  article-title: A convolutional neural network for steady state visual evoked potential classification under ambulatory environment
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0172578
– volume: 20
  start-page: 171
  year: 2018
  ident: jneab260cbib078
  article-title: Electrophysiological source imaging: a noninvasive window to brain dynamics
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-062117-120853
– volume: 78
  start-page: B231
  year: 2007
  ident: jneab260cbib021
  article-title: {EEG} correlates of task engagement and mental workload in vigilance, learning, and memory tasks
  publication-title: Aviat. Space Environ. Med.
– start-page: 493
  year: 2015
  ident: jneab260cbib069
  article-title: Prediction of driver’s drowsy and alert states from EEG signals with deep learning
– start-page: 259
  year: 2016
  ident: jneab260cbib133
  article-title: Decoding EEG and LFP signals using deep learning: heading TrueNorth
– year: 2017
  ident: jneab260cbib136
  article-title: Parallel wavenet: fast high-fidelity speech synthesis
– year: 2016
  ident: jneab260cbib115
  article-title: SGDR: stochastic gradient descent with warm restarts
– volume: 10705 LNCS
  start-page: 82
  year: 2018
  ident: jneab260cbib212
  article-title: Data augmentation for eeg-based emotion recognition with deep convolutional neural networks
  publication-title: Lecture Notes Comput. Sci.
  doi: 10.1007/978-3-319-73600-6_8
– volume: 6
  start-page: 25399
  year: 2018
  ident: jneab260cbib215
  article-title: Deep convolution neural network and autoencoders-based unsupervised feature learning of EEG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2833746
– year: 2016
  ident: jneab260cbib201
  article-title: Automatic sleep stage scoring with single-channel EEG using convolutional neural networks
– volume: 17
  start-page: 962
  year: 2018
  ident: jneab260cbib072
  article-title: DeepIED: an epileptic discharge detector for EEG-fMRI based on deep learning
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2017.12.005
– year: 2017
  ident: jneab260cbib019
  article-title: Multimodal deep learning approach for Joint EEG-EMG data compression and classification
  doi: 10.1109/WCNC.2017.7925709
– year: 2012
  ident: jneab260cbib169
– year: 2018
  ident: jneab260cbib238
  article-title: Improving brain computer interface performance by data augmentation with conditional deep convolutional generative adversarial networks
– year: 2018
  ident: jneab260cbib138
  article-title: Investigating the impact of CNN depth on neonatal seizure detection performance
– volume: vol 1
  year: 2016
  ident: jneab260cbib061
– volume: 2012
  year: 2012
  ident: jneab260cbib096
  article-title: Sleep stage classification using unsupervised feature learning
  publication-title: Adv. Artif. Neural Syst.
  doi: 10.1155/2012/107046
– volume: 10
  start-page: 99
  year: 2014
  ident: jneab260cbib054
  article-title: Disorders of consciousness after acquired brain injury: the state of the science
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/nrneurol.2013.279
– volume: 1
  year: 2018
  ident: jneab260cbib239
  article-title: Spatial-temporal recurrent neural network for emotion recognition
  publication-title: IEEE Trans. Cybern.
– year: 2017
  ident: jneab260cbib134
  article-title: Neonatal seizure detection using convolutional neural networks
  doi: 10.1109/MLSP.2017.8168193
– volume: 4
  start-page: 26
  year: 2012
  ident: jneab260cbib197
  article-title: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA: Neural Netw. Mach. Learn.
– year: 2016
  ident: jneab260cbib126
  article-title: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings
  publication-title: IEEE 2nd Int. Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow
  doi: 10.1109/RTSI.2016.7740576
– volume: 49
  start-page: 1110
  year: 2019
  ident: jneab260cbib247
  article-title: Emotionmeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– year: 2018
  ident: jneab260cbib041
  article-title: HAMLET: interpretable human and machine co-learning technique
– year: 2018
  ident: jneab260cbib244
  article-title: Know your mind: adaptive brain signal classification with reinforced attentive convolutional neural networks
– year: 2018
  ident: jneab260cbib170
  article-title: Addressing class imbalance in classification problems of noisy signals by using fourier transform surrogates
– year: 2017
  ident: jneab260cbib229
  article-title: Generative and discriminative text classification with recurrent neural networks
– volume: 66
  start-page: 1285
  year: 2019
  ident: jneab260cbib150
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2018.2872652
– volume: 12
  start-page: e0178410
  year: 2017
  ident: jneab260cbib232
  article-title: Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0178410
– year: 2017
  ident: jneab260cbib035
  article-title: Individual recognition in schizophrenia using deep learning methods with random forest and voting classifiers: insights from resting state EEG streams
– start-page: 4503
  year: 2017
  ident: jneab260cbib179
  article-title: Deep learning human mind for automated visual classification
– volume: 2015
  year: 2015
  ident: jneab260cbib044
  article-title: Deep extreme learning machine and its application in EEG classification
  publication-title: Math. Problems Eng.
  doi: 10.1155/2015/129021
– volume: 7
  start-page: 162
  year: 2015
  ident: jneab260cbib246
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Mental Dev.
  doi: 10.1109/TAMD.2015.2431497
– year: 2017
  ident: jneab260cbib190
  article-title: Deep recurrent neural networks for seizure detection and early seizure detection systems
  doi: 10.2172/1366924
– volume: 7
  start-page: 1239
  year: 2017
  ident: jneab260cbib005
  article-title: Review and classification of emotion recognition based on EEG brain–computer interface system research: a systematic review
  publication-title: Appl. Sci.
  doi: 10.3390/app7121239
– volume: 129
  start-page: e98
  year: 2018
  ident: jneab260cbib207
  article-title: Deep learning for detection of epileptiform discharges from scalp EEG recordings
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2018.04.248
– start-page: 5606
  year: 2017
  ident: jneab260cbib110
  article-title: Dualing GANs
– volume: 260
  start-page: 349
  year: 2017
  ident: jneab260cbib228
  article-title: Cross-subject recognition of operator functional states via EEG and switching deep belief networks with adaptive weights
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.002
– volume: 45
  year: 2018
  ident: jneab260cbib052
  article-title: You snooze, you win: the physionet/computing in cardiology challenge 2018
  publication-title: Comput. Cardiol.
– volume: vol 1
  start-page: 1127
  year: 2015
  ident: jneab260cbib249
  article-title: End-to-end learning of semantic role labeling using recurrent neural networks
– volume: 3
  year: 2016
  ident: jneab260cbib216
  article-title: Comment: The fair guiding principles for scientific data management and stewardship
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.18
– year: 2016
  ident: jneab260cbib183
  article-title: Interpretable deep neural networks for single-trial EEG classification
  doi: 10.1016/j.jneumeth.2016.10.008
– year: 2018
  ident: jneab260cbib013
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– volume: 18
  start-page: 272
  year: 2016
  ident: jneab260cbib001
  article-title: Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation
  publication-title: Entropy
  doi: 10.3390/e18090272
– year: 2016
  ident: jneab260cbib185
  article-title: Neural networks based EEG-speech models 1–10
– year: 2016
  ident: jneab260cbib056
  article-title: Ischemic stroke identification based on EEG and EOG using 1D convolutional neural network and batch normalization
– volume: 1
  start-page: 541
  year: 1989
  ident: jneab260cbib099
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 10305 LNCS
  start-page: 132
  year: 2017
  ident: jneab260cbib121
  article-title: Deep learning using EEG data in time and frequency domains for sleep stage classification
  publication-title: Lecture Notes Comput. Sci.
  doi: 10.1007/978-3-319-59153-7_12
– volume: 38
  start-page: 5391
  year: 2017
  ident: jneab260cbib196
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– start-page: 1
  year: 2010
  ident: jneab260cbib128
  article-title: Analysis and classification of EEG signals using spectral analysis and recurrent neural networks
– start-page: 975
  year: 2010
  ident: jneab260cbib174
  article-title: Application of machine learning to epileptic seizure detection
– volume: 7
  start-page: 17292
  year: 2017
  ident: jneab260cbib014
  article-title: Bullying incidences identification within an immersive environment using HD EEG-based analysis: a swarm decomposition and deep learning approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17562-0
– volume: 65
  start-page: 386
  year: 1958
  ident: jneab260cbib155
  article-title: The perceptron: a probabilistic model for information storage and organization
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 86
  start-page: 2278
  year: 1998
  ident: jneab260cbib100
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– start-page: 102
  year: 1951
  ident: jneab260cbib154
  article-title: A stochastic approximation method
– volume: vol 8
  start-page: 145
  year: 1996
  ident: jneab260cbib119
  article-title: Independent component analysis of electroencephalographic data
– year: 2018
  ident: jneab260cbib004
  article-title: Deep classification of epileptic signals
  doi: 10.1109/EMBC.2018.8512249
– volume: 9091
  start-page: 273
  year: 2015
  ident: jneab260cbib049
  article-title: Emotional affect estimation using video and EEG data in deep neural networks
  publication-title: Lecture Notes Comput. Sci.
  doi: 10.1007/978-3-319-18356-5_24
– volume: 323
  start-page: 533
  year: 1986
  ident: jneab260cbib159
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 12
  start-page: 2121
  year: 2011
  ident: jneab260cbib047
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: jneab260cbib153
  article-title: Towards deep modeling of music semantics using EEG regularizers
– start-page: 443
  year: 2016
  ident: jneab260cbib184
  article-title: Deep coral: correlation alignment for deep domain adaptation
– volume: 70
  start-page: 410
  year: 2013
  ident: jneab260cbib065
  article-title: Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.051
– start-page: 1
  year: 2017
  ident: jneab260cbib059
  article-title: Gated recurrent networks for seizure detection
– volume: 10637 LNCS
  start-page: 752
  year: 2017
  ident: jneab260cbib219
  article-title: The analysis and classify of sleep stage using deep learning network from single-channel EEG signal
  publication-title: Lecture Notes Comput. Sci.
  doi: 10.1007/978-3-319-70093-9_80
– volume: 16
  start-page: 789
  year: 2018
  ident: jneab260cbib050
  article-title: EEG classification based on sparse representation and deep learning
  publication-title: NeuroQuantology
  doi: 10.14704/nq.2018.16.6.1666
– volume: 9
  start-page: 16
  year: 2015
  ident: jneab260cbib023
  article-title: The PREP pipeline: standardized preprocessing for large-scale EEG analysis
  publication-title: Frontiers Neuroinform.
  doi: 10.3389/fninf.2015.00016
– year: 2018
  ident: jneab260cbib157
  article-title: ChronoNet: a deep recurrent neural network for abnormal EEG identification
– start-page: 2576
  year: 2018
  ident: jneab260cbib092
  article-title: Cognitive analysis of working memory load from EEG, by a deep recurrent neural network
– volume: 10
  start-page: 233
  year: 2017
  ident: jneab260cbib140
  article-title: Gray literature: an important resource in systematic reviews
  publication-title: J. Evidence-Based Med.
  doi: 10.1111/jebm.12266
– start-page: 1
  year: 2018
  ident: jneab260cbib217
  article-title: Fair deep learning prediction for healthcare applications with confounder filtering
– volume: 2014
  year: 2014
  ident: jneab260cbib088
  article-title: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation
  publication-title: Sci. World J.
  doi: 10.1155/2014/627892
– year: 2016
  ident: jneab260cbib234
  article-title: Understanding deep learning requires rethinking generalization
– volume: 61
  start-page: 85
  year: 2015
  ident: jneab260cbib168
  article-title: Deep learning in neural networks: an overview: read section 6.6
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– start-page: 1
  year: 2015
  ident: jneab260cbib116
– start-page: 1
  year: 2014
  ident: jneab260cbib181
  article-title: Using convolutional neural networks to recognize rhythm stimuli from electroencephalography recordings
– volume: 214
  start-page: 1053
  year: 2016
  ident: jneab260cbib221
  article-title: Removal of EOG artifacts from EEG using a cascade of sparse autoencoder and recursive least squares adaptive filter
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.067
– start-page: 1703
  year: 2018
  ident: jneab260cbib235
  article-title: Cascade and parallel convolutional recurrent neural networks on EEG-based intention recognition for brain computer interface
– year: 2014
  ident: jneab260cbib090
  article-title: Adam: a method for stochastic optimization
– volume: 3
  start-page: 18
  year: 2012
  ident: jneab260cbib091
  article-title: DEAP: a database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 47
  start-page: 1185
  year: 2000
  ident: jneab260cbib089
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.867928
– volume: 43
  start-page: 148
  year: 2018
  ident: jneab260cbib222
  article-title: Automatic ocular artifacts removal in EEG using deep learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.02.021
– year: 2018
  ident: jneab260cbib012
  article-title: On the classification of SSVEP-based dry-EEG signals via convolutional neural networks
– start-page: 2951
  year: 2012
  ident: jneab260cbib176
  article-title: Practical bayesian optimization of machine learning algorithms
– year: 2015
  ident: jneab260cbib182
  article-title: Deep feature learning for EEG recordings
– start-page: 385
  year: 2017
  ident: jneab260cbib113
  article-title: Deep convolutional neural network for emotion recognition using EEG and peripheral physiological signal
– start-page: 1
  year: 2010
  ident: jneab260cbib029
  article-title: EEG discrimination using wavelet packet transform and a reduced-dimensional recurrent neural network
– volume: 4
  start-page: 6
  year: 2013
  ident: jneab260cbib067
  article-title: Automated classification of L/R hand movement EEG signals using advanced feature extraction and machine learning
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2019
  ident: jneab260cbib156
  article-title: Machine learning for seizure type classification: setting the benchmark
– year: 2018
  ident: jneab260cbib037
  article-title: Cycle-by-cycle analysis of neural oscillations
  doi: 10.1101/302000
– volume: 11
  start-page: 761
  year: 1998
  ident: jneab260cbib151
  article-title: Automatic early stopping using cross validation: quantifying the criteria
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00010-0
– volume: 1
  start-page: 0021
  year: 2017
  ident: jneab260cbib122
  article-title: A manifesto for reproducible science
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-016-0021
– volume: vol 2
  start-page: 149:1
  year: 2018
  ident: jneab260cbib242
  article-title: Mindid: Person identification from brain waves through attention-based recurrent neural network
– start-page: 1
  year: 2018
  ident: jneab260cbib243
  article-title: Converting your thoughts to texts: enabling brain typing via deep feature learning of eeg signals
– start-page: 503
  year: 2014
  ident: jneab260cbib104
  article-title: Deep learning of multifractal attributes from motor imagery induced EEG
– volume: 3
  start-page: 42
  year: 2012
  ident: jneab260cbib177
  article-title: A multimodal database for affect recognition and implicit tagging
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/T-AFFC.2011.25
– volume: 29
  start-page: R80
  year: 2019
  ident: jneab260cbib022
  article-title: Electroencephalography
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.11.052
– volume: 38
  start-page: 5391
  year: 2017
  ident: jneab260cbib167
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 6
  start-page: 3131
  year: 2016
  ident: jneab260cbib129
  article-title: EEG based eye state classification using deep belief network and stacked autoencoder
  publication-title: Int. J. Electr. Comput. Eng.
– start-page: 1
  year: 2014
  ident: jneab260cbib248
  article-title: EEG-based emotion classification using deep belief networks
– year: 2018
  ident: jneab260cbib028
  article-title: Large scale gan training for high fidelity natural image synthesis
– start-page: 427
  year: 2016
  ident: jneab260cbib008
  article-title: Hand motion identification of grasp-and-lift task from electroencephalography recordings using recurrent neural networks
– volume: vol 474
  start-page: 96
  year: 2017
  ident: jneab260cbib094
  article-title: Transformation of EEG signal for emotion analysis and dataset construction for DNN learning
– volume: 99
  start-page: 24
  year: 2018
  ident: jneab260cbib202
  article-title: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.019
– volume: 51
  start-page: 1034
  year: 2004
  ident: jneab260cbib165
  article-title: Bci2000: a general-purpose brain-computer interface (bci) system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827072
– start-page: 2672
  year: 2014
  ident: jneab260cbib062
  article-title: Generative adversarial nets
– start-page: 90
  year: 2018
  ident: jneab260cbib112
  article-title: Emotion stress detection using EEG signal and deep learning technologies
– year: 2018
  ident: jneab260cbib204
  article-title: An automated system for epilepsy detection using EEG brain signals based on deep learning approach
  doi: 10.1016/j.eswa.2018.04.021
– volume: 51
  start-page: 1044
  year: 2004
  ident: jneab260cbib026
  article-title: The bci competition 2003
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826692
– start-page: 6289
  year: 2011
  ident: jneab260cbib124
  article-title: Single-trial EEG discrimination between wrist and finger movement imagery and execution in a sensorimotor BCI
– volume: 158
  start-page: 300
  year: 2006
  ident: jneab260cbib030
  article-title: Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2006.05.033
– start-page: 1
  year: 2015
  ident: jneab260cbib051
  article-title: Deep learninig of EEG signals for emotion recognition
– volume: 41
  start-page: 1
  year: 2018
  ident: jneab260cbib145
  article-title: An end-to-end framework for real-time automatic sleep stage classification
  publication-title: Sleep
  doi: 10.1016/j.sleep.2017.09.031
– volume: 130
  start-page: 11
  year: 2017
  ident: jneab260cbib191
  article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.10.117
– volume: 8
  start-page: 25005
  year: 2011
  ident: jneab260cbib195
  article-title: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/2/025005
– volume: vol 819
  year: 2018
  ident: jneab260cbib111
  article-title: Emotion recognition from EEG Using RASM and LSTM
– start-page: 2
  year: 2015
  ident: jneab260cbib109
  article-title: EEG based emotion identification using unsupervised deep feature learning
– year: 2018
  ident: jneab260cbib199
  article-title: Semi-supervised seizure prediction with generative adversarial networks
– volume: 47
  start-page: 598
  year: 2017
  ident: jneab260cbib103
  article-title: Deep models for engagement assessment with scarce label information
  publication-title: IEEE Trans. Hum.-Mach. Syst.
  doi: 10.1109/THMS.2016.2608933
SSID ssj0031790
Score 2.6940086
SecondaryResourceType review_article
Snippet Context. Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature...
Context . Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature...
Electroencephalography (EEG) is a complex signal and can require several years of training, as well as advanced signal processing and feature extraction...
SourceID hal
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 51001
SubjectTerms Applications
Computer Science
deep learning
EEG
electroencephalogram
Medical Imaging
neural networks
Other Statistics
review
Statistics
survey
Title Deep learning-based electroencephalography analysis: a systematic review
URI https://iopscience.iop.org/article/10.1088/1741-2552/ab260c
https://www.ncbi.nlm.nih.gov/pubmed/31151119
https://www.proquest.com/docview/2233854825
https://ird.hal.science/ird-03222079
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51y4UL6oNHSqlMBUgczDpxnDj0tIJWCwLKgYrerPhFqUo2ardI_feMY-9WlWjVmw8TP8aP-SYz_gzwyuCaMGhmqJeO0dLVhupSemorjtbKCWeqcMH567dqelR-PhbHK7C3vAsz69PR_w6LkSg4qjAlxMkxYuicIhIuxq1GNG5G8IDLSgbP65D_XBzDPFBPxduQQbpiKUb5vxpu2KTRSciIHGHrt4POwfgcrMGjhBrJJPZxHVZctwGbkw495j9X5A0Z8jiHH-SbMP3oXE_SaxC_aDBTlqTXbsKI-5N2wVNN2kRJ8p605JrTmcT7LI_h6GD_x4cpTe8lUCMqPqei1TUrvUYPqmgqb23JTVPiCA2zxjgvdMOkbz3LjTSFE7nmxvvacs1rxEmWP4HVbta5Z0CYC_FYkyP-rkumsVzkWnBsADe4lzKD8UJjyiQy8fCmxZkagtpSqqBjFXSsoo4zeLv8oo9EGnfI7qIqlmKBAXs6-aJ-n1vFQmSI1c3fPIPXOEcqbbmLOyojN-ROO6fySgkVjiOWq976DF4uJlrh7gohk7Zzs8sLheCJS3TqCpHB07gClt0KPEVoKZqte3bkOTxEtNXETMBtWJ2fX7oXiGjmegdGnw6_7wzr9x_BfuyS
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6xRUJcEFAe4WkQIHEw68Sx43BbUVYLlMKBit6s-EVbQTZqt0j8e8axd1ElqLj5YDvj8djzOWN_A_DMok1YdDM0KM9o7RtLTa0CdZKjt_LCWxkfOH_ck4v9-v2BOMh5Tse3MMshb_2vsJiIgpMK84U4NUUMXVJEwtW0M4jG7XRwYQKXBZcy5m74xL-ut2Ie6afSi8jYQrIcp_xbL-f80uQw3oqcoAT_Bp6jA5pfh2sZOZJZkvMGXPL9Tdie9Xhq_vGLvCDjXc7xJ_k2LHa8H0jOCPGNRlflSM54E0c9HHZrrmrSZVqS16Qjf3idSXrTcgv252-_vFnQnDOBWiH5iorONKwOBk9RVSuDczW3bY0jtMxZ64MwLVOhC6y0ylZelIbbEBrHDW8QKzl-G7b6Ze_vAmE-xmRtiRi8qZnBclUawfEDuMiDUgVM1xrTNhOKx7wW3_UY2FZKRx3rqGOddFzAy02LIZFpXFD3KapiUy2yYC9mu_roxGkWo0OsaX-WBTzHOdJ52Z1e0Bk5V--497qUWui4JbFSowUV8GQ90RpXWAybdL1fnp1qBFBc4cGuEgXcSRawEStyFaG3aO_9pyCP4crnnbnefbf34T5cRfDVpouBD2BrdXLmHyLAWZlHoxH_Btgf73g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+electroencephalography+analysis%3A+a+systematic+review&rft.jtitle=Journal+of+neural+engineering&rft.au=Roy%2C+Yannick&rft.au=Banville%2C+Hubert&rft.au=Albuquerque%2C+Isabela&rft.au=Gramfort%2C+Alexandre&rft.date=2019-10-01&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=16&rft.issue=5&rft_id=info:doi/10.1088%2F1741-2552%2Fab260c&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_ird_03222079v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon