CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis

Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological fu...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer Vol. 20; no. 1; pp. 161 - 16
Main Authors Li, Shenglong, Liu, Fei, Zheng, Ke, Wang, Wei, Qiu, Enduo, Pei, Yi, Wang, Shuang, Zhang, Jiaming, Zhang, Xiaojing
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 07.12.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS.
AbstractList Abstract Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Methods Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT–PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. Results CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. Conclusions CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS.
Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Methods Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. Results CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. Conclusions CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS. Keywords: circDOCK1, miR-339-3p, IGF1R, OS, Cisplatin resistance
Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS).BACKGROUNDCircular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS).Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity.METHODSDifferentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity.CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis.RESULTSCircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis.CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS.CONCLUSIONSCircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS.
Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Methods Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT–PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. Results CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. Conclusions CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS.
Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS.
Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS.
ArticleNumber 161
Audience Academic
Author Qiu, Enduo
Pei, Yi
Liu, Fei
Wang, Wei
Zhang, Xiaojing
Li, Shenglong
Zhang, Jiaming
Wang, Shuang
Zheng, Ke
Author_xml – sequence: 1
  givenname: Shenglong
  orcidid: 0000-0003-2244-1184
  surname: Li
  fullname: Li, Shenglong
– sequence: 2
  givenname: Fei
  surname: Liu
  fullname: Liu, Fei
– sequence: 3
  givenname: Ke
  surname: Zheng
  fullname: Zheng, Ke
– sequence: 4
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
– sequence: 5
  givenname: Enduo
  surname: Qiu
  fullname: Qiu, Enduo
– sequence: 6
  givenname: Yi
  surname: Pei
  fullname: Pei, Yi
– sequence: 7
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
– sequence: 8
  givenname: Jiaming
  surname: Zhang
  fullname: Zhang, Jiaming
– sequence: 9
  givenname: Xiaojing
  surname: Zhang
  fullname: Zhang, Xiaojing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34876132$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1r3DAQhk1JaT7aP9BDEfTSixPJ-r4UwrZJlwYCoT0LWZY2WmxrI8kh_feVd9M0G0rRQcPomXc0w3tcHYxhtFX1HsFThAQ7S6iRBNewQTVEhJboVXWECGc1oVIcPIsPq-OU1hAiLjh5Ux1iIjhDuDmq7hY-mi_Xi-8IbGIYQrYJ5FsL8jSE6Fd2tMknoMcOGJ82vc5-BHHOZT0aC4IDIWUbCugNSDqaMGhw7_VWZPA3Ncayxpuz5eUFugH6wae31Wun-2TfPd4n1c-Lrz8W3-qr68vl4vyqNpThXBPd4VZKaCWlsjXl59oJSXnHHWJQ8o4IyjrLHRZSY6oZc0wi1mHHDBMtxyfVcqfbBb1Wm-gHHX-poL3aJkJcKR2zN71Vtu2MxcRiVNaDJWwRhUJbpy2GLW9g0fq809pM7WALPOao-z3R_ZfR36pVuFeCUUgbVAQ-PQrEcDfZlNXgk7F9r0cbpqQaBgVqCBZzr48v0HWY4lhWVSiEMG0o5n-plS4D-NGF0tfMouqcCUYQk1IU6vQfVDmdHbwpbnK-5PcKPjwf9GnCP4YpQLMDTAwpReueEATV7Eq1c6UqrlRbV6p5JPGiyPhcrBTmZfn-f6W_AY4x47Q
CitedBy_id crossref_primary_10_1186_s12891_024_07547_2
crossref_primary_10_1186_s12885_024_13138_0
crossref_primary_10_3389_fonc_2022_889583
crossref_primary_10_1007_s44178_024_00107_7
crossref_primary_10_3389_fimmu_2023_1257254
crossref_primary_10_1016_j_gene_2023_147806
crossref_primary_10_1016_j_biopha_2024_116924
crossref_primary_10_1097_JS9_0000000000002195
crossref_primary_10_1186_s12986_024_00866_0
crossref_primary_10_1007_s12672_024_01123_9
crossref_primary_10_1186_s13018_023_04387_z
crossref_primary_10_1038_s41598_024_54197_4
crossref_primary_10_3390_biomedicines10123013
crossref_primary_10_1186_s12935_024_03216_5
crossref_primary_10_1002_adhm_202302746
crossref_primary_10_1016_j_gene_2023_147686
crossref_primary_10_3389_fonc_2023_1156455
crossref_primary_10_1007_s10142_023_01197_8
crossref_primary_10_3389_fendo_2022_927390
crossref_primary_10_1007_s00210_024_02957_4
crossref_primary_10_1016_j_genrep_2023_101835
crossref_primary_10_1002_jcla_24828
crossref_primary_10_3233_CBM_220145
crossref_primary_10_3389_fgene_2025_1443876
crossref_primary_10_1080_15384101_2023_2274670
crossref_primary_10_1016_j_pmatsci_2024_101375
crossref_primary_10_1038_s41419_022_05254_1
crossref_primary_10_1016_j_biopha_2024_117027
crossref_primary_10_1186_s13018_024_04610_5
crossref_primary_10_3389_fonc_2024_1255061
crossref_primary_10_1016_j_trsl_2023_01_008
crossref_primary_10_1038_s41420_023_01332_1
crossref_primary_10_1111_jcmm_18269
crossref_primary_10_3389_fgene_2022_1028477
crossref_primary_10_1038_s41698_024_00751_2
crossref_primary_10_3389_fonc_2024_1346531
crossref_primary_10_61958_NDAA5301
crossref_primary_10_1186_s40364_022_00442_9
crossref_primary_10_1080_23772484_2024_2360977
crossref_primary_10_1007_s10495_023_01922_5
crossref_primary_10_1186_s12885_024_11951_1
crossref_primary_10_1016_j_jbo_2022_100453
crossref_primary_10_1016_j_tice_2025_102747
crossref_primary_10_3892_ijo_2024_5699
crossref_primary_10_1038_s41420_022_01172_5
crossref_primary_10_1002_ddr_22167
crossref_primary_10_1016_j_drup_2023_100937
crossref_primary_10_1038_s41598_024_67547_z
crossref_primary_10_3389_fonc_2023_1133726
crossref_primary_10_3390_molecules27144345
crossref_primary_10_1007_s10528_022_10329_x
crossref_primary_10_1186_s40001_023_01309_x
crossref_primary_10_2147_BCTT_S495517
crossref_primary_10_1186_s12929_024_01049_y
crossref_primary_10_1002_path_6369
crossref_primary_10_1007_s10147_022_02231_8
crossref_primary_10_1080_15384047_2024_2343450
crossref_primary_10_1186_s13018_023_04338_8
crossref_primary_10_1016_j_ijbiomac_2025_140973
crossref_primary_10_1080_15384047_2024_2432098
crossref_primary_10_3389_fbioe_2022_1052252
crossref_primary_10_1007_s00432_023_05601_5
crossref_primary_10_1186_s13062_024_00466_1
crossref_primary_10_1007_s12033_023_00838_4
crossref_primary_10_1186_s12885_024_12691_y
crossref_primary_10_1016_j_heliyon_2024_e37744
Cites_doi 10.1186/s12943-021-01360-4
10.1186/s12943-020-01279-2
10.1002/jcp.29754
10.3389/fcell.2021.642605
10.1016/j.ejca.2011.05.030
10.1038/nbt.2890
10.1016/j.canlet.2013.02.009
10.1517/13543784.2016.1168398
10.1200/JCO.2014.59.4895
10.1186/s12943-021-01383-x
10.1016/j.omtn.2020.12.013
10.1016/j.gene.2019.144145
10.1186/1476-4598-13-139
10.1016/j.trecan.2020.01.012
10.1002/path.5008
10.1007/s13238-020-00799-3
10.1038/nature11993
10.1186/s12885-020-07515-8
10.1186/s12943-017-0663-2
10.1038/nrg.2016.114
10.1186/s12943-020-01269-4
10.1158/0008-5472.CAN-15-2932
10.1186/s13045-016-0373-z
10.1038/s41569-019-0185-2
10.1186/1476-4598-13-236
10.1016/j.cell.2015.02.014
10.1186/s12935-018-0654-4
10.1177/1533034615601281
10.1016/j.critrevonc.2014.02.001
10.1038/s41576-019-0158-7
10.1111/cpr.12614
10.1042/CS20190589
10.1093/nar/gkx149
10.1200/JCO.19.00827
10.1016/j.ygeno.2020.03.024
10.1186/1471-2407-13-245
10.3109/07357907.2011.606252
10.1007/s12672-018-0352-7
10.1186/s13045-020-00904-3
10.1007/s10735-020-09894-5
10.1038/s41568-020-00306-0
10.1038/s41556-021-00639-4
10.1016/j.tig.2016.03.002
10.1186/s12943-020-1135-7
10.1016/j.mce.2013.06.033
10.2147/CMAR.S295147
10.7150/ijbs.24360
10.1038/s41580-020-0243-y
10.1002/jcp.28787
10.3892/ol.2015.3661
10.3390/ijms21186885
10.1016/j.pharmthera.2018.01.010
10.1016/j.canlet.2020.07.008
10.1016/j.bbrc.2017.12.050
10.1016/j.jhep.2018.01.012
ContentType Journal Article
Copyright 2021. The Author(s).
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021
Copyright_xml – notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12943-021-01453-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1476-4598
EndPage 16
ExternalDocumentID oai_doaj_org_article_ebdce34e31874390b1508aefae30b720
PMC8650521
A686416998
34876132
10_1186_s12943_021_01453_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
China
Japan
GeographicLocations_xml – name: China
– name: United States--US
– name: Japan
GrantInformation_xml – fundername: ;
  grantid: 2020-MS-058
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PZZ
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7TO
7XB
8FK
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c563t-4ad3b990e9559bc178af8957d7f16097d4856de7f389a35a66f6916d3f6c68b73
IEDL.DBID 7X7
ISSN 1476-4598
IngestDate Wed Aug 27 01:32:04 EDT 2025
Thu Aug 21 17:38:05 EDT 2025
Tue Aug 05 11:11:28 EDT 2025
Fri Jul 25 06:52:34 EDT 2025
Tue Jun 17 21:28:26 EDT 2025
Tue Jun 10 20:24:46 EDT 2025
Thu Apr 03 06:53:37 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Tue Jul 01 01:01:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cisplatin resistance
OS
circDOCK1
miR-339-3p
IGF1R
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-4ad3b990e9559bc178af8957d7f16097d4856de7f389a35a66f6916d3f6c68b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2244-1184
OpenAccessLink https://www.proquest.com/docview/2611352537?pq-origsite=%requestingapplication%
PMID 34876132
PQID 2611352537
PQPubID 42702
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_ebdce34e31874390b1508aefae30b720
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650521
proquest_miscellaneous_2608124380
proquest_journals_2611352537
gale_infotracmisc_A686416998
gale_infotracacademiconefile_A686416998
pubmed_primary_34876132
crossref_primary_10_1186_s12943_021_01453_0
crossref_citationtrail_10_1186_s12943_021_01453_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-07
PublicationDateYYYYMMDD 2021-12-07
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Molecular cancer
PublicationTitleAlternate Mol Cancer
PublicationYear 2021
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References B Otoukesh (1453_CR7) 2018; 18
S Meng (1453_CR28) 2017; 16
JN Vo (1453_CR37) 2019; 176
YZ Song (1453_CR40) 2018; 495
CE Weber (1453_CR44) 2016; 76
F Luk (1453_CR51) 2011; 29
C Zhou (1453_CR45) 2015; 10
M Lei (1453_CR36) 2020; 19
X Wang (1453_CR14) 2021; 20
TB Hansen (1453_CR8) 2013; 495
Y Liu (1453_CR58) 2016; 15
LL Chen (1453_CR9) 2020; 21
L Wang (1453_CR26) 2014; 13
S Wang (1453_CR15) 2019; 133
P Liu (1453_CR42) 2019; 52
J Yuan (1453_CR41) 2021; 13
N Xu (1453_CR49) 2020; 726
MS Isakoff (1453_CR4) 2015; 33
C Tu (1453_CR17) 2020; 235
YX Liao (1453_CR54) 2019; 55
X Gong (1453_CR57) 2020; 51
P Angulo (1453_CR53) 2017; 10
1453_CR55
N Soghli (1453_CR18) 2020; 112
H Hua (1453_CR46) 2020; 13
C Bitelman (1453_CR24) 2013; 335
W Gao (1453_CR12) 2020; 19
Z Chen (1453_CR38) 2021; 23
H Zhang (1453_CR11) 2021; 20
Z Kun-Peng (1453_CR56) 2018; 14
S Aufiero (1453_CR29) 2019; 16
LM Kelley (1453_CR25) 2020; 38
Z Zhang (1453_CR48) 2019; 234
B Han (1453_CR34) 2018; 187
H Li (1453_CR39) 2020; 20
CH Hou (1453_CR3) 2014; 13
L Szabo (1453_CR31) 2016; 17
KW Min (1453_CR21) 2017; 45
GJ Goodall (1453_CR13) 2021; 21
X Gao (1453_CR16) 2021; 23
LS Kristensen (1453_CR30) 2019; 20
LJ Schedlich (1453_CR47) 2013; 377
Y Xu (1453_CR19) 2021; 9
O Vornicova (1453_CR6) 2016; 25
JK Anninga (1453_CR52) 2011; 47
H Zhang (1453_CR1) 2020; 490
ML Kuijjer (1453_CR50) 2013; 13
L Wang (1453_CR43) 2018; 39
SJ Conn (1453_CR27) 2015; 160
WR Jeck (1453_CR10) 2014; 32
J Selfe (1453_CR22) 2018; 244
A Khalil (1453_CR23) 2019; 10
1453_CR32
YM Versleijen-Jonkers (1453_CR5) 2014; 91
J Salzman (1453_CR33) 2016; 32
J Li (1453_CR35) 2020; 6
J Yu (1453_CR20) 2018; 68
S Shen (1453_CR2) 2020; 19
References_xml – volume: 20
  start-page: 70
  year: 2021
  ident: 1453_CR11
  publication-title: Mol Cancer
  doi: 10.1186/s12943-021-01360-4
– volume: 19
  start-page: 166
  year: 2020
  ident: 1453_CR12
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01279-2
– volume: 235
  start-page: 9037
  year: 2020
  ident: 1453_CR17
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.29754
– volume: 9
  year: 2021
  ident: 1453_CR19
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2021.642605
– volume: 47
  start-page: 2431
  year: 2011
  ident: 1453_CR52
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2011.05.030
– volume: 32
  start-page: 453
  year: 2014
  ident: 1453_CR10
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2890
– volume: 335
  start-page: 153
  year: 2013
  ident: 1453_CR24
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2013.02.009
– volume: 25
  start-page: 679
  year: 2016
  ident: 1453_CR6
  publication-title: Expert Opin Investig Drugs
  doi: 10.1517/13543784.2016.1168398
– volume: 33
  start-page: 3029
  year: 2015
  ident: 1453_CR4
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2014.59.4895
– volume: 20
  start-page: 91
  year: 2021
  ident: 1453_CR14
  publication-title: Mol Cancer
  doi: 10.1186/s12943-021-01383-x
– volume: 176
  issue: 869-881
  year: 2019
  ident: 1453_CR37
  publication-title: Cell
– volume: 23
  start-page: 1120
  year: 2021
  ident: 1453_CR38
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2020.12.013
– volume: 726
  year: 2020
  ident: 1453_CR49
  publication-title: Gene
  doi: 10.1016/j.gene.2019.144145
– volume: 13
  start-page: 139
  year: 2014
  ident: 1453_CR26
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-13-139
– volume: 6
  start-page: 319
  year: 2020
  ident: 1453_CR35
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.01.012
– volume: 244
  start-page: 242
  year: 2018
  ident: 1453_CR22
  publication-title: J Pathol
  doi: 10.1002/path.5008
– ident: 1453_CR32
  doi: 10.1007/s13238-020-00799-3
– volume: 495
  start-page: 384
  year: 2013
  ident: 1453_CR8
  publication-title: Nature
  doi: 10.1038/nature11993
– volume: 20
  start-page: 1026
  year: 2020
  ident: 1453_CR39
  publication-title: BMC Cancer
  doi: 10.1186/s12885-020-07515-8
– volume: 16
  start-page: 94
  year: 2017
  ident: 1453_CR28
  publication-title: Mol Cancer
  doi: 10.1186/s12943-017-0663-2
– volume: 17
  start-page: 679
  year: 2016
  ident: 1453_CR31
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.114
– volume: 19
  start-page: 151
  year: 2020
  ident: 1453_CR2
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01269-4
– volume: 76
  start-page: 3562
  year: 2016
  ident: 1453_CR44
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-15-2932
– volume: 10
  start-page: 10
  year: 2017
  ident: 1453_CR53
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-016-0373-z
– volume: 16
  start-page: 503
  year: 2019
  ident: 1453_CR29
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-019-0185-2
– volume: 13
  start-page: 236
  year: 2014
  ident: 1453_CR3
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-13-236
– volume: 160
  start-page: 1125
  year: 2015
  ident: 1453_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.014
– volume: 18
  start-page: 158
  year: 2018
  ident: 1453_CR7
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-018-0654-4
– volume: 15
  start-page: NP40
  year: 2016
  ident: 1453_CR58
  publication-title: Technol Cancer Res Treat
  doi: 10.1177/1533034615601281
– volume: 91
  start-page: 172
  year: 2014
  ident: 1453_CR5
  publication-title: Crit Rev Oncol Hematol
  doi: 10.1016/j.critrevonc.2014.02.001
– volume: 20
  start-page: 675
  year: 2019
  ident: 1453_CR30
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0158-7
– volume: 52
  year: 2019
  ident: 1453_CR42
  publication-title: Cell Prolif
  doi: 10.1111/cpr.12614
– volume: 133
  start-page: 1935
  year: 2019
  ident: 1453_CR15
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20190589
– volume: 45
  start-page: 6064
  year: 2017
  ident: 1453_CR21
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx149
– volume: 38
  start-page: 823
  year: 2020
  ident: 1453_CR25
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.19.00827
– volume: 112
  start-page: 2845
  year: 2020
  ident: 1453_CR18
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2020.03.024
– volume: 39
  start-page: 951
  year: 2018
  ident: 1453_CR43
  publication-title: Oncol Rep
– volume: 55
  start-page: 1213
  year: 2019
  ident: 1453_CR54
  publication-title: Int J Oncol
– volume: 13
  start-page: 245
  year: 2013
  ident: 1453_CR50
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-13-245
– volume: 29
  start-page: 521
  year: 2011
  ident: 1453_CR51
  publication-title: Cancer Investig
  doi: 10.3109/07357907.2011.606252
– volume: 10
  start-page: 11
  year: 2019
  ident: 1453_CR23
  publication-title: Horm Cancer
  doi: 10.1007/s12672-018-0352-7
– volume: 13
  start-page: 64
  year: 2020
  ident: 1453_CR46
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-020-00904-3
– volume: 51
  start-page: 329
  year: 2020
  ident: 1453_CR57
  publication-title: J Mol Histol
  doi: 10.1007/s10735-020-09894-5
– volume: 21
  start-page: 22
  year: 2021
  ident: 1453_CR13
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-020-00306-0
– volume: 23
  start-page: 278
  year: 2021
  ident: 1453_CR16
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-021-00639-4
– volume: 32
  start-page: 309
  year: 2016
  ident: 1453_CR33
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2016.03.002
– volume: 19
  start-page: 30
  year: 2020
  ident: 1453_CR36
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-1135-7
– volume: 377
  start-page: 56
  year: 2013
  ident: 1453_CR47
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2013.06.033
– volume: 13
  start-page: 4433
  year: 2021
  ident: 1453_CR41
  publication-title: Cancer Manag Res
  doi: 10.2147/CMAR.S295147
– volume: 14
  start-page: 321
  year: 2018
  ident: 1453_CR56
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.24360
– volume: 21
  start-page: 475
  year: 2020
  ident: 1453_CR9
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-020-0243-y
– volume: 234
  start-page: 22195
  year: 2019
  ident: 1453_CR48
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.28787
– volume: 10
  start-page: 2842
  year: 2015
  ident: 1453_CR45
  publication-title: Oncol Lett
  doi: 10.3892/ol.2015.3661
– ident: 1453_CR55
  doi: 10.3390/ijms21186885
– volume: 187
  start-page: 31
  year: 2018
  ident: 1453_CR34
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2018.01.010
– volume: 490
  start-page: 54
  year: 2020
  ident: 1453_CR1
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2020.07.008
– volume: 495
  start-page: 2369
  year: 2018
  ident: 1453_CR40
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2017.12.050
– volume: 68
  start-page: 1214
  year: 2018
  ident: 1453_CR20
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.01.012
SSID ssj0017874
Score 2.559014
Snippet Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that...
Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show...
Abstract Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 161
SubjectTerms Analysis
Animals
Antimitotic agents
Antineoplastic agents
Apoptosis
Bone Neoplasms - drug therapy
Bone Neoplasms - etiology
Bone Neoplasms - metabolism
Bone Neoplasms - pathology
Cancer therapies
Cell growth
Cell Line, Tumor
Cell Proliferation
Cell Transformation, Neoplastic - genetics
Cell Transformation, Neoplastic - metabolism
Chemotherapy
circDOCK1
Cisplatin
Cisplatin - pharmacology
Cisplatin resistance
Cloning
Cytoplasm
Development and progression
Disease Models, Animal
DNA microarrays
Drug Resistance, Neoplasm - genetics
Female
Gene expression
Gene Expression Regulation, Neoplastic
Genes
Health aspects
Humans
IGF1R
Immunoprecipitation
Metastasis
Mice
MicroRNA
MicroRNAs
MicroRNAs - genetics
miR-339-3p
Operating systems
Osteosarcoma
Osteosarcoma - drug therapy
Osteosarcoma - etiology
Osteosarcoma - metabolism
Osteosarcoma - pathology
rac GTP-Binding Proteins - genetics
Reagents
Receptor, IGF Type 1 - genetics
Receptor, IGF Type 1 - metabolism
RNA Interference
RNA, Circular - genetics
Sarcoma
Signal Transduction
Therapeutic targets
Tumor cell lines
Tumorigenesis
Tumors
Xenograft Model Antitumor Assays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yoPgien5VT4kg-CBl2yZN0sdzdT2VUzg8uLeQr3IFt7tuu6L_vTNpd9ki6ItvSzNdkswk85tm8htCXjK871l4ldqSQ4BinE0rjrmuzntVhNzmkUzn_LM4u-Qfr8qrg1JfmBM20AMPEzcL1rvAOH6qQ-ycWSQwN6E2gWVWFjFaB5-3C6bG8wMwQ767IqPErAOvxvG8EkNnXsKviRuKbP1_7skHTmmaMHnggRZ3yZ0ROtLTocv3yI3QHpObQzHJX8fk1vl4TH6ffJ83G_f2y_xTTtcx3S50FIAe7bdLLISF21vTUdN66ppujdlwLd3gsx5tgK5qilc_ViDYONrBUlgtDf3RmPgny-YiZaxK2Xr24f0iv6DmZ9M9IJeLd1_nZ-lYWyF1pWA9aMUzC54oIAOddTBhplZVKb2sc5FV0nNVCh9kDYDGsNIIUQtAkp7VwgllJXtIjtpVGx4TWigPmKPMfe0ddz6rADUEiLo5L62sZJ2QfDfV2o3E41j_4puOAYgSelCPBvXoqB6dJeT1_p31QLvxV-k3qMG9JFJmxwdgSHo0JP0vQ0rIK9S_xoUN3XNmvJ8Ag0SKLH0qlAD0CuFpQk4mkrAg3bR5Z0F63BA6DYFqjsyzTCbkxb4Z38QktzastiiTIdxiCvryaDC4_ZAYBJaAvIqEyIkpTsY8bWmb60gXrgQWK8yf_I9JekpuF7iKMJ9HnpCjfrMNzwCV9fZ5XIC_AfjzMJw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGEIgXBOOrMJCRkHhAYUns2M4DQqNQBqggTVTam-WvQKQ16ZoUbf89d2laFjHtrYrtyPbd5X5Xn39HyCuG9z1TryKbcQhQjLNRzjHX1Xmv0pDYpCPTmX4XRzP-9SQ72SGbckf9BjZXhnZYT2q2PH17fnbxHgz-XWfwShw04LM4nkZiYMwz-HWD3ATPJLGiwZT_O1UA5eSbizNXjhs4p47D__8v9SVXNUyjvOSXJvfI3R5Q0sO1BtwnO6HaI7fWJSYv9sjtaX94_oCcjcul-_hj_C2hiy4JLzQU4B9tV3Msj4UfvbKhpvLUlc0Cc-QqusRnLWoGrQuKF0Jq6Fg62oCB1HND_5Sme8m8PI4YyyO2OPjyeZIcU3NeNg_JbPLp5_go6isuRC4TrAVZeWbBPwXkpbMONswUKs-kl0Ui4lx6rjLhgywA5hiWGSEKAfjSs0I4oaxkj8huVVfhCaGp8oBEssQX3nHn4xywRIBYnPPMylwWI5Jstlq7no4cq2Kc6i4sUUKvxaNBPLoTj45H5M12zGJNxnFt7w8owW1PJNLuHtTLX7q3Sx0siI9x_CcYQ7PYIj--CYUJLLYyhZe8RvlrVECYnjP9rQVYJBJn6UOhBGBaCFpHZH_QE8zUDZs3GqQ3Wq4hfE2Qj5bJEXm5bcaRmPpWhXqFfWIEYUzBXB6vFW67JAbhJuCxdETkQBUHax62VOXvjkRcCSxhmDy9flrPyJ0U7QPzd-Q-2W2Xq_AcUFhrX3Sm9RfxOSre
  priority: 102
  providerName: Scholars Portal
Title CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis
URI https://www.ncbi.nlm.nih.gov/pubmed/34876132
https://www.proquest.com/docview/2611352537
https://www.proquest.com/docview/2608124380
https://pubmed.ncbi.nlm.nih.gov/PMC8650521
https://doaj.org/article/ebdce34e31874390b1508aefae30b720
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2gvCMZXYVRGQuIBRU1ix3aeUFdWRlEHKkzqmxV_BCKtSde0CP577tK0LELaS1PFTmTn7uzf2effEfKG4XnP2KnAJBwclMyaIOUY62qdU7GPTNSQ6UwvxPkln8yTebvgVrdhlbsxsRmoXWVxjXwASD9C6k4m3y-vA8wahburbQqNu-QQqctQq-V873BFoIx8d1BGiUENcxvHXUt0oHkC_zqTUcPZ___IfGNq6oZN3piHxg_JgxZA0uFW4o_IHV8ek3vblJJ_jsn9abtZ_phcj4qV_fBl9DmiyyboztcU4B5dbxbYMRzkippmpaO2qJcYE1fSFd5boybQKqd4AKSCioWlNRhEtcjoryJrXrIoZgFjacCWg08fx9GMZr-L-gm5HJ99H50HbYaFwCaCrUE2jhmYjzzy0BkLHyzLVZpIJ_NIhKl0XCXCeZkDrMlYkgmRC8CTjuXCCmUke0oOyqr0zwmNlQPkkUQud5ZbF6aAHTz43pwnRqYy75Fo96m1benHMQvGlW7cECX0VjwaxKMb8eiwR97tn1luyTdurX2KEtzXROLs5ka1-qFbO9TegPgYx5VfdMVCg3z4mc8zz0IjY3jJW5S_RvOG5tmsPaUAnUSiLD0USgCGBSe1R046NcEsbbd4p0G6HRZq_U-Je-T1vhifxFC30lcbrBMi6GIK2vJsq3D7LjFwLwF_xT0iO6rY6XO3pCx-NqThSmDKwujF7c16SY5itA-M15En5GC92vhXgLrWpt-YVp8cDoeTbxO4np5dfJ31mzUM-J1y9Rc4vyyv
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDXF4QjFthgJFAPKCoSZzYzgNCo6O0dB3StEl9M4ntbJFo0jUtsJ_iGzknl7IIaW97i-ITy_a5x-dCyBuG-Z6-kU4SBuCgxDpxogBjXbUx0rde4lXFdKaHfHQSfJ2Fsy3yp82FwbDKViZWgtoUGv-R98HS97B0JxMfF-cOdo3C29W2hUZNFhN78QtctvLDeB_w-9b3h5-PByOn6Srg6JCzFazHsARksMXaa4n2hIxTGYXCiNTjbiRMIENurEhBlccsjDlPOdhQhqVcc5kIBvPeIDdB8bro7InZxsGDqUTQJuZI3i9BlwZ4S4oOexDCU0f5VT0C_tcEl1RhN0zzkt4b3if3GoOV7tUU9oBs2XyH3KpbWF7skNvT5nL-ITkfZEu9_20w8eiiCvKzJQXzkq7WczxIFKpZSePcUJ2VC4zBy-kS362Q8miRUkw4KQAw07SEky7mMf2ZxdUk8-zIYSxy2KI__jL0jmj8OysfkZNrOfvHZDsvcvuUUF8asHRCz6RGB9q4EdgqFnz9IAgTEYm0R7z2qJVuyp1j140fqnJ7JFc1ehSgR1XoUW6PvN98s6iLfVwJ_QkxuIHEQt3Vi2J5qhq-VzYB9LEA_zSj6-cmWH8_tmlsmZsIHyZ5h_hXKE5geTpusiJgk1iYS-1xycFmBqe4R3Y7kCAGdHe4pSDViKFS_WOaHnm9GcYvMbQut8UaYVw08piEtTypCW6zJQbuLNh7fo-IDil29twdybOzqki55Ngi0Xt29bJekTuj4-mBOhgfTp6Tuz7yCsYKiV2yvVqu7Quw-FbJy4rNKPl-3Xz9FyMtY78
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CircDOCK1+promotes+the+tumorigenesis+and+cisplatin+resistance+of+osteogenic+sarcoma+via+the+miR-339-3p%2FIGF1R+axis&rft.jtitle=Molecular+cancer&rft.au=Li%2C+Shenglong&rft.au=Liu%2C+Fei&rft.au=Zheng%2C+Ke&rft.au=Wang%2C+Wei&rft.date=2021-12-07&rft.pub=BioMed+Central&rft.eissn=1476-4598&rft.volume=20&rft.spage=1&rft_id=info:doi/10.1186%2Fs12943-021-01453-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon