CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis
Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological fu...
Saved in:
Published in | Molecular cancer Vol. 20; no. 1; pp. 161 - 16 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
07.12.2021
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS).
Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity.
CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis.
CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS. |
---|---|
AbstractList | Abstract Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Methods Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT–PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. Results CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. Conclusions CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS. Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Methods Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. Results CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. Conclusions CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS. Keywords: circDOCK1, miR-339-3p, IGF1R, OS, Cisplatin resistance Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS).BACKGROUNDCircular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS).Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity.METHODSDifferentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity.CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis.RESULTSCircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis.CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS.CONCLUSIONSCircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS. Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Methods Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT–PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. Results CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. Conclusions CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS. Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS. Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that circRNAs participate in some pathological processes. However, there is a large gap in the knowledge about circDOCK1 expression and its biological functions in osteogenic sarcoma (OS). Differentially expressed circRNAs in OS cell lines and tissues were identified by circRNA microarray analysis and quantitative real-time PCR (qRT-PCR). To explore the actions of circDOCK1 in vivo and in vitro, circDOCK1 was knocked down or overexpressed. To assess the binding and regulatory associations among miR-339-3p, circDOCK1 and IGF1R, we performed rescue experiments, RNA immunoprecipitation (RIP), RNA pulldown assays and dual-luciferase assays. Moreover, we performed apoptosis assays to reveal the regulatory effects of the circDOCK1/miR-339-3p/IGF1R axis on cisplatin sensitivity. CircDOCK1 expression remained stable in the cytoplasm and was higher in OS tissues and cells than in the corresponding controls. Overexpression of circDOCK1 increased oncogenicity in vivo and malignant transformation in vitro. In the U2OS and MG63 cell lines, circDOCK1 modulated tumor progression by regulating IGF1R through sponging of miR-339-3p. Additionally, in the U2OS/DDP and MG63/DDP cell lines, cisplatin sensitivity was regulated by circDOCK1 via the miR-339-3p/IGF1R axis. CircDOCK1 can promote progression and regulate cisplatin sensitivity in OS via the miR-339-3p/IGF1R axis. Thus, the circDOCK1/miR-339-3p/IGF1R axis may be a key mechanism and therapeutic target in OS. |
ArticleNumber | 161 |
Audience | Academic |
Author | Qiu, Enduo Pei, Yi Liu, Fei Wang, Wei Zhang, Xiaojing Li, Shenglong Zhang, Jiaming Wang, Shuang Zheng, Ke |
Author_xml | – sequence: 1 givenname: Shenglong orcidid: 0000-0003-2244-1184 surname: Li fullname: Li, Shenglong – sequence: 2 givenname: Fei surname: Liu fullname: Liu, Fei – sequence: 3 givenname: Ke surname: Zheng fullname: Zheng, Ke – sequence: 4 givenname: Wei surname: Wang fullname: Wang, Wei – sequence: 5 givenname: Enduo surname: Qiu fullname: Qiu, Enduo – sequence: 6 givenname: Yi surname: Pei fullname: Pei, Yi – sequence: 7 givenname: Shuang surname: Wang fullname: Wang, Shuang – sequence: 8 givenname: Jiaming surname: Zhang fullname: Zhang, Jiaming – sequence: 9 givenname: Xiaojing surname: Zhang fullname: Zhang, Xiaojing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34876132$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1r3DAQhk1JaT7aP9BDEfTSixPJ-r4UwrZJlwYCoT0LWZY2WmxrI8kh_feVd9M0G0rRQcPomXc0w3tcHYxhtFX1HsFThAQ7S6iRBNewQTVEhJboVXWECGc1oVIcPIsPq-OU1hAiLjh5Ux1iIjhDuDmq7hY-mi_Xi-8IbGIYQrYJ5FsL8jSE6Fd2tMknoMcOGJ82vc5-BHHOZT0aC4IDIWUbCugNSDqaMGhw7_VWZPA3Ncayxpuz5eUFugH6wae31Wun-2TfPd4n1c-Lrz8W3-qr68vl4vyqNpThXBPd4VZKaCWlsjXl59oJSXnHHWJQ8o4IyjrLHRZSY6oZc0wi1mHHDBMtxyfVcqfbBb1Wm-gHHX-poL3aJkJcKR2zN71Vtu2MxcRiVNaDJWwRhUJbpy2GLW9g0fq809pM7WALPOao-z3R_ZfR36pVuFeCUUgbVAQ-PQrEcDfZlNXgk7F9r0cbpqQaBgVqCBZzr48v0HWY4lhWVSiEMG0o5n-plS4D-NGF0tfMouqcCUYQk1IU6vQfVDmdHbwpbnK-5PcKPjwf9GnCP4YpQLMDTAwpReueEATV7Eq1c6UqrlRbV6p5JPGiyPhcrBTmZfn-f6W_AY4x47Q |
CitedBy_id | crossref_primary_10_1186_s12891_024_07547_2 crossref_primary_10_1186_s12885_024_13138_0 crossref_primary_10_3389_fonc_2022_889583 crossref_primary_10_1007_s44178_024_00107_7 crossref_primary_10_3389_fimmu_2023_1257254 crossref_primary_10_1016_j_gene_2023_147806 crossref_primary_10_1016_j_biopha_2024_116924 crossref_primary_10_1097_JS9_0000000000002195 crossref_primary_10_1186_s12986_024_00866_0 crossref_primary_10_1007_s12672_024_01123_9 crossref_primary_10_1186_s13018_023_04387_z crossref_primary_10_1038_s41598_024_54197_4 crossref_primary_10_3390_biomedicines10123013 crossref_primary_10_1186_s12935_024_03216_5 crossref_primary_10_1002_adhm_202302746 crossref_primary_10_1016_j_gene_2023_147686 crossref_primary_10_3389_fonc_2023_1156455 crossref_primary_10_1007_s10142_023_01197_8 crossref_primary_10_3389_fendo_2022_927390 crossref_primary_10_1007_s00210_024_02957_4 crossref_primary_10_1016_j_genrep_2023_101835 crossref_primary_10_1002_jcla_24828 crossref_primary_10_3233_CBM_220145 crossref_primary_10_3389_fgene_2025_1443876 crossref_primary_10_1080_15384101_2023_2274670 crossref_primary_10_1016_j_pmatsci_2024_101375 crossref_primary_10_1038_s41419_022_05254_1 crossref_primary_10_1016_j_biopha_2024_117027 crossref_primary_10_1186_s13018_024_04610_5 crossref_primary_10_3389_fonc_2024_1255061 crossref_primary_10_1016_j_trsl_2023_01_008 crossref_primary_10_1038_s41420_023_01332_1 crossref_primary_10_1111_jcmm_18269 crossref_primary_10_3389_fgene_2022_1028477 crossref_primary_10_1038_s41698_024_00751_2 crossref_primary_10_3389_fonc_2024_1346531 crossref_primary_10_61958_NDAA5301 crossref_primary_10_1186_s40364_022_00442_9 crossref_primary_10_1080_23772484_2024_2360977 crossref_primary_10_1007_s10495_023_01922_5 crossref_primary_10_1186_s12885_024_11951_1 crossref_primary_10_1016_j_jbo_2022_100453 crossref_primary_10_1016_j_tice_2025_102747 crossref_primary_10_3892_ijo_2024_5699 crossref_primary_10_1038_s41420_022_01172_5 crossref_primary_10_1002_ddr_22167 crossref_primary_10_1016_j_drup_2023_100937 crossref_primary_10_1038_s41598_024_67547_z crossref_primary_10_3389_fonc_2023_1133726 crossref_primary_10_3390_molecules27144345 crossref_primary_10_1007_s10528_022_10329_x crossref_primary_10_1186_s40001_023_01309_x crossref_primary_10_2147_BCTT_S495517 crossref_primary_10_1186_s12929_024_01049_y crossref_primary_10_1002_path_6369 crossref_primary_10_1007_s10147_022_02231_8 crossref_primary_10_1080_15384047_2024_2343450 crossref_primary_10_1186_s13018_023_04338_8 crossref_primary_10_1016_j_ijbiomac_2025_140973 crossref_primary_10_1080_15384047_2024_2432098 crossref_primary_10_3389_fbioe_2022_1052252 crossref_primary_10_1007_s00432_023_05601_5 crossref_primary_10_1186_s13062_024_00466_1 crossref_primary_10_1007_s12033_023_00838_4 crossref_primary_10_1186_s12885_024_12691_y crossref_primary_10_1016_j_heliyon_2024_e37744 |
Cites_doi | 10.1186/s12943-021-01360-4 10.1186/s12943-020-01279-2 10.1002/jcp.29754 10.3389/fcell.2021.642605 10.1016/j.ejca.2011.05.030 10.1038/nbt.2890 10.1016/j.canlet.2013.02.009 10.1517/13543784.2016.1168398 10.1200/JCO.2014.59.4895 10.1186/s12943-021-01383-x 10.1016/j.omtn.2020.12.013 10.1016/j.gene.2019.144145 10.1186/1476-4598-13-139 10.1016/j.trecan.2020.01.012 10.1002/path.5008 10.1007/s13238-020-00799-3 10.1038/nature11993 10.1186/s12885-020-07515-8 10.1186/s12943-017-0663-2 10.1038/nrg.2016.114 10.1186/s12943-020-01269-4 10.1158/0008-5472.CAN-15-2932 10.1186/s13045-016-0373-z 10.1038/s41569-019-0185-2 10.1186/1476-4598-13-236 10.1016/j.cell.2015.02.014 10.1186/s12935-018-0654-4 10.1177/1533034615601281 10.1016/j.critrevonc.2014.02.001 10.1038/s41576-019-0158-7 10.1111/cpr.12614 10.1042/CS20190589 10.1093/nar/gkx149 10.1200/JCO.19.00827 10.1016/j.ygeno.2020.03.024 10.1186/1471-2407-13-245 10.3109/07357907.2011.606252 10.1007/s12672-018-0352-7 10.1186/s13045-020-00904-3 10.1007/s10735-020-09894-5 10.1038/s41568-020-00306-0 10.1038/s41556-021-00639-4 10.1016/j.tig.2016.03.002 10.1186/s12943-020-1135-7 10.1016/j.mce.2013.06.033 10.2147/CMAR.S295147 10.7150/ijbs.24360 10.1038/s41580-020-0243-y 10.1002/jcp.28787 10.3892/ol.2015.3661 10.3390/ijms21186885 10.1016/j.pharmthera.2018.01.010 10.1016/j.canlet.2020.07.008 10.1016/j.bbrc.2017.12.050 10.1016/j.jhep.2018.01.012 |
ContentType | Journal Article |
Copyright | 2021. The Author(s). COPYRIGHT 2021 BioMed Central Ltd. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021 |
Copyright_xml | – notice: 2021. The Author(s). – notice: COPYRIGHT 2021 BioMed Central Ltd. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TO 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12943-021-01453-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Oncogenes and Growth Factors Abstracts ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-4598 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_ebdce34e31874390b1508aefae30b720 PMC8650521 A686416998 34876132 10_1186_s12943_021_01453_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States--US China Japan |
GeographicLocations_xml | – name: China – name: United States--US – name: Japan |
GrantInformation_xml | – fundername: ; grantid: 2020-MS-058 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PZZ RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 3V. 7TO 7XB 8FK AZQEC DWQXO H94 K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c563t-4ad3b990e9559bc178af8957d7f16097d4856de7f389a35a66f6916d3f6c68b73 |
IEDL.DBID | 7X7 |
ISSN | 1476-4598 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Thu Aug 21 17:38:05 EDT 2025 Tue Aug 05 11:11:28 EDT 2025 Fri Jul 25 06:52:34 EDT 2025 Tue Jun 17 21:28:26 EDT 2025 Tue Jun 10 20:24:46 EDT 2025 Thu Apr 03 06:53:37 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Tue Jul 01 01:01:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cisplatin resistance OS circDOCK1 miR-339-3p IGF1R |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-4ad3b990e9559bc178af8957d7f16097d4856de7f389a35a66f6916d3f6c68b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2244-1184 |
OpenAccessLink | https://www.proquest.com/docview/2611352537?pq-origsite=%requestingapplication% |
PMID | 34876132 |
PQID | 2611352537 |
PQPubID | 42702 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ebdce34e31874390b1508aefae30b720 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8650521 proquest_miscellaneous_2608124380 proquest_journals_2611352537 gale_infotracmisc_A686416998 gale_infotracacademiconefile_A686416998 pubmed_primary_34876132 crossref_primary_10_1186_s12943_021_01453_0 crossref_citationtrail_10_1186_s12943_021_01453_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-07 |
PublicationDateYYYYMMDD | 2021-12-07 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular cancer |
PublicationTitleAlternate | Mol Cancer |
PublicationYear | 2021 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | B Otoukesh (1453_CR7) 2018; 18 S Meng (1453_CR28) 2017; 16 JN Vo (1453_CR37) 2019; 176 YZ Song (1453_CR40) 2018; 495 CE Weber (1453_CR44) 2016; 76 F Luk (1453_CR51) 2011; 29 C Zhou (1453_CR45) 2015; 10 M Lei (1453_CR36) 2020; 19 X Wang (1453_CR14) 2021; 20 TB Hansen (1453_CR8) 2013; 495 Y Liu (1453_CR58) 2016; 15 LL Chen (1453_CR9) 2020; 21 L Wang (1453_CR26) 2014; 13 S Wang (1453_CR15) 2019; 133 P Liu (1453_CR42) 2019; 52 J Yuan (1453_CR41) 2021; 13 N Xu (1453_CR49) 2020; 726 MS Isakoff (1453_CR4) 2015; 33 C Tu (1453_CR17) 2020; 235 YX Liao (1453_CR54) 2019; 55 X Gong (1453_CR57) 2020; 51 P Angulo (1453_CR53) 2017; 10 1453_CR55 N Soghli (1453_CR18) 2020; 112 H Hua (1453_CR46) 2020; 13 C Bitelman (1453_CR24) 2013; 335 W Gao (1453_CR12) 2020; 19 Z Chen (1453_CR38) 2021; 23 H Zhang (1453_CR11) 2021; 20 Z Kun-Peng (1453_CR56) 2018; 14 S Aufiero (1453_CR29) 2019; 16 LM Kelley (1453_CR25) 2020; 38 Z Zhang (1453_CR48) 2019; 234 B Han (1453_CR34) 2018; 187 H Li (1453_CR39) 2020; 20 CH Hou (1453_CR3) 2014; 13 L Szabo (1453_CR31) 2016; 17 KW Min (1453_CR21) 2017; 45 GJ Goodall (1453_CR13) 2021; 21 X Gao (1453_CR16) 2021; 23 LS Kristensen (1453_CR30) 2019; 20 LJ Schedlich (1453_CR47) 2013; 377 Y Xu (1453_CR19) 2021; 9 O Vornicova (1453_CR6) 2016; 25 JK Anninga (1453_CR52) 2011; 47 H Zhang (1453_CR1) 2020; 490 ML Kuijjer (1453_CR50) 2013; 13 L Wang (1453_CR43) 2018; 39 SJ Conn (1453_CR27) 2015; 160 WR Jeck (1453_CR10) 2014; 32 J Selfe (1453_CR22) 2018; 244 A Khalil (1453_CR23) 2019; 10 1453_CR32 YM Versleijen-Jonkers (1453_CR5) 2014; 91 J Salzman (1453_CR33) 2016; 32 J Li (1453_CR35) 2020; 6 J Yu (1453_CR20) 2018; 68 S Shen (1453_CR2) 2020; 19 |
References_xml | – volume: 20 start-page: 70 year: 2021 ident: 1453_CR11 publication-title: Mol Cancer doi: 10.1186/s12943-021-01360-4 – volume: 19 start-page: 166 year: 2020 ident: 1453_CR12 publication-title: Mol Cancer doi: 10.1186/s12943-020-01279-2 – volume: 235 start-page: 9037 year: 2020 ident: 1453_CR17 publication-title: J Cell Physiol doi: 10.1002/jcp.29754 – volume: 9 year: 2021 ident: 1453_CR19 publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.642605 – volume: 47 start-page: 2431 year: 2011 ident: 1453_CR52 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.05.030 – volume: 32 start-page: 453 year: 2014 ident: 1453_CR10 publication-title: Nat Biotechnol doi: 10.1038/nbt.2890 – volume: 335 start-page: 153 year: 2013 ident: 1453_CR24 publication-title: Cancer Lett doi: 10.1016/j.canlet.2013.02.009 – volume: 25 start-page: 679 year: 2016 ident: 1453_CR6 publication-title: Expert Opin Investig Drugs doi: 10.1517/13543784.2016.1168398 – volume: 33 start-page: 3029 year: 2015 ident: 1453_CR4 publication-title: J Clin Oncol doi: 10.1200/JCO.2014.59.4895 – volume: 20 start-page: 91 year: 2021 ident: 1453_CR14 publication-title: Mol Cancer doi: 10.1186/s12943-021-01383-x – volume: 176 issue: 869-881 year: 2019 ident: 1453_CR37 publication-title: Cell – volume: 23 start-page: 1120 year: 2021 ident: 1453_CR38 publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2020.12.013 – volume: 726 year: 2020 ident: 1453_CR49 publication-title: Gene doi: 10.1016/j.gene.2019.144145 – volume: 13 start-page: 139 year: 2014 ident: 1453_CR26 publication-title: Mol Cancer doi: 10.1186/1476-4598-13-139 – volume: 6 start-page: 319 year: 2020 ident: 1453_CR35 publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.01.012 – volume: 244 start-page: 242 year: 2018 ident: 1453_CR22 publication-title: J Pathol doi: 10.1002/path.5008 – ident: 1453_CR32 doi: 10.1007/s13238-020-00799-3 – volume: 495 start-page: 384 year: 2013 ident: 1453_CR8 publication-title: Nature doi: 10.1038/nature11993 – volume: 20 start-page: 1026 year: 2020 ident: 1453_CR39 publication-title: BMC Cancer doi: 10.1186/s12885-020-07515-8 – volume: 16 start-page: 94 year: 2017 ident: 1453_CR28 publication-title: Mol Cancer doi: 10.1186/s12943-017-0663-2 – volume: 17 start-page: 679 year: 2016 ident: 1453_CR31 publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.114 – volume: 19 start-page: 151 year: 2020 ident: 1453_CR2 publication-title: Mol Cancer doi: 10.1186/s12943-020-01269-4 – volume: 76 start-page: 3562 year: 2016 ident: 1453_CR44 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-15-2932 – volume: 10 start-page: 10 year: 2017 ident: 1453_CR53 publication-title: J Hematol Oncol doi: 10.1186/s13045-016-0373-z – volume: 16 start-page: 503 year: 2019 ident: 1453_CR29 publication-title: Nat Rev Cardiol doi: 10.1038/s41569-019-0185-2 – volume: 13 start-page: 236 year: 2014 ident: 1453_CR3 publication-title: Mol Cancer doi: 10.1186/1476-4598-13-236 – volume: 160 start-page: 1125 year: 2015 ident: 1453_CR27 publication-title: Cell doi: 10.1016/j.cell.2015.02.014 – volume: 18 start-page: 158 year: 2018 ident: 1453_CR7 publication-title: Cancer Cell Int doi: 10.1186/s12935-018-0654-4 – volume: 15 start-page: NP40 year: 2016 ident: 1453_CR58 publication-title: Technol Cancer Res Treat doi: 10.1177/1533034615601281 – volume: 91 start-page: 172 year: 2014 ident: 1453_CR5 publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2014.02.001 – volume: 20 start-page: 675 year: 2019 ident: 1453_CR30 publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0158-7 – volume: 52 year: 2019 ident: 1453_CR42 publication-title: Cell Prolif doi: 10.1111/cpr.12614 – volume: 133 start-page: 1935 year: 2019 ident: 1453_CR15 publication-title: Clin Sci (Lond) doi: 10.1042/CS20190589 – volume: 45 start-page: 6064 year: 2017 ident: 1453_CR21 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx149 – volume: 38 start-page: 823 year: 2020 ident: 1453_CR25 publication-title: J Clin Oncol doi: 10.1200/JCO.19.00827 – volume: 112 start-page: 2845 year: 2020 ident: 1453_CR18 publication-title: Genomics doi: 10.1016/j.ygeno.2020.03.024 – volume: 39 start-page: 951 year: 2018 ident: 1453_CR43 publication-title: Oncol Rep – volume: 55 start-page: 1213 year: 2019 ident: 1453_CR54 publication-title: Int J Oncol – volume: 13 start-page: 245 year: 2013 ident: 1453_CR50 publication-title: BMC Cancer doi: 10.1186/1471-2407-13-245 – volume: 29 start-page: 521 year: 2011 ident: 1453_CR51 publication-title: Cancer Investig doi: 10.3109/07357907.2011.606252 – volume: 10 start-page: 11 year: 2019 ident: 1453_CR23 publication-title: Horm Cancer doi: 10.1007/s12672-018-0352-7 – volume: 13 start-page: 64 year: 2020 ident: 1453_CR46 publication-title: J Hematol Oncol doi: 10.1186/s13045-020-00904-3 – volume: 51 start-page: 329 year: 2020 ident: 1453_CR57 publication-title: J Mol Histol doi: 10.1007/s10735-020-09894-5 – volume: 21 start-page: 22 year: 2021 ident: 1453_CR13 publication-title: Nat Rev Cancer doi: 10.1038/s41568-020-00306-0 – volume: 23 start-page: 278 year: 2021 ident: 1453_CR16 publication-title: Nat Cell Biol doi: 10.1038/s41556-021-00639-4 – volume: 32 start-page: 309 year: 2016 ident: 1453_CR33 publication-title: Trends Genet doi: 10.1016/j.tig.2016.03.002 – volume: 19 start-page: 30 year: 2020 ident: 1453_CR36 publication-title: Mol Cancer doi: 10.1186/s12943-020-1135-7 – volume: 377 start-page: 56 year: 2013 ident: 1453_CR47 publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2013.06.033 – volume: 13 start-page: 4433 year: 2021 ident: 1453_CR41 publication-title: Cancer Manag Res doi: 10.2147/CMAR.S295147 – volume: 14 start-page: 321 year: 2018 ident: 1453_CR56 publication-title: Int J Biol Sci doi: 10.7150/ijbs.24360 – volume: 21 start-page: 475 year: 2020 ident: 1453_CR9 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-0243-y – volume: 234 start-page: 22195 year: 2019 ident: 1453_CR48 publication-title: J Cell Physiol doi: 10.1002/jcp.28787 – volume: 10 start-page: 2842 year: 2015 ident: 1453_CR45 publication-title: Oncol Lett doi: 10.3892/ol.2015.3661 – ident: 1453_CR55 doi: 10.3390/ijms21186885 – volume: 187 start-page: 31 year: 2018 ident: 1453_CR34 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2018.01.010 – volume: 490 start-page: 54 year: 2020 ident: 1453_CR1 publication-title: Cancer Lett doi: 10.1016/j.canlet.2020.07.008 – volume: 495 start-page: 2369 year: 2018 ident: 1453_CR40 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2017.12.050 – volume: 68 start-page: 1214 year: 2018 ident: 1453_CR20 publication-title: J Hepatol doi: 10.1016/j.jhep.2018.01.012 |
SSID | ssj0017874 |
Score | 2.559014 |
Snippet | Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show that... Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent studies show... Abstract Background Circular RNAs (circRNAs), a class of noncoding RNAs (ncRNAs), may modulate gene expression by binding to miRNAs. Additionally, recent... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 161 |
SubjectTerms | Analysis Animals Antimitotic agents Antineoplastic agents Apoptosis Bone Neoplasms - drug therapy Bone Neoplasms - etiology Bone Neoplasms - metabolism Bone Neoplasms - pathology Cancer therapies Cell growth Cell Line, Tumor Cell Proliferation Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - metabolism Chemotherapy circDOCK1 Cisplatin Cisplatin - pharmacology Cisplatin resistance Cloning Cytoplasm Development and progression Disease Models, Animal DNA microarrays Drug Resistance, Neoplasm - genetics Female Gene expression Gene Expression Regulation, Neoplastic Genes Health aspects Humans IGF1R Immunoprecipitation Metastasis Mice MicroRNA MicroRNAs MicroRNAs - genetics miR-339-3p Operating systems Osteosarcoma Osteosarcoma - drug therapy Osteosarcoma - etiology Osteosarcoma - metabolism Osteosarcoma - pathology rac GTP-Binding Proteins - genetics Reagents Receptor, IGF Type 1 - genetics Receptor, IGF Type 1 - metabolism RNA Interference RNA, Circular - genetics Sarcoma Signal Transduction Therapeutic targets Tumor cell lines Tumorigenesis Tumors Xenograft Model Antitumor Assays |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yoPgien5VT4kg-CBl2yZN0sdzdT2VUzg8uLeQr3IFt7tuu6L_vTNpd9ki6ItvSzNdkswk85tm8htCXjK871l4ldqSQ4BinE0rjrmuzntVhNzmkUzn_LM4u-Qfr8qrg1JfmBM20AMPEzcL1rvAOH6qQ-ycWSQwN6E2gWVWFjFaB5-3C6bG8wMwQ767IqPErAOvxvG8EkNnXsKviRuKbP1_7skHTmmaMHnggRZ3yZ0ROtLTocv3yI3QHpObQzHJX8fk1vl4TH6ffJ83G_f2y_xTTtcx3S50FIAe7bdLLISF21vTUdN66ppujdlwLd3gsx5tgK5qilc_ViDYONrBUlgtDf3RmPgny-YiZaxK2Xr24f0iv6DmZ9M9IJeLd1_nZ-lYWyF1pWA9aMUzC54oIAOddTBhplZVKb2sc5FV0nNVCh9kDYDGsNIIUQtAkp7VwgllJXtIjtpVGx4TWigPmKPMfe0ddz6rADUEiLo5L62sZJ2QfDfV2o3E41j_4puOAYgSelCPBvXoqB6dJeT1_p31QLvxV-k3qMG9JFJmxwdgSHo0JP0vQ0rIK9S_xoUN3XNmvJ8Ag0SKLH0qlAD0CuFpQk4mkrAg3bR5Z0F63BA6DYFqjsyzTCbkxb4Z38QktzastiiTIdxiCvryaDC4_ZAYBJaAvIqEyIkpTsY8bWmb60gXrgQWK8yf_I9JekpuF7iKMJ9HnpCjfrMNzwCV9fZ5XIC_AfjzMJw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGEIgXBOOrMJCRkHhAYUns2M4DQqNQBqggTVTam-WvQKQ16ZoUbf89d2laFjHtrYrtyPbd5X5Xn39HyCuG9z1TryKbcQhQjLNRzjHX1Xmv0pDYpCPTmX4XRzP-9SQ72SGbckf9BjZXhnZYT2q2PH17fnbxHgz-XWfwShw04LM4nkZiYMwz-HWD3ATPJLGiwZT_O1UA5eSbizNXjhs4p47D__8v9SVXNUyjvOSXJvfI3R5Q0sO1BtwnO6HaI7fWJSYv9sjtaX94_oCcjcul-_hj_C2hiy4JLzQU4B9tV3Msj4UfvbKhpvLUlc0Cc-QqusRnLWoGrQuKF0Jq6Fg62oCB1HND_5Sme8m8PI4YyyO2OPjyeZIcU3NeNg_JbPLp5_go6isuRC4TrAVZeWbBPwXkpbMONswUKs-kl0Ui4lx6rjLhgywA5hiWGSEKAfjSs0I4oaxkj8huVVfhCaGp8oBEssQX3nHn4xywRIBYnPPMylwWI5Jstlq7no4cq2Kc6i4sUUKvxaNBPLoTj45H5M12zGJNxnFt7w8owW1PJNLuHtTLX7q3Sx0siI9x_CcYQ7PYIj--CYUJLLYyhZe8RvlrVECYnjP9rQVYJBJn6UOhBGBaCFpHZH_QE8zUDZs3GqQ3Wq4hfE2Qj5bJEXm5bcaRmPpWhXqFfWIEYUzBXB6vFW67JAbhJuCxdETkQBUHax62VOXvjkRcCSxhmDy9flrPyJ0U7QPzd-Q-2W2Xq_AcUFhrX3Sm9RfxOSre priority: 102 providerName: Scholars Portal |
Title | CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34876132 https://www.proquest.com/docview/2611352537 https://www.proquest.com/docview/2608124380 https://pubmed.ncbi.nlm.nih.gov/PMC8650521 https://doaj.org/article/ebdce34e31874390b1508aefae30b720 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgE2gvCMZXYVRGQuIBRU1ix3aeUFdWRlEHKkzqmxV_BCKtSde0CP577tK0LELaS1PFTmTn7uzf2effEfKG4XnP2KnAJBwclMyaIOUY62qdU7GPTNSQ6UwvxPkln8yTebvgVrdhlbsxsRmoXWVxjXwASD9C6k4m3y-vA8wahburbQqNu-QQqctQq-V873BFoIx8d1BGiUENcxvHXUt0oHkC_zqTUcPZ___IfGNq6oZN3piHxg_JgxZA0uFW4o_IHV8ek3vblJJ_jsn9abtZ_phcj4qV_fBl9DmiyyboztcU4B5dbxbYMRzkippmpaO2qJcYE1fSFd5boybQKqd4AKSCioWlNRhEtcjoryJrXrIoZgFjacCWg08fx9GMZr-L-gm5HJ99H50HbYaFwCaCrUE2jhmYjzzy0BkLHyzLVZpIJ_NIhKl0XCXCeZkDrMlYkgmRC8CTjuXCCmUke0oOyqr0zwmNlQPkkUQud5ZbF6aAHTz43pwnRqYy75Fo96m1benHMQvGlW7cECX0VjwaxKMb8eiwR97tn1luyTdurX2KEtzXROLs5ka1-qFbO9TegPgYx5VfdMVCg3z4mc8zz0IjY3jJW5S_RvOG5tmsPaUAnUSiLD0USgCGBSe1R046NcEsbbd4p0G6HRZq_U-Je-T1vhifxFC30lcbrBMi6GIK2vJsq3D7LjFwLwF_xT0iO6rY6XO3pCx-NqThSmDKwujF7c16SY5itA-M15En5GC92vhXgLrWpt-YVp8cDoeTbxO4np5dfJ31mzUM-J1y9Rc4vyyv |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDXF4QjFthgJFAPKCoSZzYzgNCo6O0dB3StEl9M4ntbJFo0jUtsJ_iGzknl7IIaW97i-ITy_a5x-dCyBuG-Z6-kU4SBuCgxDpxogBjXbUx0rde4lXFdKaHfHQSfJ2Fsy3yp82FwbDKViZWgtoUGv-R98HS97B0JxMfF-cOdo3C29W2hUZNFhN78QtctvLDeB_w-9b3h5-PByOn6Srg6JCzFazHsARksMXaa4n2hIxTGYXCiNTjbiRMIENurEhBlccsjDlPOdhQhqVcc5kIBvPeIDdB8bro7InZxsGDqUTQJuZI3i9BlwZ4S4oOexDCU0f5VT0C_tcEl1RhN0zzkt4b3if3GoOV7tUU9oBs2XyH3KpbWF7skNvT5nL-ITkfZEu9_20w8eiiCvKzJQXzkq7WczxIFKpZSePcUJ2VC4zBy-kS362Q8miRUkw4KQAw07SEky7mMf2ZxdUk8-zIYSxy2KI__jL0jmj8OysfkZNrOfvHZDsvcvuUUF8asHRCz6RGB9q4EdgqFnz9IAgTEYm0R7z2qJVuyp1j140fqnJ7JFc1ehSgR1XoUW6PvN98s6iLfVwJ_QkxuIHEQt3Vi2J5qhq-VzYB9LEA_zSj6-cmWH8_tmlsmZsIHyZ5h_hXKE5geTpusiJgk1iYS-1xycFmBqe4R3Y7kCAGdHe4pSDViKFS_WOaHnm9GcYvMbQut8UaYVw08piEtTypCW6zJQbuLNh7fo-IDil29twdybOzqki55Ngi0Xt29bJekTuj4-mBOhgfTp6Tuz7yCsYKiV2yvVqu7Quw-FbJy4rNKPl-3Xz9FyMtY78 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CircDOCK1+promotes+the+tumorigenesis+and+cisplatin+resistance+of+osteogenic+sarcoma+via+the+miR-339-3p%2FIGF1R+axis&rft.jtitle=Molecular+cancer&rft.au=Li%2C+Shenglong&rft.au=Liu%2C+Fei&rft.au=Zheng%2C+Ke&rft.au=Wang%2C+Wei&rft.date=2021-12-07&rft.pub=BioMed+Central&rft.eissn=1476-4598&rft.volume=20&rft.spage=1&rft_id=info:doi/10.1186%2Fs12943-021-01453-0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon |