Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission
Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 4; pp. 1009 - 1010 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.01.2012
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases. |
---|---|
AbstractList | Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNF alpha or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases. Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases. Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases. Author Summary This study indicates that microglial cells can control neuronal activity through astrocytes as intermediaries. We also found that, when the excitation vs. inhibition balance is challenged, LPS application can increase the propensity for seizure-like activity. In conclusion, TLR4 activation modulates neuronal activity through the intermediaries microglia and astrocytes. The discovery of a growing number of endogenous TLR4 ligands, such as Heat Shock Protein 60 (HSP60), fibronectin, and fibrinogen, indicates that the signaling pathway described in this study might be relevant under many physiological conditions and in most CNS pathologies. A pharmacological approach, which uses various compounds or drugs to experimentally understand a process, indicated that microglial stimulation by LPS was insensitive to tetrodotoxin, a blocker of action potential and one (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione) that specifically targets synapses containing the AMPA-type glutamate receptors. Additional investigations of these signaling pathways indicated that ATP played a central role in this communication, because an ATP competitor blocked the LPS-induced neuronal response. We were able to more specifically show that the neuronal response required the protein G-coupled purinergic metabotropic receptors P2Y1. In the hippocampus, P2Y1 receptors are only present on inhibitory interneurons (i.e., neurons inhibiting neural signaling) and astrocytes. The involvement of interneurons was ruled out, because we found that inhibitory synapses were not involved in the neuronal response to microglial activation. In contrast, application of fluoroacetate, a metabolic poison that is taken up only by astrocytes and frequently used to inhibit astrocytic functions ( 4 , 5 ), completely abolished the LPS-induced increase in the frequency of spontaneous synaptic events. Because the release of ATP by microglia was poorly documented, we used a combination of pure microglial and pure astrocyte cell cultures to monitor ATP release by using a specially designed assay system. We confirmed that LPS specifically acts on microglia, because the microglial cultures but not the astrocyte cultures responded to LPS by a release of ATP. This finding was also supported by the application of LPS on organotypic slice cultures lacking microglia. In such slices, LPS failed to increase neuronal activity, whereas the P2Y1 receptor agonist mimicked the LPS-induced neuronal modulation. Finally, with the acute hippocampal slices, we were able to show that astrocytes recruited by microglial ATP modulated neuronal activity at AMPA receptor-containing synapses by glutamate acting on metabotropic glutamate receptors. This conclusion was reached after a series of experiments. First, we stimulated microglia by using an LPS, a toll-like receptor 4 (TLR4) ligand, commonly used as a proinflammatory agent. We simultaneously recorded the spontaneous synaptic activity of neurons in acute hippocampal slices, slices containing a region of the brain involved in memory formation, by using a method known as patch-clamp recording. We found that microglial activation induces a rapid and transient increase in the frequency of excitatory synaptic events but no associated change in their amplitude, suggesting an increased neurotransmitter release from the presynaptic terminals. We confirmed the involvement of TLR4 signaling, because the response to LPS was absent in slices from mice lacking the TLR4 protein. Although the rapid kinetic response to LPS seemed to be incompatible with an inflammatory response, we challenged the inflammatory pathway by using minocycline. This widely used antiinflammatory agent prevented the response to LPS. These results indicate that LPS-induced neuronal response is mediated through the classical TLR4 signaling pathway. In the CNS, the communication between neurons occurs mostly at synapses. At these critical meeting points, one neuron (the presynaptic neuron) sends a signal to another neuron (the postsynaptic neuron) across a gap known as the synaptic cleft. During synaptic transmission, the presynaptic neuron releases neurotransmitters (i.e., small molecules that act as signals between nerve cells) such as glutamate into the synaptic cleft. The neurotransmitter then binds to specific receptors located on the postsynaptic neurons to elicit a postsynaptic potential. However, the communication between neurons is more complex than this simple one-way messaging. Fine modulation of synaptic transmission in mammals requires retrograde signaling, wherein the postsynaptic nerve communicates with the presynaptic nerve. This modulation has long been thought to be purely neuronal, involving solely the pre- and postsynaptic cells. However, since the mid-1990s, the role of astrocytes, a subtype of glial (support) cell, in the fine tuning of neurotransmission has been shown. Indeed, astrocytes, which were primarily known to clear neurotransmitters from the synaptic cleft, were also shown to release neurotransmitters such as glutamate or ATP, commonly known as the energy currency of the cell, to modulate neuronal activity ( 1 – 4 ). In this study, we show that a second type of glial cell, the microglia (referred to as the macrophages of the central nervous system), recruits astrocytes to modulate neuronal activity at an early step in the inflammatory process ( Fig. P1 ). Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases. [PUBLICATION ABSTRACT] |
Author | Pascual, Olivier Rostaing, Philippe Achour, Sarrah Ben Triller, Antoine Bessis, Alain |
Author_xml | – sequence: 1 givenname: Olivier surname: Pascual fullname: Pascual, Olivier – sequence: 2 givenname: Sarrah Ben surname: Achour fullname: Achour, Sarrah Ben – sequence: 3 givenname: Philippe surname: Rostaing fullname: Rostaing, Philippe – sequence: 4 givenname: Antoine surname: Triller fullname: Triller, Antoine – sequence: 5 givenname: Alain surname: Bessis fullname: Bessis, Alain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22167804$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1vFDEQxS0URC6Bmgq0SgPNJv5c2w0SisKHlCgNVBSW1-s9fNqzD9sb5f575nThEiiwZLuY3zy9mXeCjmKKHqHXBJ8TLNnFJtpyTuBgreA-Qwt4SdtxjY_QAmMqW8UpP0Ynpawwxloo_AIdU0o6qTBfoB83weW0nIJtrKvhztaQYlNzWC59Lo0tNSe3rb5d-yHY6odmnYZ52mNpbPy9C9XWlLdN9HNONdtY1qEUqL9Ez0c7Ff_q4T9F3z9dfbv80l7ffv56-fG6daJjtWVD3-mRD1xqwX0vej9ywaySSmgpsOot4XqEkZR1glLBCRultxrjQRPlLDtFH_a6m7kHm85HcDGZTQ5rm7cm2WD-rsTw0yzTnWG0U7TTIPDuQSCnX7Mv1cAEzk-TjT7NxWiKKVWcYyDf_5cksFnCO8E6QM_-QVdpzhEWYcA2xKS1AuhiD0EIpWQ_HlwTbHYJm13C5jFh6Hj7dNgD_yfSJ8Cu81FOG26uiJYAvNkDqwK5HQhOuJREafYbIBG5fA |
CitedBy_id | crossref_primary_10_1002_glia_22465 crossref_primary_10_1007_s12035_020_01961_y crossref_primary_10_1002_cne_24396 crossref_primary_10_1083_jcb_201607048 crossref_primary_10_1093_ijnp_pyw028 crossref_primary_10_1002_glia_23557 crossref_primary_10_1002_jnr_24977 crossref_primary_10_1016_j_nbd_2019_104488 crossref_primary_10_1016_j_bbr_2019_111975 crossref_primary_10_1177_0333102417703764 crossref_primary_10_3389_fcell_2021_648313 crossref_primary_10_1016_j_neuroscience_2016_01_047 crossref_primary_10_1016_j_seizure_2017_07_014 crossref_primary_10_3390_ijms241511892 crossref_primary_10_1007_s00281_018_0707_8 crossref_primary_10_1134_S0022093021060016 crossref_primary_10_1016_j_brainres_2014_07_050 crossref_primary_10_3389_fgene_2021_642079 crossref_primary_10_1007_s11307_020_01485_w crossref_primary_10_1016_j_semcdb_2019_05_017 crossref_primary_10_1038_nm_4397 crossref_primary_10_4103_1673_5374_300976 crossref_primary_10_1002_brb3_1385 crossref_primary_10_1002_jnr_23770 crossref_primary_10_3389_fnins_2022_884579 crossref_primary_10_1016_j_ejphar_2024_176763 crossref_primary_10_3390_ijms222413186 crossref_primary_10_1016_j_tins_2020_01_003 crossref_primary_10_1016_j_neuron_2017_05_026 crossref_primary_10_1038_s41598_017_11793_x crossref_primary_10_3389_fncel_2015_00521 crossref_primary_10_1186_s12974_021_02262_4 crossref_primary_10_3390_ijms25063148 crossref_primary_10_1186_s12974_014_0222_3 crossref_primary_10_1016_j_ajpath_2013_01_051 crossref_primary_10_1155_2020_8098439 crossref_primary_10_1016_j_pathophys_2013_08_002 crossref_primary_10_1038_s41598_017_10349_3 crossref_primary_10_1002_mnfr_201500279 crossref_primary_10_1016_j_biopsych_2012_09_030 crossref_primary_10_1111_cns_13694 crossref_primary_10_1016_j_neuropharm_2014_05_007 crossref_primary_10_1002_adhm_202100180 crossref_primary_10_1016_j_neuron_2012_12_023 crossref_primary_10_4199_C00102ED1V01Y201401NGL001 crossref_primary_10_3390_brainsci13050784 crossref_primary_10_1002_glia_23884 crossref_primary_10_1007_s13365_014_0258_2 crossref_primary_10_1016_j_ejphar_2023_176161 crossref_primary_10_3390_neurosci3040043 crossref_primary_10_3390_biomedicines10081800 crossref_primary_10_1007_s11055_020_00971_6 crossref_primary_10_1038_s41598_020_79350_7 crossref_primary_10_1016_j_neuroscience_2018_04_046 crossref_primary_10_1007_s11064_021_03456_1 crossref_primary_10_1016_j_conb_2020_12_001 crossref_primary_10_1016_j_jphs_2020_11_008 crossref_primary_10_1016_j_celrep_2019_07_078 crossref_primary_10_3389_fncel_2014_00193 crossref_primary_10_3934_molsci_2018_1_63 crossref_primary_10_1002_glia_23519 crossref_primary_10_4049_jimmunol_1300374 crossref_primary_10_3389_fimmu_2018_01195 crossref_primary_10_1080_07853890_2020_1814962 crossref_primary_10_1111_febs_16583 crossref_primary_10_3389_fnsyn_2022_902319 crossref_primary_10_1002_glia_22785 crossref_primary_10_1186_s12974_017_0858_x crossref_primary_10_1016_j_bbi_2014_05_017 crossref_primary_10_3390_life12060910 crossref_primary_10_1016_j_neubiorev_2016_08_039 crossref_primary_10_3389_fnmol_2017_00381 crossref_primary_10_1016_j_pnpbp_2022_110636 crossref_primary_10_1007_s11064_022_03704_y crossref_primary_10_1016_j_arr_2017_12_005 crossref_primary_10_14336_AD_2021_0325 crossref_primary_10_1002_glia_23508 crossref_primary_10_1002_glia_22894 crossref_primary_10_1016_j_neuroscience_2016_09_047 crossref_primary_10_3389_fphys_2018_00088 crossref_primary_10_1016_j_jneuroim_2023_578204 crossref_primary_10_1007_s40011_015_0585_y crossref_primary_10_1002_glia_23747 crossref_primary_10_3389_fcell_2022_1090765 crossref_primary_10_1016_j_bbi_2023_01_004 crossref_primary_10_3390_cells9102145 crossref_primary_10_1002_jnr_23336 crossref_primary_10_1186_1742_2094_10_95 crossref_primary_10_1016_j_bbi_2020_11_007 crossref_primary_10_1016_j_bbi_2020_11_002 crossref_primary_10_1016_j_ejphar_2018_12_034 crossref_primary_10_1111_jnc_13724 crossref_primary_10_1016_j_cell_2014_06_008 crossref_primary_10_1016_j_neuropharm_2016_08_013 crossref_primary_10_1016_j_celrep_2014_11_018 crossref_primary_10_1007_s10753_015_0245_7 crossref_primary_10_1186_s12974_017_0942_2 crossref_primary_10_1002_alz_12503 crossref_primary_10_1371_journal_pbio_3001239 crossref_primary_10_1515_cmble_2015_0050 crossref_primary_10_3389_fncel_2019_00063 crossref_primary_10_1007_s10072_023_07208_7 crossref_primary_10_3389_fncel_2020_592214 crossref_primary_10_3389_fnmol_2020_00151 crossref_primary_10_3390_ijms241210083 crossref_primary_10_1371_journal_pone_0110996 crossref_primary_10_1016_j_phrs_2020_104677 crossref_primary_10_1155_2013_342931 crossref_primary_10_1186_s13024_023_00665_w crossref_primary_10_1002_glia_22999 crossref_primary_10_1016_j_heliyon_2018_e00837 crossref_primary_10_1186_s12974_022_02655_z crossref_primary_10_1002_dev_21229 crossref_primary_10_1016_j_nlm_2013_07_002 crossref_primary_10_1016_j_pneurobio_2015_05_003 crossref_primary_10_1007_s12035_020_02213_9 crossref_primary_10_1016_j_neuint_2020_104715 crossref_primary_10_1523_JNEUROSCI_2625_17_2017 crossref_primary_10_1016_j_neuroscience_2024_03_029 crossref_primary_10_1111_jnc_15800 crossref_primary_10_1155_2013_456857 crossref_primary_10_3389_fphar_2020_603445 crossref_primary_10_1172_JCI72230 crossref_primary_10_1016_j_bbi_2021_06_004 crossref_primary_10_1111_brv_12797 crossref_primary_10_3389_fphar_2019_01022 crossref_primary_10_1007_s12264_017_0129_y crossref_primary_10_1016_j_conb_2017_10_004 crossref_primary_10_3389_fncel_2021_718324 crossref_primary_10_3390_ijms222111677 crossref_primary_10_1113_JP276562 crossref_primary_10_1002_jnr_23921 crossref_primary_10_1016_j_neuroscience_2012_06_022 crossref_primary_10_1016_j_bbi_2018_04_006 crossref_primary_10_3390_ijms20040996 crossref_primary_10_1109_TBME_2020_3022332 crossref_primary_10_1186_1756_6606_7_33 crossref_primary_10_3389_fcell_2021_665739 crossref_primary_10_1038_srep32422 crossref_primary_10_1002_mrm_28332 crossref_primary_10_1016_j_biopha_2022_113500 crossref_primary_10_1016_j_expneurol_2019_113015 crossref_primary_10_1254_fpj_140_216 crossref_primary_10_3389_fnins_2021_648476 crossref_primary_10_1080_13880209_2022_2121843 crossref_primary_10_1038_s41598_018_19205_4 crossref_primary_10_1038_srep22032 crossref_primary_10_1016_j_neuron_2020_11_007 crossref_primary_10_1002_glia_24227 crossref_primary_10_1007_s11481_013_9434_z crossref_primary_10_3389_fcell_2021_637233 crossref_primary_10_3389_fncel_2022_925493 crossref_primary_10_1186_s12974_016_0564_0 crossref_primary_10_1155_2015_837012 crossref_primary_10_1016_j_pnpbp_2020_109931 crossref_primary_10_1007_s11064_022_03703_z crossref_primary_10_1098_rsos_200260 crossref_primary_10_3389_fncel_2014_00129 crossref_primary_10_1038_s41598_017_10679_2 crossref_primary_10_1016_j_smim_2016_03_011 crossref_primary_10_3389_fncel_2014_00361 crossref_primary_10_3389_fneur_2021_779558 crossref_primary_10_1002_glia_23006 crossref_primary_10_1371_journal_pone_0109502 crossref_primary_10_1007_s10753_015_0133_1 crossref_primary_10_1038_s41598_019_52405_0 crossref_primary_10_1016_j_neures_2017_08_010 crossref_primary_10_1007_s10787_022_00958_4 crossref_primary_10_1017_S1740925X12000063 crossref_primary_10_1007_s12035_023_03904_9 crossref_primary_10_1002_glia_22389 crossref_primary_10_3389_fimmu_2023_1197422 crossref_primary_10_1113_JP273252 crossref_primary_10_1111_j_1476_5381_2012_02072_x crossref_primary_10_1038_srep34633 crossref_primary_10_1016_j_bbi_2022_01_014 crossref_primary_10_1016_j_nbd_2023_106005 crossref_primary_10_3390_cells12151942 crossref_primary_10_3390_ijms21051554 crossref_primary_10_3389_fncel_2022_995861 crossref_primary_10_3389_fnins_2023_1273039 crossref_primary_10_1152_physrev_00068_2017 crossref_primary_10_3389_fncel_2015_00279 crossref_primary_10_3390_ijms22073301 crossref_primary_10_3389_fnmol_2017_00421 crossref_primary_10_1007_s43440_021_00323_2 crossref_primary_10_4137_JEN_S11269 crossref_primary_10_1155_2013_425845 crossref_primary_10_1007_s13311_016_0477_8 crossref_primary_10_1111_ejn_12213 crossref_primary_10_1021_acsptsci_0c00013 crossref_primary_10_1016_j_bbi_2016_01_001 crossref_primary_10_1111_ejn_15960 crossref_primary_10_1016_j_psyneuen_2018_12_233 crossref_primary_10_1007_s00429_014_0802_0 crossref_primary_10_1242_dev_200425 crossref_primary_10_3389_fncel_2018_00323 crossref_primary_10_1038_s41392_024_01743_1 crossref_primary_10_1051_medsci_20173312014 crossref_primary_10_3389_fncel_2018_00446 crossref_primary_10_1073_pnas_1513853113 crossref_primary_10_1186_s12974_024_03029_3 crossref_primary_10_1523_JNEUROSCI_1502_21_2021 crossref_primary_10_1155_2018_9348046 crossref_primary_10_1186_s13041_018_0347_x crossref_primary_10_1016_j_neuropharm_2015_10_022 crossref_primary_10_1016_j_nbd_2018_05_017 crossref_primary_10_1016_j_biomaterials_2023_122426 crossref_primary_10_1016_j_neuron_2012_03_026 crossref_primary_10_2174_1570159X21666221208142151 crossref_primary_10_1002_glia_22358 crossref_primary_10_3389_fpsyt_2021_682056 crossref_primary_10_1016_j_phrs_2022_106145 crossref_primary_10_1126_science_1233208 crossref_primary_10_3390_psychoactives3010003 crossref_primary_10_3389_fnins_2018_00939 crossref_primary_10_3390_ijms20030726 crossref_primary_10_1002_glia_22596 crossref_primary_10_1016_j_nbscr_2021_100073 crossref_primary_10_1083_jcb_202401041 crossref_primary_10_3389_fncel_2014_00153 crossref_primary_10_3390_biom13030505 crossref_primary_10_1186_s12974_022_02378_1 crossref_primary_10_3389_fncel_2014_00155 crossref_primary_10_1038_s41467_018_04376_5 crossref_primary_10_1371_journal_pone_0081218 crossref_primary_10_1038_ncomms15292 crossref_primary_10_1212_WNL_0b013e3182a4a577 crossref_primary_10_1523_JNEUROSCI_0936_17_2017 crossref_primary_10_3389_fphys_2018_00855 crossref_primary_10_1177_0271678X18817663 crossref_primary_10_1002_dneu_22571 crossref_primary_10_1515_revneuro_2017_0092 crossref_primary_10_1007_s12035_021_02643_z crossref_primary_10_3389_fncel_2019_00442 crossref_primary_10_1016_j_jphs_2020_07_011 crossref_primary_10_3389_fcell_2020_623771 crossref_primary_10_1016_j_coph_2019_03_010 crossref_primary_10_1016_j_it_2015_08_008 crossref_primary_10_3390_cells8101293 crossref_primary_10_1038_s41392_023_01588_0 crossref_primary_10_1212_WNL_0000000000000105 crossref_primary_10_1177_1756286418818092 crossref_primary_10_2174_1567205016666190830110152 crossref_primary_10_3389_fnint_2015_00073 crossref_primary_10_1007_s11055_019_00848_3 crossref_primary_10_1016_j_biopsych_2022_02_014 crossref_primary_10_1016_j_brainresbull_2019_11_012 crossref_primary_10_1016_j_bbi_2021_09_017 crossref_primary_10_1172_JCI64484 crossref_primary_10_1016_j_nbd_2023_106273 crossref_primary_10_1113_EP085713 crossref_primary_10_1016_j_neuron_2014_03_019 crossref_primary_10_1038_s41598_017_18888_5 crossref_primary_10_2174_1871527321666220517115227 crossref_primary_10_3390_ijms24021639 crossref_primary_10_1007_s00018_012_1015_4 crossref_primary_10_1111_imm_12156 crossref_primary_10_1016_j_tins_2012_11_007 crossref_primary_10_1098_rsob_130181 crossref_primary_10_1002_ejp_1907 crossref_primary_10_2147_JIR_S461795 crossref_primary_10_1186_s12974_020_01822_4 crossref_primary_10_1038_srep04329 crossref_primary_10_1002_dneu_22230 crossref_primary_10_1002_glia_24188 crossref_primary_10_1038_s41419_019_1425_4 crossref_primary_10_1098_rstb_2013_0593 crossref_primary_10_2174_1570159X19666210916102638 crossref_primary_10_1007_s00401_017_1803_x crossref_primary_10_1523_JNEUROSCI_1492_19_2019 crossref_primary_10_1111_jnc_15558 crossref_primary_10_1074_jbc_R115_637157 crossref_primary_10_1007_s12035_019_1529_y crossref_primary_10_1007_s00441_014_1798_8 crossref_primary_10_1016_j_pneurobio_2016_01_005 crossref_primary_10_3389_fnins_2022_1042642 crossref_primary_10_3389_fimmu_2020_01024 crossref_primary_10_1016_j_jneuroim_2020_577198 crossref_primary_10_1051_medsci_20143002012 crossref_primary_10_1007_s11060_013_1158_7 crossref_primary_10_1038_mt_2013_163 crossref_primary_10_3389_fphys_2019_00294 crossref_primary_10_1002_glia_24179 crossref_primary_10_1016_j_resp_2019_103357 crossref_primary_10_1007_s12640_022_00586_4 crossref_primary_10_1016_j_tem_2019_01_002 crossref_primary_10_1186_s12974_021_02072_8 crossref_primary_10_1002_glia_23081 crossref_primary_10_1016_j_jphs_2020_07_004 crossref_primary_10_3389_fcell_2019_00024 crossref_primary_10_1016_j_coph_2018_01_010 crossref_primary_10_1016_j_neuropharm_2015_11_001 crossref_primary_10_1016_j_neubiorev_2018_06_023 crossref_primary_10_1155_2013_429815 crossref_primary_10_3389_fneur_2015_00111 crossref_primary_10_3390_biom11030359 crossref_primary_10_1016_j_bbi_2014_03_007 crossref_primary_10_1038_s41467_019_11674_z crossref_primary_10_1016_j_neubiorev_2015_02_006 crossref_primary_10_1073_pnas_2115539118 crossref_primary_10_3390_cells9122712 crossref_primary_10_1016_j_neuroscience_2015_01_007 crossref_primary_10_3389_fncel_2014_00348 crossref_primary_10_1016_j_jneuroim_2013_07_020 crossref_primary_10_1016_j_resp_2017_07_009 crossref_primary_10_1002_glia_24281 crossref_primary_10_1142_S0129065718500417 crossref_primary_10_7554_eLife_80352 crossref_primary_10_3390_biom11091367 crossref_primary_10_3389_fimmu_2016_00544 crossref_primary_10_1016_j_neuropharm_2018_03_023 crossref_primary_10_1016_j_mce_2016_05_015 crossref_primary_10_1016_j_bbi_2015_05_009 crossref_primary_10_1152_jn_00823_2018 crossref_primary_10_1371_journal_pone_0056293 crossref_primary_10_1177_0271678X17694185 crossref_primary_10_3389_fnint_2015_00063 crossref_primary_10_3389_fimmu_2022_1047550 crossref_primary_10_3389_fncel_2016_00303 crossref_primary_10_1002_glia_24265 crossref_primary_10_1002_JLB_6MR0118_041R crossref_primary_10_1111_bph_15488 crossref_primary_10_3389_fcell_2021_634837 crossref_primary_10_1016_j_neuropharm_2024_109968 crossref_primary_10_1038_s41380_023_02027_w crossref_primary_10_1016_j_pnpbp_2020_109858 crossref_primary_10_3390_ijms23105586 crossref_primary_10_4103_1673_5374_360281 crossref_primary_10_1007_s11064_022_03742_6 crossref_primary_10_1523_JNEUROSCI_3028_14_2015 crossref_primary_10_1016_j_neuroscience_2015_03_064 crossref_primary_10_1016_j_neuropharm_2020_108132 crossref_primary_10_1155_2020_7385458 crossref_primary_10_1186_s40478_016_0369_5 crossref_primary_10_1016_j_neubiorev_2016_10_031 crossref_primary_10_3390_biomedicines11051248 crossref_primary_10_1016_j_nbd_2014_11_021 crossref_primary_10_1152_ajpgi_00014_2021 crossref_primary_10_1007_s12035_023_03832_8 crossref_primary_10_1007_s10237_014_0622_4 crossref_primary_10_1016_j_intimp_2023_110347 crossref_primary_10_1002_jnr_24212 crossref_primary_10_3389_fimmu_2024_1305087 crossref_primary_10_3390_biology10010034 crossref_primary_10_1016_j_ajpath_2017_05_016 crossref_primary_10_1007_s12264_023_01024_x crossref_primary_10_1016_j_autneu_2018_08_003 crossref_primary_10_1038_s41569_021_00520_9 crossref_primary_10_1163_15707563_00002502 crossref_primary_10_1007_s10072_021_05835_6 crossref_primary_10_3389_fnmol_2022_1072046 crossref_primary_10_1002_glia_22738 crossref_primary_10_1016_j_celrep_2021_110128 crossref_primary_10_1134_S0006297917030178 crossref_primary_10_3389_fncir_2023_1006424 crossref_primary_10_1016_j_brainresbull_2016_03_017 crossref_primary_10_1016_j_cellimm_2018_01_004 crossref_primary_10_3389_fnmol_2022_965756 crossref_primary_10_1007_s11357_020_00164_6 crossref_primary_10_1016_j_neures_2020_11_005 crossref_primary_10_1016_j_bbi_2021_12_014 crossref_primary_10_1074_jbc_M115_689729 crossref_primary_10_1155_2016_8607038 crossref_primary_10_1007_s11064_021_03513_9 crossref_primary_10_3390_pharmaceutics14081550 crossref_primary_10_1007_s12017_015_8377_3 crossref_primary_10_1038_s41380_018_0108_3 crossref_primary_10_1177_1756286418774254 crossref_primary_10_1016_j_biopha_2020_110470 crossref_primary_10_7554_eLife_15043 crossref_primary_10_1038_cdd_2013_108 crossref_primary_10_1016_j_neuropharm_2014_08_012 crossref_primary_10_3390_cimb45050284 crossref_primary_10_1016_j_cyto_2022_156005 crossref_primary_10_1111_jne_12273 crossref_primary_10_1038_srep17486 crossref_primary_10_1523_JNEUROSCI_3279_14_2015 crossref_primary_10_1016_j_pneurobio_2017_01_002 crossref_primary_10_1111_ejn_13191 crossref_primary_10_1111_bph_13425 crossref_primary_10_1007_s11064_023_04056_x crossref_primary_10_1113_JP272547 crossref_primary_10_1016_j_celrep_2014_07_042 crossref_primary_10_1002_glia_22951 crossref_primary_10_3389_fpsyt_2020_00071 crossref_primary_10_1186_s13041_021_00868_6 crossref_primary_10_1002_jnr_24689 crossref_primary_10_1038_npp_2016_122 crossref_primary_10_1155_2017_8640970 crossref_primary_10_1016_j_jneuroim_2018_05_009 crossref_primary_10_1007_s12035_024_04022_w crossref_primary_10_1007_s12035_014_8943_y crossref_primary_10_1016_j_arr_2022_101775 crossref_primary_10_1016_j_neuropharm_2020_108054 crossref_primary_10_17116_jnevro20171171224_10 crossref_primary_10_1016_j_arr_2015_10_001 crossref_primary_10_3389_fphar_2022_900337 crossref_primary_10_1002_glia_22707 crossref_primary_10_1111_jnc_15840 crossref_primary_10_1002_brb3_403 crossref_primary_10_1016_j_neuron_2014_02_007 crossref_primary_10_1186_s13024_021_00506_8 crossref_primary_10_1146_annurev_immunol_051116_052358 crossref_primary_10_1016_j_neubiorev_2023_105100 crossref_primary_10_1007_s12011_020_02384_5 crossref_primary_10_1186_s12974_018_1175_8 crossref_primary_10_3389_fimmu_2020_01818 crossref_primary_10_3390_cells13110921 crossref_primary_10_3389_fncel_2021_725693 crossref_primary_10_3389_fnins_2019_01434 crossref_primary_10_1152_jn_00525_2016 crossref_primary_10_3390_ijms24032747 crossref_primary_10_1126_sciadv_aax7331 crossref_primary_10_3390_molecules27134124 crossref_primary_10_1016_j_neuroscience_2016_01_008 crossref_primary_10_1016_j_pscychresns_2022_111534 crossref_primary_10_1038_s41467_017_00422_w crossref_primary_10_1002_glia_22817 crossref_primary_10_1016_j_jpain_2022_10_011 crossref_primary_10_1177_1073858418783959 crossref_primary_10_1111_jnc_15972 crossref_primary_10_1016_j_bbi_2017_07_156 crossref_primary_10_3389_fncel_2022_955550 crossref_primary_10_3389_fnins_2019_00356 crossref_primary_10_4161_cib_23631 crossref_primary_10_3389_fnhum_2016_00566 crossref_primary_10_1016_j_bbi_2021_05_021 crossref_primary_10_3390_biom12010034 crossref_primary_10_1371_journal_pone_0100546 crossref_primary_10_1186_s12974_019_1519_z crossref_primary_10_1111_dgd_12053 crossref_primary_10_1136_pn_2022_003373 crossref_primary_10_1038_npp_2015_4 crossref_primary_10_1186_s12974_018_1186_5 crossref_primary_10_1016_j_neuron_2017_06_020 crossref_primary_10_3390_ijms25042346 crossref_primary_10_1016_j_crneur_2022_100028 crossref_primary_10_1186_s12576_022_00848_y crossref_primary_10_31887_DCNS_2017_19_1_rmcintyre crossref_primary_10_14348_molcells_2021_0020 crossref_primary_10_1186_s13195_024_01444_5 crossref_primary_10_1007_s11302_015_9480_5 crossref_primary_10_1016_j_expneurol_2022_114273 crossref_primary_10_2147_IJGM_S353276 crossref_primary_10_1016_j_revhom_2012_07_001 crossref_primary_10_3390_brainsci12030367 crossref_primary_10_1016_j_mcn_2020_103567 crossref_primary_10_17759_autdd_2020180306 crossref_primary_10_1016_j_neuroscience_2022_02_034 crossref_primary_10_1186_s12974_020_1729_4 crossref_primary_10_1038_npp_2015_127 crossref_primary_10_3390_cells9051108 crossref_primary_10_1016_j_neuropharm_2015_08_005 crossref_primary_10_1177_1073858414530512 crossref_primary_10_1007_s12035_016_9955_6 crossref_primary_10_1177_1073858420901474 crossref_primary_10_3389_fpsyt_2021_771144 crossref_primary_10_1007_s12035_016_9724_6 crossref_primary_10_1016_j_bbi_2020_03_035 crossref_primary_10_1016_j_bcp_2012_04_009 crossref_primary_10_3233_JAD_151075 crossref_primary_10_3390_biomedicines10040774 crossref_primary_10_1016_j_phrs_2020_105253 crossref_primary_10_1016_j_celrep_2017_04_047 crossref_primary_10_1002_ana_25698 |
Cites_doi | 10.1126/science.1144640 10.1074/jbc.M606429200 10.1038/nn1997 10.1085/jgp.200810043 10.1182/blood-2003-11-4089 10.1016/j.neuron.2004.08.011 10.1523/JNEUROSCI.4268-04.2005 10.1038/nn1805 10.1523/JNEUROSCI.18-14-05225.1998 10.1093/brain/awp177 10.4049/jimmunol.162.7.3749 10.1126/science.8134839 10.1126/science.1090349 10.1152/jn.00676.2009 10.1523/JNEUROSCI.3028-04.2004 10.1126/science.1067859 10.1073/pnas.0702553104 10.1038/nn1849 10.1159/000161063 10.1038/nm.2127 10.1523/JNEUROSCI.2660-04.2004 10.1073/pnas.94.15.8093 10.1038/nature05453 10.1523/JNEUROSCI.22-07-02478.2002 10.4049/jimmunol.166.12.7527 10.1016/S0140-6736(01)05625-2 10.1016/j.bbr.2008.09.040 10.1038/nature09615 10.1074/jbc.M002226200 10.1083/jcb.200606016 10.1002/glia.20459 10.1016/j.tins.2007.07.007 10.1016/S0197-0186(97)00126-5 10.1016/j.nbd.2006.12.001 10.1016/0165-0270(91)90128-M 10.1371/journal.pone.0002595 10.1523/JNEUROSCI.2859-03.2004 10.1016/j.brainresrev.2004.12.003 10.1002/glia.10256 10.1523/JNEUROSCI.06-08-02163.1986 10.1111/j.1460-9568.2011.07631.x 10.1523/JNEUROSCI.1717-08.2008 10.1523/JNEUROSCI.0628-05.2005 10.1523/JNEUROSCI.0976-10.2010 10.1111/j.1528-1167.2008.01490.x 10.1186/1742-2094-4-26 10.1016/j.brainresrev.2009.10.005 10.1073/pnas.1432609100 10.1038/nn1715 10.1038/nature08673 10.1016/j.neuron.2007.01.010 10.1016/j.expneurol.2008.05.014 10.1523/JNEUROSCI.2251-04.2004 10.1523/JNEUROSCI.5804-08.2009 10.1073/pnas.0607423103 10.1016/j.jneuroim.2006.07.007 10.1124/jpet.104.068650 10.1038/nn1618 10.1038/369744a0 10.1126/science.1116916 10.1016/0006-8993(94)91958-5 10.1016/S0896-6273(03)00717-7 10.1038/sj.bjp.0701837 10.1038/89490 10.1038/nn1472 10.1111/j.1471-4159.2004.02204.x 10.1073/pnas.96.3.1100 10.1016/j.neuron.2011.02.003 10.1002/glia.20960 10.1523/JNEUROSCI.4772-08.2009 10.1126/science.282.5396.2085 10.1073/pnas.87.1.83 10.1073/pnas.1835831100 10.1097/00004647-199711000-00012 10.1016/j.neuron.2009.08.039 10.1038/nm1208-1309 10.1523/JNEUROSCI.4363-08.2009 10.1038/35058528 10.1113/jphysiol.2007.142737 10.1038/nrneurol.2010.17 10.1002/glia.20477 10.1523/JNEUROSCI.0473-04.2004 10.1002/glia.20552 10.1016/S0197-4580(98)00088-8 10.1016/j.tins.2007.07.006 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jan 24, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jan 24, 2012 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1111098109 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 1010 |
ExternalDocumentID | 2571626581 10_1073_pnas_1111098109 22167804 109_4_E197 41477189 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO AJYGW DZ F20 H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM AAYJJ HQ3 |
ID | FETCH-LOGICAL-c563t-3db69f4d47954eb5bef453a878597508ba149f6498ac5225413f7ea900d918ca3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:15:13 EDT 2024 Fri Oct 25 09:48:34 EDT 2024 Fri Oct 25 05:34:50 EDT 2024 Thu Oct 10 20:06:51 EDT 2024 Fri Aug 23 01:10:31 EDT 2024 Sat Sep 28 08:01:51 EDT 2024 Wed Nov 11 00:29:43 EST 2020 Fri Feb 02 07:04:34 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-3db69f4d47954eb5bef453a878597508ba149f6498ac5225413f7ea900d918ca3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Author contributions: O.P., S.B.A., A.T., and A.B. designed research; O.P., S.B.A., and P.R. performed research; O.P., S.B.A., and P.R. analyzed data; and O.P., S.B.A., and A.B. wrote the paper. 2O.P. and S.B.A. contributed equally to this work. Edited* by Tullio Pozzan, University of Padova, Padua, Italy, and approved November 21, 2011 (received for review July 18, 2011) |
OpenAccessLink | https://www.pnas.org/content/pnas/109/4/E197.full.pdf |
PMID | 22167804 |
PQID | 918109998 |
PQPubID | 42026 |
PageCount | 2 |
ParticipantIDs | proquest_miscellaneous_1221146536 pubmed_primary_22167804 proquest_journals_918109998 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3268269 jstor_primary_41477189 proquest_miscellaneous_920228440 crossref_primary_10_1073_pnas_1111098109 pnas_primary_109_4_E197 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2012-01-24 |
PublicationDateYYYYMMDD | 2012-01-24 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 18977395 - Behav Brain Res. 2009 Jan 23;196(2):168-79 21068834 - Nature. 2010 Nov 11;468(7321):253-62 15456834 - J Neurosci. 2004 Sep 29;24(39):8606-20 18838950 - Rev Neurol Dis. 2008 Summer;5(3):109-16 9390655 - J Cereb Blood Flow Metab. 1997 Nov;17(11):1230-8 7911978 - Nature. 1994 Jun 30;369(6483):744-7 18841035 - Pharmacology. 2008;82(4):257-63 8134839 - Science. 1994 Mar 25;263(5154):1768-71 17239605 - Neurobiol Dis. 2007 Apr;26(1):66-77 20140959 - Glia. 2010 Apr 15;58(6):741-54 12898707 - Glia. 2003 Sep;43(3):281-91 16000618 - J Neurosci. 2005 Jul 6;25(27):6286-95 10856294 - J Biol Chem. 2000 Aug 25;275(34):26252-8 19057551 - Nat Med. 2008 Dec;14(12):1309-10 15339653 - Neuron. 2004 Sep 2;43(5):729-43 16732273 - Nat Neurosci. 2006 Jul;9(7):917-24 11426226 - Nat Neurosci. 2001 Jul;4(7):702-10 17151600 - Nature. 2007 Jan 11;445(7124):168-76 18725529 - J Gen Physiol. 2008 Sep;132(3):339-49 20071630 - J Neurophysiol. 2010 Mar;103(3):1322-8 17717185 - Science. 2007 Aug 24;317(5841):1083-6 15574734 - J Neurosci. 2004 Dec 1;24(48):10835-45 18586243 - Exp Neurol. 2008 Sep;213(1):114-21 16882655 - J Biol Chem. 2006 Oct 13;281(41):30684-96 15295027 - J Neurosci. 2004 Aug 4;24(31):6920-7 7895052 - Brain Res. 1994 Nov 21;664(1-2):94-100 14675168 - J Neurochem. 2004 Jan;88(1):246-56 19840553 - Neuron. 2009 Oct 15;64(1):110-22 17043238 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):16021-6 15345752 - J Pharmacol Exp Ther. 2004 Dec;311(3):1038-43 11256079 - Nat Rev Neurosci. 2001 Mar;2(3):185-93 17060494 - J Cell Biol. 2006 Oct 23;175(2):209-15 3018187 - J Neurosci. 1986 Aug;6(8):2163-78 11513911 - Lancet. 2001 Aug 11;358(9280):461-7 21395864 - Eur J Neurosci. 2011 Apr;33(8):1483-92 18579739 - J Neurosci. 2008 Jun 25;28(26):6659-63 19339593 - J Neurosci. 2009 Apr 1;29(13):3974-80 20075918 - Nature. 2010 Jan 14;463(7278):232-6 21382557 - Neuron. 2011 Mar 10;69(5):988-1001 9676740 - Neurochem Int. 1998 May-Jun;32(5-6):421-5 17693552 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13798-803 9851930 - Science. 1998 Dec 11;282(5396):2085-8 17965659 - Nat Neurosci. 2007 Nov;10(11):1387-94 9223320 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8093-8 20234358 - Nat Rev Neurol. 2010 Apr;6(4):193-201 9927700 - Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1100-5 16369481 - Nat Neurosci. 2006 Jan;9(1):99-107 14593169 - Science. 2003 Oct 31;302(5646):830-4 16996144 - J Neuroimmunol. 2006 Nov;180(1-2):71-87 19567702 - Brain. 2009 Sep;132(Pt 9):2478-86 11390507 - J Immunol. 2001 Jun 15;166(12):7527-33 14659095 - Neuron. 2003 Dec 4;40(5):971-82 20554880 - J Neurosci. 2010 Jun 16;30(24):8285-95 17647290 - Glia. 2007 Oct;55(13):1334-47 14736858 - J Neurosci. 2004 Jan 21;24(3):722-32 19261880 - J Neurosci. 2009 Mar 4;29(9):2845-56 15850652 - Brain Res Brain Res Rev. 2005 Apr;48(2):133-43 17937799 - J Neuroinflammation. 2007;4:26 11910117 - Science. 2002 Mar 22;295(5563):2282-5 12824464 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8514-9 18612411 - PLoS One. 2008;3(7):e2595 9630335 - Br J Pharmacol. 1998 May;124(1):1-3 14608033 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14397-402 15895084 - Nat Neurosci. 2005 Jun;8(6):752-8 15716415 - J Neurosci. 2005 Feb 16;25(7):1788-96 16210541 - Science. 2005 Oct 7;310(5745):113-6 17904651 - Trends Neurosci. 2007 Oct;30(10):527-35 9755289 - Pharmacol Rev. 1998 Sep;50(3):413-92 10201887 - J Immunol. 1999 Apr 1;162(7):3749-52 17962333 - J Physiol. 2007 Dec 15;585(Pt 3):843-52 17310248 - Nat Neurosci. 2007 Mar;10(3):331-9 11923412 - J Neurosci. 2002 Apr 1;22(7):2478-86 9880052 - Neurobiol Aging. 1998 Sep-Oct;19(5):497-503 19295150 - J Neurosci. 2009 Mar 18;29(11):3442-52 17115040 - Nat Neurosci. 2006 Dec;9(12):1512-9 20348922 - Nat Med. 2010 Apr;16(4):413-9 9651205 - J Neurosci. 1998 Jul 15;18(14):5225-33 18226169 - Epilepsia. 2008;49 Suppl 2:24-32 17897728 - Trends Neurosci. 2007 Oct;30(10):490-6 14739214 - Blood. 2004 May 15;103(10):3615-23 17106878 - Glia. 2007 Feb;55(3):233-8 1715499 - J Neurosci Methods. 1991 Apr;37(2):173-82 15601948 - J Neurosci. 2004 Dec 15;24(50):11421-8 19896978 - Brain Res Rev. 2010 May;63(1-2):93-102 17270732 - Neuron. 2007 Feb 1;53(3):337-51 17285589 - Glia. 2007 Jun;55(8):777-89 2296607 - Proc Natl Acad Sci U S A. 1990 Jan;87(1):83-7 e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_77_2 e_1_3_3_79_2 Hoshino K (e_1_3_3_32_2) 1999; 162 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 Ralevic V (e_1_3_3_71_2) 1998; 50 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 He Y (e_1_3_3_57_2) 2010; 58 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_1_2_17_8_4_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 e_1_1_2_17_8_2_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_84_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 Najjar S (e_1_3_3_58_2) 2008; 5 e_1_1_2_17_8_1_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_1_2_17_8_5_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 e_1_1_2_17_8_3_2 |
References_xml | – ident: e_1_3_3_6_2 doi: 10.1126/science.1144640 – ident: e_1_3_3_41_2 doi: 10.1074/jbc.M606429200 – ident: e_1_3_3_21_2 doi: 10.1038/nn1997 – ident: e_1_3_3_35_2 doi: 10.1085/jgp.200810043 – ident: e_1_3_3_82_2 doi: 10.1182/blood-2003-11-4089 – ident: e_1_3_3_4_2 doi: 10.1016/j.neuron.2004.08.011 – ident: e_1_3_3_46_2 doi: 10.1523/JNEUROSCI.4268-04.2005 – ident: e_1_3_3_25_2 doi: 10.1038/nn1805 – ident: e_1_3_3_73_2 doi: 10.1523/JNEUROSCI.18-14-05225.1998 – ident: e_1_3_3_79_2 doi: 10.1093/brain/awp177 – volume: 162 start-page: 3749 year: 1999 ident: e_1_3_3_32_2 article-title: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product publication-title: J Immunol doi: 10.4049/jimmunol.162.7.3749 contributor: fullname: Hoshino K – ident: e_1_3_3_2_2 doi: 10.1126/science.8134839 – ident: e_1_3_3_11_2 doi: 10.1126/science.1090349 – ident: e_1_3_3_38_2 doi: 10.1152/jn.00676.2009 – ident: e_1_3_3_72_2 doi: 10.1523/JNEUROSCI.3028-04.2004 – ident: e_1_3_3_33_2 doi: 10.1126/science.1067859 – ident: e_1_3_3_62_2 doi: 10.1073/pnas.0702553104 – ident: e_1_3_3_43_2 doi: 10.1038/nn1849 – ident: e_1_3_3_55_2 doi: 10.1159/000161063 – ident: e_1_3_3_66_2 doi: 10.1038/nm.2127 – ident: e_1_3_3_42_2 doi: 10.1523/JNEUROSCI.2660-04.2004 – ident: e_1_3_3_37_2 doi: 10.1073/pnas.94.15.8093 – volume: 5 start-page: 109 year: 2008 ident: e_1_3_3_58_2 article-title: Immunology and epilepsy publication-title: Rev Neurol Dis contributor: fullname: Najjar S – ident: e_1_3_3_67_2 doi: 10.1038/nature05453 – ident: e_1_3_3_61_2 doi: 10.1523/JNEUROSCI.22-07-02478.2002 – ident: e_1_3_3_28_2 doi: 10.4049/jimmunol.166.12.7527 – ident: e_1_3_3_10_2 doi: 10.1016/S0140-6736(01)05625-2 – ident: e_1_3_3_29_2 doi: 10.1016/j.bbr.2008.09.040 – ident: e_1_3_3_8_2 doi: 10.1038/nature09615 – ident: e_1_3_3_23_2 doi: 10.1074/jbc.M002226200 – ident: e_1_3_3_64_2 doi: 10.1083/jcb.200606016 – ident: e_1_3_3_20_2 doi: 10.1002/glia.20459 – ident: e_1_3_3_18_2 doi: 10.1016/j.tins.2007.07.007 – ident: e_1_3_3_70_2 doi: 10.1016/S0197-0186(97)00126-5 – ident: e_1_3_3_69_2 doi: 10.1016/j.nbd.2006.12.001 – ident: e_1_3_3_83_2 doi: 10.1016/0165-0270(91)90128-M – ident: e_1_3_3_14_2 doi: 10.1371/journal.pone.0002595 – ident: e_1_3_3_7_2 doi: 10.1523/JNEUROSCI.2859-03.2004 – ident: e_1_3_3_19_2 doi: 10.1016/j.brainresrev.2004.12.003 – ident: e_1_3_3_48_2 doi: 10.1002/glia.10256 – ident: e_1_3_3_52_2 doi: 10.1523/JNEUROSCI.06-08-02163.1986 – ident: e_1_1_2_17_8_5_2 doi: 10.1111/j.1460-9568.2011.07631.x – ident: e_1_3_3_56_2 doi: 10.1523/JNEUROSCI.1717-08.2008 – ident: e_1_3_3_34_2 doi: 10.1523/JNEUROSCI.0628-05.2005 – ident: e_1_3_3_49_2 doi: 10.1523/JNEUROSCI.0976-10.2010 – ident: e_1_3_3_78_2 doi: 10.1111/j.1528-1167.2008.01490.x – ident: e_1_3_3_50_2 doi: 10.1186/1742-2094-4-26 – ident: e_1_1_2_17_8_2_2 doi: 10.1016/j.brainresrev.2009.10.005 – ident: e_1_3_3_63_2 doi: 10.1073/pnas.1432609100 – ident: e_1_3_3_26_2 doi: 10.1038/nn1715 – ident: e_1_3_3_44_2 doi: 10.1038/nature08673 – ident: e_1_3_3_12_2 doi: 10.1016/j.neuron.2007.01.010 – ident: e_1_3_3_65_2 doi: 10.1016/j.expneurol.2008.05.014 – ident: e_1_3_3_13_2 doi: 10.1523/JNEUROSCI.2251-04.2004 – ident: e_1_3_3_24_2 doi: 10.1523/JNEUROSCI.5804-08.2009 – ident: e_1_3_3_27_2 doi: 10.1073/pnas.0607423103 – ident: e_1_3_3_31_2 doi: 10.1016/j.jneuroim.2006.07.007 – ident: e_1_3_3_40_2 doi: 10.1124/jpet.104.068650 – ident: e_1_3_3_68_2 doi: 10.1038/nn1618 – ident: e_1_3_3_1_2 doi: 10.1038/369744a0 – ident: e_1_1_2_17_8_1_2 doi: 10.1126/science.1116916 – ident: e_1_3_3_74_2 doi: 10.1016/0006-8993(94)91958-5 – ident: e_1_3_3_76_2 doi: 10.1016/S0896-6273(03)00717-7 – ident: e_1_3_3_39_2 doi: 10.1038/sj.bjp.0701837 – ident: e_1_3_3_53_2 doi: 10.1038/89490 – ident: e_1_3_3_17_2 doi: 10.1038/nn1472 – ident: e_1_3_3_54_2 doi: 10.1111/j.1471-4159.2004.02204.x – ident: e_1_3_3_84_2 doi: 10.1073/pnas.96.3.1100 – ident: e_1_3_3_36_2 doi: 10.1016/j.neuron.2011.02.003 – volume: 58 start-page: 741 year: 2010 ident: e_1_3_3_57_2 article-title: Glutamine synthetase deficiency in murine astrocytes results in neonatal death publication-title: Glia doi: 10.1002/glia.20960 contributor: fullname: He Y – ident: e_1_3_3_80_2 doi: 10.1523/JNEUROSCI.4772-08.2009 – ident: e_1_3_3_30_2 doi: 10.1126/science.282.5396.2085 – ident: e_1_3_3_51_2 doi: 10.1073/pnas.87.1.83 – ident: e_1_3_3_77_2 doi: 10.1073/pnas.1835831100 – ident: e_1_3_3_75_2 doi: 10.1097/00004647-199711000-00012 – ident: e_1_3_3_81_2 doi: 10.1016/j.neuron.2009.08.039 – ident: e_1_1_2_17_8_3_2 doi: 10.1523/JNEUROSCI.2859-03.2004 – ident: e_1_3_3_60_2 doi: 10.1038/nm1208-1309 – ident: e_1_1_2_17_8_4_2 doi: 10.1038/nature08673 – ident: e_1_3_3_22_2 doi: 10.1523/JNEUROSCI.4363-08.2009 – ident: e_1_3_3_3_2 doi: 10.1038/35058528 – ident: e_1_3_3_45_2 doi: 10.1113/jphysiol.2007.142737 – volume: 50 start-page: 413 year: 1998 ident: e_1_3_3_71_2 article-title: Receptors for purines and pyrimidines publication-title: Pharmacol Rev contributor: fullname: Ralevic V – ident: e_1_3_3_9_2 doi: 10.1038/nrneurol.2010.17 – ident: e_1_3_3_47_2 doi: 10.1002/glia.20477 – ident: e_1_3_3_5_2 doi: 10.1523/JNEUROSCI.0473-04.2004 – ident: e_1_3_3_16_2 doi: 10.1002/glia.20552 – ident: e_1_3_3_15_2 doi: 10.1016/S0197-4580(98)00088-8 – ident: e_1_3_3_59_2 doi: 10.1016/j.tins.2007.07.006 |
SSID | ssj0009580 |
Score | 2.6041994 |
Snippet | Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1009 |
SubjectTerms | Adenosine triphosphatase Adenosine Triphosphate - metabolism Analysis of Variance Animals Astrocytes Astrocytes - metabolism Astrocytes - physiology Astrocytes - ultrastructure ATP Biological Sciences Blotting, Western Brain diseases Brain slice preparation Cell culture Data processing DNA Primers - genetics Electrophysiology Excitatory postsynaptic potentials Excitatory Postsynaptic Potentials - physiology Fluorescent Antibody Technique Glial cells Glutamic acid receptors (metabotropic) Hippocampus Hippocampus - physiology Immunohistochemistry Mice Mice, Inbred C57BL Mice, Knockout Microglia Microglia - metabolism Microglia - physiology Microglia - ultrastructure Microscopy, Confocal Microscopy, Electron Neuromodulation Neurons Neurotransmission Neurotransmitters PNAS Plus PNAS PLUS (AUTHOR SUMMARIES) Real-Time Polymerase Chain Reaction Receptor, Metabotropic Glutamate 5 Receptors, Metabotropic Glutamate - metabolism Receptors, Purinergic P2Y1 - metabolism Synaptic transmission Tumor necrosis factor- alpha |
Title | Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission |
URI | https://www.jstor.org/stable/41477189 http://www.pnas.org/content/109/4/E197.abstract https://www.ncbi.nlm.nih.gov/pubmed/22167804 https://www.proquest.com/docview/918109998 https://search.proquest.com/docview/1221146536 https://search.proquest.com/docview/920228440 https://pubmed.ncbi.nlm.nih.gov/PMC3268269 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bp16q0pY25SFX6oEewsaJ7cRHhEC0FVUPRULqIbJjh67EJis2SOXfM-M86CJ66SEnjxXLM_Z8Y898BvjkeOaltj5ODFqwMNzGVnARO1sr6XJOpw2UbfFdnV-Kr1fyagPkWAsTkvYrOz9qbhZHzfx3yK1cLqrZmCc2-3FxgpADUbGebcImGugYok9Mu0Vfd5Li9itSMfL55Nls2ZhV2CMSXeBHRMApV0TBs-aV-sREYjtF-eeQ59MEyr880tkreDlASXbcD3kbNnzzGraHxbpihwOj9Oc38OuC0u6ub-aGUR1DfwrLOgzMrxH9MbPq0I3ddz4OdSSIQdmidcO7Xqytmf9TUSlae3vPAv9lRw4ODYRO2t7C5dnpz5PzeHhVIa6kyro4c1bpWjiRaym8ldbXQmaoqQJjC4Rr1mDQVCuhC1MhOJPo5ercG50kTvOiMtkObDVt498Dq7OkMNIVXqVcGMmNqZRTokJMWOlaqggOx1ktlz15RhkuvfOspLktH3URwU6Y9UkODSZHv4kN74LoY39divIUjSiC3VEz5bDwViUOke76dBHBx6kVJ4SuQUzj2zv8KSqdE60cjo_9Q0anxAskREK_D6qeBjCaTAT5mhFMAkTYvd6CdhyIuwe7_fDfPXfhBQI2yqWJU7EHW93tnd9HUNTZAwwHvnw7CEvhAYHhDPY |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoBLRQuloUCNxKEc0s3DduIjqlot0K04tFIlDpZfaVfqJqtuKtF_z9h5lEVw4ZCTx4rlmfF8tmc-A3y0ae6Y0C5OFFowVamONU1pbHXFmS1Sf9rgsy3O-fSSfr1iVxvAhlqYkLRv9Pyovl0c1fObkFu5XJjJkCc2-T47RsiBqFhMnsBT9NeEDpv0kWu37CpPMlyAaUYHRp8inyxrtQqrRCJK_DwVcJZyT8KzFpe61ETPd4ryf8Oef6ZQ_haTTl_AVg8myedu0Nuw4eod2O7ddUUOe07pTy_hx8wn3l3fzhXxlQzdOSxpcWt-jfiPqFWLgeyhdXGoJEEUShaN7V_2Ik1F3E_ji9GauwcSGDBbH-LQRPxZ2yu4PD25OJ7G_bsKsWE8b-Pcai4qamkhGHWaaVdRlqOuStxdIGDTCrdNFaeiVAbhGcM4VxVOiSSxIi2Nyndhs25qtwekypNSMVs6nqVUsVQpwy2nBlGhERXjERwOsyqXHX2GDNfeRS793MpHXUSwG2Z9lEOTKTByYsPrIPrYX0gqT9CMItgfNCN711tJHKK_7RNlBB_GVpwQfxGiatfc409R6aknlsPxkX_IiMwzA1Ga-N8HVY8DGEwmgmLNCEYBT9m93oKWHKi7e8t98989D-DZ9GJ2Js--nH_bh-cI33xmTZzRt7DZ3t27dwiRWv0-OMQvdSYPUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLaoFCKA8jcSiHNHFiO_ERla7Ko1UPVKrEwfKzXambrLqpRP99x86jXQQXDjl5rIw8Y8839vgzQh8tKR0T2qW5Ag-miuhUU0JTqz1ntiJhtyFUWxzzw1P67Yyd3XvqKxbtGz3fay4Xe838ItZWLhcmG-vEspOjfYAcgIpFtrQ-e4gewZzN-ZioT3y7dX_7pIBFmBZ0ZPWpymzZqFVcKXJRwxfogAvCAxHPWmzqyxMD5ynI_w1__llGeS8uzTbR0wFQ4s-94lvogWueoa1hyq7w7sAr_ek5-nUUiu_OL-cKh9sM_V4s7iA9PwcMiNWqg2B207k03iYBJIoXrR1e98Ktx-63CRfS2qsbHFkwuxDmwE3CftsLdDo7-Ll_mA5vK6SG8bJLS6u58NTSSjDqNNPOU1aCvWrIMAC0aQWpk-dU1MoARGMQ63zllMhzK0htVLmNNpq2ca8Q9mVeK2ZrxwtCFSNKGW45NYAMjfCMJ2h3HFW57Ck0ZDz6rkoZxlbe2SJB23HUJzlwmwqiJzS8jKJ3_YWk8gBcKUE7o2XkMP1WElQMJ36iTtCHqRUGJByGqMa11_BTMDoJ5HKgH_6HjCgCOxClefh9NPWkwOgyCarWnGASCLTd6y3gzZG-e_De1__d8z16fPJlJn98Pf6-g54AggvFNWlB36CN7uravQWU1Ol3cT7cAlglEGY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglia+activation+triggers+astrocyte-mediated+modulation+of+excitatory+neurotransmission&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Pascual%2C+Olivier&rft.au=Achour%2C+Sarrah+Ben&rft.au=Rostaing%2C+Philippe&rft.au=Triller%2C+Antoine&rft.date=2012-01-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=4&rft.spage=1009&rft.epage=1010&rft_id=info:doi/10.1073%2Fpnas.1111098109&rft.externalDocID=41477189 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F4.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F4.cover.gif |