Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission

Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 109; no. 4; pp. 1009 - 1010
Main Authors Pascual, Olivier, Achour, Sarrah Ben, Rostaing, Philippe, Triller, Antoine, Bessis, Alain
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.01.2012
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases.
AbstractList Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNF alpha or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases.
Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases.
Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases. Author Summary This study indicates that microglial cells can control neuronal activity through astrocytes as intermediaries. We also found that, when the excitation vs. inhibition balance is challenged, LPS application can increase the propensity for seizure-like activity. In conclusion, TLR4 activation modulates neuronal activity through the intermediaries microglia and astrocytes. The discovery of a growing number of endogenous TLR4 ligands, such as Heat Shock Protein 60 (HSP60), fibronectin, and fibrinogen, indicates that the signaling pathway described in this study might be relevant under many physiological conditions and in most CNS pathologies. A pharmacological approach, which uses various compounds or drugs to experimentally understand a process, indicated that microglial stimulation by LPS was insensitive to tetrodotoxin, a blocker of action potential and one (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione) that specifically targets synapses containing the AMPA-type glutamate receptors. Additional investigations of these signaling pathways indicated that ATP played a central role in this communication, because an ATP competitor blocked the LPS-induced neuronal response. We were able to more specifically show that the neuronal response required the protein G-coupled purinergic metabotropic receptors P2Y1. In the hippocampus, P2Y1 receptors are only present on inhibitory interneurons (i.e., neurons inhibiting neural signaling) and astrocytes. The involvement of interneurons was ruled out, because we found that inhibitory synapses were not involved in the neuronal response to microglial activation. In contrast, application of fluoroacetate, a metabolic poison that is taken up only by astrocytes and frequently used to inhibit astrocytic functions ( 4 , 5 ), completely abolished the LPS-induced increase in the frequency of spontaneous synaptic events. Because the release of ATP by microglia was poorly documented, we used a combination of pure microglial and pure astrocyte cell cultures to monitor ATP release by using a specially designed assay system. We confirmed that LPS specifically acts on microglia, because the microglial cultures but not the astrocyte cultures responded to LPS by a release of ATP. This finding was also supported by the application of LPS on organotypic slice cultures lacking microglia. In such slices, LPS failed to increase neuronal activity, whereas the P2Y1 receptor agonist mimicked the LPS-induced neuronal modulation. Finally, with the acute hippocampal slices, we were able to show that astrocytes recruited by microglial ATP modulated neuronal activity at AMPA receptor-containing synapses by glutamate acting on metabotropic glutamate receptors. This conclusion was reached after a series of experiments. First, we stimulated microglia by using an LPS, a toll-like receptor 4 (TLR4) ligand, commonly used as a proinflammatory agent. We simultaneously recorded the spontaneous synaptic activity of neurons in acute hippocampal slices, slices containing a region of the brain involved in memory formation, by using a method known as patch-clamp recording. We found that microglial activation induces a rapid and transient increase in the frequency of excitatory synaptic events but no associated change in their amplitude, suggesting an increased neurotransmitter release from the presynaptic terminals. We confirmed the involvement of TLR4 signaling, because the response to LPS was absent in slices from mice lacking the TLR4 protein. Although the rapid kinetic response to LPS seemed to be incompatible with an inflammatory response, we challenged the inflammatory pathway by using minocycline. This widely used antiinflammatory agent prevented the response to LPS. These results indicate that LPS-induced neuronal response is mediated through the classical TLR4 signaling pathway. In the CNS, the communication between neurons occurs mostly at synapses. At these critical meeting points, one neuron (the presynaptic neuron) sends a signal to another neuron (the postsynaptic neuron) across a gap known as the synaptic cleft. During synaptic transmission, the presynaptic neuron releases neurotransmitters (i.e., small molecules that act as signals between nerve cells) such as glutamate into the synaptic cleft. The neurotransmitter then binds to specific receptors located on the postsynaptic neurons to elicit a postsynaptic potential. However, the communication between neurons is more complex than this simple one-way messaging. Fine modulation of synaptic transmission in mammals requires retrograde signaling, wherein the postsynaptic nerve communicates with the presynaptic nerve. This modulation has long been thought to be purely neuronal, involving solely the pre- and postsynaptic cells. However, since the mid-1990s, the role of astrocytes, a subtype of glial (support) cell, in the fine tuning of neurotransmission has been shown. Indeed, astrocytes, which were primarily known to clear neurotransmitters from the synaptic cleft, were also shown to release neurotransmitters such as glutamate or ATP, commonly known as the energy currency of the cell, to modulate neuronal activity ( 1 – 4 ). In this study, we show that a second type of glial cell, the microglia (referred to as the macrophages of the central nervous system), recruits astrocytes to modulate neuronal activity at an early step in the inflammatory process ( Fig. P1 ).
Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases. [PUBLICATION ABSTRACT]
Author Pascual, Olivier
Rostaing, Philippe
Achour, Sarrah Ben
Triller, Antoine
Bessis, Alain
Author_xml – sequence: 1
  givenname: Olivier
  surname: Pascual
  fullname: Pascual, Olivier
– sequence: 2
  givenname: Sarrah Ben
  surname: Achour
  fullname: Achour, Sarrah Ben
– sequence: 3
  givenname: Philippe
  surname: Rostaing
  fullname: Rostaing, Philippe
– sequence: 4
  givenname: Antoine
  surname: Triller
  fullname: Triller, Antoine
– sequence: 5
  givenname: Alain
  surname: Bessis
  fullname: Bessis, Alain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22167804$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1vFDEQxS0URC6Bmgq0SgPNJv5c2w0SisKHlCgNVBSW1-s9fNqzD9sb5f575nThEiiwZLuY3zy9mXeCjmKKHqHXBJ8TLNnFJtpyTuBgreA-Qwt4SdtxjY_QAmMqW8UpP0Ynpawwxloo_AIdU0o6qTBfoB83weW0nIJtrKvhztaQYlNzWC59Lo0tNSe3rb5d-yHY6odmnYZ52mNpbPy9C9XWlLdN9HNONdtY1qEUqL9Ez0c7Ff_q4T9F3z9dfbv80l7ffv56-fG6daJjtWVD3-mRD1xqwX0vej9ywaySSmgpsOot4XqEkZR1glLBCRultxrjQRPlLDtFH_a6m7kHm85HcDGZTQ5rm7cm2WD-rsTw0yzTnWG0U7TTIPDuQSCnX7Mv1cAEzk-TjT7NxWiKKVWcYyDf_5cksFnCO8E6QM_-QVdpzhEWYcA2xKS1AuhiD0EIpWQ_HlwTbHYJm13C5jFh6Hj7dNgD_yfSJ8Cu81FOG26uiJYAvNkDqwK5HQhOuJREafYbIBG5fA
CitedBy_id crossref_primary_10_1002_glia_22465
crossref_primary_10_1007_s12035_020_01961_y
crossref_primary_10_1002_cne_24396
crossref_primary_10_1083_jcb_201607048
crossref_primary_10_1093_ijnp_pyw028
crossref_primary_10_1002_glia_23557
crossref_primary_10_1002_jnr_24977
crossref_primary_10_1016_j_nbd_2019_104488
crossref_primary_10_1016_j_bbr_2019_111975
crossref_primary_10_1177_0333102417703764
crossref_primary_10_3389_fcell_2021_648313
crossref_primary_10_1016_j_neuroscience_2016_01_047
crossref_primary_10_1016_j_seizure_2017_07_014
crossref_primary_10_3390_ijms241511892
crossref_primary_10_1007_s00281_018_0707_8
crossref_primary_10_1134_S0022093021060016
crossref_primary_10_1016_j_brainres_2014_07_050
crossref_primary_10_3389_fgene_2021_642079
crossref_primary_10_1007_s11307_020_01485_w
crossref_primary_10_1016_j_semcdb_2019_05_017
crossref_primary_10_1038_nm_4397
crossref_primary_10_4103_1673_5374_300976
crossref_primary_10_1002_brb3_1385
crossref_primary_10_1002_jnr_23770
crossref_primary_10_3389_fnins_2022_884579
crossref_primary_10_1016_j_ejphar_2024_176763
crossref_primary_10_3390_ijms222413186
crossref_primary_10_1016_j_tins_2020_01_003
crossref_primary_10_1016_j_neuron_2017_05_026
crossref_primary_10_1038_s41598_017_11793_x
crossref_primary_10_3389_fncel_2015_00521
crossref_primary_10_1186_s12974_021_02262_4
crossref_primary_10_3390_ijms25063148
crossref_primary_10_1186_s12974_014_0222_3
crossref_primary_10_1016_j_ajpath_2013_01_051
crossref_primary_10_1155_2020_8098439
crossref_primary_10_1016_j_pathophys_2013_08_002
crossref_primary_10_1038_s41598_017_10349_3
crossref_primary_10_1002_mnfr_201500279
crossref_primary_10_1016_j_biopsych_2012_09_030
crossref_primary_10_1111_cns_13694
crossref_primary_10_1016_j_neuropharm_2014_05_007
crossref_primary_10_1002_adhm_202100180
crossref_primary_10_1016_j_neuron_2012_12_023
crossref_primary_10_4199_C00102ED1V01Y201401NGL001
crossref_primary_10_3390_brainsci13050784
crossref_primary_10_1002_glia_23884
crossref_primary_10_1007_s13365_014_0258_2
crossref_primary_10_1016_j_ejphar_2023_176161
crossref_primary_10_3390_neurosci3040043
crossref_primary_10_3390_biomedicines10081800
crossref_primary_10_1007_s11055_020_00971_6
crossref_primary_10_1038_s41598_020_79350_7
crossref_primary_10_1016_j_neuroscience_2018_04_046
crossref_primary_10_1007_s11064_021_03456_1
crossref_primary_10_1016_j_conb_2020_12_001
crossref_primary_10_1016_j_jphs_2020_11_008
crossref_primary_10_1016_j_celrep_2019_07_078
crossref_primary_10_3389_fncel_2014_00193
crossref_primary_10_3934_molsci_2018_1_63
crossref_primary_10_1002_glia_23519
crossref_primary_10_4049_jimmunol_1300374
crossref_primary_10_3389_fimmu_2018_01195
crossref_primary_10_1080_07853890_2020_1814962
crossref_primary_10_1111_febs_16583
crossref_primary_10_3389_fnsyn_2022_902319
crossref_primary_10_1002_glia_22785
crossref_primary_10_1186_s12974_017_0858_x
crossref_primary_10_1016_j_bbi_2014_05_017
crossref_primary_10_3390_life12060910
crossref_primary_10_1016_j_neubiorev_2016_08_039
crossref_primary_10_3389_fnmol_2017_00381
crossref_primary_10_1016_j_pnpbp_2022_110636
crossref_primary_10_1007_s11064_022_03704_y
crossref_primary_10_1016_j_arr_2017_12_005
crossref_primary_10_14336_AD_2021_0325
crossref_primary_10_1002_glia_23508
crossref_primary_10_1002_glia_22894
crossref_primary_10_1016_j_neuroscience_2016_09_047
crossref_primary_10_3389_fphys_2018_00088
crossref_primary_10_1016_j_jneuroim_2023_578204
crossref_primary_10_1007_s40011_015_0585_y
crossref_primary_10_1002_glia_23747
crossref_primary_10_3389_fcell_2022_1090765
crossref_primary_10_1016_j_bbi_2023_01_004
crossref_primary_10_3390_cells9102145
crossref_primary_10_1002_jnr_23336
crossref_primary_10_1186_1742_2094_10_95
crossref_primary_10_1016_j_bbi_2020_11_007
crossref_primary_10_1016_j_bbi_2020_11_002
crossref_primary_10_1016_j_ejphar_2018_12_034
crossref_primary_10_1111_jnc_13724
crossref_primary_10_1016_j_cell_2014_06_008
crossref_primary_10_1016_j_neuropharm_2016_08_013
crossref_primary_10_1016_j_celrep_2014_11_018
crossref_primary_10_1007_s10753_015_0245_7
crossref_primary_10_1186_s12974_017_0942_2
crossref_primary_10_1002_alz_12503
crossref_primary_10_1371_journal_pbio_3001239
crossref_primary_10_1515_cmble_2015_0050
crossref_primary_10_3389_fncel_2019_00063
crossref_primary_10_1007_s10072_023_07208_7
crossref_primary_10_3389_fncel_2020_592214
crossref_primary_10_3389_fnmol_2020_00151
crossref_primary_10_3390_ijms241210083
crossref_primary_10_1371_journal_pone_0110996
crossref_primary_10_1016_j_phrs_2020_104677
crossref_primary_10_1155_2013_342931
crossref_primary_10_1186_s13024_023_00665_w
crossref_primary_10_1002_glia_22999
crossref_primary_10_1016_j_heliyon_2018_e00837
crossref_primary_10_1186_s12974_022_02655_z
crossref_primary_10_1002_dev_21229
crossref_primary_10_1016_j_nlm_2013_07_002
crossref_primary_10_1016_j_pneurobio_2015_05_003
crossref_primary_10_1007_s12035_020_02213_9
crossref_primary_10_1016_j_neuint_2020_104715
crossref_primary_10_1523_JNEUROSCI_2625_17_2017
crossref_primary_10_1016_j_neuroscience_2024_03_029
crossref_primary_10_1111_jnc_15800
crossref_primary_10_1155_2013_456857
crossref_primary_10_3389_fphar_2020_603445
crossref_primary_10_1172_JCI72230
crossref_primary_10_1016_j_bbi_2021_06_004
crossref_primary_10_1111_brv_12797
crossref_primary_10_3389_fphar_2019_01022
crossref_primary_10_1007_s12264_017_0129_y
crossref_primary_10_1016_j_conb_2017_10_004
crossref_primary_10_3389_fncel_2021_718324
crossref_primary_10_3390_ijms222111677
crossref_primary_10_1113_JP276562
crossref_primary_10_1002_jnr_23921
crossref_primary_10_1016_j_neuroscience_2012_06_022
crossref_primary_10_1016_j_bbi_2018_04_006
crossref_primary_10_3390_ijms20040996
crossref_primary_10_1109_TBME_2020_3022332
crossref_primary_10_1186_1756_6606_7_33
crossref_primary_10_3389_fcell_2021_665739
crossref_primary_10_1038_srep32422
crossref_primary_10_1002_mrm_28332
crossref_primary_10_1016_j_biopha_2022_113500
crossref_primary_10_1016_j_expneurol_2019_113015
crossref_primary_10_1254_fpj_140_216
crossref_primary_10_3389_fnins_2021_648476
crossref_primary_10_1080_13880209_2022_2121843
crossref_primary_10_1038_s41598_018_19205_4
crossref_primary_10_1038_srep22032
crossref_primary_10_1016_j_neuron_2020_11_007
crossref_primary_10_1002_glia_24227
crossref_primary_10_1007_s11481_013_9434_z
crossref_primary_10_3389_fcell_2021_637233
crossref_primary_10_3389_fncel_2022_925493
crossref_primary_10_1186_s12974_016_0564_0
crossref_primary_10_1155_2015_837012
crossref_primary_10_1016_j_pnpbp_2020_109931
crossref_primary_10_1007_s11064_022_03703_z
crossref_primary_10_1098_rsos_200260
crossref_primary_10_3389_fncel_2014_00129
crossref_primary_10_1038_s41598_017_10679_2
crossref_primary_10_1016_j_smim_2016_03_011
crossref_primary_10_3389_fncel_2014_00361
crossref_primary_10_3389_fneur_2021_779558
crossref_primary_10_1002_glia_23006
crossref_primary_10_1371_journal_pone_0109502
crossref_primary_10_1007_s10753_015_0133_1
crossref_primary_10_1038_s41598_019_52405_0
crossref_primary_10_1016_j_neures_2017_08_010
crossref_primary_10_1007_s10787_022_00958_4
crossref_primary_10_1017_S1740925X12000063
crossref_primary_10_1007_s12035_023_03904_9
crossref_primary_10_1002_glia_22389
crossref_primary_10_3389_fimmu_2023_1197422
crossref_primary_10_1113_JP273252
crossref_primary_10_1111_j_1476_5381_2012_02072_x
crossref_primary_10_1038_srep34633
crossref_primary_10_1016_j_bbi_2022_01_014
crossref_primary_10_1016_j_nbd_2023_106005
crossref_primary_10_3390_cells12151942
crossref_primary_10_3390_ijms21051554
crossref_primary_10_3389_fncel_2022_995861
crossref_primary_10_3389_fnins_2023_1273039
crossref_primary_10_1152_physrev_00068_2017
crossref_primary_10_3389_fncel_2015_00279
crossref_primary_10_3390_ijms22073301
crossref_primary_10_3389_fnmol_2017_00421
crossref_primary_10_1007_s43440_021_00323_2
crossref_primary_10_4137_JEN_S11269
crossref_primary_10_1155_2013_425845
crossref_primary_10_1007_s13311_016_0477_8
crossref_primary_10_1111_ejn_12213
crossref_primary_10_1021_acsptsci_0c00013
crossref_primary_10_1016_j_bbi_2016_01_001
crossref_primary_10_1111_ejn_15960
crossref_primary_10_1016_j_psyneuen_2018_12_233
crossref_primary_10_1007_s00429_014_0802_0
crossref_primary_10_1242_dev_200425
crossref_primary_10_3389_fncel_2018_00323
crossref_primary_10_1038_s41392_024_01743_1
crossref_primary_10_1051_medsci_20173312014
crossref_primary_10_3389_fncel_2018_00446
crossref_primary_10_1073_pnas_1513853113
crossref_primary_10_1186_s12974_024_03029_3
crossref_primary_10_1523_JNEUROSCI_1502_21_2021
crossref_primary_10_1155_2018_9348046
crossref_primary_10_1186_s13041_018_0347_x
crossref_primary_10_1016_j_neuropharm_2015_10_022
crossref_primary_10_1016_j_nbd_2018_05_017
crossref_primary_10_1016_j_biomaterials_2023_122426
crossref_primary_10_1016_j_neuron_2012_03_026
crossref_primary_10_2174_1570159X21666221208142151
crossref_primary_10_1002_glia_22358
crossref_primary_10_3389_fpsyt_2021_682056
crossref_primary_10_1016_j_phrs_2022_106145
crossref_primary_10_1126_science_1233208
crossref_primary_10_3390_psychoactives3010003
crossref_primary_10_3389_fnins_2018_00939
crossref_primary_10_3390_ijms20030726
crossref_primary_10_1002_glia_22596
crossref_primary_10_1016_j_nbscr_2021_100073
crossref_primary_10_1083_jcb_202401041
crossref_primary_10_3389_fncel_2014_00153
crossref_primary_10_3390_biom13030505
crossref_primary_10_1186_s12974_022_02378_1
crossref_primary_10_3389_fncel_2014_00155
crossref_primary_10_1038_s41467_018_04376_5
crossref_primary_10_1371_journal_pone_0081218
crossref_primary_10_1038_ncomms15292
crossref_primary_10_1212_WNL_0b013e3182a4a577
crossref_primary_10_1523_JNEUROSCI_0936_17_2017
crossref_primary_10_3389_fphys_2018_00855
crossref_primary_10_1177_0271678X18817663
crossref_primary_10_1002_dneu_22571
crossref_primary_10_1515_revneuro_2017_0092
crossref_primary_10_1007_s12035_021_02643_z
crossref_primary_10_3389_fncel_2019_00442
crossref_primary_10_1016_j_jphs_2020_07_011
crossref_primary_10_3389_fcell_2020_623771
crossref_primary_10_1016_j_coph_2019_03_010
crossref_primary_10_1016_j_it_2015_08_008
crossref_primary_10_3390_cells8101293
crossref_primary_10_1038_s41392_023_01588_0
crossref_primary_10_1212_WNL_0000000000000105
crossref_primary_10_1177_1756286418818092
crossref_primary_10_2174_1567205016666190830110152
crossref_primary_10_3389_fnint_2015_00073
crossref_primary_10_1007_s11055_019_00848_3
crossref_primary_10_1016_j_biopsych_2022_02_014
crossref_primary_10_1016_j_brainresbull_2019_11_012
crossref_primary_10_1016_j_bbi_2021_09_017
crossref_primary_10_1172_JCI64484
crossref_primary_10_1016_j_nbd_2023_106273
crossref_primary_10_1113_EP085713
crossref_primary_10_1016_j_neuron_2014_03_019
crossref_primary_10_1038_s41598_017_18888_5
crossref_primary_10_2174_1871527321666220517115227
crossref_primary_10_3390_ijms24021639
crossref_primary_10_1007_s00018_012_1015_4
crossref_primary_10_1111_imm_12156
crossref_primary_10_1016_j_tins_2012_11_007
crossref_primary_10_1098_rsob_130181
crossref_primary_10_1002_ejp_1907
crossref_primary_10_2147_JIR_S461795
crossref_primary_10_1186_s12974_020_01822_4
crossref_primary_10_1038_srep04329
crossref_primary_10_1002_dneu_22230
crossref_primary_10_1002_glia_24188
crossref_primary_10_1038_s41419_019_1425_4
crossref_primary_10_1098_rstb_2013_0593
crossref_primary_10_2174_1570159X19666210916102638
crossref_primary_10_1007_s00401_017_1803_x
crossref_primary_10_1523_JNEUROSCI_1492_19_2019
crossref_primary_10_1111_jnc_15558
crossref_primary_10_1074_jbc_R115_637157
crossref_primary_10_1007_s12035_019_1529_y
crossref_primary_10_1007_s00441_014_1798_8
crossref_primary_10_1016_j_pneurobio_2016_01_005
crossref_primary_10_3389_fnins_2022_1042642
crossref_primary_10_3389_fimmu_2020_01024
crossref_primary_10_1016_j_jneuroim_2020_577198
crossref_primary_10_1051_medsci_20143002012
crossref_primary_10_1007_s11060_013_1158_7
crossref_primary_10_1038_mt_2013_163
crossref_primary_10_3389_fphys_2019_00294
crossref_primary_10_1002_glia_24179
crossref_primary_10_1016_j_resp_2019_103357
crossref_primary_10_1007_s12640_022_00586_4
crossref_primary_10_1016_j_tem_2019_01_002
crossref_primary_10_1186_s12974_021_02072_8
crossref_primary_10_1002_glia_23081
crossref_primary_10_1016_j_jphs_2020_07_004
crossref_primary_10_3389_fcell_2019_00024
crossref_primary_10_1016_j_coph_2018_01_010
crossref_primary_10_1016_j_neuropharm_2015_11_001
crossref_primary_10_1016_j_neubiorev_2018_06_023
crossref_primary_10_1155_2013_429815
crossref_primary_10_3389_fneur_2015_00111
crossref_primary_10_3390_biom11030359
crossref_primary_10_1016_j_bbi_2014_03_007
crossref_primary_10_1038_s41467_019_11674_z
crossref_primary_10_1016_j_neubiorev_2015_02_006
crossref_primary_10_1073_pnas_2115539118
crossref_primary_10_3390_cells9122712
crossref_primary_10_1016_j_neuroscience_2015_01_007
crossref_primary_10_3389_fncel_2014_00348
crossref_primary_10_1016_j_jneuroim_2013_07_020
crossref_primary_10_1016_j_resp_2017_07_009
crossref_primary_10_1002_glia_24281
crossref_primary_10_1142_S0129065718500417
crossref_primary_10_7554_eLife_80352
crossref_primary_10_3390_biom11091367
crossref_primary_10_3389_fimmu_2016_00544
crossref_primary_10_1016_j_neuropharm_2018_03_023
crossref_primary_10_1016_j_mce_2016_05_015
crossref_primary_10_1016_j_bbi_2015_05_009
crossref_primary_10_1152_jn_00823_2018
crossref_primary_10_1371_journal_pone_0056293
crossref_primary_10_1177_0271678X17694185
crossref_primary_10_3389_fnint_2015_00063
crossref_primary_10_3389_fimmu_2022_1047550
crossref_primary_10_3389_fncel_2016_00303
crossref_primary_10_1002_glia_24265
crossref_primary_10_1002_JLB_6MR0118_041R
crossref_primary_10_1111_bph_15488
crossref_primary_10_3389_fcell_2021_634837
crossref_primary_10_1016_j_neuropharm_2024_109968
crossref_primary_10_1038_s41380_023_02027_w
crossref_primary_10_1016_j_pnpbp_2020_109858
crossref_primary_10_3390_ijms23105586
crossref_primary_10_4103_1673_5374_360281
crossref_primary_10_1007_s11064_022_03742_6
crossref_primary_10_1523_JNEUROSCI_3028_14_2015
crossref_primary_10_1016_j_neuroscience_2015_03_064
crossref_primary_10_1016_j_neuropharm_2020_108132
crossref_primary_10_1155_2020_7385458
crossref_primary_10_1186_s40478_016_0369_5
crossref_primary_10_1016_j_neubiorev_2016_10_031
crossref_primary_10_3390_biomedicines11051248
crossref_primary_10_1016_j_nbd_2014_11_021
crossref_primary_10_1152_ajpgi_00014_2021
crossref_primary_10_1007_s12035_023_03832_8
crossref_primary_10_1007_s10237_014_0622_4
crossref_primary_10_1016_j_intimp_2023_110347
crossref_primary_10_1002_jnr_24212
crossref_primary_10_3389_fimmu_2024_1305087
crossref_primary_10_3390_biology10010034
crossref_primary_10_1016_j_ajpath_2017_05_016
crossref_primary_10_1007_s12264_023_01024_x
crossref_primary_10_1016_j_autneu_2018_08_003
crossref_primary_10_1038_s41569_021_00520_9
crossref_primary_10_1163_15707563_00002502
crossref_primary_10_1007_s10072_021_05835_6
crossref_primary_10_3389_fnmol_2022_1072046
crossref_primary_10_1002_glia_22738
crossref_primary_10_1016_j_celrep_2021_110128
crossref_primary_10_1134_S0006297917030178
crossref_primary_10_3389_fncir_2023_1006424
crossref_primary_10_1016_j_brainresbull_2016_03_017
crossref_primary_10_1016_j_cellimm_2018_01_004
crossref_primary_10_3389_fnmol_2022_965756
crossref_primary_10_1007_s11357_020_00164_6
crossref_primary_10_1016_j_neures_2020_11_005
crossref_primary_10_1016_j_bbi_2021_12_014
crossref_primary_10_1074_jbc_M115_689729
crossref_primary_10_1155_2016_8607038
crossref_primary_10_1007_s11064_021_03513_9
crossref_primary_10_3390_pharmaceutics14081550
crossref_primary_10_1007_s12017_015_8377_3
crossref_primary_10_1038_s41380_018_0108_3
crossref_primary_10_1177_1756286418774254
crossref_primary_10_1016_j_biopha_2020_110470
crossref_primary_10_7554_eLife_15043
crossref_primary_10_1038_cdd_2013_108
crossref_primary_10_1016_j_neuropharm_2014_08_012
crossref_primary_10_3390_cimb45050284
crossref_primary_10_1016_j_cyto_2022_156005
crossref_primary_10_1111_jne_12273
crossref_primary_10_1038_srep17486
crossref_primary_10_1523_JNEUROSCI_3279_14_2015
crossref_primary_10_1016_j_pneurobio_2017_01_002
crossref_primary_10_1111_ejn_13191
crossref_primary_10_1111_bph_13425
crossref_primary_10_1007_s11064_023_04056_x
crossref_primary_10_1113_JP272547
crossref_primary_10_1016_j_celrep_2014_07_042
crossref_primary_10_1002_glia_22951
crossref_primary_10_3389_fpsyt_2020_00071
crossref_primary_10_1186_s13041_021_00868_6
crossref_primary_10_1002_jnr_24689
crossref_primary_10_1038_npp_2016_122
crossref_primary_10_1155_2017_8640970
crossref_primary_10_1016_j_jneuroim_2018_05_009
crossref_primary_10_1007_s12035_024_04022_w
crossref_primary_10_1007_s12035_014_8943_y
crossref_primary_10_1016_j_arr_2022_101775
crossref_primary_10_1016_j_neuropharm_2020_108054
crossref_primary_10_17116_jnevro20171171224_10
crossref_primary_10_1016_j_arr_2015_10_001
crossref_primary_10_3389_fphar_2022_900337
crossref_primary_10_1002_glia_22707
crossref_primary_10_1111_jnc_15840
crossref_primary_10_1002_brb3_403
crossref_primary_10_1016_j_neuron_2014_02_007
crossref_primary_10_1186_s13024_021_00506_8
crossref_primary_10_1146_annurev_immunol_051116_052358
crossref_primary_10_1016_j_neubiorev_2023_105100
crossref_primary_10_1007_s12011_020_02384_5
crossref_primary_10_1186_s12974_018_1175_8
crossref_primary_10_3389_fimmu_2020_01818
crossref_primary_10_3390_cells13110921
crossref_primary_10_3389_fncel_2021_725693
crossref_primary_10_3389_fnins_2019_01434
crossref_primary_10_1152_jn_00525_2016
crossref_primary_10_3390_ijms24032747
crossref_primary_10_1126_sciadv_aax7331
crossref_primary_10_3390_molecules27134124
crossref_primary_10_1016_j_neuroscience_2016_01_008
crossref_primary_10_1016_j_pscychresns_2022_111534
crossref_primary_10_1038_s41467_017_00422_w
crossref_primary_10_1002_glia_22817
crossref_primary_10_1016_j_jpain_2022_10_011
crossref_primary_10_1177_1073858418783959
crossref_primary_10_1111_jnc_15972
crossref_primary_10_1016_j_bbi_2017_07_156
crossref_primary_10_3389_fncel_2022_955550
crossref_primary_10_3389_fnins_2019_00356
crossref_primary_10_4161_cib_23631
crossref_primary_10_3389_fnhum_2016_00566
crossref_primary_10_1016_j_bbi_2021_05_021
crossref_primary_10_3390_biom12010034
crossref_primary_10_1371_journal_pone_0100546
crossref_primary_10_1186_s12974_019_1519_z
crossref_primary_10_1111_dgd_12053
crossref_primary_10_1136_pn_2022_003373
crossref_primary_10_1038_npp_2015_4
crossref_primary_10_1186_s12974_018_1186_5
crossref_primary_10_1016_j_neuron_2017_06_020
crossref_primary_10_3390_ijms25042346
crossref_primary_10_1016_j_crneur_2022_100028
crossref_primary_10_1186_s12576_022_00848_y
crossref_primary_10_31887_DCNS_2017_19_1_rmcintyre
crossref_primary_10_14348_molcells_2021_0020
crossref_primary_10_1186_s13195_024_01444_5
crossref_primary_10_1007_s11302_015_9480_5
crossref_primary_10_1016_j_expneurol_2022_114273
crossref_primary_10_2147_IJGM_S353276
crossref_primary_10_1016_j_revhom_2012_07_001
crossref_primary_10_3390_brainsci12030367
crossref_primary_10_1016_j_mcn_2020_103567
crossref_primary_10_17759_autdd_2020180306
crossref_primary_10_1016_j_neuroscience_2022_02_034
crossref_primary_10_1186_s12974_020_1729_4
crossref_primary_10_1038_npp_2015_127
crossref_primary_10_3390_cells9051108
crossref_primary_10_1016_j_neuropharm_2015_08_005
crossref_primary_10_1177_1073858414530512
crossref_primary_10_1007_s12035_016_9955_6
crossref_primary_10_1177_1073858420901474
crossref_primary_10_3389_fpsyt_2021_771144
crossref_primary_10_1007_s12035_016_9724_6
crossref_primary_10_1016_j_bbi_2020_03_035
crossref_primary_10_1016_j_bcp_2012_04_009
crossref_primary_10_3233_JAD_151075
crossref_primary_10_3390_biomedicines10040774
crossref_primary_10_1016_j_phrs_2020_105253
crossref_primary_10_1016_j_celrep_2017_04_047
crossref_primary_10_1002_ana_25698
Cites_doi 10.1126/science.1144640
10.1074/jbc.M606429200
10.1038/nn1997
10.1085/jgp.200810043
10.1182/blood-2003-11-4089
10.1016/j.neuron.2004.08.011
10.1523/JNEUROSCI.4268-04.2005
10.1038/nn1805
10.1523/JNEUROSCI.18-14-05225.1998
10.1093/brain/awp177
10.4049/jimmunol.162.7.3749
10.1126/science.8134839
10.1126/science.1090349
10.1152/jn.00676.2009
10.1523/JNEUROSCI.3028-04.2004
10.1126/science.1067859
10.1073/pnas.0702553104
10.1038/nn1849
10.1159/000161063
10.1038/nm.2127
10.1523/JNEUROSCI.2660-04.2004
10.1073/pnas.94.15.8093
10.1038/nature05453
10.1523/JNEUROSCI.22-07-02478.2002
10.4049/jimmunol.166.12.7527
10.1016/S0140-6736(01)05625-2
10.1016/j.bbr.2008.09.040
10.1038/nature09615
10.1074/jbc.M002226200
10.1083/jcb.200606016
10.1002/glia.20459
10.1016/j.tins.2007.07.007
10.1016/S0197-0186(97)00126-5
10.1016/j.nbd.2006.12.001
10.1016/0165-0270(91)90128-M
10.1371/journal.pone.0002595
10.1523/JNEUROSCI.2859-03.2004
10.1016/j.brainresrev.2004.12.003
10.1002/glia.10256
10.1523/JNEUROSCI.06-08-02163.1986
10.1111/j.1460-9568.2011.07631.x
10.1523/JNEUROSCI.1717-08.2008
10.1523/JNEUROSCI.0628-05.2005
10.1523/JNEUROSCI.0976-10.2010
10.1111/j.1528-1167.2008.01490.x
10.1186/1742-2094-4-26
10.1016/j.brainresrev.2009.10.005
10.1073/pnas.1432609100
10.1038/nn1715
10.1038/nature08673
10.1016/j.neuron.2007.01.010
10.1016/j.expneurol.2008.05.014
10.1523/JNEUROSCI.2251-04.2004
10.1523/JNEUROSCI.5804-08.2009
10.1073/pnas.0607423103
10.1016/j.jneuroim.2006.07.007
10.1124/jpet.104.068650
10.1038/nn1618
10.1038/369744a0
10.1126/science.1116916
10.1016/0006-8993(94)91958-5
10.1016/S0896-6273(03)00717-7
10.1038/sj.bjp.0701837
10.1038/89490
10.1038/nn1472
10.1111/j.1471-4159.2004.02204.x
10.1073/pnas.96.3.1100
10.1016/j.neuron.2011.02.003
10.1002/glia.20960
10.1523/JNEUROSCI.4772-08.2009
10.1126/science.282.5396.2085
10.1073/pnas.87.1.83
10.1073/pnas.1835831100
10.1097/00004647-199711000-00012
10.1016/j.neuron.2009.08.039
10.1038/nm1208-1309
10.1523/JNEUROSCI.4363-08.2009
10.1038/35058528
10.1113/jphysiol.2007.142737
10.1038/nrneurol.2010.17
10.1002/glia.20477
10.1523/JNEUROSCI.0473-04.2004
10.1002/glia.20552
10.1016/S0197-4580(98)00088-8
10.1016/j.tins.2007.07.006
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 24, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 24, 2012
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1111098109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts

MEDLINE
CrossRef

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 1010
ExternalDocumentID 2571626581
10_1073_pnas_1111098109
22167804
109_4_E197
41477189
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
AJYGW
DZ
F20
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
AAYJJ
HQ3
ID FETCH-LOGICAL-c563t-3db69f4d47954eb5bef453a878597508ba149f6498ac5225413f7ea900d918ca3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:15:13 EDT 2024
Fri Oct 25 09:48:34 EDT 2024
Fri Oct 25 05:34:50 EDT 2024
Thu Oct 10 20:06:51 EDT 2024
Fri Aug 23 01:10:31 EDT 2024
Sat Sep 28 08:01:51 EDT 2024
Wed Nov 11 00:29:43 EST 2020
Fri Feb 02 07:04:34 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-3db69f4d47954eb5bef453a878597508ba149f6498ac5225413f7ea900d918ca3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Author contributions: O.P., S.B.A., A.T., and A.B. designed research; O.P., S.B.A., and P.R. performed research; O.P., S.B.A., and P.R. analyzed data; and O.P., S.B.A., and A.B. wrote the paper.
2O.P. and S.B.A. contributed equally to this work.
Edited* by Tullio Pozzan, University of Padova, Padua, Italy, and approved November 21, 2011 (received for review July 18, 2011)
OpenAccessLink https://www.pnas.org/content/pnas/109/4/E197.full.pdf
PMID 22167804
PQID 918109998
PQPubID 42026
PageCount 2
ParticipantIDs proquest_miscellaneous_1221146536
pubmed_primary_22167804
proquest_journals_918109998
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3268269
jstor_primary_41477189
proquest_miscellaneous_920228440
crossref_primary_10_1073_pnas_1111098109
pnas_primary_109_4_E197
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2012-01-24
PublicationDateYYYYMMDD 2012-01-24
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 18977395 - Behav Brain Res. 2009 Jan 23;196(2):168-79
21068834 - Nature. 2010 Nov 11;468(7321):253-62
15456834 - J Neurosci. 2004 Sep 29;24(39):8606-20
18838950 - Rev Neurol Dis. 2008 Summer;5(3):109-16
9390655 - J Cereb Blood Flow Metab. 1997 Nov;17(11):1230-8
7911978 - Nature. 1994 Jun 30;369(6483):744-7
18841035 - Pharmacology. 2008;82(4):257-63
8134839 - Science. 1994 Mar 25;263(5154):1768-71
17239605 - Neurobiol Dis. 2007 Apr;26(1):66-77
20140959 - Glia. 2010 Apr 15;58(6):741-54
12898707 - Glia. 2003 Sep;43(3):281-91
16000618 - J Neurosci. 2005 Jul 6;25(27):6286-95
10856294 - J Biol Chem. 2000 Aug 25;275(34):26252-8
19057551 - Nat Med. 2008 Dec;14(12):1309-10
15339653 - Neuron. 2004 Sep 2;43(5):729-43
16732273 - Nat Neurosci. 2006 Jul;9(7):917-24
11426226 - Nat Neurosci. 2001 Jul;4(7):702-10
17151600 - Nature. 2007 Jan 11;445(7124):168-76
18725529 - J Gen Physiol. 2008 Sep;132(3):339-49
20071630 - J Neurophysiol. 2010 Mar;103(3):1322-8
17717185 - Science. 2007 Aug 24;317(5841):1083-6
15574734 - J Neurosci. 2004 Dec 1;24(48):10835-45
18586243 - Exp Neurol. 2008 Sep;213(1):114-21
16882655 - J Biol Chem. 2006 Oct 13;281(41):30684-96
15295027 - J Neurosci. 2004 Aug 4;24(31):6920-7
7895052 - Brain Res. 1994 Nov 21;664(1-2):94-100
14675168 - J Neurochem. 2004 Jan;88(1):246-56
19840553 - Neuron. 2009 Oct 15;64(1):110-22
17043238 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):16021-6
15345752 - J Pharmacol Exp Ther. 2004 Dec;311(3):1038-43
11256079 - Nat Rev Neurosci. 2001 Mar;2(3):185-93
17060494 - J Cell Biol. 2006 Oct 23;175(2):209-15
3018187 - J Neurosci. 1986 Aug;6(8):2163-78
11513911 - Lancet. 2001 Aug 11;358(9280):461-7
21395864 - Eur J Neurosci. 2011 Apr;33(8):1483-92
18579739 - J Neurosci. 2008 Jun 25;28(26):6659-63
19339593 - J Neurosci. 2009 Apr 1;29(13):3974-80
20075918 - Nature. 2010 Jan 14;463(7278):232-6
21382557 - Neuron. 2011 Mar 10;69(5):988-1001
9676740 - Neurochem Int. 1998 May-Jun;32(5-6):421-5
17693552 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13798-803
9851930 - Science. 1998 Dec 11;282(5396):2085-8
17965659 - Nat Neurosci. 2007 Nov;10(11):1387-94
9223320 - Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8093-8
20234358 - Nat Rev Neurol. 2010 Apr;6(4):193-201
9927700 - Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1100-5
16369481 - Nat Neurosci. 2006 Jan;9(1):99-107
14593169 - Science. 2003 Oct 31;302(5646):830-4
16996144 - J Neuroimmunol. 2006 Nov;180(1-2):71-87
19567702 - Brain. 2009 Sep;132(Pt 9):2478-86
11390507 - J Immunol. 2001 Jun 15;166(12):7527-33
14659095 - Neuron. 2003 Dec 4;40(5):971-82
20554880 - J Neurosci. 2010 Jun 16;30(24):8285-95
17647290 - Glia. 2007 Oct;55(13):1334-47
14736858 - J Neurosci. 2004 Jan 21;24(3):722-32
19261880 - J Neurosci. 2009 Mar 4;29(9):2845-56
15850652 - Brain Res Brain Res Rev. 2005 Apr;48(2):133-43
17937799 - J Neuroinflammation. 2007;4:26
11910117 - Science. 2002 Mar 22;295(5563):2282-5
12824464 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8514-9
18612411 - PLoS One. 2008;3(7):e2595
9630335 - Br J Pharmacol. 1998 May;124(1):1-3
14608033 - Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14397-402
15895084 - Nat Neurosci. 2005 Jun;8(6):752-8
15716415 - J Neurosci. 2005 Feb 16;25(7):1788-96
16210541 - Science. 2005 Oct 7;310(5745):113-6
17904651 - Trends Neurosci. 2007 Oct;30(10):527-35
9755289 - Pharmacol Rev. 1998 Sep;50(3):413-92
10201887 - J Immunol. 1999 Apr 1;162(7):3749-52
17962333 - J Physiol. 2007 Dec 15;585(Pt 3):843-52
17310248 - Nat Neurosci. 2007 Mar;10(3):331-9
11923412 - J Neurosci. 2002 Apr 1;22(7):2478-86
9880052 - Neurobiol Aging. 1998 Sep-Oct;19(5):497-503
19295150 - J Neurosci. 2009 Mar 18;29(11):3442-52
17115040 - Nat Neurosci. 2006 Dec;9(12):1512-9
20348922 - Nat Med. 2010 Apr;16(4):413-9
9651205 - J Neurosci. 1998 Jul 15;18(14):5225-33
18226169 - Epilepsia. 2008;49 Suppl 2:24-32
17897728 - Trends Neurosci. 2007 Oct;30(10):490-6
14739214 - Blood. 2004 May 15;103(10):3615-23
17106878 - Glia. 2007 Feb;55(3):233-8
1715499 - J Neurosci Methods. 1991 Apr;37(2):173-82
15601948 - J Neurosci. 2004 Dec 15;24(50):11421-8
19896978 - Brain Res Rev. 2010 May;63(1-2):93-102
17270732 - Neuron. 2007 Feb 1;53(3):337-51
17285589 - Glia. 2007 Jun;55(8):777-89
2296607 - Proc Natl Acad Sci U S A. 1990 Jan;87(1):83-7
e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_77_2
e_1_3_3_79_2
Hoshino K (e_1_3_3_32_2) 1999; 162
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
Ralevic V (e_1_3_3_71_2) 1998; 50
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
He Y (e_1_3_3_57_2) 2010; 58
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_1_2_17_8_4_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_82_2
e_1_1_2_17_8_2_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_84_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
Najjar S (e_1_3_3_58_2) 2008; 5
e_1_1_2_17_8_1_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_1_2_17_8_5_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
e_1_1_2_17_8_3_2
References_xml – ident: e_1_3_3_6_2
  doi: 10.1126/science.1144640
– ident: e_1_3_3_41_2
  doi: 10.1074/jbc.M606429200
– ident: e_1_3_3_21_2
  doi: 10.1038/nn1997
– ident: e_1_3_3_35_2
  doi: 10.1085/jgp.200810043
– ident: e_1_3_3_82_2
  doi: 10.1182/blood-2003-11-4089
– ident: e_1_3_3_4_2
  doi: 10.1016/j.neuron.2004.08.011
– ident: e_1_3_3_46_2
  doi: 10.1523/JNEUROSCI.4268-04.2005
– ident: e_1_3_3_25_2
  doi: 10.1038/nn1805
– ident: e_1_3_3_73_2
  doi: 10.1523/JNEUROSCI.18-14-05225.1998
– ident: e_1_3_3_79_2
  doi: 10.1093/brain/awp177
– volume: 162
  start-page: 3749
  year: 1999
  ident: e_1_3_3_32_2
  article-title: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product
  publication-title: J Immunol
  doi: 10.4049/jimmunol.162.7.3749
  contributor:
    fullname: Hoshino K
– ident: e_1_3_3_2_2
  doi: 10.1126/science.8134839
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1090349
– ident: e_1_3_3_38_2
  doi: 10.1152/jn.00676.2009
– ident: e_1_3_3_72_2
  doi: 10.1523/JNEUROSCI.3028-04.2004
– ident: e_1_3_3_33_2
  doi: 10.1126/science.1067859
– ident: e_1_3_3_62_2
  doi: 10.1073/pnas.0702553104
– ident: e_1_3_3_43_2
  doi: 10.1038/nn1849
– ident: e_1_3_3_55_2
  doi: 10.1159/000161063
– ident: e_1_3_3_66_2
  doi: 10.1038/nm.2127
– ident: e_1_3_3_42_2
  doi: 10.1523/JNEUROSCI.2660-04.2004
– ident: e_1_3_3_37_2
  doi: 10.1073/pnas.94.15.8093
– volume: 5
  start-page: 109
  year: 2008
  ident: e_1_3_3_58_2
  article-title: Immunology and epilepsy
  publication-title: Rev Neurol Dis
  contributor:
    fullname: Najjar S
– ident: e_1_3_3_67_2
  doi: 10.1038/nature05453
– ident: e_1_3_3_61_2
  doi: 10.1523/JNEUROSCI.22-07-02478.2002
– ident: e_1_3_3_28_2
  doi: 10.4049/jimmunol.166.12.7527
– ident: e_1_3_3_10_2
  doi: 10.1016/S0140-6736(01)05625-2
– ident: e_1_3_3_29_2
  doi: 10.1016/j.bbr.2008.09.040
– ident: e_1_3_3_8_2
  doi: 10.1038/nature09615
– ident: e_1_3_3_23_2
  doi: 10.1074/jbc.M002226200
– ident: e_1_3_3_64_2
  doi: 10.1083/jcb.200606016
– ident: e_1_3_3_20_2
  doi: 10.1002/glia.20459
– ident: e_1_3_3_18_2
  doi: 10.1016/j.tins.2007.07.007
– ident: e_1_3_3_70_2
  doi: 10.1016/S0197-0186(97)00126-5
– ident: e_1_3_3_69_2
  doi: 10.1016/j.nbd.2006.12.001
– ident: e_1_3_3_83_2
  doi: 10.1016/0165-0270(91)90128-M
– ident: e_1_3_3_14_2
  doi: 10.1371/journal.pone.0002595
– ident: e_1_3_3_7_2
  doi: 10.1523/JNEUROSCI.2859-03.2004
– ident: e_1_3_3_19_2
  doi: 10.1016/j.brainresrev.2004.12.003
– ident: e_1_3_3_48_2
  doi: 10.1002/glia.10256
– ident: e_1_3_3_52_2
  doi: 10.1523/JNEUROSCI.06-08-02163.1986
– ident: e_1_1_2_17_8_5_2
  doi: 10.1111/j.1460-9568.2011.07631.x
– ident: e_1_3_3_56_2
  doi: 10.1523/JNEUROSCI.1717-08.2008
– ident: e_1_3_3_34_2
  doi: 10.1523/JNEUROSCI.0628-05.2005
– ident: e_1_3_3_49_2
  doi: 10.1523/JNEUROSCI.0976-10.2010
– ident: e_1_3_3_78_2
  doi: 10.1111/j.1528-1167.2008.01490.x
– ident: e_1_3_3_50_2
  doi: 10.1186/1742-2094-4-26
– ident: e_1_1_2_17_8_2_2
  doi: 10.1016/j.brainresrev.2009.10.005
– ident: e_1_3_3_63_2
  doi: 10.1073/pnas.1432609100
– ident: e_1_3_3_26_2
  doi: 10.1038/nn1715
– ident: e_1_3_3_44_2
  doi: 10.1038/nature08673
– ident: e_1_3_3_12_2
  doi: 10.1016/j.neuron.2007.01.010
– ident: e_1_3_3_65_2
  doi: 10.1016/j.expneurol.2008.05.014
– ident: e_1_3_3_13_2
  doi: 10.1523/JNEUROSCI.2251-04.2004
– ident: e_1_3_3_24_2
  doi: 10.1523/JNEUROSCI.5804-08.2009
– ident: e_1_3_3_27_2
  doi: 10.1073/pnas.0607423103
– ident: e_1_3_3_31_2
  doi: 10.1016/j.jneuroim.2006.07.007
– ident: e_1_3_3_40_2
  doi: 10.1124/jpet.104.068650
– ident: e_1_3_3_68_2
  doi: 10.1038/nn1618
– ident: e_1_3_3_1_2
  doi: 10.1038/369744a0
– ident: e_1_1_2_17_8_1_2
  doi: 10.1126/science.1116916
– ident: e_1_3_3_74_2
  doi: 10.1016/0006-8993(94)91958-5
– ident: e_1_3_3_76_2
  doi: 10.1016/S0896-6273(03)00717-7
– ident: e_1_3_3_39_2
  doi: 10.1038/sj.bjp.0701837
– ident: e_1_3_3_53_2
  doi: 10.1038/89490
– ident: e_1_3_3_17_2
  doi: 10.1038/nn1472
– ident: e_1_3_3_54_2
  doi: 10.1111/j.1471-4159.2004.02204.x
– ident: e_1_3_3_84_2
  doi: 10.1073/pnas.96.3.1100
– ident: e_1_3_3_36_2
  doi: 10.1016/j.neuron.2011.02.003
– volume: 58
  start-page: 741
  year: 2010
  ident: e_1_3_3_57_2
  article-title: Glutamine synthetase deficiency in murine astrocytes results in neonatal death
  publication-title: Glia
  doi: 10.1002/glia.20960
  contributor:
    fullname: He Y
– ident: e_1_3_3_80_2
  doi: 10.1523/JNEUROSCI.4772-08.2009
– ident: e_1_3_3_30_2
  doi: 10.1126/science.282.5396.2085
– ident: e_1_3_3_51_2
  doi: 10.1073/pnas.87.1.83
– ident: e_1_3_3_77_2
  doi: 10.1073/pnas.1835831100
– ident: e_1_3_3_75_2
  doi: 10.1097/00004647-199711000-00012
– ident: e_1_3_3_81_2
  doi: 10.1016/j.neuron.2009.08.039
– ident: e_1_1_2_17_8_3_2
  doi: 10.1523/JNEUROSCI.2859-03.2004
– ident: e_1_3_3_60_2
  doi: 10.1038/nm1208-1309
– ident: e_1_1_2_17_8_4_2
  doi: 10.1038/nature08673
– ident: e_1_3_3_22_2
  doi: 10.1523/JNEUROSCI.4363-08.2009
– ident: e_1_3_3_3_2
  doi: 10.1038/35058528
– ident: e_1_3_3_45_2
  doi: 10.1113/jphysiol.2007.142737
– volume: 50
  start-page: 413
  year: 1998
  ident: e_1_3_3_71_2
  article-title: Receptors for purines and pyrimidines
  publication-title: Pharmacol Rev
  contributor:
    fullname: Ralevic V
– ident: e_1_3_3_9_2
  doi: 10.1038/nrneurol.2010.17
– ident: e_1_3_3_47_2
  doi: 10.1002/glia.20477
– ident: e_1_3_3_5_2
  doi: 10.1523/JNEUROSCI.0473-04.2004
– ident: e_1_3_3_16_2
  doi: 10.1002/glia.20552
– ident: e_1_3_3_15_2
  doi: 10.1016/S0197-4580(98)00088-8
– ident: e_1_3_3_59_2
  doi: 10.1016/j.tins.2007.07.006
SSID ssj0009580
Score 2.6041994
Snippet Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1009
SubjectTerms Adenosine triphosphatase
Adenosine Triphosphate - metabolism
Analysis of Variance
Animals
Astrocytes
Astrocytes - metabolism
Astrocytes - physiology
Astrocytes - ultrastructure
ATP
Biological Sciences
Blotting, Western
Brain diseases
Brain slice preparation
Cell culture
Data processing
DNA Primers - genetics
Electrophysiology
Excitatory postsynaptic potentials
Excitatory Postsynaptic Potentials - physiology
Fluorescent Antibody Technique
Glial cells
Glutamic acid receptors (metabotropic)
Hippocampus
Hippocampus - physiology
Immunohistochemistry
Mice
Mice, Inbred C57BL
Mice, Knockout
Microglia
Microglia - metabolism
Microglia - physiology
Microglia - ultrastructure
Microscopy, Confocal
Microscopy, Electron
Neuromodulation
Neurons
Neurotransmission
Neurotransmitters
PNAS Plus
PNAS PLUS (AUTHOR SUMMARIES)
Real-Time Polymerase Chain Reaction
Receptor, Metabotropic Glutamate 5
Receptors, Metabotropic Glutamate - metabolism
Receptors, Purinergic P2Y1 - metabolism
Synaptic transmission
Tumor necrosis factor- alpha
Title Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission
URI https://www.jstor.org/stable/41477189
http://www.pnas.org/content/109/4/E197.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22167804
https://www.proquest.com/docview/918109998
https://search.proquest.com/docview/1221146536
https://search.proquest.com/docview/920228440
https://pubmed.ncbi.nlm.nih.gov/PMC3268269
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bp16q0pY25SFX6oEewsaJ7cRHhEC0FVUPRULqIbJjh67EJis2SOXfM-M86CJ66SEnjxXLM_Z8Y898BvjkeOaltj5ODFqwMNzGVnARO1sr6XJOpw2UbfFdnV-Kr1fyagPkWAsTkvYrOz9qbhZHzfx3yK1cLqrZmCc2-3FxgpADUbGebcImGugYok9Mu0Vfd5Li9itSMfL55Nls2ZhV2CMSXeBHRMApV0TBs-aV-sREYjtF-eeQ59MEyr880tkreDlASXbcD3kbNnzzGraHxbpihwOj9Oc38OuC0u6ub-aGUR1DfwrLOgzMrxH9MbPq0I3ddz4OdSSIQdmidcO7Xqytmf9TUSlae3vPAv9lRw4ODYRO2t7C5dnpz5PzeHhVIa6kyro4c1bpWjiRaym8ldbXQmaoqQJjC4Rr1mDQVCuhC1MhOJPo5ercG50kTvOiMtkObDVt498Dq7OkMNIVXqVcGMmNqZRTokJMWOlaqggOx1ktlz15RhkuvfOspLktH3URwU6Y9UkODSZHv4kN74LoY39divIUjSiC3VEz5bDwViUOke76dBHBx6kVJ4SuQUzj2zv8KSqdE60cjo_9Q0anxAskREK_D6qeBjCaTAT5mhFMAkTYvd6CdhyIuwe7_fDfPXfhBQI2yqWJU7EHW93tnd9HUNTZAwwHvnw7CEvhAYHhDPY
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoBLRQuloUCNxKEc0s3DduIjqlot0K04tFIlDpZfaVfqJqtuKtF_z9h5lEVw4ZCTx4rlmfF8tmc-A3y0ae6Y0C5OFFowVamONU1pbHXFmS1Sf9rgsy3O-fSSfr1iVxvAhlqYkLRv9Pyovl0c1fObkFu5XJjJkCc2-T47RsiBqFhMnsBT9NeEDpv0kWu37CpPMlyAaUYHRp8inyxrtQqrRCJK_DwVcJZyT8KzFpe61ETPd4ryf8Oef6ZQ_haTTl_AVg8myedu0Nuw4eod2O7ddUUOe07pTy_hx8wn3l3fzhXxlQzdOSxpcWt-jfiPqFWLgeyhdXGoJEEUShaN7V_2Ik1F3E_ji9GauwcSGDBbH-LQRPxZ2yu4PD25OJ7G_bsKsWE8b-Pcai4qamkhGHWaaVdRlqOuStxdIGDTCrdNFaeiVAbhGcM4VxVOiSSxIi2Nyndhs25qtwekypNSMVs6nqVUsVQpwy2nBlGhERXjERwOsyqXHX2GDNfeRS793MpHXUSwG2Z9lEOTKTByYsPrIPrYX0gqT9CMItgfNCN711tJHKK_7RNlBB_GVpwQfxGiatfc409R6aknlsPxkX_IiMwzA1Ga-N8HVY8DGEwmgmLNCEYBT9m93oKWHKi7e8t98989D-DZ9GJ2Js--nH_bh-cI33xmTZzRt7DZ3t27dwiRWv0-OMQvdSYPUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIgLaoFCKA8jcSiHNHFiO_ERla7Ko1UPVKrEwfKzXambrLqpRP99x86jXQQXDjl5rIw8Y8839vgzQh8tKR0T2qW5Ag-miuhUU0JTqz1ntiJhtyFUWxzzw1P67Yyd3XvqKxbtGz3fay4Xe838ItZWLhcmG-vEspOjfYAcgIpFtrQ-e4gewZzN-ZioT3y7dX_7pIBFmBZ0ZPWpymzZqFVcKXJRwxfogAvCAxHPWmzqyxMD5ynI_w1__llGeS8uzTbR0wFQ4s-94lvogWueoa1hyq7w7sAr_ek5-nUUiu_OL-cKh9sM_V4s7iA9PwcMiNWqg2B207k03iYBJIoXrR1e98Ktx-63CRfS2qsbHFkwuxDmwE3CftsLdDo7-Ll_mA5vK6SG8bJLS6u58NTSSjDqNNPOU1aCvWrIMAC0aQWpk-dU1MoARGMQ63zllMhzK0htVLmNNpq2ca8Q9mVeK2ZrxwtCFSNKGW45NYAMjfCMJ2h3HFW57Ck0ZDz6rkoZxlbe2SJB23HUJzlwmwqiJzS8jKJ3_YWk8gBcKUE7o2XkMP1WElQMJ36iTtCHqRUGJByGqMa11_BTMDoJ5HKgH_6HjCgCOxClefh9NPWkwOgyCarWnGASCLTd6y3gzZG-e_De1__d8z16fPJlJn98Pf6-g54AggvFNWlB36CN7uravQWU1Ol3cT7cAlglEGY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglia+activation+triggers+astrocyte-mediated+modulation+of+excitatory+neurotransmission&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Pascual%2C+Olivier&rft.au=Achour%2C+Sarrah+Ben&rft.au=Rostaing%2C+Philippe&rft.au=Triller%2C+Antoine&rft.date=2012-01-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=4&rft.spage=1009&rft.epage=1010&rft_id=info:doi/10.1073%2Fpnas.1111098109&rft.externalDocID=41477189
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F4.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F4.cover.gif