An initial study on the predictive value using multiple MRI characteristics for Ki-67 labeling index in glioma

Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67...

Full description

Saved in:
Bibliographic Details
Published inJournal of translational medicine Vol. 21; no. 1; pp. 119 - 11
Main Authors Du, Ningfang, Shu, Weiquan, Li, Kefeng, Deng, Yao, Xu, Xinxin, Ye, Yao, Tang, Feng, Mao, Renling, Lin, Guangwu, Li, Shihong, Fang, Xuhao
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 11.02.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics. Preoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis. ADC , ADC , rADC , rADC and Ki-67 LI showed a negative correlation (r = - 0.478, r = - 0.369, r = - 0.488, r = - 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933-0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721-0.879). There was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.
AbstractList Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics. Preoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis. ADC , ADC , rADC , rADC and Ki-67 LI showed a negative correlation (r = - 0.478, r = - 0.369, r = - 0.488, r = - 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933-0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721-0.879). There was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.
Abstract Background and purpose Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics. Methods Preoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis. Results ADCmin, ADCmean, rADCmin, rADCmean and Ki-67 LI showed a negative correlation (r = − 0.478, r = − 0.369, r = − 0.488, r = − 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933–0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721–0.879). Conclusions There was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.
Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics.BACKGROUND AND PURPOSEKi-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics.Preoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis.METHODSPreoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis.ADCmin, ADCmean, rADCmin, rADCmean and Ki-67 LI showed a negative correlation (r = - 0.478, r = - 0.369, r = - 0.488, r = - 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933-0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721-0.879).RESULTSADCmin, ADCmean, rADCmin, rADCmean and Ki-67 LI showed a negative correlation (r = - 0.478, r = - 0.369, r = - 0.488, r = - 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933-0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721-0.879).There was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.CONCLUSIONSThere was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.
Background and purposeKi-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics.MethodsPreoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis.ResultsADCmin, ADCmean, rADCmin, rADCmean and Ki-67 LI showed a negative correlation (r = − 0.478, r = − 0.369,r = − 0.488, r = − 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933–0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721–0.879).ConclusionsThere was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.
Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics. Preoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis. ADC.sub.min, ADC.sub.mean, rADC.sub.min, rADC.sub.mean and Ki-67 LI showed a negative correlation (r = - 0.478, r = - 0.369, r = - 0.488, r = - 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933-0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721-0.879). There was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI.
Background and purpose Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This study aimed to explore the correlation between Ki-67 LI and apparent diffusion coefficient (ADC) parameters and to predict the level of Ki-67 LI noninvasively before surgery by multiple MRI characteristics. Methods Preoperative MRI data of 166 patients with pathologically confirmed glioma in our hospital from 2016 to 2020 were retrospectively analyzed. The cut-off point of Ki-67 LI for glioma grading was defined. The differences in MRI characteristics were compared between the low and high Ki-67 LI groups. The receiver operating characteristic (ROC) curve was used to estimate the accuracy of each ADC parameter in predicting the Ki-67 level, and finally a multivariate logistic regression model was constructed based on the results of ROC analysis. Results ADC.sub.min, ADC.sub.mean, rADC.sub.min, rADC.sub.mean and Ki-67 LI showed a negative correlation (r = - 0.478, r = - 0.369, r = - 0.488, r = - 0.388, all P < 0.001). The Ki-67 LI of low-grade gliomas (LGGs) was different from that of high-grade gliomas (HGGs), and the cut-off point of Ki-67 LI for distinguishing LGGs from HGGs was 9.5%, with an area under the ROC curve (AUROC) of 0.962 (95%CI 0.933-0.990). The ADC parameters in the high Ki-67 group were significantly lower than those in the low Ki-67 group (all P < 0.05). The peritumoral edema (PTE) of gliomas in the high Ki-67 LI group was higher than that in the low Ki-67 LI group (P < 0.05). The AUROC of Ki-67 LI level assessed by the multivariate logistic regression model was 0.800 (95%CI 0.721-0.879). Conclusions There was a negative correlation between ADC parameters and Ki-67 LI, and the multivariate logistic regression model combined with peritumoral edema and ADC parameters could improve the prediction ability of Ki-67 LI. Keywords: Glioma, Magnetic resonance imaging, Ki-67 labeling index, Diffusion-weighted magnetic resonance imaging, Apparent diffusion coefficient, Peritumoral edema
ArticleNumber 119
Audience Academic
Author Du, Ningfang
Tang, Feng
Li, Shihong
Mao, Renling
Shu, Weiquan
Li, Kefeng
Xu, Xinxin
Ye, Yao
Lin, Guangwu
Fang, Xuhao
Deng, Yao
Author_xml – sequence: 1
  givenname: Ningfang
  surname: Du
  fullname: Du, Ningfang
– sequence: 2
  givenname: Weiquan
  surname: Shu
  fullname: Shu, Weiquan
– sequence: 3
  givenname: Kefeng
  surname: Li
  fullname: Li, Kefeng
– sequence: 4
  givenname: Yao
  surname: Deng
  fullname: Deng, Yao
– sequence: 5
  givenname: Xinxin
  surname: Xu
  fullname: Xu, Xinxin
– sequence: 6
  givenname: Yao
  surname: Ye
  fullname: Ye, Yao
– sequence: 7
  givenname: Feng
  surname: Tang
  fullname: Tang, Feng
– sequence: 8
  givenname: Renling
  surname: Mao
  fullname: Mao, Renling
– sequence: 9
  givenname: Guangwu
  surname: Lin
  fullname: Lin, Guangwu
– sequence: 10
  givenname: Shihong
  orcidid: 0000-0002-2204-7593
  surname: Li
  fullname: Li, Shihong
– sequence: 11
  givenname: Xuhao
  surname: Fang
  fullname: Fang, Xuhao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36774480$$D View this record in MEDLINE/PubMed
BookMark eNp9Ul1rFDEUHaRiP_QP-CABX3yZmq9JMi9CKX4sVgTR55DJ3NnNkk3WZGZr_72ZbqvdIhJIws05594Tzml1FGKAqnpJ8DkhSrzNhLZC1piyGrO2wfX1k-qEcNnWjZLi6MH9uDrNeY0x5Q1vn1XHTEjJucInVbgIyAU3OuNRHqf-BsWAxhWgbYLe2dHtAO2MnwBN2YUl2kx-dFsP6Mu3BbIrk4wdIbk8OpvREBP67GohkTcd-BnvQg-_yo6W3sWNeV49HYzP8OLuPKt-fHj__fJTffX14-Ly4qq2jWBjzQzpuBj6ngxCNgRLasUg25aD6pgYhALGDAycwWA7orgSlClpWUNbqpQV7Kxa7HX7aNZ6m9zGpBsdjdO3hZiW2qQyswfNhQSqpGwkVrzpcQdEEdIp0XeqoxYXrXd7re3UbaC3EMZk_IHo4UtwK72MO922lHLBi8CbO4EUf06QR71x2YL3JkCcsqaluSCsJTP09SPoOk4plK-aUVIqiTn7i1qaYsCFIZa-dhbVF5LNP0bpPPf5P1Bl9bBxtkRpcKV-QHj10Ogfh_dpKQC1B9gUc04waOtGM7o4-3ZeE6znYOp9MHUJpr4Npr4uVPqIeq_-H9JviDfjvA
CitedBy_id crossref_primary_10_1097_MD_0000000000033955
crossref_primary_10_12677_ACM_2023_13112419
crossref_primary_10_1016_j_talanta_2024_126538
crossref_primary_10_1097_RCT_0000000000001737
crossref_primary_10_3389_fendo_2024_1383814
crossref_primary_10_1016_j_acra_2023_09_010
crossref_primary_10_3390_biomedicines11071968
crossref_primary_10_1177_17562864241237851
crossref_primary_10_1186_s12880_025_01555_x
Cites_doi 10.1007/s10014-021-00417-y
10.1093/neuonc/noz004
10.1093/neuonc/noab106
10.1016/j.crad.2015.06.082
10.1111/jon.12789
10.1148/radiol.2020191832
10.1093/neuonc/now256
10.1007/s11060-015-1909-8
10.1038/s41598-021-95958-9
10.1016/j.mri.2021.11.001
10.3389/fonc.2022.873839
10.1002/1097-0142(19940915)74:6<1784::AID-CNCR2820740622>3.0.CO;2-D
10.1007/s10014-012-0084-2
10.1111/j.1349-7006.2009.01259.x
10.4103/0973-1482.139154
10.1007/BF02893360
10.1148/radiology.161.2.3763909
10.1016/j.wneu.2018.08.163
10.1093/neuonc/nos128
10.1148/radiology.170.1.2535765
10.1259/bjr.20170930
10.31557/APJCP.2020.21.4.1063
10.1186/s12943-022-01513-z
10.1007/s00412-018-0659-8
10.1056/NEJMoa043330
10.1177/0300060520914466
10.1016/j.canlet.2020.02.002
10.1148/radiol.2413051276
10.3389/fnins.2021.783361
10.1007/s00330-004-2381-6
10.1016/j.canlet.2020.10.050
10.1007/s00401-016-1545-1
10.1093/neuonc/nox183
10.1111/j.1440-1789.2006.00724.x
10.3389/fneur.2020.592155
10.1016/j.clineuro.2016.10.018
10.1093/neuonc/noq009
10.1158/0008-5472.CAN-13-3534
10.1007/s00330-019-06548-3
10.1016/j.ccell.2020.04.001
10.1007/s00401-010-0725-7
10.1007/s00330-021-07959-x
10.1148/radiol.11110686
10.1016/j.neo.2014.06.003
10.1136/jclinpath-2015-203340
10.1002/jmri.25986
10.1111/ajco.12826
10.1007/s00234-015-1606-5
10.1007/s00330-021-08522-4
10.1002/jmri.25963
10.1016/j.seizure.2013.08.004
10.1093/neuonc/nou087
10.1016/j.ejrad.2018.11.003
10.1016/j.wneu.2019.02.006
10.1158/2159-8290.CD-20-1474
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12967-023-03950-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1479-5876
EndPage 11
ExternalDocumentID oai_doaj_org_article_467e2877570845d0be1811b86db8b2c0
PMC9922464
A736751220
36774480
10_1186_s12967_023_03950_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Taiwan
Germany
GeographicLocations_xml – name: Taiwan
– name: Germany
GrantInformation_xml – fundername: ;
  grantid: SHDC2022CRT025
– fundername: ;
  grantid: SKLY2022CRT402
GroupedDBID ---
0R~
29L
2WC
53G
5VS
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c563t-3a1b46fdd1f6751072c6f7994e8b36f68e33aef43efcb184862387c3529288c63
IEDL.DBID M48
ISSN 1479-5876
IngestDate Wed Aug 27 01:24:48 EDT 2025
Thu Aug 21 18:38:25 EDT 2025
Fri Jul 11 01:25:21 EDT 2025
Fri Jul 25 22:46:11 EDT 2025
Tue Jun 17 21:32:02 EDT 2025
Tue Jun 10 20:42:49 EDT 2025
Thu Jan 02 22:53:56 EST 2025
Thu Apr 24 22:57:24 EDT 2025
Tue Jul 01 02:59:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ki-67 labeling index
Glioma
Magnetic resonance imaging
Peritumoral edema
Diffusion-weighted magnetic resonance imaging
Apparent diffusion coefficient
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-3a1b46fdd1f6751072c6f7994e8b36f68e33aef43efcb184862387c3529288c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2204-7593
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12967-023-03950-w
PMID 36774480
PQID 2777787043
PQPubID 43076
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_467e2877570845d0be1811b86db8b2c0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9922464
proquest_miscellaneous_2775613914
proquest_journals_2777787043
gale_infotracmisc_A736751220
gale_infotracacademiconefile_A736751220
pubmed_primary_36774480
crossref_citationtrail_10_1186_s12967_023_03950_w
crossref_primary_10_1186_s12967_023_03950_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-11
PublicationDateYYYYMMDD 2023-02-11
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of translational medicine
PublicationTitleAlternate J Transl Med
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References F Li (3950_CR58) 2016; 151
T Engelhorn (3950_CR53) 2009; 100
N Chaudhary (3950_CR14) 2021; 13
Q Zeng (3950_CR17) 2018; 48
P Seow (3950_CR33) 2018; 91
RF Barajas Jr (3950_CR27) 2012; 14
R Yan (3950_CR41) 2016; 58
PC Johnson (3950_CR25) 1989; 170
SJ Price (3950_CR26) 2004; 14
NS White (3950_CR18) 2014; 74
X Sun (3950_CR28) 2020; 48
N Du (3950_CR52) 2022; 12
MS Berger (3950_CR23) 1994; 74
J Maynard (3950_CR30) 2020; 296
C Henker (3950_CR34) 2019; 125
DN Louis (3950_CR2) 2016; 131
Y Cui (3950_CR55) 2020; 11
AJ Skjulsvik (3950_CR47) 2014; 7
J Qiu (3950_CR29) 2022; 86
T Jiang (3950_CR1) 2021; 499
MJ Van Den Bent (3950_CR9) 2010; 120
EDH Gates (3950_CR11) 2019; 21
M Thotakura (3950_CR13) 2014; 10
JG Nicholson (3950_CR7) 2021; 11
KY Lim (3950_CR36) 2022; 39
X Sun (3950_CR45) 2018; 127
R Stupp (3950_CR4) 2005; 352
DN Louis (3950_CR5) 2021; 23
Y Xie (3950_CR19) 2021; 15
K Yang (3950_CR21) 2022; 21
K Yang (3950_CR22) 2018; 120
S Li (3950_CR46) 2021; 31
S Higano (3950_CR40) 2006; 241
A Fathi Kazerooni (3950_CR24) 2018; 48
DP Cahill (3950_CR8) 2015; 125
RH Dahlrot (3950_CR12) 2021; 11
Y Kang (3950_CR42) 2011; 261
TS Armstrong (3950_CR35) 2010; 12
J Zhang (3950_CR10) 2018; 109
AL Johannessen (3950_CR32) 2006; 12
MH Faria (3950_CR50) 2006; 26
X Wang (3950_CR54) 2015; 30
QT Ostrom (3950_CR3) 2014; 16
M Kim (3950_CR16) 2020; 30
Y Sun (3950_CR48) 2022; 32
H Zhou (3950_CR51) 2017; 19
D Le Bihan (3950_CR57) 1986; 161
Y Yuan (3950_CR37) 2013; 22
E Wong (3950_CR39) 2019; 15
S Richards-Taylor (3950_CR15) 2016; 69
ML Suvà (3950_CR43) 2020; 37
Y Okita (3950_CR38) 2012; 29
GJ Baker (3950_CR56) 2014; 16
E Theresia (3950_CR49) 2020; 21
TM Malta (3950_CR44) 2018; 20
A Mahajan (3950_CR31) 2015; 70
S Xu (3950_CR6) 2020; 476
L Xianwang (3950_CR20) 2021; 31
References_xml – volume: 39
  start-page: 1
  issue: 1
  year: 2022
  ident: 3950_CR36
  publication-title: Brain Tumor Pathol
  doi: 10.1007/s10014-021-00417-y
– volume: 21
  start-page: 527
  issue: 4
  year: 2019
  ident: 3950_CR11
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noz004
– volume: 23
  start-page: 1231
  issue: 8
  year: 2021
  ident: 3950_CR5
  publication-title: Neuro Oncology
  doi: 10.1093/neuonc/noab106
– volume: 70
  start-page: 1060
  issue: 10
  year: 2015
  ident: 3950_CR31
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2015.06.082
– volume: 31
  start-page: 132
  issue: 1
  year: 2021
  ident: 3950_CR20
  publication-title: J Neuroimaging
  doi: 10.1111/jon.12789
– volume: 296
  start-page: 111
  issue: 1
  year: 2020
  ident: 3950_CR30
  publication-title: Radiology
  doi: 10.1148/radiol.2020191832
– volume: 19
  start-page: 862
  issue: 6
  year: 2017
  ident: 3950_CR51
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/now256
– volume: 125
  start-page: 531
  issue: 3
  year: 2015
  ident: 3950_CR8
  publication-title: J Neuro-oncol
  doi: 10.1007/s11060-015-1909-8
– volume: 11
  start-page: 11
  issue: 1
  year: 2021
  ident: 3950_CR12
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95958-9
– volume: 86
  start-page: 10
  year: 2022
  ident: 3950_CR29
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2021.11.001
– volume: 12
  start-page: 873839
  year: 2022
  ident: 3950_CR52
  publication-title: Front Oncol
  doi: 10.3389/fonc.2022.873839
– volume: 7
  start-page: 8905
  issue: 12
  year: 2014
  ident: 3950_CR47
  publication-title: Int J Clin Exp Pathol
– volume: 74
  start-page: 1784
  issue: 6
  year: 1994
  ident: 3950_CR23
  publication-title: Cancer
  doi: 10.1002/1097-0142(19940915)74:6<1784::AID-CNCR2820740622>3.0.CO;2-D
– volume: 29
  start-page: 192
  issue: 4
  year: 2012
  ident: 3950_CR38
  publication-title: Brain Tumor Pathol
  doi: 10.1007/s10014-012-0084-2
– volume: 100
  start-page: 1856
  issue: 10
  year: 2009
  ident: 3950_CR53
  publication-title: Cancer Sci
  doi: 10.1111/j.1349-7006.2009.01259.x
– volume: 10
  start-page: 641
  issue: 3
  year: 2014
  ident: 3950_CR13
  publication-title: J Cancer Res Ther
  doi: 10.4103/0973-1482.139154
– volume: 12
  start-page: 143
  issue: 3
  year: 2006
  ident: 3950_CR32
  publication-title: Pathol Oncol Res
  doi: 10.1007/BF02893360
– volume: 161
  start-page: 401
  issue: 2
  year: 1986
  ident: 3950_CR57
  publication-title: Radiology
  doi: 10.1148/radiology.161.2.3763909
– volume: 120
  start-page: e762
  year: 2018
  ident: 3950_CR22
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2018.08.163
– volume: 14
  start-page: 942
  issue: 7
  year: 2012
  ident: 3950_CR27
  publication-title: Neuro Oncology
  doi: 10.1093/neuonc/nos128
– volume: 13
  start-page: 12480
  issue: 11
  year: 2021
  ident: 3950_CR14
  publication-title: Am J Transl Res
– volume: 170
  start-page: 211
  year: 1989
  ident: 3950_CR25
  publication-title: Radiology
  doi: 10.1148/radiology.170.1.2535765
– volume: 91
  start-page: 20170930
  issue: 1092
  year: 2018
  ident: 3950_CR33
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20170930
– volume: 21
  start-page: 1063
  issue: 4
  year: 2020
  ident: 3950_CR49
  publication-title: Asian Pac J Cancer Prev
  doi: 10.31557/APJCP.2020.21.4.1063
– volume: 21
  start-page: 1
  issue: 1
  year: 2022
  ident: 3950_CR21
  publication-title: Mol Cancer
  doi: 10.1186/s12943-022-01513-z
– volume: 127
  start-page: 175
  issue: 2
  year: 2018
  ident: 3950_CR45
  publication-title: Chromosoma
  doi: 10.1007/s00412-018-0659-8
– volume: 352
  start-page: 987
  issue: 10
  year: 2005
  ident: 3950_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa043330
– volume: 48
  start-page: 300060520914466
  issue: 5
  year: 2020
  ident: 3950_CR28
  publication-title: J Int Med Res
  doi: 10.1177/0300060520914466
– volume: 476
  start-page: 1
  year: 2020
  ident: 3950_CR6
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2020.02.002
– volume: 241
  start-page: 839
  issue: 3
  year: 2006
  ident: 3950_CR40
  publication-title: Radiology
  doi: 10.1148/radiol.2413051276
– volume: 15
  start-page: 783361
  year: 2021
  ident: 3950_CR19
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.783361
– volume: 14
  start-page: 1909
  issue: 10
  year: 2004
  ident: 3950_CR26
  publication-title: Eur Radiol
  doi: 10.1007/s00330-004-2381-6
– volume: 499
  start-page: 60
  year: 2021
  ident: 3950_CR1
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2020.10.050
– volume: 131
  start-page: 803
  issue: 6
  year: 2016
  ident: 3950_CR2
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-016-1545-1
– volume: 20
  start-page: 608
  issue: 5
  year: 2018
  ident: 3950_CR44
  publication-title: Neuro Oncology
  doi: 10.1093/neuonc/nox183
– volume: 26
  start-page: 519
  issue: 6
  year: 2006
  ident: 3950_CR50
  publication-title: Neuropathology
  doi: 10.1111/j.1440-1789.2006.00724.x
– volume: 11
  start-page: 592155
  year: 2020
  ident: 3950_CR55
  publication-title: Front Neurol
  doi: 10.3389/fneur.2020.592155
– volume: 151
  start-page: 120
  year: 2016
  ident: 3950_CR58
  publication-title: Clin Neurol Neurosurg
  doi: 10.1016/j.clineuro.2016.10.018
– volume: 12
  start-page: 862
  issue: 8
  year: 2010
  ident: 3950_CR35
  publication-title: Neuro Oncol
  doi: 10.1093/neuonc/noq009
– volume: 74
  start-page: 4638
  issue: 22
  year: 2014
  ident: 3950_CR18
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-3534
– volume: 30
  start-page: 2142
  issue: 4
  year: 2020
  ident: 3950_CR16
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06548-3
– volume: 37
  start-page: 630
  issue: 5
  year: 2020
  ident: 3950_CR43
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.04.001
– volume: 120
  start-page: 297
  issue: 3
  year: 2010
  ident: 3950_CR9
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-010-0725-7
– volume: 31
  start-page: 8197
  issue: 11
  year: 2021
  ident: 3950_CR46
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-07959-x
– volume: 261
  start-page: 882
  issue: 3
  year: 2011
  ident: 3950_CR42
  publication-title: Radiology
  doi: 10.1148/radiol.11110686
– volume: 16
  start-page: 543
  issue: 7
  year: 2014
  ident: 3950_CR56
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2014.06.003
– volume: 30
  start-page: 1101
  issue: 9
  year: 2015
  ident: 3950_CR54
  publication-title: Histol Histopathol
– volume: 69
  start-page: 612
  issue: 7
  year: 2016
  ident: 3950_CR15
  publication-title: J Clin Pathol
  doi: 10.1136/jclinpath-2015-203340
– volume: 48
  start-page: 643
  issue: 3
  year: 2018
  ident: 3950_CR17
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25986
– volume: 15
  start-page: 5
  issue: 1
  year: 2019
  ident: 3950_CR39
  publication-title: Asia Pac J Clin Oncol
  doi: 10.1111/ajco.12826
– volume: 58
  start-page: 121
  issue: 2
  year: 2016
  ident: 3950_CR41
  publication-title: Neuroradiology
  doi: 10.1007/s00234-015-1606-5
– volume: 32
  start-page: 3744
  issue: 6
  year: 2022
  ident: 3950_CR48
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08522-4
– volume: 48
  start-page: 938
  issue: 4
  year: 2018
  ident: 3950_CR24
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25963
– volume: 22
  start-page: 877
  issue: 10
  year: 2013
  ident: 3950_CR37
  publication-title: Seizure
  doi: 10.1016/j.seizure.2013.08.004
– volume: 16
  start-page: 896
  issue: 7
  year: 2014
  ident: 3950_CR3
  publication-title: Neuro Oncology
  doi: 10.1093/neuonc/nou087
– volume: 109
  start-page: 188
  year: 2018
  ident: 3950_CR10
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.11.003
– volume: 125
  start-page: e1093
  year: 2019
  ident: 3950_CR34
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2019.02.006
– volume: 11
  start-page: 575
  issue: 3
  year: 2021
  ident: 3950_CR7
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-20-1474
SSID ssj0024549
Score 2.4072883
Snippet Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative biopsy at present. This...
Background and purpose Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative...
Background and purposeKi-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by postoperative...
Abstract Background and purpose Ki-67 labeling index (LI) is an important indicator of tumor cell proliferation in glioma, which can only be obtained by...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 119
SubjectTerms Analysis
Apparent diffusion coefficient
Biopsy
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
Brain tumors
Care and treatment
Cell cycle
Cell growth
Cell proliferation
Classification
Diagnosis
Diffusion coefficient
Diffusion Magnetic Resonance Imaging - methods
Diffusion-weighted magnetic resonance imaging
Edema
Glioma
Glioma - diagnostic imaging
Glioma - pathology
Glioma cells
Gliomas
Humans
Ki-67 Antigen
Ki-67 labeling index
Labeling
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical prognosis
Neoplasm Grading
Nervous system
Patients
Peritumoral edema
Retrospective Studies
Statistical analysis
Surgery
Testing
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA_Sg3gRtX6M1hJB8CChySSTj-MqLa2yHsRCbyGfdaHOlnZL_31fMjPLDoJenMMeJm-GyfvIez_25ReE3vNoPNQNmUTlEhGdo0R7E0mg2RvlKHN1I-3ymzw9F18uuoudo75KT9hADzwo7ggCOUFVrzpFtegi9QlyEvNaRq99Gypah5w3gamJZQ9gz7RFRsujW8hqsCBAfiKUm46S-1kaqmz9f67JO0lp3jC5k4FOnqDHY-mIF8MnP0UPUv8MPVyOf47vo37R41XpBQKhyhqL1z2G-g5f3xSZsq7hwu2dcGl2v8RTLyFefj_DYU7cjKGWxV9XRCoMblL3rONKrAi_-PJqtf7lnqPzk-Mfn0_JeJwCCZ3kG8Id80LmGFkGlACwrw0yK2NE0p7LLHXi3KUseMrBA_ADrMO1ClChmVbrIPkLtNev-_QK4ZRB5zREw0wSUGI5H2InBdO681Qa3yA2adeGkWu8HHlxZSvm0NIOFrFgEVstYu8b9HH7zPXAtPFX6U_FaFvJwpJdb4Dv2NF37L98p0EfisltiWX4vODGLQkwycKKZReKF021LUgezCQhBsN8eHIaO64Bt7ZVcMFyKHiD3m2Hy5Olr61P67sqUxCcYaJBLwcf204JXq4APMPL1cz7ZnOej_Srn5UhvJANCyle_w8lvUGP2ho4LWHsAO1tbu7SWyjENv6wxtxvk6AtOw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgSIgL4puOgYyExAFZs2PHHydUENMAlQNiUm9W7DhdpZGUttP-_b3nJt0ipPWQQ_0SxXmfv-T5Z0I-yNoFqBsaVpsqMVVWnNngahZ5E5ypuKjyQtrZL316pn7My3n_wm3Tt1UOMTEH6rqL-I78uDDwA-NS8vPqH8Ndo_Drar-Fxn3yAKnL0KrN_AZwKQA_w0IZq483kNsgLECWYly6krOrUTLKnP3_R-ZbqWncNnkrD508IY_7ApJOdxp_Su6l9hl5OOs_kT8n7bSlS-wIAqHMHUu7lkKVR1drlMHoRpHhO1FseV_QoaOQzn5_p3FM30yhoqU_l0wbCsaSV67TTK8IR7q4WHZ_qxfk7OTbn6-nrN9UgcVSyy2TlQhKN3UtGsAKAP6KqBvjnEo2SN1om6SsUqNkamIA-AeIR1oToU5zhbVRy5fkoO3a9JrQ1BTc8Vg74ZKCQqsKsS61EtaWgWsXJkQMT9fHnnEcN7648Bl5WO13GvGgEZ814q8m5NP-nNWOb-NO6S-otL0kcmXnP7r1wveu5yEVJMCFpjTcqrLmIUFVI4LVdbChiHxCPqLKPXo03F6s-oUJMEnkxvJTI_FJFQVIHo0kwRPjeHgwGt9Hgo2_sdsJeb8fxjOxu61N3WWWQRznhJqQVzsb208JLm4AQsPFzcj6RnMej7TL88wTjpTDSqvDu2_rDXlUZJcomBBH5GC7vkxvodDahnfZm64BKEcl0w
  priority: 102
  providerName: ProQuest
Title An initial study on the predictive value using multiple MRI characteristics for Ki-67 labeling index in glioma
URI https://www.ncbi.nlm.nih.gov/pubmed/36774480
https://www.proquest.com/docview/2777787043
https://www.proquest.com/docview/2775613914
https://pubmed.ncbi.nlm.nih.gov/PMC9922464
https://doaj.org/article/467e2877570845d0be1811b86db8b2c0
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBZ5QMil9J1NUqNCoYeiVrvS6nEoxS4JaYtDMTWYXsRKq3UN7jp1HNL--47kXddLQw_1YQ_WCCzNjOab9egbhF6wUlvADRUpZeEJzwtKlNUlcbSyWhY0LeJF2uGluBjzj5N8soPadkfNBl7fmdqFflLj5fz1zx-_3oHDv40Or8Sba4hZ4O4QfQhlOqfkdhftQ2SSoaPBkKs_3HuQDLUXZ-6cd4gOmABAxANL5FacinT-fx_aW1GrW1G5FaLO76N7DbbE_bUxPEA7vn6IDobNv-ePUN2v8SwUC4FQpJXFixoDAMRXyyATDj4cyL89DtXwU9wWG-Lh6AN2XWZnDGAXf5oRITHYUbzUjiPzIjzxdD5bfC8eo_H52Zf3F6Tpt0BcLtiKsCK1XFRlmVaQRkBemDlRSa25V5aJSijPWOErznzlLGSGkAwxJR1AOJ0p5QR7gvbqRe2PEPZVRjV1pU6154DBCuvKXPBUqdxSoW2C0nZ3jWvIyENPjLmJSYkSZq0cA8oxUTnmNkGvNnOu1lQc_5QeBKVtJAONdvxisZyaxisNRAkPKaPMJVU8L6n1AHhSq0Rplc0cTdDLoHITzA9-niuaOwuwyECbZfqShZ3KMpA87UiCk7rucGs0prVxk0n4wHnJWYKeb4bDzFD4VvvFTZQJKZ5OeYKerm1ss6TWVBMkO9bXWXN3pJ59ixTigY2YC3783zNP0GEWHScjaXqK9lbLG_8M4NnK9tCunMge2h-cXX4e9eJLjl70Q3iOBl9_A7ufOxE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGkIAL4pvCACOBOCBrTuz444BQ-Zhauu6ANqk3EztOqbQlXdup4p_ib-TZTbpFSLsthx7iFyv2-27e-xmhd6zQFuKGkhQy94RnOSXK6oI4Wlotc5rksZF2fCQGJ_zHJJvsoL9tL0woq2xtYjTURe3Cf-T7qYQLhIuzz_NzEk6NCl9X2yM0NmIx8n_WkLItPw2_AX_fp-nB9-OvA9KcKkBcJtiKsDyxXJRFkZQQLEP2kzpRSq25V5aJUijPWO5LznzpLOQ_EPIzJR0EKjpVygkG895Ct8Hx0pDsycllgsch2Wobc5TYX4IvBTMEXpFQpjNK1h3nF88I-N8TXHGF3TLNK37v4AG63wSsuL-RsIdox1eP0J1x80n-Mar6FZ6FCiQgili1uK4wRJV4vgg0wZrigCjucSixn-K2ghGPfw6x68JFY4ig8WhGhMQgnLFTHkc4R_jF09NZfZY_QSc3st1P0W5VV_45wr5Mqaau0In2HAK73LoiEzxRKrNUaNtDSbu7xjUI5-GgjVMTMx0lzIYjBjhiIkfMuoc-bp-Zb_A9rqX-Epi2pQzY3PFGvZiaRtUNuB4PeajMJFU8K6j1EEUlVonCKps62kMfAstNsCDwei5vGiFgkQGLy_QlCzuVpkC516EEzXfd4VZoTGN5luZST3ro7XY4PBmq6SpfX0SakDfqhPfQs42MbZcEk0tI2WFy2ZG-zpq7I9Xsd8QlDxDHXPAX17_WG3R3cDw-NIfDo9FLdC-N6pGSJNlDu6vFhX8FQd7Kvo6ahdGvm1blfzuWYZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+initial+study+on+the+predictive+value+using+multiple+MRI+characteristics+for+Ki-67+labeling+index+in+glioma&rft.jtitle=Journal+of+translational+medicine&rft.au=Du%2C+Ningfang&rft.au=Shu%2C+Weiquan&rft.au=Li%2C+Kefeng&rft.au=Deng%2C+Yao&rft.date=2023-02-11&rft.pub=BioMed+Central&rft.eissn=1479-5876&rft.volume=21&rft_id=info:doi/10.1186%2Fs12967-023-03950-w&rft_id=info%3Apmid%2F36774480&rft.externalDocID=PMC9922464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1479-5876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1479-5876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1479-5876&client=summon