Use of mobile data collection systems within large-scale epidemiological field trials: findings and lessons-learned from a vector control trial in Iquitos, Peru

Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For many of these diseases, vector control to reduce human biting rates or arthropod populations remains the primary strategy for prevention. New...

Full description

Saved in:
Bibliographic Details
Published inBMC public health Vol. 22; no. 1; pp. 1924 - 13
Main Authors Elson, William H., Kawiecki, Anna B., Donnelly, Marisa A. P., Noriega, Arnold O., Simpson, Jody K., Syafruddin, Din, Rozi, Ismail Ekoprayitno, Lobo, Neil F., Barker, Christopher M., Scott, Thomas W., Achee, Nicole L., Morrison, Amy C.
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 15.10.2022
BioMed Central
BMC
Subjects
Online AccessGet full text
ISSN1471-2458
1471-2458
DOI10.1186/s12889-022-14301-7

Cover

Loading…
Abstract Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For many of these diseases, vector control to reduce human biting rates or arthropod populations remains the primary strategy for prevention. New vector control interventions intended to be marketed through public health channels must be assessed by the World Health Organization for public health value using data generated from large-scale trials integrating epidemiological endpoints of human health impact. Such phase III trials typically follow large numbers of study subjects to meet necessary power requirements for detecting significant differences between treatment arms, thereby generating substantive and complex datasets. Data is often gathered directly in the field, in resource-poor settings, leading to challenges in efficient data reporting and/or quality assurance. With advancing technology, mobile data collection (MDC) systems have been implemented in many studies to overcome these challenges. Here we describe the development and implementation of a MDC system during a randomized-cluster, placebo-controlled clinical trial evaluating the protective efficacy of a spatial repellent intervention in reducing human infection with Aedes -borne viruses (ABV) in the urban setting of Iquitos, Peru, as well as the data management system that supported it. We discuss the benefits, remaining capacity gaps and the key lessons learned from using a MDC system in this context in detail.
AbstractList Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For many of these diseases, vector control to reduce human biting rates or arthropod populations remains the primary strategy for prevention. New vector control interventions intended to be marketed through public health channels must be assessed by the World Health Organization for public health value using data generated from large-scale trials integrating epidemiological endpoints of human health impact. Such phase III trials typically follow large numbers of study subjects to meet necessary power requirements for detecting significant differences between treatment arms, thereby generating substantive and complex datasets. Data is often gathered directly in the field, in resource-poor settings, leading to challenges in efficient data reporting and/or quality assurance. With advancing technology, mobile data collection (MDC) systems have been implemented in many studies to overcome these challenges. Here we describe the development and implementation of a MDC system during a randomized-cluster, placebo-controlled clinical trial evaluating the protective efficacy of a spatial repellent intervention in reducing human infection with Aedes -borne viruses (ABV) in the urban setting of Iquitos, Peru, as well as the data management system that supported it. We discuss the benefits, remaining capacity gaps and the key lessons learned from using a MDC system in this context in detail.
Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For many of these diseases, vector control to reduce human biting rates or arthropod populations remains the primary strategy for prevention. New vector control interventions intended to be marketed through public health channels must be assessed by the World Health Organization for public health value using data generated from large-scale trials integrating epidemiological endpoints of human health impact. Such phase III trials typically follow large numbers of study subjects to meet necessary power requirements for detecting significant differences between treatment arms, thereby generating substantive and complex datasets. Data is often gathered directly in the field, in resource-poor settings, leading to challenges in efficient data reporting and/or quality assurance. With advancing technology, mobile data collection (MDC) systems have been implemented in many studies to overcome these challenges. Here we describe the development and implementation of a MDC system during a randomized-cluster, placebo-controlled clinical trial evaluating the protective efficacy of a spatial repellent intervention in reducing human infection with Aedes-borne viruses (ABV) in the urban setting of Iquitos, Peru, as well as the data management system that supported it. We discuss the benefits, remaining capacity gaps and the key lessons learned from using a MDC system in this context in detail. Keywords: Mobile data collection, CommCare, Vector control, Clinical trial, Data quality, Data monitoring, Aedes aegypti, Dengue, Spatial repellent
Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For many of these diseases, vector control to reduce human biting rates or arthropod populations remains the primary strategy for prevention. New vector control interventions intended to be marketed through public health channels must be assessed by the World Health Organization for public health value using data generated from large-scale trials integrating epidemiological endpoints of human health impact. Such phase III trials typically follow large numbers of study subjects to meet necessary power requirements for detecting significant differences between treatment arms, thereby generating substantive and complex datasets. Data is often gathered directly in the field, in resource-poor settings, leading to challenges in efficient data reporting and/or quality assurance. With advancing technology, mobile data collection (MDC) systems have been implemented in many studies to overcome these challenges. Here we describe the development and implementation of a MDC system during a randomized-cluster, placebo-controlled clinical trial evaluating the protective efficacy of a spatial repellent intervention in reducing human infection with Aedes-borne viruses (ABV) in the urban setting of Iquitos, Peru, as well as the data management system that supported it. We discuss the benefits, remaining capacity gaps and the key lessons learned from using a MDC system in this context in detail.
Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For many of these diseases, vector control to reduce human biting rates or arthropod populations remains the primary strategy for prevention. New vector control interventions intended to be marketed through public health channels must be assessed by the World Health Organization for public health value using data generated from large-scale trials integrating epidemiological endpoints of human health impact. Such phase III trials typically follow large numbers of study subjects to meet necessary power requirements for detecting significant differences between treatment arms, thereby generating substantive and complex datasets. Data is often gathered directly in the field, in resource-poor settings, leading to challenges in efficient data reporting and/or quality assurance. With advancing technology, mobile data collection (MDC) systems have been implemented in many studies to overcome these challenges. Here we describe the development and implementation of a MDC system during a randomized-cluster, placebo-controlled clinical trial evaluating the protective efficacy of a spatial repellent intervention in reducing human infection with Aedes-borne viruses (ABV) in the urban setting of Iquitos, Peru, as well as the data management system that supported it. We discuss the benefits, remaining capacity gaps and the key lessons learned from using a MDC system in this context in detail.Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For many of these diseases, vector control to reduce human biting rates or arthropod populations remains the primary strategy for prevention. New vector control interventions intended to be marketed through public health channels must be assessed by the World Health Organization for public health value using data generated from large-scale trials integrating epidemiological endpoints of human health impact. Such phase III trials typically follow large numbers of study subjects to meet necessary power requirements for detecting significant differences between treatment arms, thereby generating substantive and complex datasets. Data is often gathered directly in the field, in resource-poor settings, leading to challenges in efficient data reporting and/or quality assurance. With advancing technology, mobile data collection (MDC) systems have been implemented in many studies to overcome these challenges. Here we describe the development and implementation of a MDC system during a randomized-cluster, placebo-controlled clinical trial evaluating the protective efficacy of a spatial repellent intervention in reducing human infection with Aedes-borne viruses (ABV) in the urban setting of Iquitos, Peru, as well as the data management system that supported it. We discuss the benefits, remaining capacity gaps and the key lessons learned from using a MDC system in this context in detail.
Abstract Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For many of these diseases, vector control to reduce human biting rates or arthropod populations remains the primary strategy for prevention. New vector control interventions intended to be marketed through public health channels must be assessed by the World Health Organization for public health value using data generated from large-scale trials integrating epidemiological endpoints of human health impact. Such phase III trials typically follow large numbers of study subjects to meet necessary power requirements for detecting significant differences between treatment arms, thereby generating substantive and complex datasets. Data is often gathered directly in the field, in resource-poor settings, leading to challenges in efficient data reporting and/or quality assurance. With advancing technology, mobile data collection (MDC) systems have been implemented in many studies to overcome these challenges. Here we describe the development and implementation of a MDC system during a randomized-cluster, placebo-controlled clinical trial evaluating the protective efficacy of a spatial repellent intervention in reducing human infection with Aedes-borne viruses (ABV) in the urban setting of Iquitos, Peru, as well as the data management system that supported it. We discuss the benefits, remaining capacity gaps and the key lessons learned from using a MDC system in this context in detail.
ArticleNumber 1924
Audience Academic
Author Barker, Christopher M.
Achee, Nicole L.
Kawiecki, Anna B.
Noriega, Arnold O.
Simpson, Jody K.
Elson, William H.
Lobo, Neil F.
Scott, Thomas W.
Morrison, Amy C.
Rozi, Ismail Ekoprayitno
Donnelly, Marisa A. P.
Syafruddin, Din
Author_xml – sequence: 1
  givenname: William H.
  surname: Elson
  fullname: Elson, William H.
– sequence: 2
  givenname: Anna B.
  orcidid: 0000-0002-0499-2612
  surname: Kawiecki
  fullname: Kawiecki, Anna B.
– sequence: 3
  givenname: Marisa A. P.
  surname: Donnelly
  fullname: Donnelly, Marisa A. P.
– sequence: 4
  givenname: Arnold O.
  surname: Noriega
  fullname: Noriega, Arnold O.
– sequence: 5
  givenname: Jody K.
  surname: Simpson
  fullname: Simpson, Jody K.
– sequence: 6
  givenname: Din
  surname: Syafruddin
  fullname: Syafruddin, Din
– sequence: 7
  givenname: Ismail Ekoprayitno
  surname: Rozi
  fullname: Rozi, Ismail Ekoprayitno
– sequence: 8
  givenname: Neil F.
  surname: Lobo
  fullname: Lobo, Neil F.
– sequence: 9
  givenname: Christopher M.
  surname: Barker
  fullname: Barker, Christopher M.
– sequence: 10
  givenname: Thomas W.
  surname: Scott
  fullname: Scott, Thomas W.
– sequence: 11
  givenname: Nicole L.
  surname: Achee
  fullname: Achee, Nicole L.
– sequence: 12
  givenname: Amy C.
  surname: Morrison
  fullname: Morrison, Amy C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36243698$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu3SAQhq0qVXNpX6CLCqmbLuoUbAy4i0hR1MuRIrWLZo0wDCccYUjATpW36aMW56RpTlRVXmDgm39mmP-w2gsxQFW9JviYEME-ZNII0de4aWpCW0xq_qw6IJSTuqGd2Hv0v18d5rzBmHDRNS-q_ZY1tGW9OKh-XWRA0aIxDs4DMmpSSEfvQU8uBpRv8wRjRj_ddOkC8iqtoc5aFRSunIHRRR_Xrhwg68AbNCWnfP5YdsG4sM5IBYM85BxDrj2oFMAgm-KIFLopSWIq6cKUot-GopJldT27Keb36Duk-WX13BZFeHW_HlUXnz_9OPtan3_7sjo7Pa91x9qpbrTgPSeCc2swMNz1tiMNKKwVgUHzrqV0oKbtOMGkNaTFyhCGaXmQwXKr2qNqtdU1UW3kVXKjSrcyKifvDmJaS5Umpz1IgQejqSDYgqGYmaEFPpCeUiOAEtYWrZOt1tU8jGA0lAaV3xHdvQnuUq7jjexLeZTRIvDuXiDF6xnyJEeXNXivAsQ5y4Y3HekxFbigb5-gmzinUJ5qoRghrCf8L7Uuo5Mu2Fjy6kVUnvKmYAzjJe3xP6jyLYMuYwJbPLIb8OZxow8d_vFXAZotoFPMOYF9QAiWi4nl1sSymFjemVguxYonQdpNavFjKcf5_4X-BrrP9rc
CitedBy_id crossref_primary_10_3390_insects14040380
Cites_doi 10.4269/ajtmh.19-0554
10.1186/s12911-016-0385-1
10.5210/ojphi.v5i3.4996
10.1371/journal.pntd.0003038
10.4269/ajtmh.2003.69.494
10.1186/1472-6947-9-51
10.1371/journal.pone.0160386
10.2196/mhealth.3216
10.3402/gha.v7.25878
10.1038/s41746-019-0125-x
10.9745/GHSP-D-15-00207
10.1080/16549716.2017.1330858
10.1371/journal.pntd.0008097
10.1371/journal.pone.0131000
10.1016/j.pt.2015.04.015
10.1016/j.envint.2014.03.003
10.1371/journal.pntd.0006378
10.3201/eid1610.100249
10.1371/journal.pone.0219890
10.1371/journal.pone.0065772
10.1073/pnas.2118283119
10.1371/journal.pntd.0000670
10.1111/j.1365-3156.2009.02341.x
10.1136/bmjinnov-2016-000164
10.2196/publichealth.9015
10.1371/journal.pntd.0003003
ContentType Journal Article
Copyright 2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T2
7X7
7XB
88E
8C1
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AN0
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
M0S
M1P
M7S
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
7X8
5PM
DOA
DOI 10.1186/s12889-022-14301-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health and Safety Science Abstracts (Full archive)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
British Nursing Database (Proquest)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Public Health
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef

MEDLINE
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1471-2458
EndPage 13
ExternalDocumentID oai_doaj_org_article_80bdc4810fed406db3e7b1944d8e4163
PMC9571464
A722616004
36243698
10_1186_s12889_022_14301_7
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Peru
GeographicLocations_xml – name: Peru
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: P01 AI098670
– fundername: ;
  grantid: P01-AI098670-03
– fundername: ;
  grantid: OPP1081737
GroupedDBID ---
0R~
23N
2WC
2XV
44B
53G
5VS
6J9
6PF
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AN0
AOIJS
ATCPS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BNQBC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
L6V
M1P
M48
M7S
M~E
O5R
O5S
OK1
OVT
P2P
PATMY
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7T2
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c563t-2c87971877fd0e6059f512ea0ca1ebc75344b4d3571013d130ad1604785bf7fa3
IEDL.DBID M48
ISSN 1471-2458
IngestDate Wed Aug 27 01:28:47 EDT 2025
Thu Aug 21 18:39:57 EDT 2025
Thu Jul 10 21:29:55 EDT 2025
Fri Jul 25 19:07:18 EDT 2025
Tue Jun 17 21:16:05 EDT 2025
Tue Jun 10 20:48:31 EDT 2025
Wed Feb 19 02:03:25 EST 2025
Tue Jul 01 00:56:39 EDT 2025
Thu Apr 24 22:58:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mobile data collection
Spatial repellent
Data monitoring
Vector control
Dengue
Clinical trial
Aedes aegypti
Data quality
CommCare
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-2c87971877fd0e6059f512ea0ca1ebc75344b4d3571013d130ad1604785bf7fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-0499-2612
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12889-022-14301-7
PMID 36243698
PQID 2726116917
PQPubID 44782
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_80bdc4810fed406db3e7b1944d8e4163
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9571464
proquest_miscellaneous_2725190480
proquest_journals_2726116917
gale_infotracmisc_A722616004
gale_infotracacademiconefile_A722616004
pubmed_primary_36243698
crossref_primary_10_1186_s12889_022_14301_7
crossref_citationtrail_10_1186_s12889_022_14301_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC public health
PublicationTitleAlternate BMC Public Health
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References AC Morrison (14301_CR23) 2010; 4
VA Paz-Soldan (14301_CR26) 2016; 11
JA Sacks (14301_CR7) 2015; 3
JV Rajan (14301_CR9) 2016; 16
R Braun (14301_CR8) 2013; 8
M Tomlinson (14301_CR13) 2009; 9
W Tun-Lin (14301_CR28) 2009; 14
AC Morrison (14301_CR37) 2021; 5
14301_CR41
14301_CR18
AC Morrison (14301_CR20) 2022; 119
C Robertson (14301_CR16) 2010; 16
B Eskenazi (14301_CR19) 2014; 68
QGIS Association (14301_CR29) 2022
CE Gunning (14301_CR25) 2018; 12
14301_CR36
K Merry (14301_CR39) 2019; 14
14301_CR38
14301_CR17
A Lenhart (14301_CR27) 2020; 14
G LaCon (14301_CR21) 2014; 8
C King (14301_CR34) 2014; 7
JP Bakker (14301_CR4) 2019; 2
J van Dam (14301_CR5) 2017; 3
WHO/Department of control of neglected tropical diseases (14301_CR2) 2017
14301_CR10
14301_CR32
14301_CR11
14301_CR33
14301_CR35
D Tom-Aba (14301_CR12) 2015; 10
A Tridane (14301_CR14) 2014; 5
S Style (14301_CR15) 2017; 10
14301_CR1
14301_CR31
AL Wilson (14301_CR3) 2015; 31
A Getis (14301_CR24) 2003; 69
D Syafruddin (14301_CR40) 2020; 103
D Tom-Aba (14301_CR6) 2018; 4
P Developers (14301_CR30) 2022
ST Stoddard (14301_CR22) 2014; 8
References_xml – volume: 103
  start-page: 344
  issue: 1
  year: 2020
  ident: 14301_CR40
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.19-0554
– volume: 16
  start-page: 146
  issue: 1
  year: 2016
  ident: 14301_CR9
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-016-0385-1
– volume: 5
  start-page: 228
  issue: 3
  year: 2014
  ident: 14301_CR14
  publication-title: Online J Public Health Inform.
  doi: 10.5210/ojphi.v5i3.4996
– ident: 14301_CR1
– ident: 14301_CR18
– volume: 8
  start-page: e3038
  issue: 8
  year: 2014
  ident: 14301_CR21
  publication-title: Plos Negl Trop Dis
  doi: 10.1371/journal.pntd.0003038
– volume: 69
  start-page: 494
  issue: 5
  year: 2003
  ident: 14301_CR24
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.2003.69.494
– volume: 9
  start-page: 51
  year: 2009
  ident: 14301_CR13
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-9-51
– ident: 14301_CR32
– volume-title: How to design vector control efficacy trials. Guidance on phase III vector control field trial design
  year: 2017
  ident: 14301_CR2
– ident: 14301_CR11
– volume: 11
  start-page: e0160386
  issue: 8
  year: 2016
  ident: 14301_CR26
  publication-title: Plos One
  doi: 10.1371/journal.pone.0160386
– ident: 14301_CR17
  doi: 10.2196/mhealth.3216
– volume: 7
  start-page: 25878
  year: 2014
  ident: 14301_CR34
  publication-title: Glob Health Action
  doi: 10.3402/gha.v7.25878
– volume: 2
  start-page: 47
  issue: 1
  year: 2019
  ident: 14301_CR4
  publication-title: Npj Digit Med
  doi: 10.1038/s41746-019-0125-x
– volume: 3
  start-page: 646
  issue: 4
  year: 2015
  ident: 14301_CR7
  publication-title: Glob Health Sci Pract
  doi: 10.9745/GHSP-D-15-00207
– volume: 10
  start-page: 1330858
  issue: 1
  year: 2017
  ident: 14301_CR15
  publication-title: Glob Health Action
  doi: 10.1080/16549716.2017.1330858
– ident: 14301_CR41
– volume: 14
  start-page: e0008097
  issue: 4
  year: 2020
  ident: 14301_CR27
  publication-title: Plos Negl Trop Dis
  doi: 10.1371/journal.pntd.0008097
– ident: 14301_CR36
– volume-title: PostGIS — spatial and geographic objects for PostgreSQL
  year: 2022
  ident: 14301_CR30
– ident: 14301_CR38
– volume: 10
  start-page: e0131000
  issue: 6
  year: 2015
  ident: 14301_CR12
  publication-title: Plos One
  doi: 10.1371/journal.pone.0131000
– volume: 31
  start-page: 380
  issue: 8
  year: 2015
  ident: 14301_CR3
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2015.04.015
– volume: 68
  start-page: 219
  year: 2014
  ident: 14301_CR19
  publication-title: Environ Int
  doi: 10.1016/j.envint.2014.03.003
– volume: 12
  start-page: e0006378
  issue: 4
  year: 2018
  ident: 14301_CR25
  publication-title: Plos Negl Trop Dis
  doi: 10.1371/journal.pntd.0006378
– volume: 16
  start-page: 1524
  issue: 10
  year: 2010
  ident: 14301_CR16
  publication-title: Emerg Infect Dis.
  doi: 10.3201/eid1610.100249
– volume: 14
  start-page: e0219890
  issue: 7
  year: 2019
  ident: 14301_CR39
  publication-title: Plos One
  doi: 10.1371/journal.pone.0219890
– volume: 8
  start-page: e65772
  issue: 6
  year: 2013
  ident: 14301_CR8
  publication-title: Plos One
  doi: 10.1371/journal.pone.0065772
– volume: 119
  start-page: e2118283119
  issue: 26
  year: 2022
  ident: 14301_CR20
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2118283119
– ident: 14301_CR33
– ident: 14301_CR31
– ident: 14301_CR10
– volume: 4
  start-page: e670
  issue: 5
  year: 2010
  ident: 14301_CR23
  publication-title: Plos Negl Trop Dis
  doi: 10.1371/journal.pntd.0000670
– volume: 14
  start-page: 1143
  issue: 9
  year: 2009
  ident: 14301_CR28
  publication-title: Tropical Med Int Health.
  doi: 10.1111/j.1365-3156.2009.02341.x
– ident: 14301_CR35
– volume: 3
  start-page: 26
  issue: 1
  year: 2017
  ident: 14301_CR5
  publication-title: BMJ Innov
  doi: 10.1136/bmjinnov-2016-000164
– volume: 4
  start-page: e68
  issue: 4
  year: 2018
  ident: 14301_CR6
  publication-title: JMIR Public Health Surveill
  doi: 10.2196/publichealth.9015
– volume-title: QGIS geographic information system
  year: 2022
  ident: 14301_CR29
– volume: 8
  start-page: e3003
  issue: 7
  year: 2014
  ident: 14301_CR22
  publication-title: Plos Negl Trop Dis
  doi: 10.1371/journal.pntd.0003003
– volume: 5
  start-page: 2021.03.03.2125
  year: 2021
  ident: 14301_CR37
  publication-title: medRxiv
SSID ssj0017852
Score 2.3666358
Snippet Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the tropics. For...
Abstract Vector-borne diseases are among the most burdensome infectious diseases worldwide with high burden to health systems in developing regions in the...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1924
SubjectTerms Aedes
Animals
Clinical trial
Clinical trials
CommCare
Communicable diseases
Data Collection
Data management
Data monitoring
Data quality
Dengue - epidemiology
Dengue - prevention & control
Distribution
Epidemiology
Evaluation
Geographic information systems
Houses
Humans
Infectious diseases
Intervention
Mobile data collection
Mobile devices
Mosquito Control
Mosquito Vectors
Open source software
Peru - epidemiology
Public health
Quality assurance
Research Design
Research in Practice
Teams
Tropical environments
Urban areas
Urban environments
Vector control
Vector-borne diseases
Vectors (Biology)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT0gIUZ6BggYJiQNEjWMndrgVRFU4IA6s1JtlxzZU2mah2e3v4acyY2eXjZDgwnVta23PeB7x528Ye-EjsZRpXkZh61LWdVc6H10ZuOXcN55cFqEtPrVnC_nxvDnfK_VFmLBMD5w37lhXzvdS8yoGj87HOxGUw8xbeh0omCDriz5vm0xN9wdKN_X2iYxuj0e0wgQNwsQL4wNMoNXMDSW2_j9t8p5TmgMm9zzQ6R12ewod4SRP-ZDdCMNddit_d4P8nOge-7kYA6wiXK4cnncgACiQrBPiaoBM3DwCfX69GGBJOPByRDkFCL9rxZLgIGHbIFX1GN9Autsevo5gBw9LNI-orWUqORE80BsVsHCdbgBgQr_noYD_8uHHBu3G-Bo-h6vNfbY4ff_l3Vk5VWEo-6YV67LuterQgykVfRUw--kiBgnBVr3lwfWY7kjppBcNxipcePSJ1vOWSH8aF1W04gE7GFZDeMRAKKdVcI4r12Bazq2PXgmBwzstvVcF41uhmH6iKKdKGUuTUhXdmixIg4I0SZAGx7zajfmeCTr-2vstyXrXk8i10w-ocmZSOfMvlSvYS9IUQyYAp9fb6SUDLpLItMyJwpgWt6CSBTua9cSj28-bt7pmJtMxmlphK1EY4WSf75ppJMHhhrDapD4YeRMdQMEeZtXcLQkjEinaThdMzZR2tuZ5y3DxLRGLdyhD2crH_2OTnrCbdTpvVcmbI3awvtqEpxi_rd2zdFR_ATRdQus
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge0FCiG8CBQ0SEgewGidO7HBBLWpVOFQVYqXerDh22kpL0m52-T38VGYc77YRUq-xrcSZ8cwbe_yGsQ-uJZYyLXib1xmXWVZx61rLvaiFcIUjl0XZFifl8Vz-OCvO4obbENMqNzYxGGrXN7RHvpcpxPrE7KK-Xl1zqhpFp6uxhMZ9toMmWBcztnNweHL6c3uOoHSRba7K6HJvwE6UIoQBGOIEDKTVxB0F1v7_bfMt5zRNnLzliY4es0cRQsL-KPMn7J7vnrKH4_4bjNeKnrG_88FD38Lv3uK6B0oEBZJ5yLzqYCRwHoC2YS87WFA-OB9QXh78Tc1YEiCEHDcI1T2GLxDOuLvzAerOwQLNJGotD6UnvAO6qwI1_AknARCz4MehgG_5fr1G-zF8hlO_XD9n86PDX9-OeazGwJuizFc8a7Sq0JMp1brUYxRUtQgWfJ02tfC2wbBHSitdXiBmEblD31g7URL5T2Fb1db5Czbr-s6_YpArq5W3VihbYHguatc6lec4vNLSOZUwsRGKaSJVOVXMWJgQsujSjII0KEgTBGlwzKftmKuRqOPO3gck621PItkOD_rluYlr1ujUukZqkbbeIe5xNvfKikpKpz3h2IR9JE0xZArw85o63mjASRKpltlXiG3xF6QyYbuTnriEm2nzRtdMNCGDuVH4hL3fNtNISovrfL8OfRCBEy1Awl6OqrmdEiITmZeVTpiaKO1kztOW7vIiEIxXKENZytd3f9Yb9iALKynlothls9Vy7d8iQlvZd3EZ_gOSbDu8
  priority: 102
  providerName: ProQuest
Title Use of mobile data collection systems within large-scale epidemiological field trials: findings and lessons-learned from a vector control trial in Iquitos, Peru
URI https://www.ncbi.nlm.nih.gov/pubmed/36243698
https://www.proquest.com/docview/2726116917
https://www.proquest.com/docview/2725190480
https://pubmed.ncbi.nlm.nih.gov/PMC9571464
https://doaj.org/article/80bdc4810fed406db3e7b1944d8e4163
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELf28YKEEN_LGNUhIfEAgThxYgcJoXVaGUhM00Slihcrjp0xqUtZ0yL4b_hTuXPSbhETT7z4ofapse_Od2eff8fYc1sRSpniYZUUcSjiOA-NrUzoeMG5TS2ZLMq2OM6OxuLTJJ1ssFW5o24BmxtDO6onNZ5PX_-8_PUeFf6dV3iVvWlwj6XEHwyr0PpjeCw32TZapoyk_LO4ulWQKo1XD2dupOsZJ4_h__dOfc1U9dMor9ml0V12p3MoYb-VgHtsw9X32e32NA7aR0YP2O9x42BWwcXM4C4AlBYKJAE-D6uGFs65ATqUPa9hStnhYYPcc-CuKsgSO8FnvIGv9dG8BX_jXZ81UNQWprhpogyHvhCFs0AvV6CAH_5eALqc-JYU8F8-Xi5xN2lewYmbLx-y8ejwy8FR2NVmCMs0SxZhXCqZo12TsrKRw5gor9B1cEVUFtyZEoMgIYywSYoeDE8sWsrC8oyggFJTyapIHrGtela7HQaJNEo6Y7g0KQbrvLCVlUmC5LkS1sqA8RVTdNkBl1P9jKn2AYzKdMtIjYzUnpEaaV6uab63sB3_HD0kXq9HEuS2_2E2P9OdBmsVGVsKxaPKWfSCrEmcNDwXwipHXm3AXpCkaBJV_Lyy6N434CQJYkvvS_R0cQkiEbC93khU6LLfvZI1vdIHHUvsJWAj_Nhn626ipCS52s2Wfgz64wQSELDHrWiup4R-ikiyXAVM9oS2N-d-T33-zcON58hDkYnd_7FIT9it2OtbFPJ0j20t5kv3FL26hRmwTTmR2KoDTu3ow4BtDw-PT04H_pxk4FUZ29Ph1z8am1DQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOYCEEN8ECgwSiANEjWMnTpAQKh_LLi0Vh1bqzcSxUyotSbvZBfFv-AX8Rmac7LYRUm-9buzdeGf85tkev2Hsma1IpSzjYSWKOJRxnIfGViZ0vODcJpZCFmVb7Kbjffn5IDlYY3-Xd2EorXKJiR6obVPSHvlmrJDrk7KLent8ElLVKDpdXZbQ6Nxi2_3-hUu29s3kA9r3eRyPPu69H4d9VYGwTFIxD-MyUzkislKVjRyy-bzCoOeKqCy4MyXSdymNtCLB2MuFRYwvLE9JxCYxlaoKgd97iV2WQuSk1Z-NPq1OLbBJvLyYk6WbLWI_JSThcg9ZCS7b1SD4-RoB_0eCM6FwmKZ5Ju6NbrDrPWGFrc7DbrI1V99i17rdPuguMd1mf_ZbB00FPxqDKAOUdgrkYT7Pq4ZOLroF2vQ9qmFK2edhi97hwJ1WqCV3AZ9RB76WSPsa_Il6fdhCUVuYIijjHAl9oQtngW7GQAE__bkD9Dn3XVfAX5mcLBCt2lfw1c0Wd9j-hVjpLluvm9rdZyCUyZQzhiuTSHSgwlZWCYHd80xaqwLGl0bRZS-MTvU5ptovkLJUd4bUaEjtDamxz8tVn-NOFuTc1u_I1quWJOntP2hmh7pHCJ1FxpYy41HlLLIsa4RThudS2swRaw7YC_IUTcCDr1cW_f0JHCRJeOkthUwa_4JIBmxj0BIBoxw-Xvqa7gGr1afTK2BPV4-pJyXh1a5Z-DbI90mEIGD3OtdcDQl5kBRpngVMDZx2MObhk_rou5czz9GGMpUPzn-tJ-zKeO_Ljt6Z7G4_ZFdjP6uikCcbbH0-W7hHyA3n5rGfkMC-XTQC_AMqOnXM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+mobile+data+collection+systems+within+large-scale+epidemiological+field+trials%3A+findings+and+lessons-learned+from+a+vector+control+trial+in+Iquitos%2C+Peru&rft.jtitle=BMC+public+health&rft.au=William+H.+Elson&rft.au=Anna+B.+Kawiecki&rft.au=Marisa+A.+P.+Donnelly&rft.au=Arnold+O.+Noriega&rft.date=2022-10-15&rft.pub=BMC&rft.eissn=1471-2458&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1186%2Fs12889-022-14301-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_80bdc4810fed406db3e7b1944d8e4163
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2458&client=summon