MedLexSp – a medical lexicon for Spanish medical natural language processing
Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish....
Saved in:
Published in | Journal of biomedical semantics Vol. 14; no. 1; pp. 2 - 23 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
02.02.2023
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.
This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.
The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository. |
---|---|
AbstractList | Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.BACKGROUNDMedical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.CONSTRUCTION AND CONTENTThis article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.CONCLUSIONSThe lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository. BackgroundMedical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.Construction and contentThis article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System\(^{\circledR }\) (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.ConclusionsThe lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository. Abstract Background Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish. Construction and content This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System $$^{\circledR }$$ ® (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries. Conclusions The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository. Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish. The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository. Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish. This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries. The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository. Background Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish. Construction and content This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[formula omitted] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries. Conclusions The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository. Keywords: Medical Lexicon, Natural Language Processing, Word embeddings, Spanish |
ArticleNumber | 2 |
Audience | Academic |
Author | Campillos-Llanos, Leonardo |
Author_xml | – sequence: 1 givenname: Leonardo surname: Campillos-Llanos fullname: Campillos-Llanos, Leonardo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36732862$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhi1UREvpC7BAkdiwSfFtbGeDVFVcKg3torC2fE09ytiDnaCy4x14Q54Ep9OWToWIF7GOv_Nb__H_HOzFFB0ALxE8RkiwtwURglkLMW4hxAK1iyfgAEOKWkQF3Huw3wdHpaxg_QhBUJBnYJ8wTrBg-ACcf3Z26a4vN83vn78a1aydDUYNzeCug0mx8Sk3lxsVQ7m6P4tqnPLMqNhPqnfNJifjSgmxfwGeejUUd3T7PwRfP7z_cvqpXV58PDs9WbZmwcjYYo0s7YQ2WiOPqXZIc2YpobDTFFKmOoq5shp7KuxcwZZQITRVXEAvOnIIzra6NqmV3OSwVvmHTCrIm0LKvVR5DGZwEllHPfdWK15vYFhziKwQlHWQYEt51Xq31dpMulo0Lo7V3Y7o7kkMV7JP32UnOswErgJvbgVy-ja5Msp1KMYNdT4uTUVizgnCdfSLir5-hK7SlGMd1UxxLhBk5C_Vq2ogRJ_qvWYWlSecLBjDgszU8T-ouqxbz2_nfKj1nYZXD43eO7xLQwXEFjA5lZKdlyaMagxp9h0GiaCcsye32ZM1e_Ime3I2hh-13qn_p-kPU9jZKw |
CitedBy_id | crossref_primary_10_1007_s10579_024_09755_7 crossref_primary_10_1075_ijlcr_23009_min crossref_primary_10_3390_su151310417 crossref_primary_10_1186_s12859_024_05949_6 crossref_primary_10_1371_journal_pone_0298298 |
Cites_doi | 10.1186/s13326-018-0193-x 10.1016/j.jbi.2018.09.008 10.5281/zenodo.2621286 10.1136/jamia.2001.0080080 10.1145/3498324 10.1002/9781118712696 10.1093/nar/gku1205 10.1162/tacl_a_00051 10.1186/s12911-021-01395-z 10.18653/v1/P17-1194 10.1186/1472-6947-15-S2-S6 10.1007/978-3-540-88906-9_44 10.1016/j.sbspro.2013.10.619 10.1186/s13326-018-0179-8 10.5281/zenodo.4552042 10.18653/v1/D19-5701 10.18653/v1/W19-5017 10.1186/1471-2105-12-397 10.1016/j.ijmedinf.2004.03.010 10.1016/j.imu.2018.10.011 10.1093/database/baaa062 10.1186/s13326-017-0156-7 10.1016/j.jbi.2019.103356 10.5220/0010190200470057 10.1186/s13326-021-00247-z 10.5281/zenodo.2560344 10.1145/2661829.2661974 10.1093/nar/gkv951 10.1093/jamia/ocz156 10.18653/v1/N19-1149 10.1093/jamia/ocaa309 10.1075/li.23.2.02bla 10.1093/nar/gkh061 10.18653/v1/2020.nlpcovid19-2.32 10.1006/jbin.2001.1023 10.1176/appi.books.9780890425596 10.1186/s13326-016-0093-x 10.18653/v1/N18-1202 10.18653/v1/2020.acl-demos.14 10.1075/ubli.5.15mor 10.1136/amiajnl-2013-001837 10.1093/database/bar065 10.1016/j.jbi.2019.103252 10.1093/jamiaopen/ooz007 10.2196/17934 10.2165/00002018-199920020-00002 10.1061/9780784483817.ch07 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). COPYRIGHT 2023 BioMed Central Ltd. 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: 2023. The Author(s). – notice: COPYRIGHT 2023 BioMed Central Ltd. – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1186/s13326-022-00281-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures |
EISSN | 2041-1480 |
EndPage | 23 |
ExternalDocumentID | oai_doaj_org_article_1de4f7fdba7d4362b701d88469032d47 PMC9892682 A735662833 36732862 10_1186_s13326_022_00281_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GrantInformation_xml | – fundername: MCIN/AEI/10.13039/501100011033/, project call: "Proyectos I+D+i Retos Investigación" grantid: PID2020-116001RA-C33 – fundername: Horizon 2020 Framework Programme grantid: 713366 – fundername: ; – fundername: ; grantid: 713366 – fundername: ; grantid: PID2020-116001RA-C33 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION DIK E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ITC KQ8 L6V LK8 M1P M48 M7P M7S ML~ M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS RBZ RNS ROL RPM RSV SMT SOJ TUS UKHRP CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC COVID DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c563t-2b1d498bcbb1f24be1b76d43409b4046a9427adb2f48db4042d3488b4a780f893 |
IEDL.DBID | M48 |
ISSN | 2041-1480 |
IngestDate | Wed Aug 27 01:30:43 EDT 2025 Thu Aug 21 18:38:09 EDT 2025 Mon Jul 21 11:54:34 EDT 2025 Fri Jul 25 11:55:37 EDT 2025 Tue Jun 17 21:28:21 EDT 2025 Tue Jun 10 20:31:56 EDT 2025 Thu Apr 03 07:03:25 EDT 2025 Tue Jul 01 03:54:48 EDT 2025 Thu Apr 24 22:57:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Medical Lexicon Spanish Word embeddings Natural Language Processing |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-2b1d498bcbb1f24be1b76d43409b4046a9427adb2f48db4042d3488b4a780f893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13326-022-00281-5 |
PMID | 36732862 |
PQID | 2777781063 |
PQPubID | 2040220 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1de4f7fdba7d4362b701d88469032d47 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892682 proquest_miscellaneous_2773121085 proquest_journals_2777781063 gale_infotracmisc_A735662833 gale_infotracacademiconefile_A735662833 pubmed_primary_36732862 crossref_citationtrail_10_1186_s13326_022_00281_5 crossref_primary_10_1186_s13326_022_00281_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-02 |
PublicationDateYYYYMMDD | 2023-02-02 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of biomedical semantics |
PublicationTitleAlternate | J Biomed Semantics |
PublicationYear | 2023 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | CE Lipscomb (281_CR30) 2000; 88 Y Chen (281_CR11) 2019; 96 G Francopoulo (281_CR24) 2013 281_CR48 281_CR47 281_CR46 281_CR43 281_CR42 281_CR41 P Nadkarni (281_CR80) 2001; 8 O Bodenreider (281_CR15) 2004; 32 281_CR51 B Chiu (281_CR49) 2019; 10 Y Fan (281_CR63) 2019; 2 O Ghiasvand (281_CR8) 2018; 13 281_CR19 F Pedregosa (281_CR77) 2011; 12 281_CR18 281_CR17 J Yetano (281_CR45) 2003 281_CR16 281_CR59 281_CR56 AT McCray (281_CR40) 2001; 84 281_CR55 281_CR54 281_CR53 281_CR52 World Health Organization (281_CR31) 2019 281_CR61 Y Wang (281_CR67) 2018; 87 281_CR60 P Zweigenbaum (281_CR37) 2005; 74 A Neuraz (281_CR68) 2019; 264 P Thompson (281_CR38) 2011; 12 A Moreno-Sandoval (281_CR58) 2013; 95 K Donnelly (281_CR27) 2006; 121 I Lerner (281_CR12) 2020; 102 H Liu (281_CR6) 2001; 34 281_CR28 M Ahltorp (281_CR62) 2016; 7 281_CR26 281_CR25 281_CR69 X Blanco (281_CR71) 2000; 23 281_CR23 281_CR22 281_CR66 281_CR21 281_CR65 281_CR20 281_CR64 O Majewska (281_CR14) 2021; 12 281_CR73 281_CR72 T Kang (281_CR9) 2021; 28 T Lingren (281_CR7) 2014; 21 I Segura-Bedmar (281_CR57) 2017; 8 A Moreno Sandoval (281_CR50) 2006; 5 281_CR39 A Névéol (281_CR5) 2018; 9 World Organization of Family Doctors (281_CR35) 1998 281_CR36 281_CR79 281_CR1 281_CR34 281_CR78 J Jouffroy (281_CR13) 2021; 9 281_CR33 281_CR32 281_CR76 281_CR75 281_CR74 L Van der Maaten (281_CR70) 2008; 9 P Bojanowski (281_CR2) 2017; 5 281_CR82 281_CR81 281_CR4 281_CR3 D Weissenbacher (281_CR10) 2019; 26 A Moreno-Sandoval (281_CR44) 2015; 37 EG Brown (281_CR29) 1999; 20 |
References_xml | – ident: 281_CR36 – volume: 10 start-page: 2:1 issue: 1 year: 2019 ident: 281_CR49 publication-title: J Biomed Semant doi: 10.1186/s13326-018-0193-x – volume: 87 start-page: 12 year: 2018 ident: 281_CR67 publication-title: J Biomed Inform. doi: 10.1016/j.jbi.2018.09.008 – ident: 281_CR72 doi: 10.5281/zenodo.2621286 – ident: 281_CR59 – volume: 8 start-page: 80 issue: 1 year: 2001 ident: 281_CR80 publication-title: J Am Med Inform Assoc. doi: 10.1136/jamia.2001.0080080 – ident: 281_CR1 – ident: 281_CR22 doi: 10.1145/3498324 – volume-title: LMF Lexical Markup Framework year: 2013 ident: 281_CR24 doi: 10.1002/9781118712696 – ident: 281_CR55 – ident: 281_CR17 – volume: 88 start-page: 265 issue: 3 year: 2000 ident: 281_CR30 publication-title: Bull Med Lib Assoc. – ident: 281_CR33 doi: 10.1093/nar/gku1205 – volume: 84 start-page: 216 year: 2001 ident: 281_CR40 publication-title: Stud Health Tech Inform. – volume: 37 start-page: 173 year: 2015 ident: 281_CR44 publication-title: Linguist Esp Actual. – volume: 5 start-page: 135 year: 2017 ident: 281_CR2 publication-title: Trans Assoc Comput Linguist. doi: 10.1162/tacl_a_00051 – ident: 281_CR23 doi: 10.1186/s12911-021-01395-z – ident: 281_CR73 doi: 10.18653/v1/P17-1194 – ident: 281_CR46 – ident: 281_CR54 doi: 10.1186/1472-6947-15-S2-S6 – ident: 281_CR42 doi: 10.1007/978-3-540-88906-9_44 – ident: 281_CR56 – volume: 95 start-page: 33 year: 2013 ident: 281_CR58 publication-title: Procedia-Soc Behav Sci. doi: 10.1016/j.sbspro.2013.10.619 – ident: 281_CR18 – volume: 9 start-page: 12 issue: 1 year: 2018 ident: 281_CR5 publication-title: J Biomed Semant. doi: 10.1186/s13326-018-0179-8 – ident: 281_CR52 – ident: 281_CR66 doi: 10.5281/zenodo.4552042 – ident: 281_CR21 doi: 10.18653/v1/D19-5701 – ident: 281_CR16 doi: 10.18653/v1/W19-5017 – ident: 281_CR51 – volume: 12 start-page: 397 issue: 1 year: 2011 ident: 281_CR38 publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-12-397 – volume: 264 start-page: 1558 year: 2019 ident: 281_CR68 publication-title: Stud Health Technol Inform. – volume: 121 start-page: 279 year: 2006 ident: 281_CR27 publication-title: Stud Health Tech Inform. – ident: 281_CR76 – volume: 74 start-page: 119 issue: 2–4 year: 2005 ident: 281_CR37 publication-title: Int J Med Inform. doi: 10.1016/j.ijmedinf.2004.03.010 – ident: 281_CR20 – ident: 281_CR28 – ident: 281_CR41 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 281_CR70 publication-title: J Mach Learn Res. – volume: 13 start-page: 122 year: 2018 ident: 281_CR8 publication-title: Inform Med Unlocked. doi: 10.1016/j.imu.2018.10.011 – ident: 281_CR19 – ident: 281_CR79 doi: 10.1093/database/baaa062 – volume: 8 start-page: 45 issue: 1 year: 2017 ident: 281_CR57 publication-title: J Biomed Semant. doi: 10.1186/s13326-017-0156-7 – volume: 102 year: 2020 ident: 281_CR12 publication-title: J Biomed Inform. doi: 10.1016/j.jbi.2019.103356 – ident: 281_CR53 – ident: 281_CR34 – ident: 281_CR64 doi: 10.5220/0010190200470057 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 281_CR14 publication-title: J Biomed Semant. doi: 10.1186/s13326-021-00247-z – ident: 281_CR75 doi: 10.5281/zenodo.2560344 – ident: 281_CR81 doi: 10.1145/2661829.2661974 – ident: 281_CR25 – ident: 281_CR78 doi: 10.1093/nar/gkv951 – ident: 281_CR48 – volume: 26 start-page: 1618 issue: 12 year: 2019 ident: 281_CR10 publication-title: J Am Med Inform Assoc. doi: 10.1093/jamia/ocz156 – volume: 12 start-page: 2825 year: 2011 ident: 281_CR77 publication-title: J Mach Learn Res. – volume-title: International Classification of Primary Care year: 1998 ident: 281_CR35 – ident: 281_CR69 doi: 10.18653/v1/N19-1149 – volume: 28 start-page: 812 issue: 4 year: 2021 ident: 281_CR9 publication-title: J Am Med Inform Assoc. doi: 10.1093/jamia/ocaa309 – volume: 23 start-page: 201 issue: 2 year: 2000 ident: 281_CR71 publication-title: Lingvisticæ Investigationes. doi: 10.1075/li.23.2.02bla – volume: 32 start-page: D267 issue: suppl 1 year: 2004 ident: 281_CR15 publication-title: Nucleic acids res. doi: 10.1093/nar/gkh061 – ident: 281_CR61 doi: 10.18653/v1/2020.nlpcovid19-2.32 – ident: 281_CR82 – volume: 34 start-page: 249 issue: 4 year: 2001 ident: 281_CR6 publication-title: J Biomed Inform. doi: 10.1006/jbin.2001.1023 – volume-title: Anatomical Therapeutic Chemical classification year: 2019 ident: 281_CR31 – ident: 281_CR32 doi: 10.1176/appi.books.9780890425596 – volume: 7 start-page: 1 issue: 1 year: 2016 ident: 281_CR62 publication-title: J Biomed Semant. doi: 10.1186/s13326-016-0093-x – ident: 281_CR3 doi: 10.18653/v1/N18-1202 – ident: 281_CR26 doi: 10.18653/v1/2020.acl-demos.14 – volume: 5 start-page: 199 year: 2006 ident: 281_CR50 publication-title: Spoken Lang Corpus Linguist Inform. doi: 10.1075/ubli.5.15mor – ident: 281_CR4 – volume: 21 start-page: 406 issue: 3 year: 2014 ident: 281_CR7 publication-title: J Am Med Inform Assoc. doi: 10.1136/amiajnl-2013-001837 – volume-title: Diccionario de siglas médicas y otras abreviaturas, epónimos y términos médicos relacionados con la codificación de las altas hospitalarias year: 2003 ident: 281_CR45 – ident: 281_CR39 doi: 10.1093/database/bar065 – ident: 281_CR74 – volume: 96 year: 2019 ident: 281_CR11 publication-title: J Biomed Inform. doi: 10.1016/j.jbi.2019.103252 – volume: 2 start-page: 246 issue: 2 year: 2019 ident: 281_CR63 publication-title: JAMIA Open. doi: 10.1093/jamiaopen/ooz007 – volume: 9 issue: 3 year: 2021 ident: 281_CR13 publication-title: JMIR Med Inf. doi: 10.2196/17934 – volume: 20 start-page: 109 issue: 2 year: 1999 ident: 281_CR29 publication-title: Drug Saf. doi: 10.2165/00002018-199920020-00002 – ident: 281_CR47 – ident: 281_CR65 doi: 10.1061/9780784483817.ch07 – ident: 281_CR43 – ident: 281_CR60 |
SSID | ssj0000331083 |
Score | 2.3396268 |
Snippet | Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic... Background Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and... BackgroundMedical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and... Abstract Background Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2 |
SubjectTerms | Chemical elements Classification Clinical trials Computational linguistics Coronaviruses COVID-19 Data mining Dictionaries Humans Language Language processing Libraries Linguistics Marking Marking and tracking techniques Medical Lexicon Medical research Medical Subject Headings-MeSH Medical terminology Medicine, Experimental Methods Natural language interfaces Natural Language Processing Nomenclature Ontology Pandemics Radiation therapy Semantics Spanish Speech Speech recognition Terminology Texts Unified Medical Language System Vocabulary Vocabulary, Controlled Word embeddings Words (language) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kJy_iM65GaUH0IE12-j3HKIYgm1xiILema7qHBHSyOBvw6H_wH_pLrOqZHXYQ9OKelqmaZboeXVWzVV8z9jpaIy1oI4yvl0LrZIUHABFzrTA_ybmpaDj59MyeXOhPl-Zy56gv6gkb4IEHwR1WKevWtQmiSxp3W3DLKnlPVZ2SSZc5cox5O8VU2YMVpi1ebadkvD3ssRiT1G8rBdUZlTCzSFQA-__clnfi0rxncicIHd9n98bskR8NT_2A3cndQ7a_Gt859vwNX00wyf0jdnaa0yp_P1_zXz9-8si_Dv_KcALBxDqYY8LKz3E7uO6vJlpB-iSe8Uf5ehglwBD3mF0cf_z84USMByiIxli1ERKqpGsPDUDVSg25AmdRiljTgcbCONZauphAttonuiKTQocGHZ1ftpjJPGF73U2XnzIuGzBtyqDTMupoch3xa5uSqWXWsZILVm2FGZoRXZwOufgSSpXhbRgUEFABoSggmAV7N92zHrA1_sr9nnQ0cRIudrmA1hJGawn_spYFe0saDuS9-HhNHIcQcJGEgxWOnML8FlMutWAHM070umZO3tpIGL2-D9Lhx2ORjeRXE5nupE62Lt_cFh5FoG0eF7Q_mNS0JGUJOsmiMN3M2GZrnlO666uCCV77Wlovn_0PIT1ndyWmcqU3XR6wvc232_wCU68NvCxe9hv-lSoA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLig8iopBRkJwQFFXb-dEyqIpULbXkql3iw7dmilkl2arcSR_8A_5Jcwk3hDI6TmFMXjKOPxeB4ZfybktdeK6yBVqWw1K6WMurQhhNKnSoB_klLNcHPy0bE-PJVfztRZTrh1uaxysyb2C3Vc1pgj3-cGLgsBjHi_-lHiqVH4dzUfoXGX3GNgabCky84_jzmWmQDnxYrNXhmr9zsIyThW3fISow1Wqok96mH7_1-cb1inaeXkDVM03yYPsg9JDwahPyR3UvuI7Cxy5rGjb-hiBEvuHpPjoxQX6efJiv759Zt6-n34N0MRChOiYQpuKz2BReGiOx_berxPpMkvpathQwEYuifkdP7p68fDMh-jUNZKi3XJA4uysqEOgTVchsSC0VEKiOyChPDYV5IbHwNvpI34hEcBah2kN3bWgD_zlGy1yzY9I5TXQTUxBRlnXnqVKg-3TYyq4kl6xgvCNoPp6owxjkddXLo-1rDaDQJwIADXC8Cpgrwb-6wGhI1bqT-gjEZKRMfuHyyvvrmsbI7FJBvTxOAN8Kl5MDMWrcVMgOBRmoK8RQk71GH4vNrnrQjAJKJhuQMjwMsFx0sUZG9CCbpXT5s3c8Rl3e_cv5lakFdjM_bEerY2La97GoHQbRYY2hmm1MiS0AigpGEwzWSyTXietrQX5z0yeGUrri3fvf2znpP7HFy1vvac75Gt9dV1egGu1Tq87PXnLz70Ico priority: 102 providerName: ProQuest |
Title | MedLexSp – a medical lexicon for Spanish medical natural language processing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36732862 https://www.proquest.com/docview/2777781063 https://www.proquest.com/docview/2773121085 https://pubmed.ncbi.nlm.nih.gov/PMC9892682 https://doaj.org/article/1de4f7fdba7d4362b701d88469032d47 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELb6uHBB5VUCJTISggNayNpe23tAKEUNVZREiBApN8tee9tKZZNmU6nc-A_8Q34JY-9DXVFxIodNtGOvdjwznhnH_gahV5onhBuWRIlMBxFjlkfSGBNpl1KIT5zLYn84eTrjpws2XibLHdSUO6oHsLwztfP1pBaby3c3Vz8-gsF_CAYv-fsS8izit9KSyKcQcZTson3wTMJXNJjW4X6YmSkEM5I2Z2fu7NrxTwHG_-_J-pa36u6kvOWaRgfofh1T4mGlBA_QjiseosNJvRJZ4td40oInl4_QbOrsxN3M1_j3z19Y4-_VfzXYQ2NCdowhjMVzmCQuyvOWFvA_fZv6oXhdHTAAx_cYLUYn3z6dRnVZhShLON1GxMSWpdJkxsQ5YcbFRnDLKGR6hkG6rFNGhLaG5Exaf4dYCmZumBZykEN88wTtFavCPUWYZCbJrTPMDjTTiUs1_MytTVLimI5JD8XNYKqsxhz3pS8uVcg9JFeVABQIQAUBqKSH3rZ91hXixj9bH3sZtS09Wna4sdqcqdr4VGwdy0VujRbAJydGDGIrpV8ZoMQy0UNvvISV1zJ4vUzXRxOASY-OpYaCQtQLgRjtoaNOS7DFrEtudEQ1qqyIgI-E1BvIL1uy7-n3txVudR3aUA_lJoGhw0qlWpYo94BKHAZTdJStw3OXUlycB6TwVKaES_LsfwzSc3SPQIAXdqyTI7S33Vy7FxCQbU0f7YqlgKscfe6j_eFwPB_D9_HJ7MvXfljk6Ac7_AONKTeq |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoAL4lkCBYzE44CiJrbjOAeEymPZ0uxe2kq9GTt22kqQXZqtgBv_gf_Bj-KXMJMXjZB6656ieLKKPeN5ODPfEPLUyIRJK5IwUVkUCuFkqKy1ofEZB__E-yLG4uTZXE4PxMfD5HCN_O5rYTCtsteJjaJ2iwLPyLdYCj8FAQx_vfwaYtco_Lrat9BoxWLX__gGIVv9aucd8PcZY5P3-2-nYddVICwSyVchs7ETmbKFtXHJhPWxTaUTHAIdKyBaNJlgqXGWlUI5vMMcBym3wqQqKhWCL4HKvyI4WHKsTJ98GM50Ig7OkuJ9bY6SWzWEgAyzfFmI0U0cJiP717QJ-N8YnLOG40zNc6ZvcoNc73xWut0K2U2y5qtbZCPvTjpr-pzmAzhzfZvMZ97l_vvekv75-Ysa-qX9FkQRehOibwpuMt0DJXRSHw9jDb4o0nR_SpdtAQMY1jvk4FIW-C5ZrxaVv0coK2xSOm-Fi4wwic8MXJbOJRnzwsQsIHG_mLroMM2xtcZn3cQ2SuqWARoYoBsG6CQgL4dnli2ix4XUb5BHAyWicTc3FqdHutvcOnZelGnprElhnpLZNIqdUnjywJkTaUBeIIc16gx4vcJ0pQ8wSUTf0tspB68aHD0ekM0RJez1Yjzcy4judE2t_-2MgDwZhvFJzJ-r_OKsoeEIFadgQhutSA1T4hIBmyQsZjoSttGcxyPVyXGDRJ6pjEnF7l_8Wo_J1en-LNf5znz3AbnGwE1s8t7ZJllfnZ75h-DWreyjZi9R8umyN-9ftRleCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MedLexSp+%E2%80%93+a+medical+lexicon+for+Spanish+medical+natural+language+processing&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Leonardo+Campillos-Llanos&rft.date=2023-02-02&rft.pub=BMC&rft.eissn=2041-1480&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1186%2Fs13326-022-00281-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1de4f7fdba7d4362b701d88469032d47 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon |