MedLexSp – a medical lexicon for Spanish medical natural language processing

Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish....

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical semantics Vol. 14; no. 1; pp. 2 - 23
Main Author Campillos-Llanos, Leonardo
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 02.02.2023
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish. This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries. The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.
AbstractList Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.BACKGROUNDMedical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.CONSTRUCTION AND CONTENTThis article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.CONCLUSIONSThe lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.
BackgroundMedical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish.Construction and contentThis article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System\(^{\circledR }\) (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries.ConclusionsThe lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.
Abstract Background Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish. Construction and content This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System $$^{\circledR }$$ ® (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries. Conclusions The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.
Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish. The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.
Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish. This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[Formula: see text] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries. The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository.
Background Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic data for part-of-speech (PoS) tagging, lemmatization or natural language generation. To date, there is no such type of resource for Spanish. Construction and content This article describes an unified medical lexicon for Medical Natural Language Processing in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language System[formula omitted] (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID-19 were assembled by applying a similarity-based approach with word embeddings trained on a large corpus. MedLexSp includes 100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We report two use cases of MedLexSp. First, applying the lexicon to pre-annotate a corpus of 1200 texts related to clinical trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging and lemmatization compared to the default Spacy and Stanza python libraries. Conclusions The lexicon is distributed in a delimiter-separated value file; an XML file with the Lexical Markup Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. The embeddings and code to extract COVID-19 terms, and the Spacy and Stanza lemmatizers enriched with medical terms are provided in a public repository. Keywords: Medical Lexicon, Natural Language Processing, Word embeddings, Spanish
ArticleNumber 2
Audience Academic
Author Campillos-Llanos, Leonardo
Author_xml – sequence: 1
  givenname: Leonardo
  surname: Campillos-Llanos
  fullname: Campillos-Llanos, Leonardo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36732862$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhi1UREvpC7BAkdiwSfFtbGeDVFVcKg3torC2fE09ytiDnaCy4x14Q54Ep9OWToWIF7GOv_Nb__H_HOzFFB0ALxE8RkiwtwURglkLMW4hxAK1iyfgAEOKWkQF3Huw3wdHpaxg_QhBUJBnYJ8wTrBg-ACcf3Z26a4vN83vn78a1aydDUYNzeCug0mx8Sk3lxsVQ7m6P4tqnPLMqNhPqnfNJifjSgmxfwGeejUUd3T7PwRfP7z_cvqpXV58PDs9WbZmwcjYYo0s7YQ2WiOPqXZIc2YpobDTFFKmOoq5shp7KuxcwZZQITRVXEAvOnIIzra6NqmV3OSwVvmHTCrIm0LKvVR5DGZwEllHPfdWK15vYFhziKwQlHWQYEt51Xq31dpMulo0Lo7V3Y7o7kkMV7JP32UnOswErgJvbgVy-ja5Msp1KMYNdT4uTUVizgnCdfSLir5-hK7SlGMd1UxxLhBk5C_Vq2ogRJ_qvWYWlSecLBjDgszU8T-ouqxbz2_nfKj1nYZXD43eO7xLQwXEFjA5lZKdlyaMagxp9h0GiaCcsye32ZM1e_Ime3I2hh-13qn_p-kPU9jZKw
CitedBy_id crossref_primary_10_1007_s10579_024_09755_7
crossref_primary_10_1075_ijlcr_23009_min
crossref_primary_10_3390_su151310417
crossref_primary_10_1186_s12859_024_05949_6
crossref_primary_10_1371_journal_pone_0298298
Cites_doi 10.1186/s13326-018-0193-x
10.1016/j.jbi.2018.09.008
10.5281/zenodo.2621286
10.1136/jamia.2001.0080080
10.1145/3498324
10.1002/9781118712696
10.1093/nar/gku1205
10.1162/tacl_a_00051
10.1186/s12911-021-01395-z
10.18653/v1/P17-1194
10.1186/1472-6947-15-S2-S6
10.1007/978-3-540-88906-9_44
10.1016/j.sbspro.2013.10.619
10.1186/s13326-018-0179-8
10.5281/zenodo.4552042
10.18653/v1/D19-5701
10.18653/v1/W19-5017
10.1186/1471-2105-12-397
10.1016/j.ijmedinf.2004.03.010
10.1016/j.imu.2018.10.011
10.1093/database/baaa062
10.1186/s13326-017-0156-7
10.1016/j.jbi.2019.103356
10.5220/0010190200470057
10.1186/s13326-021-00247-z
10.5281/zenodo.2560344
10.1145/2661829.2661974
10.1093/nar/gkv951
10.1093/jamia/ocz156
10.18653/v1/N19-1149
10.1093/jamia/ocaa309
10.1075/li.23.2.02bla
10.1093/nar/gkh061
10.18653/v1/2020.nlpcovid19-2.32
10.1006/jbin.2001.1023
10.1176/appi.books.9780890425596
10.1186/s13326-016-0093-x
10.18653/v1/N18-1202
10.18653/v1/2020.acl-demos.14
10.1075/ubli.5.15mor
10.1136/amiajnl-2013-001837
10.1093/database/bar065
10.1016/j.jbi.2019.103252
10.1093/jamiaopen/ooz007
10.2196/17934
10.2165/00002018-199920020-00002
10.1061/9780784483817.ch07
ContentType Journal Article
Copyright 2023. The Author(s).
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s13326-022-00281-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
EISSN 2041-1480
EndPage 23
ExternalDocumentID oai_doaj_org_article_1de4f7fdba7d4362b701d88469032d47
PMC9892682
A735662833
36732862
10_1186_s13326_022_00281_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GrantInformation_xml – fundername: MCIN/AEI/10.13039/501100011033/, project call: "Proyectos I+D+i Retos Investigación"
  grantid: PID2020-116001RA-C33
– fundername: Horizon 2020 Framework Programme
  grantid: 713366
– fundername: ;
– fundername: ;
  grantid: 713366
– fundername: ;
  grantid: PID2020-116001RA-C33
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
ML~
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RBZ
RNS
ROL
RPM
RSV
SMT
SOJ
TUS
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
COVID
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c563t-2b1d498bcbb1f24be1b76d43409b4046a9427adb2f48db4042d3488b4a780f893
IEDL.DBID M48
ISSN 2041-1480
IngestDate Wed Aug 27 01:30:43 EDT 2025
Thu Aug 21 18:38:09 EDT 2025
Mon Jul 21 11:54:34 EDT 2025
Fri Jul 25 11:55:37 EDT 2025
Tue Jun 17 21:28:21 EDT 2025
Tue Jun 10 20:31:56 EDT 2025
Thu Apr 03 07:03:25 EDT 2025
Tue Jul 01 03:54:48 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Medical Lexicon
Spanish
Word embeddings
Natural Language Processing
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-2b1d498bcbb1f24be1b76d43409b4046a9427adb2f48db4042d3488b4a780f893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s13326-022-00281-5
PMID 36732862
PQID 2777781063
PQPubID 2040220
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_1de4f7fdba7d4362b701d88469032d47
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892682
proquest_miscellaneous_2773121085
proquest_journals_2777781063
gale_infotracmisc_A735662833
gale_infotracacademiconefile_A735662833
pubmed_primary_36732862
crossref_citationtrail_10_1186_s13326_022_00281_5
crossref_primary_10_1186_s13326_022_00281_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-02
PublicationDateYYYYMMDD 2023-02-02
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of biomedical semantics
PublicationTitleAlternate J Biomed Semantics
PublicationYear 2023
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References CE Lipscomb (281_CR30) 2000; 88
Y Chen (281_CR11) 2019; 96
G Francopoulo (281_CR24) 2013
281_CR48
281_CR47
281_CR46
281_CR43
281_CR42
281_CR41
P Nadkarni (281_CR80) 2001; 8
O Bodenreider (281_CR15) 2004; 32
281_CR51
B Chiu (281_CR49) 2019; 10
Y Fan (281_CR63) 2019; 2
O Ghiasvand (281_CR8) 2018; 13
281_CR19
F Pedregosa (281_CR77) 2011; 12
281_CR18
281_CR17
J Yetano (281_CR45) 2003
281_CR16
281_CR59
281_CR56
AT McCray (281_CR40) 2001; 84
281_CR55
281_CR54
281_CR53
281_CR52
World Health Organization (281_CR31) 2019
281_CR61
Y Wang (281_CR67) 2018; 87
281_CR60
P Zweigenbaum (281_CR37) 2005; 74
A Neuraz (281_CR68) 2019; 264
P Thompson (281_CR38) 2011; 12
A Moreno-Sandoval (281_CR58) 2013; 95
K Donnelly (281_CR27) 2006; 121
I Lerner (281_CR12) 2020; 102
H Liu (281_CR6) 2001; 34
281_CR28
M Ahltorp (281_CR62) 2016; 7
281_CR26
281_CR25
281_CR69
X Blanco (281_CR71) 2000; 23
281_CR23
281_CR22
281_CR66
281_CR21
281_CR65
281_CR20
281_CR64
O Majewska (281_CR14) 2021; 12
281_CR73
281_CR72
T Kang (281_CR9) 2021; 28
T Lingren (281_CR7) 2014; 21
I Segura-Bedmar (281_CR57) 2017; 8
A Moreno Sandoval (281_CR50) 2006; 5
281_CR39
A Névéol (281_CR5) 2018; 9
World Organization of Family Doctors (281_CR35) 1998
281_CR36
281_CR79
281_CR1
281_CR34
281_CR78
J Jouffroy (281_CR13) 2021; 9
281_CR33
281_CR32
281_CR76
281_CR75
281_CR74
L Van der Maaten (281_CR70) 2008; 9
P Bojanowski (281_CR2) 2017; 5
281_CR82
281_CR81
281_CR4
281_CR3
D Weissenbacher (281_CR10) 2019; 26
A Moreno-Sandoval (281_CR44) 2015; 37
EG Brown (281_CR29) 1999; 20
References_xml – ident: 281_CR36
– volume: 10
  start-page: 2:1
  issue: 1
  year: 2019
  ident: 281_CR49
  publication-title: J Biomed Semant
  doi: 10.1186/s13326-018-0193-x
– volume: 87
  start-page: 12
  year: 2018
  ident: 281_CR67
  publication-title: J Biomed Inform.
  doi: 10.1016/j.jbi.2018.09.008
– ident: 281_CR72
  doi: 10.5281/zenodo.2621286
– ident: 281_CR59
– volume: 8
  start-page: 80
  issue: 1
  year: 2001
  ident: 281_CR80
  publication-title: J Am Med Inform Assoc.
  doi: 10.1136/jamia.2001.0080080
– ident: 281_CR1
– ident: 281_CR22
  doi: 10.1145/3498324
– volume-title: LMF Lexical Markup Framework
  year: 2013
  ident: 281_CR24
  doi: 10.1002/9781118712696
– ident: 281_CR55
– ident: 281_CR17
– volume: 88
  start-page: 265
  issue: 3
  year: 2000
  ident: 281_CR30
  publication-title: Bull Med Lib Assoc.
– ident: 281_CR33
  doi: 10.1093/nar/gku1205
– volume: 84
  start-page: 216
  year: 2001
  ident: 281_CR40
  publication-title: Stud Health Tech Inform.
– volume: 37
  start-page: 173
  year: 2015
  ident: 281_CR44
  publication-title: Linguist Esp Actual.
– volume: 5
  start-page: 135
  year: 2017
  ident: 281_CR2
  publication-title: Trans Assoc Comput Linguist.
  doi: 10.1162/tacl_a_00051
– ident: 281_CR23
  doi: 10.1186/s12911-021-01395-z
– ident: 281_CR73
  doi: 10.18653/v1/P17-1194
– ident: 281_CR46
– ident: 281_CR54
  doi: 10.1186/1472-6947-15-S2-S6
– ident: 281_CR42
  doi: 10.1007/978-3-540-88906-9_44
– ident: 281_CR56
– volume: 95
  start-page: 33
  year: 2013
  ident: 281_CR58
  publication-title: Procedia-Soc Behav Sci.
  doi: 10.1016/j.sbspro.2013.10.619
– ident: 281_CR18
– volume: 9
  start-page: 12
  issue: 1
  year: 2018
  ident: 281_CR5
  publication-title: J Biomed Semant.
  doi: 10.1186/s13326-018-0179-8
– ident: 281_CR52
– ident: 281_CR66
  doi: 10.5281/zenodo.4552042
– ident: 281_CR21
  doi: 10.18653/v1/D19-5701
– ident: 281_CR16
  doi: 10.18653/v1/W19-5017
– ident: 281_CR51
– volume: 12
  start-page: 397
  issue: 1
  year: 2011
  ident: 281_CR38
  publication-title: BMC Bioinformatics.
  doi: 10.1186/1471-2105-12-397
– volume: 264
  start-page: 1558
  year: 2019
  ident: 281_CR68
  publication-title: Stud Health Technol Inform.
– volume: 121
  start-page: 279
  year: 2006
  ident: 281_CR27
  publication-title: Stud Health Tech Inform.
– ident: 281_CR76
– volume: 74
  start-page: 119
  issue: 2–4
  year: 2005
  ident: 281_CR37
  publication-title: Int J Med Inform.
  doi: 10.1016/j.ijmedinf.2004.03.010
– ident: 281_CR20
– ident: 281_CR28
– ident: 281_CR41
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 281_CR70
  publication-title: J Mach Learn Res.
– volume: 13
  start-page: 122
  year: 2018
  ident: 281_CR8
  publication-title: Inform Med Unlocked.
  doi: 10.1016/j.imu.2018.10.011
– ident: 281_CR19
– ident: 281_CR79
  doi: 10.1093/database/baaa062
– volume: 8
  start-page: 45
  issue: 1
  year: 2017
  ident: 281_CR57
  publication-title: J Biomed Semant.
  doi: 10.1186/s13326-017-0156-7
– volume: 102
  year: 2020
  ident: 281_CR12
  publication-title: J Biomed Inform.
  doi: 10.1016/j.jbi.2019.103356
– ident: 281_CR53
– ident: 281_CR34
– ident: 281_CR64
  doi: 10.5220/0010190200470057
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 281_CR14
  publication-title: J Biomed Semant.
  doi: 10.1186/s13326-021-00247-z
– ident: 281_CR75
  doi: 10.5281/zenodo.2560344
– ident: 281_CR81
  doi: 10.1145/2661829.2661974
– ident: 281_CR25
– ident: 281_CR78
  doi: 10.1093/nar/gkv951
– ident: 281_CR48
– volume: 26
  start-page: 1618
  issue: 12
  year: 2019
  ident: 281_CR10
  publication-title: J Am Med Inform Assoc.
  doi: 10.1093/jamia/ocz156
– volume: 12
  start-page: 2825
  year: 2011
  ident: 281_CR77
  publication-title: J Mach Learn Res.
– volume-title: International Classification of Primary Care
  year: 1998
  ident: 281_CR35
– ident: 281_CR69
  doi: 10.18653/v1/N19-1149
– volume: 28
  start-page: 812
  issue: 4
  year: 2021
  ident: 281_CR9
  publication-title: J Am Med Inform Assoc.
  doi: 10.1093/jamia/ocaa309
– volume: 23
  start-page: 201
  issue: 2
  year: 2000
  ident: 281_CR71
  publication-title: Lingvisticæ Investigationes.
  doi: 10.1075/li.23.2.02bla
– volume: 32
  start-page: D267
  issue: suppl 1
  year: 2004
  ident: 281_CR15
  publication-title: Nucleic acids res.
  doi: 10.1093/nar/gkh061
– ident: 281_CR61
  doi: 10.18653/v1/2020.nlpcovid19-2.32
– ident: 281_CR82
– volume: 34
  start-page: 249
  issue: 4
  year: 2001
  ident: 281_CR6
  publication-title: J Biomed Inform.
  doi: 10.1006/jbin.2001.1023
– volume-title: Anatomical Therapeutic Chemical classification
  year: 2019
  ident: 281_CR31
– ident: 281_CR32
  doi: 10.1176/appi.books.9780890425596
– volume: 7
  start-page: 1
  issue: 1
  year: 2016
  ident: 281_CR62
  publication-title: J Biomed Semant.
  doi: 10.1186/s13326-016-0093-x
– ident: 281_CR3
  doi: 10.18653/v1/N18-1202
– ident: 281_CR26
  doi: 10.18653/v1/2020.acl-demos.14
– volume: 5
  start-page: 199
  year: 2006
  ident: 281_CR50
  publication-title: Spoken Lang Corpus Linguist Inform.
  doi: 10.1075/ubli.5.15mor
– ident: 281_CR4
– volume: 21
  start-page: 406
  issue: 3
  year: 2014
  ident: 281_CR7
  publication-title: J Am Med Inform Assoc.
  doi: 10.1136/amiajnl-2013-001837
– volume-title: Diccionario de siglas médicas y otras abreviaturas, epónimos y términos médicos relacionados con la codificación de las altas hospitalarias
  year: 2003
  ident: 281_CR45
– ident: 281_CR39
  doi: 10.1093/database/bar065
– ident: 281_CR74
– volume: 96
  year: 2019
  ident: 281_CR11
  publication-title: J Biomed Inform.
  doi: 10.1016/j.jbi.2019.103252
– volume: 2
  start-page: 246
  issue: 2
  year: 2019
  ident: 281_CR63
  publication-title: JAMIA Open.
  doi: 10.1093/jamiaopen/ooz007
– volume: 9
  issue: 3
  year: 2021
  ident: 281_CR13
  publication-title: JMIR Med Inf.
  doi: 10.2196/17934
– volume: 20
  start-page: 109
  issue: 2
  year: 1999
  ident: 281_CR29
  publication-title: Drug Saf.
  doi: 10.2165/00002018-199920020-00002
– ident: 281_CR47
– ident: 281_CR65
  doi: 10.1061/9780784483817.ch07
– ident: 281_CR43
– ident: 281_CR60
SSID ssj0000331083
Score 2.3396268
Snippet Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and linguistic...
Background Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and...
BackgroundMedical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and ontologies, and...
Abstract Background Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms and concepts from thesauri and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2
SubjectTerms Chemical elements
Classification
Clinical trials
Computational linguistics
Coronaviruses
COVID-19
Data mining
Dictionaries
Humans
Language
Language processing
Libraries
Linguistics
Marking
Marking and tracking techniques
Medical Lexicon
Medical research
Medical Subject Headings-MeSH
Medical terminology
Medicine, Experimental
Methods
Natural language interfaces
Natural Language Processing
Nomenclature
Ontology
Pandemics
Radiation therapy
Semantics
Spanish
Speech
Speech recognition
Terminology
Texts
Unified Medical Language System
Vocabulary
Vocabulary, Controlled
Word embeddings
Words (language)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kJy_iM65GaUH0IE12-j3HKIYgm1xiILema7qHBHSyOBvw6H_wH_pLrOqZHXYQ9OKelqmaZboeXVWzVV8z9jpaIy1oI4yvl0LrZIUHABFzrTA_ybmpaDj59MyeXOhPl-Zy56gv6gkb4IEHwR1WKevWtQmiSxp3W3DLKnlPVZ2SSZc5cox5O8VU2YMVpi1ebadkvD3ssRiT1G8rBdUZlTCzSFQA-__clnfi0rxncicIHd9n98bskR8NT_2A3cndQ7a_Gt859vwNX00wyf0jdnaa0yp_P1_zXz9-8si_Dv_KcALBxDqYY8LKz3E7uO6vJlpB-iSe8Uf5ehglwBD3mF0cf_z84USMByiIxli1ERKqpGsPDUDVSg25AmdRiljTgcbCONZauphAttonuiKTQocGHZ1ftpjJPGF73U2XnzIuGzBtyqDTMupoch3xa5uSqWXWsZILVm2FGZoRXZwOufgSSpXhbRgUEFABoSggmAV7N92zHrA1_sr9nnQ0cRIudrmA1hJGawn_spYFe0saDuS9-HhNHIcQcJGEgxWOnML8FlMutWAHM070umZO3tpIGL2-D9Lhx2ORjeRXE5nupE62Lt_cFh5FoG0eF7Q_mNS0JGUJOsmiMN3M2GZrnlO666uCCV77Wlovn_0PIT1ndyWmcqU3XR6wvc232_wCU68NvCxe9hv-lSoA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLig8iopBRkJwQFFXb-dEyqIpULbXkql3iw7dmilkl2arcSR_8A_5Jcwk3hDI6TmFMXjKOPxeB4ZfybktdeK6yBVqWw1K6WMurQhhNKnSoB_klLNcHPy0bE-PJVfztRZTrh1uaxysyb2C3Vc1pgj3-cGLgsBjHi_-lHiqVH4dzUfoXGX3GNgabCky84_jzmWmQDnxYrNXhmr9zsIyThW3fISow1Wqok96mH7_1-cb1inaeXkDVM03yYPsg9JDwahPyR3UvuI7Cxy5rGjb-hiBEvuHpPjoxQX6efJiv759Zt6-n34N0MRChOiYQpuKz2BReGiOx_berxPpMkvpathQwEYuifkdP7p68fDMh-jUNZKi3XJA4uysqEOgTVchsSC0VEKiOyChPDYV5IbHwNvpI34hEcBah2kN3bWgD_zlGy1yzY9I5TXQTUxBRlnXnqVKg-3TYyq4kl6xgvCNoPp6owxjkddXLo-1rDaDQJwIADXC8Cpgrwb-6wGhI1bqT-gjEZKRMfuHyyvvrmsbI7FJBvTxOAN8Kl5MDMWrcVMgOBRmoK8RQk71GH4vNrnrQjAJKJhuQMjwMsFx0sUZG9CCbpXT5s3c8Rl3e_cv5lakFdjM_bEerY2La97GoHQbRYY2hmm1MiS0AigpGEwzWSyTXietrQX5z0yeGUrri3fvf2znpP7HFy1vvac75Gt9dV1egGu1Tq87PXnLz70Ico
  priority: 102
  providerName: ProQuest
Title MedLexSp – a medical lexicon for Spanish medical natural language processing
URI https://www.ncbi.nlm.nih.gov/pubmed/36732862
https://www.proquest.com/docview/2777781063
https://www.proquest.com/docview/2773121085
https://pubmed.ncbi.nlm.nih.gov/PMC9892682
https://doaj.org/article/1de4f7fdba7d4362b701d88469032d47
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELb6uHBB5VUCJTISggNayNpe23tAKEUNVZREiBApN8tee9tKZZNmU6nc-A_8Q34JY-9DXVFxIodNtGOvdjwznhnH_gahV5onhBuWRIlMBxFjlkfSGBNpl1KIT5zLYn84eTrjpws2XibLHdSUO6oHsLwztfP1pBaby3c3Vz8-gsF_CAYv-fsS8izit9KSyKcQcZTson3wTMJXNJjW4X6YmSkEM5I2Z2fu7NrxTwHG_-_J-pa36u6kvOWaRgfofh1T4mGlBA_QjiseosNJvRJZ4td40oInl4_QbOrsxN3M1_j3z19Y4-_VfzXYQ2NCdowhjMVzmCQuyvOWFvA_fZv6oXhdHTAAx_cYLUYn3z6dRnVZhShLON1GxMSWpdJkxsQ5YcbFRnDLKGR6hkG6rFNGhLaG5Exaf4dYCmZumBZykEN88wTtFavCPUWYZCbJrTPMDjTTiUs1_MytTVLimI5JD8XNYKqsxhz3pS8uVcg9JFeVABQIQAUBqKSH3rZ91hXixj9bH3sZtS09Wna4sdqcqdr4VGwdy0VujRbAJydGDGIrpV8ZoMQy0UNvvISV1zJ4vUzXRxOASY-OpYaCQtQLgRjtoaNOS7DFrEtudEQ1qqyIgI-E1BvIL1uy7-n3txVudR3aUA_lJoGhw0qlWpYo94BKHAZTdJStw3OXUlycB6TwVKaES_LsfwzSc3SPQIAXdqyTI7S33Vy7FxCQbU0f7YqlgKscfe6j_eFwPB_D9_HJ7MvXfljk6Ac7_AONKTeq
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoAL4lkCBYzE44CiJrbjOAeEymPZ0uxe2kq9GTt22kqQXZqtgBv_gf_Bj-KXMJMXjZB6656ieLKKPeN5ODPfEPLUyIRJK5IwUVkUCuFkqKy1ofEZB__E-yLG4uTZXE4PxMfD5HCN_O5rYTCtsteJjaJ2iwLPyLdYCj8FAQx_vfwaYtco_Lrat9BoxWLX__gGIVv9aucd8PcZY5P3-2-nYddVICwSyVchs7ETmbKFtXHJhPWxTaUTHAIdKyBaNJlgqXGWlUI5vMMcBym3wqQqKhWCL4HKvyI4WHKsTJ98GM50Ig7OkuJ9bY6SWzWEgAyzfFmI0U0cJiP717QJ-N8YnLOG40zNc6ZvcoNc73xWut0K2U2y5qtbZCPvTjpr-pzmAzhzfZvMZ97l_vvekv75-Ysa-qX9FkQRehOibwpuMt0DJXRSHw9jDb4o0nR_SpdtAQMY1jvk4FIW-C5ZrxaVv0coK2xSOm-Fi4wwic8MXJbOJRnzwsQsIHG_mLroMM2xtcZn3cQ2SuqWARoYoBsG6CQgL4dnli2ix4XUb5BHAyWicTc3FqdHutvcOnZelGnprElhnpLZNIqdUnjywJkTaUBeIIc16gx4vcJ0pQ8wSUTf0tspB68aHD0ekM0RJez1Yjzcy4judE2t_-2MgDwZhvFJzJ-r_OKsoeEIFadgQhutSA1T4hIBmyQsZjoSttGcxyPVyXGDRJ6pjEnF7l_8Wo_J1en-LNf5znz3AbnGwE1s8t7ZJllfnZ75h-DWreyjZi9R8umyN-9ftRleCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MedLexSp+%E2%80%93+a+medical+lexicon+for+Spanish+medical+natural+language+processing&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Leonardo+Campillos-Llanos&rft.date=2023-02-02&rft.pub=BMC&rft.eissn=2041-1480&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=23&rft_id=info:doi/10.1186%2Fs13326-022-00281-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1de4f7fdba7d4362b701d88469032d47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon