A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets
The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in...
Saved in:
Published in | Fluids and barriers of the CNS Vol. 14; no. 1; pp. 36 - 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
19.12.2017
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics.
A subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter.
The final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm
. Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm
. Surface area of these features was 318.52, 112.2 and 232.1 cm
respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field.
This study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) and can be used as a tool for development of in vitro and numerical models of CSF dynamics for design and optimization of intrathecal therapeutics. |
---|---|
AbstractList | Abstract Background The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics. Methods A subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter. Results The final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm3. Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm3. Surface area of these features was 318.52, 112.2 and 232.1 cm2 respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field. Conclusions This study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) and can be used as a tool for development of in vitro and numerical models of CSF dynamics for design and optimization of intrathecal therapeutics. The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics. A subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter. The final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm . Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm . Surface area of these features was 318.52, 112.2 and 232.1 cm respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field. This study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) and can be used as a tool for development of in vitro and numerical models of CSF dynamics for design and optimization of intrathecal therapeutics. The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics.BACKGROUNDThe spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the spinal cord and dorsal and ventral nerve rootlets. An accurate anthropomorphic representation of these features is needed for development of in vitro and numerical models of cerebrospinal fluid (CSF) dynamics that can be used to inform and optimize CSF-based therapeutics.A subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter.METHODSA subject-specific 3D model of the SSS was constructed based on high-resolution anatomic MRI. An expert operator completed manual segmentation of the CSF space with detailed consideration of the anatomy. 31 pairs of semi-idealized dorsal and ventral nerve rootlets (NR) were added to the model based on anatomic reference to the magnetic resonance (MR) imaging and cadaveric measurements in the literature. Key design criteria for each NR pair included the radicular line, descending angle, number of NR, attachment location along the spinal cord and exit through the dura mater. Model simplification and smoothing was performed to produce a final model with minimum vertices while maintaining minimum error between the original segmentation and final design. Final model geometry and hydrodynamics were characterized in terms of axial distribution of Reynolds number, Womersley number, hydraulic diameter, cross-sectional area and perimeter.The final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm3. Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm3. Surface area of these features was 318.52, 112.2 and 232.1 cm2 respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field.RESULTSThe final model had a total of 139,901 vertices with a total CSF volume within the SSS of 97.3 cm3. Volume of the dura mater, spinal cord and NR was 123.1, 19.9 and 5.8 cm3. Surface area of these features was 318.52, 112.2 and 232.1 cm2 respectively. Maximum Reynolds number was 174.9 and average Womersley number was 9.6, likely indicating presence of a laminar inertia-dominated oscillatory CSF flow field.This study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) and can be used as a tool for development of in vitro and numerical models of CSF dynamics for design and optimization of intrathecal therapeutics.CONCLUSIONSThis study details an anatomically realistic anthropomorphic 3D model of the SSS based on high-resolution MR imaging of a healthy human adult female. The model is provided for re-use under the Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) and can be used as a tool for development of in vitro and numerical models of CSF dynamics for design and optimization of intrathecal therapeutics. |
ArticleNumber | 36 |
Audience | Academic |
Author | Sass, Lucas R. Baledent, Olivier Natividad, Gabryel Connely Khani, Mohammadreza Martin, Bryn A. Tubbs, R. Shane |
Author_xml | – sequence: 1 givenname: Lucas R. surname: Sass fullname: Sass, Lucas R. – sequence: 2 givenname: Mohammadreza surname: Khani fullname: Khani, Mohammadreza – sequence: 3 givenname: Gabryel Connely surname: Natividad fullname: Natividad, Gabryel Connely – sequence: 4 givenname: R. Shane surname: Tubbs fullname: Tubbs, R. Shane – sequence: 5 givenname: Olivier surname: Baledent fullname: Baledent, Olivier – sequence: 6 givenname: Bryn A. surname: Martin fullname: Martin, Bryn A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29258534$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kt-K1DAUxousuOu6D-CNBATxpmvSpG1yIwzrv4UFb_Q6pMnpTIZMMiaZWeYFfG5Tuyszoikh5eT7fpxDvufVmQ8equolwdeE8O5dIo3gfY1J2Zi39eFJddFg1ta8XJ8d_Z9XVymtcVmM9bhrnlXnjWha3lJ2Uf1cIPoBpd2wBp3rtAVtR6vRJhhwKIworwClrfXKTSIVlV75YE2pKQ3o3uYVUl7lsLFaOXdAEZSzKRfEHnyOxaa8QSbENBFmkA7RIA9xDyiGkB3k9KJ6OiqX4OrhvKy-f_r47eZLfff18-3N4q7WbUdz3QjDmQaugeC26VQDA23KoIIwDNj0ZuyMGdioRU-IEi3FBGNlmlIeKNaCXla3M9cEtZbbaDcqHmRQVv4uhLiUKpbuHUimaddxPjA-AGv5IAAzACCjMCN0Ziys9zNruxs2YPQ87wn09MbblVyGvWx7yjHvC-DtAyCGHztIWW5s0uCc8hB2SRLRC9JxIWiRvp6lS1Vas34MhagnuVy0De0po4QV1fU_VOUzUN6nxGe0pX5ieHNkWJW3y6sU3C7b4NOp8NXxrH-GfAxSEfSzQMeQUoRRapvVxCktWCcJllNq5ZxaWVIrp9TKQ3GSv5yP8P97fgE2hPAx |
CitedBy_id | crossref_primary_10_7759_cureus_10435 crossref_primary_10_1002_cpt_2531 crossref_primary_10_1115_1_4040401 crossref_primary_10_1017_jfm_2018_937 crossref_primary_10_1115_1_4044308 crossref_primary_10_1186_s12987_021_00238_3 crossref_primary_10_1186_s12987_019_0164_3 crossref_primary_10_1002_advs_202404061 crossref_primary_10_1063_5_0150158 crossref_primary_10_1088_1741_2552_ac6a7c crossref_primary_10_1186_s12987_020_00185_5 crossref_primary_10_1016_j_apm_2023_06_013 crossref_primary_10_1038_s41467_023_36083_1 crossref_primary_10_1017_jfm_2023_178 crossref_primary_10_1063_5_0209927 crossref_primary_10_1007_s11538_020_00749_4 crossref_primary_10_1016_j_heliyon_2024_e37067 crossref_primary_10_1111_aor_14323 crossref_primary_10_1016_j_apm_2021_01_037 crossref_primary_10_1038_s42003_022_03037_0 crossref_primary_10_1142_S0129183125500238 crossref_primary_10_54504_1684_6753_2024_2_32_39 crossref_primary_10_1007_s11095_022_03281_3 crossref_primary_10_1186_s12987_020_0174_1 crossref_primary_10_1186_s12987_019_0132_y crossref_primary_10_1186_s12987_019_0133_x crossref_primary_10_1115_1_4066862 crossref_primary_10_1371_journal_pone_0244090 crossref_primary_10_1103_PhysRevFluids_5_043102 crossref_primary_10_1186_s12987_024_00532_w crossref_primary_10_1371_journal_pone_0212239 crossref_primary_10_3389_fnimg_2022_879098 crossref_primary_10_3389_fbioe_2022_1040517 crossref_primary_10_3174_ajnr_A7603 crossref_primary_10_1186_s12987_022_00304_4 crossref_primary_10_1038_s41598_022_15995_w |
Cites_doi | 10.3174/ajnr.A4837 10.1227/01.NEU.0000341902.44760.10 10.1007/s00701-012-1395-0 10.1186/1743-8454-5-10 10.1016/j.jtcvs.2003.11.038 10.1097/00000542-199606000-00010 10.1007/s10334-015-0507-2 10.1213/01.ane.0000240886.55044.47 10.1097/00000542-200401000-00019 10.1016/j.jbiomech.2013.05.013 10.1148/radiology.216.3.r00au37672 10.1115/1.2132372 10.1007/s00330-012-2457-7 10.1007/s10439-011-0346-x 10.1115/1.2768112 10.1186/s12987-017-0074-1 10.1136/jnnp.42.4.345 10.1177/0310057X1204000410 10.1001/archneur.1994.00540210046012 10.1016/j.jbiomech.2015.02.018 10.1115/1.4036608 10.1177/028418519303400403 10.1002/cnm.2853 10.1109/TBME.2005.844021 10.1016/j.inat.2015.06.004 10.1371/journal.pone.0052284 10.1371/journal.pone.0075335 10.1016/j.jbiomech.2011.08.015 10.1115/1.2073687 10.1007/s00330-012-2732-7 10.1002/jmri.25591 10.1002/ar.21213 10.1016/j.neuroimage.2015.07.073 10.1016/S0003-4975(00)01205-4 10.1109/TBME.2008.2011647 10.1016/j.clinimag.2017.02.007 10.1007/s10439-016-1681-8 10.1016/j.jfluidstructs.2013.01.010 10.1097/00000542-199807000-00007 10.1109/EMBC.2016.7591572 10.1227/00006123-197908000-00003 10.1007/s11517-008-0332-0 10.1016/j.jbiomech.2013.12.023 10.1016/0730-725X(87)90380-8 10.1142/S0219519411004666 10.1021/mp300474m 10.3174/ajnr.A3793 10.1161/01.STR.30.12.2692 10.1002/bjs.18004016403 10.1111/jon.12150 10.1213/ANE.0b013e3182536211 10.1098/rsif.2013.1189 10.1001/archneur.55.2.169 10.3174/ajnr.A4597 10.1063/1.5002120 10.3171/SPI/2008/9/8/207 10.1115/1.1336144 10.1046/j.1468-1331.1999.650597.x 10.1016/j.compmedimag.2013.03.005 10.1111/j.1365-2044.2011.06766.x 10.1016/j.neuroimage.2006.01.015 10.1016/j.jbiomech.2012.01.050 10.1007/s10439-015-1449-6 10.1152/ajpheart.00658.2011 10.1115/1.4005849 10.1007/s10928-010-9184-y 10.1371/journal.pone.0091888 10.1016/j.anorl.2011.03.002 10.1016/0021-9290(84)90123-4 10.1097/00004424-200107000-00003 10.1148/radiology.198.2.8596861 10.1007/BF02478090 10.1002/ca.21153 10.1109/TBME.2017.2756995 10.1115/1.1634280 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 BioMed Central Ltd. The Author(s) 2017 |
Copyright_xml | – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: The Author(s) 2017 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1186/s12987-017-0085-y |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journal Collection |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2045-8118 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_4c36688b48be458b9e04eee1f9dfe6df PMC5738087 A523734314 29258534 10_1186_s12987_017_0085_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM103408 – fundername: NIGMS NIH HHS grantid: U54 GM104944 – fundername: University of Idaho grantid: Vandal Ideas Project – fundername: National Institute of General Medical Sciences grantid: 4U54GM104944-04TBD – fundername: National Institute of Mental Health grantid: 1R44MH112210-01A1 – fundername: NIMH NIH HHS grantid: R44 MH112210 – fundername: National Institute of General Medical Sciences grantid: P20GM1033408 – fundername: ; grantid: 1R44MH112210-01A1 – fundername: ; grantid: Vandal Ideas Project – fundername: ; grantid: P20GM1033408; 4U54GM104944-04TBD |
GroupedDBID | --- 0R~ 4.4 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACPRK ACUHS ADBBV ADRAZ ADUKV AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION DIK EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M1P M48 M~E O5R O5S P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ TR2 TUS UKHRP ~8M -A0 3V. ACRMQ ADINQ C24 NPM OK1 PMFND 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c563t-29d84ce8ce10526a2eb322049140e0d7df6ddb4fc9711a9530100ad2f6db30c93 |
IEDL.DBID | M48 |
ISSN | 2045-8118 |
IngestDate | Wed Aug 27 01:16:53 EDT 2025 Thu Aug 21 18:12:53 EDT 2025 Fri Jul 11 11:48:57 EDT 2025 Tue Jun 17 21:47:50 EDT 2025 Tue Jun 10 20:41:05 EDT 2025 Thu May 22 21:08:22 EDT 2025 Wed Feb 19 02:43:29 EST 2025 Tue Jul 01 03:56:45 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Spinal cord 3D reconstruction Cerebrospinal fluid hypothermia Intrathecal drug delivery Dura mater Spinal subarachnoid space Cerebrospinal fluid Nerve roots Spinal cord injury Neurapheresis |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-29d84ce8ce10526a2eb322049140e0d7df6ddb4fc9711a9530100ad2f6db30c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12987-017-0085-y |
PMID | 29258534 |
PQID | 1979168993 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c36688b48be458b9e04eee1f9dfe6df pubmedcentral_primary_oai_pubmedcentral_nih_gov_5738087 proquest_miscellaneous_1979168993 gale_infotracmisc_A523734314 gale_infotracacademiconefile_A523734314 gale_healthsolutions_A523734314 pubmed_primary_29258534 crossref_citationtrail_10_1186_s12987_017_0085_y crossref_primary_10_1186_s12987_017_0085_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-19 |
PublicationDateYYYYMMDD | 2017-12-19 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Fluids and barriers of the CNS |
PublicationTitleAlternate | Fluids Barriers CNS |
PublicationYear | 2017 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | 85_CR82 L Sakka (85_CR54) 2011; 128 QH Hogan (85_CR38) 1996; 84 D Greitz (85_CR71) 1993; 34 85_CR85 T Yiallourou (85_CR22) 2015; 2 K Valen-Sendstad (85_CR75) 2011; 44 85_CR86 M Khani (85_CR21) 2017; 139 CD Bertram (85_CR17) 2008; 46 D Greitz (85_CR72) 1999; 5 HW Stockman (85_CR66) 2007; 129 S Thyagaraj (85_CR37) 2017 KE Penrod (85_CR84) 1959; 34 A Thompson (85_CR79) 2016; 37 A Puigdellivol-Sanchez (85_CR87) 2015; 25 NSJ Elliott (85_CR18) 2013; 40 85_CR43 P Biglioli (85_CR35) 2004; 127 PA Yushkevich (85_CR23) 2006; 31 A Kuttler (85_CR67) 2010; 37 K Valen-Sendstad (85_CR74) 2014; 35 D Greitz (85_CR70) 1993; 386 EC Clarke (85_CR13) 2013; 46 A Prats-Galino (85_CR50) 2012; 40 CE Coffey (85_CR60) 1998; 55 S Cheng (85_CR16) 2012; 45 SA Ahmed (85_CR73) 1984; 17 K Jain (85_CR77) 2016 H Higuchi (85_CR48) 2004; 100 AC Bunck (85_CR1) 2012; 22 J Lang (85_CR28) 1982; 128 AA Linninger (85_CR69) 2005; 52 A Tagliabue (85_CR76) 2017; 27 K Tangen (85_CR12) 2016; 44 85_CR78 L Chen (85_CR80) 2015; 122 SA Meylaerts (85_CR8) 2000; 70 A Helgeland (85_CR15) 2014; 47 NS Elliott (85_CR65) 2012; 134 K Berkouk (85_CR63) 2003; 125 HD Hettiarachchi (85_CR64) 2011; 39 SH Pahlavian (85_CR36) 2014; 9 WG Bradley Jr (85_CR2) 1996; 198 J Levi Chazen (85_CR42) 2017; 43 J Hodel (85_CR58) 2013; 23 85_CR6 H Davson (85_CR52) 1996 GF Woodworth (85_CR3) 2009; 64 A Lebret (85_CR44) 2013; 37 JW Martyr (85_CR46) 2011; 66 RL Carpenter (85_CR47) 1998; 89 RJ Last (85_CR55) 1953; 40 O Baledent (85_CR19) 2001; 36 BA Martin (85_CR32) 2012; 302 B De Leener (85_CR33) 2016; 29 S Yildiz (85_CR83) 2017; 46 MI Papisov (85_CR5) 2013; 10 E Courchesne (85_CR59) 2000; 216 K Takizawa (85_CR81) 2017; 14 HW Stockman (85_CR11) 2006; 128 E Seidel (85_CR34) 1999; 30 EF Hauck (85_CR27) 2008; 9 CE Johanson (85_CR53) 2008; 5 R Grant (85_CR57) 1987; 5 J Finsterer (85_CR7) 1999; 6 AC Guyton (85_CR51) 1996 M Edsbagge (85_CR39) 2011; 24 TI Yiallourou (85_CR68) 2012; 7 FH Sklar (85_CR4) 1979; 5 KM Tangen (85_CR10) 2015; 48 BA Martin (85_CR24) 2016; 44 A Puigdellivol-Sanchez (85_CR49) 2011; 62 F Loth (85_CR29) 2001; 123 BA Martin (85_CR14) 2013; 8 Y Hsu (85_CR40) 2012; 115 A Pfefferbaum (85_CR61) 1994; 51 W Kalata (85_CR31) 2009; 56 B Siyahhan (85_CR9) 2014; 11 MW Zhou (85_CR26) 2010; 293 O San (85_CR30) 2012; 12 DJ Wyper (85_CR56) 1979; 42 M Bozkurt (85_CR25) 2012; 154 BA Martin (85_CR20) 2005; 127 N Alperin (85_CR41) 2016; 37 JT Sullivan (85_CR45) 2006; 103 P Lockey (85_CR62) 1975; 13 8318291 - Acta Radiol. 1993 Jul;34(4):321-8 14986410 - J Biomech Eng. 2003 Dec;125(6):852-6 384290 - Neurosurgery. 1979 Aug;5(2):208-16 24130704 - PLoS One. 2013 Oct 10;8(10):e75335 22813492 - Anaesth Intensive Care. 2012 Jul;40(4):643-7 8596861 - Radiology. 1996 Feb;198(2):523-9 14695731 - Anesthesiology. 2004 Jan;100(1):106-14 16502653 - J Biomech Eng. 2005 Dec;127(7):1110-20 23239062 - Eur Radiol. 2013 Jun;23(6):1450-8 16545965 - Neuroimage. 2006 Jul 1;31(3):1116-28 19404152 - Neurosurgery. 2009 May;64(5):919-25; discussion 925-6 1195879 - Med Biol Eng. 1975 Nov;13(6):861-9 24621815 - J R Soc Interface. 2014 Mar 12;11(94):20131189 24231854 - AJNR Am J Neuroradiol. 2014 Mar;35(3):536-43 27384938 - Ann Biomed Eng. 2016 Dec;44(12 ):3478-3494 21671891 - Anaesthesia. 2011 Jul;66(7):590-4 22523420 - Anesth Analg. 2012 Aug;115(2):386-94 13059333 - Br J Surg. 1953 May;40(164):525-43 8669675 - Anesthesiology. 1996 Jun;84(6):1341-9 21412855 - Clin Anat. 2011 Sep;24(6):733-40 18764756 - J Neurosurg Spine. 2008 Aug;9(2):207-12 313434 - J Neurol Neurosurg Psychiatry. 1979 Apr;42(4):345-50 17887892 - J Biomech Eng. 2007 Oct;129(5):666-75 22268106 - Am J Physiol Heart Circ Physiol. 2012 Apr 1;302(7):H1492-509 22569996 - Eur Radiol. 2012 Sep;22(9):1860-70 9482358 - Arch Neurol. 1998 Feb;55(2):169-79 21751071 - Ann Biomed Eng. 2011 Oct;39(10):2592-602 15052221 - J Thorac Cardiovasc Surg. 2004 Apr;127(4):1188-92 19174343 - IEEE Trans Biomed Eng. 2009 Jun;56(6):1765-8 8517189 - Acta Radiol Suppl. 1993;386:1-23 23570816 - Comput Med Imaging Graph. 2013 Apr;37(3):224-33 26446009 - Ann Biomed Eng. 2016 May;44(5):1524-37 21089050 - Anat Rec (Hoboken). 2010 Dec;293(12):2123-8 9667290 - Anesthesiology. 1998 Jul;89(1):24-9 10966694 - Radiology. 2000 Sep;216(3):672-82 24529910 - J Biomech. 2014 Mar 21;47(5):1082-90 23284970 - PLoS One. 2012;7(12):e52284 7152217 - Gegenbaurs Morphol Jahrb. 1982;128(4):417-62 11277305 - J Biomech Eng. 2001 Feb;123(1):71-9 8080387 - Arch Neurol. 1994 Sep;51(9):874-87 10921712 - Ann Thorac Surg. 2000 Jul;70(1):222-7; discussion 228 28152239 - J Magn Reson Imaging. 2017 Aug;46(2):431-439 27863152 - Int J Numer Method Biomed Eng. 2017 Sep;33(9):null 18347831 - Med Biol Eng Comput. 2008 Jul;46(7):701-7 3431356 - Magn Reson Imaging. 1987;5(6):465-8 21612144 - Acta Anaesthesiol Belg. 2011;62(1):37-45 24710111 - PLoS One. 2014 Apr 07;9(4):e91888 25888012 - J Biomech. 2015 Jul 16;48(10):2144-54 21924724 - J Biomech. 2011 Nov 10;44(16):2826-32 23316936 - Mol Pharm. 2013 May 6;10(5):1522-32 23769174 - J Biomech. 2013 Jul 26;46(11):1801-9 22100360 - Eur Ann Otorhinolaryngol Head Neck Dis. 2011 Dec;128(6):309-16 11496092 - Invest Radiol. 2001 Jul;36(7):368-77 26724926 - MAGMA. 2016 Apr;29(2):125-53 6238968 - J Biomech. 1984;17(9):695-705 26241682 - Neuroimage. 2015 Nov 15;122:281-7 22653495 - Acta Neurochir (Wien). 2012 Jul;154(7):1235-9 22386041 - J Biomech. 2012 Apr 30;45(7):1186-91 27282859 - AJNR Am J Neuroradiol. 2016 Jun 9;:null 28964151 - Chaos. 2017 Sep;27(9):093939 28961100 - IEEE Trans Biomed Eng. 2017 Sep 26;:null 28269130 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:3867-3870 15825857 - IEEE Trans Biomed Eng. 2005 Apr;52(4):557-65 25060426 - J Neuroimaging. 2015 May-Jun;25(3):488-93 16532623 - J Biomech Eng. 2006 Feb;128(1):106-14 10457394 - Eur J Neurol. 1999 Sep;6(5):597-600 28950883 - Fluids Barriers CNS. 2017 Sep 27;14 (1):25 18479516 - Cerebrospinal Fluid Res. 2008 May 14;5:10 21132572 - J Pharmacokinet Pharmacodyn. 2010 Dec;37(6):629-44 28314198 - Clin Imaging. 2017 May - Jun;43:132-135 17056974 - Anesth Analg. 2006 Nov;103(5):1306-10 22482686 - J Biomech Eng. 2012 Mar;134(3):031006 26585256 - AJNR Am J Neuroradiol. 2016 Apr;37(4):755-8 10582999 - Stroke. 1999 Dec;30(12 ):2692-6 28462417 - J Biomech Eng. 2017 Aug 1;139(8) |
References_xml | – volume: 37 start-page: 1957 year: 2016 ident: 85_CR41 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4837 – volume-title: Physiology of the CSF and blood-brain barriers year: 1996 ident: 85_CR52 – volume: 64 start-page: 919 year: 2009 ident: 85_CR3 publication-title: Neurosurgery doi: 10.1227/01.NEU.0000341902.44760.10 – volume: 154 start-page: 1235 year: 2012 ident: 85_CR25 publication-title: Acta Neurochir doi: 10.1007/s00701-012-1395-0 – volume: 5 start-page: 10 year: 2008 ident: 85_CR53 publication-title: Cerebrospinal Fluid Res doi: 10.1186/1743-8454-5-10 – volume: 128 start-page: 417 year: 1982 ident: 85_CR28 publication-title: Gegenbaurs Morphol Jahrb – volume: 127 start-page: 1188 year: 2004 ident: 85_CR35 publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2003.11.038 – ident: 85_CR85 – volume: 84 start-page: 1341 year: 1996 ident: 85_CR38 publication-title: Anesthesiology doi: 10.1097/00000542-199606000-00010 – volume: 29 start-page: 125 year: 2016 ident: 85_CR33 publication-title: MAGMA doi: 10.1007/s10334-015-0507-2 – ident: 85_CR43 – volume: 103 start-page: 1306 year: 2006 ident: 85_CR45 publication-title: Anesth Analg doi: 10.1213/01.ane.0000240886.55044.47 – volume: 100 start-page: 106 year: 2004 ident: 85_CR48 publication-title: Anesthesiology doi: 10.1097/00000542-200401000-00019 – ident: 85_CR6 – volume: 46 start-page: 1801 year: 2013 ident: 85_CR13 publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.05.013 – volume-title: Textbook of medical physiology year: 1996 ident: 85_CR51 – volume: 216 start-page: 672 year: 2000 ident: 85_CR59 publication-title: Radiology doi: 10.1148/radiology.216.3.r00au37672 – volume: 128 start-page: 106 year: 2006 ident: 85_CR11 publication-title: J Biomech Eng doi: 10.1115/1.2132372 – volume: 22 start-page: 1860 year: 2012 ident: 85_CR1 publication-title: Eur Radiol doi: 10.1007/s00330-012-2457-7 – volume: 39 start-page: 2592 year: 2011 ident: 85_CR64 publication-title: Ann Biomed Eng doi: 10.1007/s10439-011-0346-x – volume: 129 start-page: 666 year: 2007 ident: 85_CR66 publication-title: J Biomech Eng doi: 10.1115/1.2768112 – volume: 14 start-page: 25 year: 2017 ident: 85_CR81 publication-title: Fluids Barriers CNS doi: 10.1186/s12987-017-0074-1 – volume: 42 start-page: 345 year: 1979 ident: 85_CR56 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.42.4.345 – volume: 40 start-page: 643 year: 2012 ident: 85_CR50 publication-title: Anaesth Intensiv Care doi: 10.1177/0310057X1204000410 – volume: 51 start-page: 874 year: 1994 ident: 85_CR61 publication-title: Arch Neurol doi: 10.1001/archneur.1994.00540210046012 – volume: 48 start-page: 2144 year: 2015 ident: 85_CR10 publication-title: J Biomech doi: 10.1016/j.jbiomech.2015.02.018 – volume: 139 start-page: 081005 year: 2017 ident: 85_CR21 publication-title: J Biomech Eng doi: 10.1115/1.4036608 – volume: 34 start-page: 321 year: 1993 ident: 85_CR71 publication-title: Acta Radiol doi: 10.1177/028418519303400403 – ident: 85_CR78 doi: 10.1002/cnm.2853 – volume: 52 start-page: 557 year: 2005 ident: 85_CR69 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2005.844021 – volume: 2 start-page: 152 year: 2015 ident: 85_CR22 publication-title: Interdiscip Neurosurg Adv Tech Case Manag doi: 10.1016/j.inat.2015.06.004 – volume: 7 start-page: e52284 year: 2012 ident: 85_CR68 publication-title: PLoS ONE doi: 10.1371/journal.pone.0052284 – volume: 8 start-page: e75335 year: 2013 ident: 85_CR14 publication-title: PLoS ONE doi: 10.1371/journal.pone.0075335 – volume: 44 start-page: 2826 year: 2011 ident: 85_CR75 publication-title: J Biomech doi: 10.1016/j.jbiomech.2011.08.015 – volume: 127 start-page: 1110 year: 2005 ident: 85_CR20 publication-title: J Biomech Eng Trans Asme doi: 10.1115/1.2073687 – volume: 23 start-page: 1450 year: 2013 ident: 85_CR58 publication-title: Eur Radiol doi: 10.1007/s00330-012-2732-7 – volume: 46 start-page: 431 year: 2017 ident: 85_CR83 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25591 – volume: 293 start-page: 2123 year: 2010 ident: 85_CR26 publication-title: Anat Rec doi: 10.1002/ar.21213 – volume: 122 start-page: 281 year: 2015 ident: 85_CR80 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.07.073 – volume: 70 start-page: 222 year: 2000 ident: 85_CR8 publication-title: Ann Thorac Surg doi: 10.1016/S0003-4975(00)01205-4 – volume: 56 start-page: 1765 year: 2009 ident: 85_CR31 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2011647 – volume: 43 start-page: 132 year: 2017 ident: 85_CR42 publication-title: Clin Imaging doi: 10.1016/j.clinimag.2017.02.007 – volume: 44 start-page: 3478 year: 2016 ident: 85_CR12 publication-title: Ann Biomed Eng doi: 10.1007/s10439-016-1681-8 – volume: 40 start-page: 1 year: 2013 ident: 85_CR18 publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2013.01.010 – volume: 89 start-page: 24 year: 1998 ident: 85_CR47 publication-title: Anesthesiology doi: 10.1097/00000542-199807000-00007 – ident: 85_CR82 doi: 10.1109/EMBC.2016.7591572 – volume: 5 start-page: 208 year: 1979 ident: 85_CR4 publication-title: Neurosurgery doi: 10.1227/00006123-197908000-00003 – volume: 386 start-page: 1 year: 1993 ident: 85_CR70 publication-title: Acta Radiol Suppl – volume: 46 start-page: 701 year: 2008 ident: 85_CR17 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-008-0332-0 – volume: 47 start-page: 1082 year: 2014 ident: 85_CR15 publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.12.023 – volume: 5 start-page: 465 year: 1987 ident: 85_CR57 publication-title: Magn Reson Imaging doi: 10.1016/0730-725X(87)90380-8 – volume: 12 start-page: 1250052 year: 2012 ident: 85_CR30 publication-title: J Mech Med Biol doi: 10.1142/S0219519411004666 – volume: 5 start-page: 61 year: 1999 ident: 85_CR72 publication-title: Int J Neuroradiol – volume: 10 start-page: 1522 year: 2013 ident: 85_CR5 publication-title: Mol Pharm doi: 10.1021/mp300474m – volume: 35 start-page: 536 year: 2014 ident: 85_CR74 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A3793 – volume: 30 start-page: 2692 year: 1999 ident: 85_CR34 publication-title: Stroke doi: 10.1161/01.STR.30.12.2692 – volume: 40 start-page: 525 year: 1953 ident: 85_CR55 publication-title: Br J Surg doi: 10.1002/bjs.18004016403 – volume: 25 start-page: 488 year: 2015 ident: 85_CR87 publication-title: J Neuroimaging doi: 10.1111/jon.12150 – volume: 115 start-page: 386 year: 2012 ident: 85_CR40 publication-title: Anesth Analg doi: 10.1213/ANE.0b013e3182536211 – volume: 11 start-page: 20131189 year: 2014 ident: 85_CR9 publication-title: J R Soc Interface doi: 10.1098/rsif.2013.1189 – volume: 55 start-page: 627 year: 1998 ident: 85_CR60 publication-title: Arch Neurol doi: 10.1001/archneur.55.2.169 – volume: 37 start-page: 755 year: 2016 ident: 85_CR79 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4597 – volume: 27 start-page: 093939 year: 2017 ident: 85_CR76 publication-title: Chaos doi: 10.1063/1.5002120 – volume-title: Transition to turbulence in physiological flows: direct numerical simulation of hemodynamics in intracranial aneurysms and cerebrospinal fluid hydrodynamics in the spinal canal year: 2016 ident: 85_CR77 – volume: 9 start-page: 207 year: 2008 ident: 85_CR27 publication-title: J Neurosurg Spine doi: 10.3171/SPI/2008/9/8/207 – volume: 123 start-page: 71 year: 2001 ident: 85_CR29 publication-title: J Biomech Eng doi: 10.1115/1.1336144 – volume: 6 start-page: 597 year: 1999 ident: 85_CR7 publication-title: Eur J Neurol doi: 10.1046/j.1468-1331.1999.650597.x – volume: 37 start-page: 224 year: 2013 ident: 85_CR44 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2013.03.005 – volume: 66 start-page: 590 year: 2011 ident: 85_CR46 publication-title: Anaesthesia doi: 10.1111/j.1365-2044.2011.06766.x – volume: 62 start-page: 37 year: 2011 ident: 85_CR49 publication-title: Acta Anaesthesiol Belg – volume: 31 start-page: 1116 year: 2006 ident: 85_CR23 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 45 start-page: 1186 year: 2012 ident: 85_CR16 publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.01.050 – volume: 44 start-page: 1524 year: 2016 ident: 85_CR24 publication-title: Ann Biomed Eng doi: 10.1007/s10439-015-1449-6 – volume: 302 start-page: H1492 year: 2012 ident: 85_CR32 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00658.2011 – volume: 134 start-page: 031006 year: 2012 ident: 85_CR65 publication-title: J Biomech Eng doi: 10.1115/1.4005849 – volume: 37 start-page: 629 year: 2010 ident: 85_CR67 publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-010-9184-y – volume: 9 start-page: e91888 year: 2014 ident: 85_CR36 publication-title: PLoS ONE doi: 10.1371/journal.pone.0091888 – ident: 85_CR86 – volume: 128 start-page: 309 year: 2011 ident: 85_CR54 publication-title: Eur Ann Otorhinolaryngol Head Neck Dis doi: 10.1016/j.anorl.2011.03.002 – volume: 17 start-page: 695 year: 1984 ident: 85_CR73 publication-title: J Biomech doi: 10.1016/0021-9290(84)90123-4 – volume: 36 start-page: 368 year: 2001 ident: 85_CR19 publication-title: Investig Radiol doi: 10.1097/00004424-200107000-00003 – volume: 198 start-page: 523 year: 1996 ident: 85_CR2 publication-title: Radiology doi: 10.1148/radiology.198.2.8596861 – volume: 13 start-page: 861 year: 1975 ident: 85_CR62 publication-title: Med Biol Eng doi: 10.1007/BF02478090 – volume: 24 start-page: 733 year: 2011 ident: 85_CR39 publication-title: Clin Anat doi: 10.1002/ca.21153 – year: 2017 ident: 85_CR37 publication-title: IEEE Trans Biomed Eng. doi: 10.1109/TBME.2017.2756995 – volume: 34 start-page: 75 year: 1959 ident: 85_CR84 publication-title: J Med Educ – volume: 125 start-page: 852 year: 2003 ident: 85_CR63 publication-title: J Biomech Eng doi: 10.1115/1.1634280 – reference: 17056974 - Anesth Analg. 2006 Nov;103(5):1306-10 – reference: 25060426 - J Neuroimaging. 2015 May-Jun;25(3):488-93 – reference: 10582999 - Stroke. 1999 Dec;30(12 ):2692-6 – reference: 24710111 - PLoS One. 2014 Apr 07;9(4):e91888 – reference: 8080387 - Arch Neurol. 1994 Sep;51(9):874-87 – reference: 14986410 - J Biomech Eng. 2003 Dec;125(6):852-6 – reference: 9667290 - Anesthesiology. 1998 Jul;89(1):24-9 – reference: 24621815 - J R Soc Interface. 2014 Mar 12;11(94):20131189 – reference: 23239062 - Eur Radiol. 2013 Jun;23(6):1450-8 – reference: 27863152 - Int J Numer Method Biomed Eng. 2017 Sep;33(9):null – reference: 25888012 - J Biomech. 2015 Jul 16;48(10):2144-54 – reference: 23769174 - J Biomech. 2013 Jul 26;46(11):1801-9 – reference: 28462417 - J Biomech Eng. 2017 Aug 1;139(8): – reference: 28269130 - Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:3867-3870 – reference: 11277305 - J Biomech Eng. 2001 Feb;123(1):71-9 – reference: 16532623 - J Biomech Eng. 2006 Feb;128(1):106-14 – reference: 15052221 - J Thorac Cardiovasc Surg. 2004 Apr;127(4):1188-92 – reference: 9482358 - Arch Neurol. 1998 Feb;55(2):169-79 – reference: 22653495 - Acta Neurochir (Wien). 2012 Jul;154(7):1235-9 – reference: 8318291 - Acta Radiol. 1993 Jul;34(4):321-8 – reference: 21751071 - Ann Biomed Eng. 2011 Oct;39(10):2592-602 – reference: 3431356 - Magn Reson Imaging. 1987;5(6):465-8 – reference: 28961100 - IEEE Trans Biomed Eng. 2017 Sep 26;:null – reference: 23570816 - Comput Med Imaging Graph. 2013 Apr;37(3):224-33 – reference: 19174343 - IEEE Trans Biomed Eng. 2009 Jun;56(6):1765-8 – reference: 10966694 - Radiology. 2000 Sep;216(3):672-82 – reference: 26585256 - AJNR Am J Neuroradiol. 2016 Apr;37(4):755-8 – reference: 22523420 - Anesth Analg. 2012 Aug;115(2):386-94 – reference: 21671891 - Anaesthesia. 2011 Jul;66(7):590-4 – reference: 13059333 - Br J Surg. 1953 May;40(164):525-43 – reference: 27384938 - Ann Biomed Eng. 2016 Dec;44(12 ):3478-3494 – reference: 11496092 - Invest Radiol. 2001 Jul;36(7):368-77 – reference: 21132572 - J Pharmacokinet Pharmacodyn. 2010 Dec;37(6):629-44 – reference: 27282859 - AJNR Am J Neuroradiol. 2016 Jun 9;:null – reference: 22482686 - J Biomech Eng. 2012 Mar;134(3):031006 – reference: 21612144 - Acta Anaesthesiol Belg. 2011;62(1):37-45 – reference: 8669675 - Anesthesiology. 1996 Jun;84(6):1341-9 – reference: 15825857 - IEEE Trans Biomed Eng. 2005 Apr;52(4):557-65 – reference: 22100360 - Eur Ann Otorhinolaryngol Head Neck Dis. 2011 Dec;128(6):309-16 – reference: 26724926 - MAGMA. 2016 Apr;29(2):125-53 – reference: 313434 - J Neurol Neurosurg Psychiatry. 1979 Apr;42(4):345-50 – reference: 8596861 - Radiology. 1996 Feb;198(2):523-9 – reference: 28964151 - Chaos. 2017 Sep;27(9):093939 – reference: 21924724 - J Biomech. 2011 Nov 10;44(16):2826-32 – reference: 19404152 - Neurosurgery. 2009 May;64(5):919-25; discussion 925-6 – reference: 24529910 - J Biomech. 2014 Mar 21;47(5):1082-90 – reference: 18347831 - Med Biol Eng Comput. 2008 Jul;46(7):701-7 – reference: 28314198 - Clin Imaging. 2017 May - Jun;43:132-135 – reference: 7152217 - Gegenbaurs Morphol Jahrb. 1982;128(4):417-62 – reference: 22268106 - Am J Physiol Heart Circ Physiol. 2012 Apr 1;302(7):H1492-509 – reference: 16545965 - Neuroimage. 2006 Jul 1;31(3):1116-28 – reference: 14695731 - Anesthesiology. 2004 Jan;100(1):106-14 – reference: 10457394 - Eur J Neurol. 1999 Sep;6(5):597-600 – reference: 22386041 - J Biomech. 2012 Apr 30;45(7):1186-91 – reference: 6238968 - J Biomech. 1984;17(9):695-705 – reference: 23316936 - Mol Pharm. 2013 May 6;10(5):1522-32 – reference: 23284970 - PLoS One. 2012;7(12):e52284 – reference: 28950883 - Fluids Barriers CNS. 2017 Sep 27;14 (1):25 – reference: 18479516 - Cerebrospinal Fluid Res. 2008 May 14;5:10 – reference: 22813492 - Anaesth Intensive Care. 2012 Jul;40(4):643-7 – reference: 28152239 - J Magn Reson Imaging. 2017 Aug;46(2):431-439 – reference: 22569996 - Eur Radiol. 2012 Sep;22(9):1860-70 – reference: 384290 - Neurosurgery. 1979 Aug;5(2):208-16 – reference: 24130704 - PLoS One. 2013 Oct 10;8(10):e75335 – reference: 26446009 - Ann Biomed Eng. 2016 May;44(5):1524-37 – reference: 10921712 - Ann Thorac Surg. 2000 Jul;70(1):222-7; discussion 228 – reference: 16502653 - J Biomech Eng. 2005 Dec;127(7):1110-20 – reference: 26241682 - Neuroimage. 2015 Nov 15;122:281-7 – reference: 8517189 - Acta Radiol Suppl. 1993;386:1-23 – reference: 21089050 - Anat Rec (Hoboken). 2010 Dec;293(12):2123-8 – reference: 1195879 - Med Biol Eng. 1975 Nov;13(6):861-9 – reference: 17887892 - J Biomech Eng. 2007 Oct;129(5):666-75 – reference: 18764756 - J Neurosurg Spine. 2008 Aug;9(2):207-12 – reference: 24231854 - AJNR Am J Neuroradiol. 2014 Mar;35(3):536-43 – reference: 21412855 - Clin Anat. 2011 Sep;24(6):733-40 |
SSID | ssj0000447062 |
Score | 2.3397202 |
Snippet | The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient features being the... Abstract Background The spinal subarachnoid space (SSS) has a complex 3D fluid-filled geometry with multiple levels of anatomic complexity, the most salient... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 36 |
SubjectTerms | 3D reconstruction Cerebrospinal fluid Development and progression Dura mater Health aspects Intrathecal drug delivery Magnetic resonance imaging Spinal cord Spinal subarachnoid space |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journal Collection dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlh9JLadq0dZI2ChQKBRNbkvU4btuEUEhPDeQmrIdJYLFDvFvYP9Df3RnJWdYU2ksPe1hpLGTNaDSfNfpEyAcJSoWwQJeyM74UEKKX2tU1oJTOBAkBb0jnuK--y8tr8e2mudm56gtzwjI9cB64M-G5lFo7oV0UjXYmViLGiE11UYYOvS-seTtgKvlgIVQl2bSNWWt5NsLCpjHLEn6YcL-ZLUSJr_9Pr7yzLM1TJnfWoIsX5PkUPNJF7vQ-eRL7l-Tp1bQ9_or8WlD-lY5rhx9XSjxEiYlANN12Q4eOQrBHx3u8BwuFkKn5th_uApS1PlL8JEvbHlB4ohBYbigElMtE5Ex_5g5BdaBheBixhdwQolfaY94khSAcLG81HpDri_MfXy7L6aKF0jeSr0pmQCM-ah9rpH9pGSBsxgA7APqKVVChkyE40Xmj6ro1DTiFqmoDg2LHK2_4a7LXD318SyhzDreBtYoAdQLS7TUN_FEBz6wzHwpSPY669RMLOV6GsbQJjWhps6IsKMqiouymIJ-2j9xnCo6_CX9GVW4FkT07FYBN2cmm7L9sqiAnaAg2H0Xd-gC7ANSuOIRcoiAfkwR6Aei-b6fDDDAIyKc1kzyeScLs9bPq00djs1iFKW99HNajrY2C0B3gMC_Im2x827dihgHM4_C0mpnl7LXnNf3dbSIPbxTXlVaH_2OcjsgzhhOqZmVtjsne6mEd30GMtnLv03T8DVK9OmU priority: 102 providerName: Directory of Open Access Journals |
Title | A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29258534 https://www.proquest.com/docview/1979168993 https://pubmed.ncbi.nlm.nih.gov/PMC5738087 https://doaj.org/article/4c36688b48be458b9e04eee1f9dfe6df |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA57AfFFvFtdxwiCIFTbNM3lQWTG3WERZhFxYN9Cm6S7C0O7TmfE-QP-bs9JO8MWFx98GMokp6XNOSf5Ti7fIeSNAKUCLFCxqLSNOUD0WJVpClFKpZ0AwOvCOe7ZmTid8y_n-fke2aa36huwvTW0w3xS8-Xi_a8fm0_g8B-DwyvxoYUxS-EGSvjhXvrNPjmEgUmin856tB86Zs5lIli_tnnrncgNrBlA6IwPBqrA5_93r31j2BpuqbwxRk3vk3s9uKTjzhoekD1fPyR3Zv3y-SPye0yzY9quS5x8ifGQJW4UoiEbDm0qCmCQtteYJwuFkMn5sm6uHJQV1lOcsqVFDVF6oBhYbCgAzkUgeqY_uxeCakdds2zxCd2DMLqlNe6rpADSwTJX7WMyn558_3wa94kYYpuLbBUzDRqzXlmfIj1MwSACZwxiC4jOfOKkq4RzJa-slmla6Bw6jSQpHIPiMkuszp6Qg7qp_TNCWVniMrGSHkIhh3R8eQ5_pMMz7cy6iCTbVje2ZynHZBkLE6IVJUynMwM6M6gzs4nIu90t1x1Fx7-EJ6jKnSCya4eCZnlhemc13GZCKFVyVXqeq1L7hHvv0XwrL1wVkVdoCKY7qrrrI8wYonqZASTjEXkbJNBu4fVt0R92gEZAvq2B5NFAErzbDqpfb43NYBVuiat9s25NqiVAewiXs4g87Yxv91VbG46IHJjl4LOHNfXVZSAXz2WmEiWf__edL8hdhg6VsjjVR-RgtVz7lwDcVuWI7MtzOSKH48nxZArXycnZ12-jMA0yCq76Bw83RgA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+subject-specific+model+of+the+spinal+subarachnoid+space+with+anatomically+realistic+ventral+and+dorsal+spinal+cord+nerve+rootlets&rft.jtitle=Fluids+and+barriers+of+the+CNS&rft.au=Sass%2C+Lucas+R.&rft.au=Khani%2C+Mohammadreza&rft.au=Natividad%2C+Gabryel+Connely&rft.au=Tubbs%2C+R.+Shane&rft.date=2017-12-19&rft.pub=BioMed+Central&rft.eissn=2045-8118&rft.volume=14&rft_id=info:doi/10.1186%2Fs12987-017-0085-y&rft_id=info%3Apmid%2F29258534&rft.externalDocID=PMC5738087 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-8118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-8118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-8118&client=summon |