Biology and resource acquisition of mistletoes, and the defense responses of host plants
Background Mistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining water and minerals. This review aims to assess the current knowledge on mistletoes host plant recognition, haustorium formation, water/minerals acqui...
Saved in:
Published in | Ecological processes Vol. 11; no. 1; p. 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
21.02.2022
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 2192-1709 2192-1709 |
DOI | 10.1186/s13717-021-00355-9 |
Cover
Loading…
Abstract | Background
Mistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining water and minerals. This review aims to assess the current knowledge on mistletoes host plant recognition, haustorium formation, water/minerals acquisition, and host plants’ defense signaling and responses against mistletoe attack.
Results
Some mistletoes are host-specific while others are generalists occurring on a wide range of vascular plants. The host nitrogen (N) content, parasite–host chemical interactions, compatibility, and dispersal agents are the main determinant factors for host specificity. Mistletoes take up substantial amounts of water and minerals passively via apoplastic routes, and most are xylem feeders, but could shift to phloem-feeding during the physiological stress of the host plants. Current evidence highlighted that cell wall loosening and modification are critical during the development of the haustorium in the host tissue. This is made possible by the application of physical pressures by the developing haustorium and cell wall degradation using enzymes (xyloglucan endotransglycosylases, glucanase, expansins, etc.) produced by the mistletoe. Host plants defend against mistletoe infection mechanically by producing spines, lignin, suberin, etc., which discourages dispersers, and chemically defend by killing the infector or inhibiting the establishment of the haustorium using their secondary metabolites such as terpenes, phenolics, and N-containing compounds. Although the host plants' response to mistletoe attack resembles the response to other biotic stresses, unlike short-term stressors, the effect of mistletoe attack is long-term and depends on the parasite load. Infection by mistletoe leads to water and nutrient stress of the host plant and deteriorates its healthy establishment and survival.
Conclusion
Mistletoes are heterogeneous group in the order Santalales which have versatile mechanisms for pollination, seed dispersal and nutrient acquisition from host plants. Infection by mistletoes triggers host plant responses, varying from mechanical to chemical mechanisms which are analogous to herbivory defences, and negatively impacts host plant growth and reproduction. |
---|---|
AbstractList | Background
Mistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining water and minerals. This review aims to assess the current knowledge on mistletoes host plant recognition, haustorium formation, water/minerals acquisition, and host plants’ defense signaling and responses against mistletoe attack.
Results
Some mistletoes are host-specific while others are generalists occurring on a wide range of vascular plants. The host nitrogen (N) content, parasite–host chemical interactions, compatibility, and dispersal agents are the main determinant factors for host specificity. Mistletoes take up substantial amounts of water and minerals passively via apoplastic routes, and most are xylem feeders, but could shift to phloem-feeding during the physiological stress of the host plants. Current evidence highlighted that cell wall loosening and modification are critical during the development of the haustorium in the host tissue. This is made possible by the application of physical pressures by the developing haustorium and cell wall degradation using enzymes (xyloglucan endotransglycosylases, glucanase, expansins, etc.) produced by the mistletoe. Host plants defend against mistletoe infection mechanically by producing spines, lignin, suberin, etc., which discourages dispersers, and chemically defend by killing the infector or inhibiting the establishment of the haustorium using their secondary metabolites such as terpenes, phenolics, and N-containing compounds. Although the host plants' response to mistletoe attack resembles the response to other biotic stresses, unlike short-term stressors, the effect of mistletoe attack is long-term and depends on the parasite load. Infection by mistletoe leads to water and nutrient stress of the host plant and deteriorates its healthy establishment and survival.
Conclusion
Mistletoes are heterogeneous group in the order Santalales which have versatile mechanisms for pollination, seed dispersal and nutrient acquisition from host plants. Infection by mistletoes triggers host plant responses, varying from mechanical to chemical mechanisms which are analogous to herbivory defences, and negatively impacts host plant growth and reproduction. BackgroundMistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining water and minerals. This review aims to assess the current knowledge on mistletoes host plant recognition, haustorium formation, water/minerals acquisition, and host plants’ defense signaling and responses against mistletoe attack.ResultsSome mistletoes are host-specific while others are generalists occurring on a wide range of vascular plants. The host nitrogen (N) content, parasite–host chemical interactions, compatibility, and dispersal agents are the main determinant factors for host specificity. Mistletoes take up substantial amounts of water and minerals passively via apoplastic routes, and most are xylem feeders, but could shift to phloem-feeding during the physiological stress of the host plants. Current evidence highlighted that cell wall loosening and modification are critical during the development of the haustorium in the host tissue. This is made possible by the application of physical pressures by the developing haustorium and cell wall degradation using enzymes (xyloglucan endotransglycosylases, glucanase, expansins, etc.) produced by the mistletoe. Host plants defend against mistletoe infection mechanically by producing spines, lignin, suberin, etc., which discourages dispersers, and chemically defend by killing the infector or inhibiting the establishment of the haustorium using their secondary metabolites such as terpenes, phenolics, and N-containing compounds. Although the host plants' response to mistletoe attack resembles the response to other biotic stresses, unlike short-term stressors, the effect of mistletoe attack is long-term and depends on the parasite load. Infection by mistletoe leads to water and nutrient stress of the host plant and deteriorates its healthy establishment and survival.ConclusionMistletoes are heterogeneous group in the order Santalales which have versatile mechanisms for pollination, seed dispersal and nutrient acquisition from host plants. Infection by mistletoes triggers host plant responses, varying from mechanical to chemical mechanisms which are analogous to herbivory defences, and negatively impacts host plant growth and reproduction. Abstract Background Mistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining water and minerals. This review aims to assess the current knowledge on mistletoes host plant recognition, haustorium formation, water/minerals acquisition, and host plants’ defense signaling and responses against mistletoe attack. Results Some mistletoes are host-specific while others are generalists occurring on a wide range of vascular plants. The host nitrogen (N) content, parasite–host chemical interactions, compatibility, and dispersal agents are the main determinant factors for host specificity. Mistletoes take up substantial amounts of water and minerals passively via apoplastic routes, and most are xylem feeders, but could shift to phloem-feeding during the physiological stress of the host plants. Current evidence highlighted that cell wall loosening and modification are critical during the development of the haustorium in the host tissue. This is made possible by the application of physical pressures by the developing haustorium and cell wall degradation using enzymes (xyloglucan endotransglycosylases, glucanase, expansins, etc.) produced by the mistletoe. Host plants defend against mistletoe infection mechanically by producing spines, lignin, suberin, etc., which discourages dispersers, and chemically defend by killing the infector or inhibiting the establishment of the haustorium using their secondary metabolites such as terpenes, phenolics, and N-containing compounds. Although the host plants' response to mistletoe attack resembles the response to other biotic stresses, unlike short-term stressors, the effect of mistletoe attack is long-term and depends on the parasite load. Infection by mistletoe leads to water and nutrient stress of the host plant and deteriorates its healthy establishment and survival. Conclusion Mistletoes are heterogeneous group in the order Santalales which have versatile mechanisms for pollination, seed dispersal and nutrient acquisition from host plants. Infection by mistletoes triggers host plant responses, varying from mechanical to chemical mechanisms which are analogous to herbivory defences, and negatively impacts host plant growth and reproduction. BACKGROUND: Mistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining water and minerals. This review aims to assess the current knowledge on mistletoes host plant recognition, haustorium formation, water/minerals acquisition, and host plants’ defense signaling and responses against mistletoe attack. RESULTS: Some mistletoes are host-specific while others are generalists occurring on a wide range of vascular plants. The host nitrogen (N) content, parasite–host chemical interactions, compatibility, and dispersal agents are the main determinant factors for host specificity. Mistletoes take up substantial amounts of water and minerals passively via apoplastic routes, and most are xylem feeders, but could shift to phloem-feeding during the physiological stress of the host plants. Current evidence highlighted that cell wall loosening and modification are critical during the development of the haustorium in the host tissue. This is made possible by the application of physical pressures by the developing haustorium and cell wall degradation using enzymes (xyloglucan endotransglycosylases, glucanase, expansins, etc.) produced by the mistletoe. Host plants defend against mistletoe infection mechanically by producing spines, lignin, suberin, etc., which discourages dispersers, and chemically defend by killing the infector or inhibiting the establishment of the haustorium using their secondary metabolites such as terpenes, phenolics, and N-containing compounds. Although the host plants' response to mistletoe attack resembles the response to other biotic stresses, unlike short-term stressors, the effect of mistletoe attack is long-term and depends on the parasite load. Infection by mistletoe leads to water and nutrient stress of the host plant and deteriorates its healthy establishment and survival. CONCLUSION: Mistletoes are heterogeneous group in the order Santalales which have versatile mechanisms for pollination, seed dispersal and nutrient acquisition from host plants. Infection by mistletoes triggers host plant responses, varying from mechanical to chemical mechanisms which are analogous to herbivory defences, and negatively impacts host plant growth and reproduction. |
ArticleNumber | 24 |
Author | Muche, Meseret Tsegay, Berhanu Abraha Muasya, A. Muthama |
Author_xml | – sequence: 1 givenname: Meseret surname: Muche fullname: Muche, Meseret organization: Department of Biology, Woldia University – sequence: 2 givenname: A. Muthama surname: Muasya fullname: Muasya, A. Muthama organization: Department of Biological Sciences, University of Cape Town – sequence: 3 givenname: Berhanu Abraha surname: Tsegay fullname: Tsegay, Berhanu Abraha email: berhanu.tsegay@gmail.com organization: Department of Biology, Bahir Dar University |
BookMark | eNp9kU9P3DAQxa2KSgXKF-gpUi8cCPXfTHwsqC1ISL20Um-W44wXr0K82N4D377OphWIA754NPq90bx5J-RojjMS8onRS8b67ktmAhi0lLOWUqFUq9-RY840bxlQffSi_kDOct7S-rRkUsMx-XMV4hQ3T42dxyZhjvvksLHucR9yKCHOTfTNQ8hlwhIxXxy4co_NiB7njItmF2uRF_A-5tLsJjuX_JG893bKePbvPyW_v3_7dX3T3v38cXv99a51qhOlZQNwTwfP605Ke96NCjw6S2XncVRc9zDIAavB6kH11R_0Hhz0zHJQDMQpuV3njtFuzS6FB5ueTLTBHBoxbYxNJbgJDWrbOzYgGwYhlXJ2BIbjKD2XsrPo6qzzddYuxcc95mKqc4dTNYRxnw3vQKkOhBYV_fwK3dbTzdVppQQDCdDrSvUr5VLMOaE3LhS7nLUkGybDqFkSNGuCpiZoDgmaRcpfSf97e1MkVlGu8LzB9LzVG6q_JXuvJA |
CitedBy_id | crossref_primary_10_1007_s42977_024_00220_8 crossref_primary_10_1016_j_flora_2024_152527 crossref_primary_10_1016_j_plaphy_2024_109163 crossref_primary_10_3390_f15071113 crossref_primary_10_1088_1755_1315_1133_1_012076 crossref_primary_10_3390_plants11223021 crossref_primary_10_1016_j_flora_2024_152662 crossref_primary_10_3389_fphar_2023_1096379 crossref_primary_10_3390_plants13081162 crossref_primary_10_1038_s41598_024_75254_y crossref_primary_10_1002_ecy_4479 crossref_primary_10_3390_genes13071173 crossref_primary_10_1016_j_ufug_2025_128740 crossref_primary_10_3390_plants12030464 crossref_primary_10_3390_ani12192569 crossref_primary_10_3390_app13042606 crossref_primary_10_3390_d15101065 crossref_primary_10_1016_j_pld_2023_03_008 crossref_primary_10_1016_j_pmpp_2024_102468 crossref_primary_10_1093_treephys_tpae106 crossref_primary_10_1134_S0012496624701072 crossref_primary_10_1016_j_fooweb_2023_e00327 crossref_primary_10_1111_aje_13212 crossref_primary_10_30970_sbi_1801_757 crossref_primary_10_3390_plants12091814 crossref_primary_10_1002_cbdv_202200565 crossref_primary_10_1007_s00049_024_00397_3 |
Cites_doi | 10.1094/PHI-I-2004-0330-01 10.1163/22941932-00000091 10.4161/psb.21663 10.1007/s11258-017-0721-2 10.1038/35050170 10.1093/aobpla/plw069 10.2307/2389907 10.1006/anbo.2000.1130 10.3732/ajb.0800302 10.1093/treephys/tpy090 10.1086/297227 10.1016/S0140-1963(03)00067-3 10.1088/1748-9326/aa8fff 10.1146/annurev-phyto-082718-100043 10.1016/S0065-2296(08)00803-3 10.1094/PDIS-92-7-0988 10.1007/BF00318279 10.1055/s-2006-923796 10.1093/treephys/tpx006 10.1111/j.1365-3040.2004.01199.x 10.1016/j.baae.2011.04.004 10.3126/banko.v20i2.4797 10.1007/s004680050136 10.4161/psb.5.9.12563 10.4161/psb.4.2.7688 10.1111/j.1365-313X.2007.03171.x 10.1086/297120 10.1007/s13580-014-0033-6 10.3732/ajb.94.4.558 10.1111/1365-2435.12418 10.5846/stxb201201140082 10.1093/treephys/tps031 10.1146/annurev-arplant-043015-111702 10.1034/j.1399-3054.2003.1170109.x 10.1111/j.1744-7429.2010.00643.x 10.1016/j.plaphy.2007.07.018 10.1071/PP00159 10.1111/j.1469-8137.2005.01358.x 10.3390/f11020222 10.4161/psb.5.8.11772 10.1093/jexbot/52.363.2043 10.1002/ps.1714 10.1093/treephys/tpw105 10.1016/j.flora.2016.12.011 10.1016/j.jaridenv.2011.04.026 10.3390/f10100847 10.1186/s12862-016-0648-6 10.3732/ajb.0800085 10.1078/0367-2530-00147 10.1093/jxb/err432 10.1007/978-3-642-38146-1 10.1890/03-0261 10.1007/s00442-002-0923-7 10.1146/annurev.es.25.110194.003213 10.1007/BF01020572 10.1071/BT19137 10.1007/BF00397449 10.3398/064.076.0112 10.1093/treephys/tpq108 10.1371/journal.ppat.1005978 10.1590/S0102-33062013000100021 10.1093/treephys/tpq038 10.1139/B08-096 10.1007/s00442-015-3519-8 10.1016/j.foreco.2020.118806 10.1007/s10886-018-1039-9 10.1093/treephys/tpv135 10.1093/treephys/tpw024 10.1016/j.ydbio.2018.06.013 10.1007/s00049-018-0272-6 10.1146/annurev.ecolsys.32.081501.114024 10.1002/9780470015902.a0003714.pub2 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FH ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G LK8 M7P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7S9 L.6 DOA |
DOI | 10.1186/s13717-021-00355-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Biology |
EISSN | 2192-1709 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_e9a8c1be1bb3455cad71edd4f2446aec 10_1186_s13717_021_00355_9 |
GroupedDBID | -A0 0R~ 4.4 40G 5VS 7XC 8FE 8FH AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFO ACGFS ACPRK ACULB ADBBV ADINQ AEGXH AEUYN AFGXO AFKRA AFPKN AFRAH AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ATCPS BAPOH BBNVY BCNDV BENPR BHPHI C24 C6C CCPQU EBLON EBS EDH GROUPED_DOAJ GX1 HCIFZ IAO IEP ISR ITC KQ8 LK8 M7P M~E OK1 PATMY PIMPY PROAC PYCSY RNS RSV SEV SOJ -SB -S~ AASML AAXDM AAYXX CAJEB CITATION PHGZM PHGZT Q-- U1G U5L ABUWG AZQEC DWQXO F1W GNUQQ H95 L.G PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c563t-1b72f0bf200059f26d57feca046fed52987b4be3711925800378f7c781a275173 |
IEDL.DBID | BENPR |
ISSN | 2192-1709 |
IngestDate | Wed Aug 27 01:31:19 EDT 2025 Fri Jul 11 16:44:20 EDT 2025 Fri Jul 25 10:48:55 EDT 2025 Tue Jul 01 04:32:00 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Fri Feb 21 02:47:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Biotic stress Host defense Mistletoes Haustorium Resource procurement Mimicry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c563t-1b72f0bf200059f26d57feca046fed52987b4be3711925800378f7c781a275173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2631747789?pq-origsite=%requestingapplication% |
PQID | 2631747789 |
PQPubID | 2034775 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e9a8c1be1bb3455cad71edd4f2446aec proquest_miscellaneous_2675567393 proquest_journals_2631747789 crossref_citationtrail_10_1186_s13717_021_00355_9 crossref_primary_10_1186_s13717_021_00355_9 springer_journals_10_1186_s13717_021_00355_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-21 |
PublicationDateYYYYMMDD | 2022-02-21 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Ecological processes |
PublicationTitleAbbrev | Ecol Process |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | Pennings, Callaway (CR56) 2002; 131 Bowie, Ward (CR11) 2004; 56 Klutsch, Erbilgin (CR37) 2018; 38 Erbilgin, Cale, Lusebrink, Najar, Klutsch, Sherwood, Bonello, Evenden (CR22) 2017; 37 CR680 Cuevas-Reyes, Fernandes, Gonzailez-Rodriguez, Pimenta (CR16) 2011; 12 Bell, Adams (CR9) 2011; 31 Yan, Gessler, Rigling, Dobbertin, Han, Li (CR77) 2016; 36 Okubamichael, Griffiths, Ward (CR54) 2011; 75 Zweifel, Bangerter, Rigling, Sterck (CR83) 2012; 63 Keyes, Palmer, Erbil, Taylor, Apkarian, Weeks, Lynn (CR36) 2007; 51 Lázaro-González, Hódar, Zamora (CR42) 2019; 45 Mathiasen, Nickrent, Shaw, Watson (CR49) 2008; 92 Marshall, Ehleringer, Schulze, Farquhar (CR48) 1994; 8 Sallé, Calder, Bernhardt (CR61) 1983 Marshall, Ehleringer (CR47) 1990; 84 Vidal-Russell, Nickrent (CR73) 2008; 95 Irving, Cameron (CR34) 2009; 50 Arruda, Lunardelli, Kitagawa, Caires, Teodoro, Mourão (CR6) 2013; 27 Tikkanen, Kilpelainen, Mellado, Hamalainen, Hodar, Jaroszewicz, Luoto, Repo, Rigling, Wang (CR72) 2021; 482 Chang, Lynn (CR13) 1986; 12 Hishe, Abraha (CR31) 2013; 36 Griebel, Watson, Pendall (CR27) 2017; 12 Amico, Nickrent (CR3) 2009; 96 War, Paulraj, Ahmad, Buhroo, Hussain, Ignacimuthu, Sharma (CR74) 2012; 7 Watson (CR75) 2001; 32 Aparicio, Gallego, Vázquez (CR5) 1995; 156 Clark, McComb, Taylor-Robinson (CR14) 2020; 68 Yoshida, Cui, Ichihashi, Shirasu (CR80) 2016; 67 Escher, Eiblmeier, Hetzger, Rennenberg (CR20) 2004; 117 Sangüesa-Barreda, Linares, Camarero (CR63) 2012; 32 Teixeira-Costa, Ceccantini (CR70) 2015; 36 CR600 Rist, Shaanker, Ghazoul (CR59) 2011; 43 Sharma, Jha, Dubey, Pessarakli (CR66) 2012; 2012 CR84 Shen, Ye, Hong, Huang, Wang, Deng, Yang, Xu (CR67) 2006; 8 Anselmo-Moreira, Teixeira-Costa, Ceccantini, Furlan (CR4) 2019; 29 Hu, Sakakibara, Takebayashi, Peters, Schumacher, Eiblmeier, Arab, Kreuzwieser, Polle, Rennenberg (CR33) 2017; 37 Escher, Peuke, Bannister, Fink, Hartung, Jiang, Rennenberg (CR21) 2008; 46 Press, Phoenix (CR57) 2005; 166 Maes, Huete, Avino, Boer, Dehaan, Pendall, Griebel, Steppe (CR46) 2018; 10 Ferrenberg (CR23) 2020; 11 Lüttge (CR44) 2008 Meinzer, Woodruff, Shaw (CR51) 2004; 27 CR800 Yirgu (CR79) 2014; 17 Cuevas-Reyes, Perez-Lopez, Maldonado-Lopez, Gonzalez-Rodriguez (CR17) 2017; 218 Le, Tennakoon, Metali, Lim, Bolin (CR43) 2016; 28 Bach, Kelly, Hazlett (CR7) 2005; 93 Zhang, Li, Yan (CR81) 2013; 33 Joel, Gressel, Musselman, Joel (CR35) 2013 Runyon, Mescher, De Moraes (CR60) 2010; 5 Smith, De Moraes, Mescher (CR68) 2009; 65 Scalon, Wright (CR64) 2015; 29 Nickrent, Musselman (CR52) 2004 Zuber (CR82) 2004; 199 Calladine, Pate (CR12) 2000; 85 Ornelas, Gandara, Vasquez-Aguilar, Ramirez-Barahona, Ortiz-Rodriguez, Gonzalez, Mejia-Saules, Ruiz-Sanchez (CR55) 2016; 16 CR53 Devkota (CR18) 2005; 3 Rigling, Eilmann, Koechli, Dobbertin (CR58) 2010; 30 Schulze, Ehleringer (CR65) 1984; 162 Devkota, Joshi, Parajuli (CR19) 2010; 20 Amico, Aizen (CR1) 2000; 408 Těšitel, Plavcová, Cameron (CR71) 2010; 5 Ko, Kwon, Kim, Song, Lee, Choi, Liu, Kim (CR38) 2014; 55 Strong, Bannister (CR69) 2002; 29 Barlow, Wiens (CR8) 1977; 31 Bhuiyan, Selvaraj, Wei, King (CR10) 2009; 4 Kokla, Melnyk (CR39) 2018; 442 Lüttge, Haridasan, Fernandes, deMattos, Trimborn, Franco, Caldas, Ziegler (CR45) 1998; 12 CR29 Lamont, Calder, Bernhardt (CR41) 1983 Wiesenborn (CR76) 2016; 76 CR25 CR24 CR500 Kuijt (CR40) 1969 CR501 Yan (CR78) 1993; 154 CR62 Guerra, Pizo, Silva (CR28) 2018; 238 Amico, Vidal-Russell, Nickrent (CR2) 2007; 94 Glatzel, Geils (CR26) 2009; 87 Hosseini, Kartoolinejad, Mirnia, Tabibzadeh, Akbarinia, Shayanmehr (CR32) 2007; 55 Medel, Vergara, Silva, Kalin-Arroyo (CR50) 2004; 85 CR700 Clarke, Timko, Yoder, Axtell, Westwood (CR15) 2019; 57 Hibberd, Jeschke (CR30) 2001; 52 CR Clarke (355_CR15) 2019; 57 P Sharma (355_CR66) 2012; 2012 355_CR84 P Cuevas-Reyes (355_CR16) 2011; 12 A Griebel (355_CR27) 2017; 12 QV Le (355_CR43) 2016; 28 BA Barlow (355_CR8) 1977; 31 P Cuevas-Reyes (355_CR17) 2017; 218 MP Devkota (355_CR19) 2010; 20 N Erbilgin (355_CR22) 2017; 37 R Arruda (355_CR6) 2013; 27 TJ Guerra (355_CR28) 2018; 238 SC Pennings (355_CR56) 2002; 131 G Sallé (355_CR61) 1983 U Lüttge (355_CR44) 2008 DW Wiesenborn (355_CR76) 2016; 76 LJ Irving (355_CR34) 2009; 50 J Kuijt (355_CR40) 1969 U Lüttge (355_CR45) 1998; 12 L Rist (355_CR59) 2011; 43 GC Amico (355_CR3) 2009; 96 A Calladine (355_CR12) 2000; 85 P Escher (355_CR20) 2004; 117 Z Yan (355_CR78) 1993; 154 355_CR700 CE Bach (355_CR7) 2005; 93 JD Marshall (355_CR47) 1990; 84 S Ferrenberg (355_CR23) 2020; 11 M Hishe (355_CR31) 2013; 36 DM Joel (355_CR35) 2013 J Marshall (355_CR48) 1994; 8 355_CR501 GL Strong (355_CR69) 2002; 29 355_CR500 S Yoshida (355_CR80) 2016; 67 NH Bhuiyan (355_CR10) 2009; 4 355_CR53 DL Nickrent (355_CR52) 2004 JB Runyon (355_CR60) 2010; 5 A Rigling (355_CR58) 2010; 30 TL Bell (355_CR9) 2011; 31 R Vidal-Russell (355_CR73) 2008; 95 G Sangüesa-Barreda (355_CR63) 2012; 32 G Glatzel (355_CR26) 2009; 87 M Bowie (355_CR11) 2004; 56 MP Devkota (355_CR18) 2005; 3 B Hu (355_CR33) 2017; 37 L Teixeira-Costa (355_CR70) 2015; 36 O Tikkanen (355_CR72) 2021; 482 F Anselmo-Moreira (355_CR4) 2019; 29 MC Press (355_CR57) 2005; 166 A Aparicio (355_CR5) 1995; 156 JF Ornelas (355_CR55) 2016; 16 RL Mathiasen (355_CR49) 2008; 92 355_CR62 DM Watson (355_CR75) 2001; 32 355_CR24 JG Klutsch (355_CR37) 2018; 38 355_CR25 WJ Keyes (355_CR36) 2007; 51 JM Hibberd (355_CR30) 2001; 52 G Amico (355_CR1) 2000; 408 MC Scalon (355_CR64) 2015; 29 FC Meinzer (355_CR51) 2004; 27 WH Maes (355_CR46) 2018; 10 A Kokla (355_CR39) 2018; 442 GC Amico (355_CR2) 2007; 94 B Lamont (355_CR41) 1983 D Zuber (355_CR82) 2004; 199 355_CR800 H Shen (355_CR67) 2006; 8 ED Schulze (355_CR65) 1984; 162 R Zweifel (355_CR83) 2012; 63 355_CR600 NF Clark (355_CR14) 2020; 68 JL Smith (355_CR68) 2009; 65 C Yan (355_CR77) 2016; 36 SM Ko (355_CR38) 2014; 55 A Yirgu (355_CR79) 2014; 17 P Escher (355_CR21) 2008; 46 355_CR680 DY Okubamichael (355_CR54) 2011; 75 M Chang (355_CR13) 1986; 12 355_CR29 AR War (355_CR74) 2012; 7 J Těšitel (355_CR71) 2010; 5 J Zhang (355_CR81) 2013; 33 SM Hosseini (355_CR32) 2007; 55 R Medel (355_CR50) 2004; 85 A Lázaro-González (355_CR42) 2019; 45 |
References_xml | – year: 1983 ident: CR61 article-title: Germination and establishment of L publication-title: the biology of mistletoes – volume: 29 start-page: 89 year: 2002 end-page: 96 ident: CR69 article-title: Water relations of temperate mistletoes on various hosts publication-title: Funct Plant Biol – volume: 31 start-page: 3 year: 2011 end-page: 15 ident: CR9 article-title: Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems publication-title: Tree Physiol – volume: 8 start-page: 175 year: 2006 end-page: 185 ident: CR67 article-title: Progress in parasitic plant biology: host selection and nutrient transfer publication-title: Plant Biol – volume: 27 start-page: 226 year: 2013 end-page: 230 ident: CR6 article-title: Two mistletoes are too many? Interspecific occurrence of mistletoes on the same host tree publication-title: Acta Bot Bras – volume: 162 start-page: 268 year: 1984 end-page: 275 ident: CR65 article-title: The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes publication-title: Planta – volume: 5 start-page: 1072 year: 2010 end-page: 1076 ident: CR71 article-title: Interactions between hemiparasitic plants and their hosts: the importance of organic carbon transfer publication-title: Plant Signal Behav – volume: 199 start-page: 181 year: 2004 end-page: 203 ident: CR82 article-title: Biological flora of Central Europe: L publication-title: Flora – volume: 93 start-page: 76 year: 2005 end-page: 80 ident: CR7 article-title: Forest edges benefit adults, but not seedlings, of the mistletoe (Loranthaceae) publication-title: J Ecol – volume: 7 start-page: 1306 year: 2012 end-page: 1320 ident: CR74 article-title: Mechanisms of plant defense against insect herbivores publication-title: Plant Signal Behav – volume: 38 start-page: 1538 year: 2018 end-page: 1547 ident: CR37 article-title: Dwarf mistletoe infection in jack pine alters growth–defense relationships publication-title: Tree Physiol – year: 1969 ident: CR40 publication-title: The biology of parasitic flowering plants – volume: 28 start-page: 59 year: 2016 end-page: 67 ident: CR43 article-title: Ecophysiological responses of mistletoe (Loranthaceae) to varying environmental parameters publication-title: J Trop For Sci – year: 1983 ident: CR41 article-title: Germination of mistletoes publication-title: The biology of mistletoes – volume: 12 start-page: 167 year: 1998 end-page: 174 ident: CR45 article-title: Photosynthesis in mistletoes in relation to their hosts at various sites in tropical Brazil publication-title: Trees – ident: CR29 – volume: 67 start-page: 643 year: 2016 end-page: 667 ident: CR80 article-title: The haustorium, a specialized invasive organ in parasitic plants publication-title: Annu Rev Plant Biol – volume: 36 start-page: 119 year: 2013 end-page: 124 ident: CR31 article-title: Mistletoe infection of woody plant species at Bahir Dar University main campus, Bahir Dar publication-title: Ethiopia Sinet: Ethiop J Sci – ident: CR84 – volume: 37 start-page: 338 year: 2017 end-page: 350 ident: CR22 article-title: Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle publication-title: Tree Physiol – ident: CR25 – volume: 87 start-page: 10 year: 2009 end-page: 15 ident: CR26 article-title: Mistletoe ecophysiology: host–parasite interactions publication-title: Botany – volume: 442 start-page: 53 year: 2018 end-page: 59 ident: CR39 article-title: Developing a thief: haustoria formation in parasitic plants publication-title: Dev Biol – volume: 166 start-page: 737 year: 2005 end-page: 751 ident: CR57 article-title: Impacts of parasitic plants on natural communities publication-title: New Phytol – ident: CR800 – volume: 408 start-page: 929 year: 2000 end-page: 930 ident: CR1 article-title: Mistletoe seed dispersal by a marsupial publication-title: Nature – volume: 2012 start-page: 217 year: 2012 end-page: 37 ident: CR66 article-title: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions publication-title: J Bot – ident: CR500 – volume: 16 start-page: 78 year: 2016 ident: CR55 article-title: A mistletoe tale: postglacial invasion of (Loranthaceae) to Mesoamerican cloud forests revealed by molecular data and species distribution modeling publication-title: BMC Evol Biol – volume: 45 start-page: 95 year: 2019 end-page: 105 ident: CR42 article-title: Mistletoe versus host pine: does increased parasite load alter the host chemical profile? publication-title: J Chem Ecol – volume: 32 start-page: 585 year: 2012 end-page: 598 ident: CR63 article-title: Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates publication-title: Tree Physiol – volume: 36 start-page: 138 year: 2015 end-page: 151 ident: CR70 article-title: Embolism increase and anatomical modifications caused by a parasitic plant: (Santalaceae) on (Anacardiaceae) publication-title: IAWA J – volume: 68 start-page: 1 year: 2020 end-page: 13 ident: CR14 article-title: Host species of mistletoes (Loranthaceae and Viscaceae) in Australia publication-title: Aust J Bot – volume: 482 start-page: 118806 year: 2021 ident: CR72 article-title: Freezing tolerance of seeds can explain differences in the distribution of two widespread mistletoe subspecies in Europe publication-title: For Ecol Manag – volume: 94 start-page: 558 year: 2007 end-page: 567 ident: CR2 article-title: Phylogenetic relationships and ecological speciation in the mistletoe (Loranthaceae): the influence of pollinators, dispersers, and hosts publication-title: Am J Bot – year: 2004 ident: CR52 article-title: Introduction to parasitic flowering plants publication-title: Plant Health Instructor doi: 10.1094/PHI-I-2004-0330-01 – volume: 57 start-page: 279 year: 2019 end-page: 299 ident: CR15 article-title: Molecular dialog between parasitic plants and their hosts publication-title: Annu Rev Phytopathol – volume: 3 start-page: 85 year: 2005 end-page: 88 ident: CR18 article-title: Biology of mistletoes and their status in Nepal Himalaya publication-title: Himalayan J Sci – volume: 95 start-page: 1015 year: 2008 end-page: 1029 ident: CR73 article-title: Evolutionary relationship in the showy mistletoe family (Loranthaceae) publication-title: Am J Bot – year: 2008 ident: CR44 publication-title: Physiological ecology of tropical plants – ident: CR700 – volume: 55 start-page: 352 year: 2014 end-page: 361 ident: CR38 article-title: Transcriptome analysis of mistletoe ( ) haustorium development publication-title: Hortic Environ Biotechnol – volume: 55 start-page: 579 year: 2007 end-page: 583 ident: CR32 article-title: The effects of L. on foliar weight and nutrients content of host trees in Caspian forests (Iran) publication-title: Pol J Ecol – ident: CR53 – volume: 56 start-page: 487 year: 2004 end-page: 508 ident: CR11 article-title: Water and nutrient status of the mistletoe parasitic on isolated Negev desert populations of differing in level of mortality publication-title: J Arid Environ – volume: 8 start-page: 237 year: 1994 end-page: 241 ident: CR48 article-title: Carbon isotope composition, gas exchange and heterotrophy in Australian mistletoes publication-title: Funct Ecol – ident: CR501 – volume: 33 start-page: 2623 year: 2013 end-page: 2631 ident: CR81 article-title: Effects of nutrients on the growth of the parasitic plant R.Br publication-title: Acta Ecol Sin – year: 2013 ident: CR35 article-title: Haustorium initiation and early development publication-title: Parasitic Orobanchaceae: parasitic mechanisms and control strategies – volume: 85 start-page: 120 year: 2004 end-page: 126 ident: CR50 article-title: Effects of vector behavior and host resistance on mistletoe aggregation publication-title: Ecology – volume: 76 start-page: 113 year: 2016 end-page: 212 ident: CR76 article-title: Conspecific pollen loads on insects visiting female flowers on parasitic (Viscaceae) publication-title: West N Am Nat – volume: 156 start-page: 42 year: 1995 end-page: 49 ident: CR5 article-title: Reproductive biology of (Viscaceae) in Southern Spain publication-title: Int J Plant Sci – volume: 12 start-page: 115012 year: 2017 ident: CR27 article-title: Mistletoe, friend and foe: synthesizing ecosystem implications of mistletoe infection publication-title: Environ Res Lett – volume: 75 start-page: 898 year: 2011 end-page: 902 ident: CR54 article-title: Host specificity, nutrient and water dynamics of the mistletoe and its potential host species in the Kalahari of South Africa publication-title: J Arid Environ – volume: 31 start-page: 69 year: 1977 end-page: 84 ident: CR8 article-title: Host-parasite resemblance in Australian mistletoes: the case for cryptic mimicry publication-title: Evol – volume: 52 start-page: 2043 year: 2001 end-page: 2049 ident: CR30 article-title: Solute flux into parasitic plants publication-title: J Exp Bot – volume: 4 start-page: 158 year: 2009 end-page: 159 ident: CR10 article-title: Role of lignification in plant defense publication-title: Plant Signal Behav – volume: 218 start-page: 687 year: 2017 end-page: 697 ident: CR17 article-title: Effects of herbivory and mistletoe infection by on nutritional quality and chemical defense of along Mexican forest fragments publication-title: Plant Ecol – volume: 63 start-page: 2565 year: 2012 end-page: 2578 ident: CR83 article-title: Pine and mistletoes: how to live with a leak in the water flow and storage system? publication-title: J Exp Bot – volume: 10 start-page: 2 year: 2018 end-page: 16 ident: CR46 article-title: Can UAV-based infrared thermography be used to study plant-parasite interactions between mistletoe and eucalypt trees? publication-title: Remote Sens – volume: 238 start-page: 148 year: 2018 end-page: 154 ident: CR28 article-title: Host specificity and aggregation for a widespread mistletoe in Campo Rupestre vegetation publication-title: Flora – volume: 84 start-page: 244 year: 1990 end-page: 248 ident: CR47 article-title: Are xylem-tapping mistletoes partially heterotrophic? publication-title: Oecologia – volume: 30 start-page: 845 year: 2010 end-page: 852 ident: CR58 article-title: Mistletoe-induced crown degradation in Scots pine in a xeric environment publication-title: Tree Physiol – volume: 17 start-page: 37 year: 2014 end-page: 42 ident: CR79 article-title: New host range for parasitic plants in Bonga and Yayu Natural Forests in Ethiopia, short communication publication-title: PPSE – volume: 96 start-page: 1571 year: 2009 end-page: 1580 ident: CR3 article-title: Population structure and phylogeography of the mistletoe and (Loranthaceae) using chloroplast DNA sequence variation publication-title: Am J Bot – volume: 131 start-page: 479 year: 2002 end-page: 489 ident: CR56 article-title: Parasitic plants: parallels and contrasts with herbivores publication-title: Oecologia – volume: 29 start-page: 1114 year: 2015 end-page: 1124 ident: CR64 article-title: A global analysis of water and nitrogen relationships between mistletoes and their hosts: broad-scale tests of old and enduring hypotheses publication-title: Funct Ecol – volume: 85 start-page: 723 year: 2000 end-page: 731 ident: CR12 article-title: Haustorial structure and functioning of the root hemiparastic tree (Labill.) R.Br. and water relationships with its hosts publication-title: Ann Bot – volume: 65 start-page: 497 year: 2009 end-page: 503 ident: CR68 article-title: Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants publication-title: Pest Manag Sci – volume: 37 start-page: 676 year: 2017 end-page: 691 ident: CR33 article-title: Mistletoe infestation mediates alteration of the phytohormone profile and anti-oxidative metabolism in bark and wood of its host publication-title: Tree Physiol – volume: 51 start-page: 707 year: 2007 end-page: 716 ident: CR36 article-title: Semagenesis and the parasitic angiosperm publication-title: Plant J – volume: 27 start-page: 937 year: 2004 end-page: 946 ident: CR51 article-title: Integrated response of hydraulic architecture, water and carbon relations of western hemlock to dwarf mistletoe infection publication-title: Plant Cell Environ – volume: 32 start-page: 219 year: 2001 end-page: 249 ident: CR75 article-title: Mistletoe – a keystone resource in forests and woodlands worldwide publication-title: Annu Rev Ecol Syst – volume: 36 start-page: 562 year: 2016 end-page: 575 ident: CR77 article-title: Effects of mistletoe removal on growth, N and C reserves, and carbon and oxygen isotope composition in Scots pine hosts publication-title: Tree Physiol – volume: 12 start-page: 449 year: 2011 end-page: 455 ident: CR16 article-title: Effects of generalist and specialist parasitic plants (Loranthaceae) on the fluctuating asymmetry patterns of ruprestrian host plants publication-title: Basic Appl Ecol – volume: 20 start-page: 14 year: 2010 end-page: 10 ident: CR19 article-title: Diversity, distribution and host range of mistletoe in protected and unprotected areas of central Nepal Himalayas publication-title: Banko Janakari – volume: 92 start-page: 988 year: 2008 end-page: 1006 ident: CR49 article-title: Mistletoes: pathology, systematics, ecology, and management publication-title: Plant Dis – volume: 154 start-page: 386 year: 1993 end-page: 394 ident: CR78 article-title: Resistance to haustorial development of two mistletoes, (Miq.) Tieghem and (Behr.) Tieghem ssp. (Loranthaceae), on host and non-host species publication-title: Int J Plant Sci – volume: 46 start-page: 64 year: 2008 end-page: 70 ident: CR21 article-title: Transpiration, CO assimilation, WUE, and stomatal aperture in leaves of (L.): Effect of abscisic acid (ABA) in the xylem sap of its host ( ) publication-title: Plant Physiol Biochem – volume: 29 start-page: 11 year: 2019 end-page: 24 ident: CR4 article-title: Mistletoe effects on the host tree : insights from primary and secondary metabolites publication-title: Chemoecology – volume: 50 start-page: 87 year: 2009 end-page: 138 ident: CR34 article-title: You are what you eat: interactions between root parasitic plants and their hosts publication-title: Adv Bot Res – ident: CR600 – volume: 12 start-page: 561 year: 1986 end-page: 579 ident: CR13 article-title: The haustorium and the chemistry of host recognition in parasitic angiosperms publication-title: J Chem Ecol – volume: 117 start-page: 72 year: 2004 end-page: 78 ident: CR20 article-title: Seasonal and spatial variation of reduced sulphur compounds in mistletoes ( ) and the xylem sap of its hosts ( and ) publication-title: Physiol Plant – volume: 11 start-page: 222 year: 2020 ident: CR23 article-title: Dwarf mistletoe infection interacts with tree growth rate to produce opposing direct and indirect effects on resin duct defenses in Lodgepole pine publication-title: Forests – ident: CR62 – volume: 43 start-page: 50 year: 2011 end-page: 57 ident: CR59 article-title: The spatial distribution of mistletoe in a Southern Indian tropical forest at multiple scales publication-title: Biotropica – ident: CR24 – volume: 5 start-page: 929 year: 2010 end-page: 931 ident: CR60 article-title: Plant defences against parasitic plant show similarities to those induced by herbivores and pathogens publication-title: Plant Signal Behav – ident: CR680 – volume: 36 start-page: 138 year: 2015 ident: 355_CR70 publication-title: IAWA J doi: 10.1163/22941932-00000091 – volume: 7 start-page: 1306 year: 2012 ident: 355_CR74 publication-title: Plant Signal Behav doi: 10.4161/psb.21663 – volume: 218 start-page: 687 year: 2017 ident: 355_CR17 publication-title: Plant Ecol doi: 10.1007/s11258-017-0721-2 – volume: 408 start-page: 929 year: 2000 ident: 355_CR1 publication-title: Nature doi: 10.1038/35050170 – ident: 355_CR501 doi: 10.1093/aobpla/plw069 – volume: 8 start-page: 237 year: 1994 ident: 355_CR48 publication-title: Funct Ecol doi: 10.2307/2389907 – volume: 85 start-page: 723 year: 2000 ident: 355_CR12 publication-title: Ann Bot doi: 10.1006/anbo.2000.1130 – volume: 96 start-page: 1571 year: 2009 ident: 355_CR3 publication-title: Am J Bot doi: 10.3732/ajb.0800302 – volume: 38 start-page: 1538 year: 2018 ident: 355_CR37 publication-title: Tree Physiol doi: 10.1093/treephys/tpy090 – ident: 355_CR29 – volume: 156 start-page: 42 year: 1995 ident: 355_CR5 publication-title: Int J Plant Sci doi: 10.1086/297227 – volume: 56 start-page: 487 year: 2004 ident: 355_CR11 publication-title: J Arid Environ doi: 10.1016/S0140-1963(03)00067-3 – ident: 355_CR25 – volume: 93 start-page: 76 year: 2005 ident: 355_CR7 publication-title: J Ecol – ident: 355_CR24 – volume: 12 start-page: 115012 year: 2017 ident: 355_CR27 publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa8fff – volume: 57 start-page: 279 year: 2019 ident: 355_CR15 publication-title: Annu Rev Phytopathol doi: 10.1146/annurev-phyto-082718-100043 – volume: 55 start-page: 579 year: 2007 ident: 355_CR32 publication-title: Pol J Ecol – volume: 50 start-page: 87 year: 2009 ident: 355_CR34 publication-title: Adv Bot Res doi: 10.1016/S0065-2296(08)00803-3 – volume: 92 start-page: 988 year: 2008 ident: 355_CR49 publication-title: Plant Dis doi: 10.1094/PDIS-92-7-0988 – volume: 84 start-page: 244 year: 1990 ident: 355_CR47 publication-title: Oecologia doi: 10.1007/BF00318279 – volume: 8 start-page: 175 year: 2006 ident: 355_CR67 publication-title: Plant Biol doi: 10.1055/s-2006-923796 – volume: 37 start-page: 676 year: 2017 ident: 355_CR33 publication-title: Tree Physiol doi: 10.1093/treephys/tpx006 – volume: 27 start-page: 937 year: 2004 ident: 355_CR51 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2004.01199.x – volume: 12 start-page: 449 year: 2011 ident: 355_CR16 publication-title: Basic Appl Ecol doi: 10.1016/j.baae.2011.04.004 – volume: 20 start-page: 14 year: 2010 ident: 355_CR19 publication-title: Banko Janakari doi: 10.3126/banko.v20i2.4797 – volume: 12 start-page: 167 year: 1998 ident: 355_CR45 publication-title: Trees doi: 10.1007/s004680050136 – volume: 5 start-page: 1072 year: 2010 ident: 355_CR71 publication-title: Plant Signal Behav doi: 10.4161/psb.5.9.12563 – volume-title: The biology of parasitic flowering plants year: 1969 ident: 355_CR40 – volume: 4 start-page: 158 year: 2009 ident: 355_CR10 publication-title: Plant Signal Behav doi: 10.4161/psb.4.2.7688 – volume: 51 start-page: 707 year: 2007 ident: 355_CR36 publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03171.x – volume: 154 start-page: 386 year: 1993 ident: 355_CR78 publication-title: Int J Plant Sci doi: 10.1086/297120 – volume: 55 start-page: 352 year: 2014 ident: 355_CR38 publication-title: Hortic Environ Biotechnol doi: 10.1007/s13580-014-0033-6 – volume: 94 start-page: 558 year: 2007 ident: 355_CR2 publication-title: Am J Bot doi: 10.3732/ajb.94.4.558 – volume-title: The biology of mistletoes year: 1983 ident: 355_CR41 – volume: 29 start-page: 1114 year: 2015 ident: 355_CR64 publication-title: Funct Ecol doi: 10.1111/1365-2435.12418 – volume: 33 start-page: 2623 year: 2013 ident: 355_CR81 publication-title: Acta Ecol Sin doi: 10.5846/stxb201201140082 – ident: 355_CR62 – volume: 32 start-page: 585 year: 2012 ident: 355_CR63 publication-title: Tree Physiol doi: 10.1093/treephys/tps031 – volume: 2012 start-page: 217 year: 2012 ident: 355_CR66 publication-title: J Bot – volume: 67 start-page: 643 year: 2016 ident: 355_CR80 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-043015-111702 – volume: 117 start-page: 72 year: 2004 ident: 355_CR20 publication-title: Physiol Plant doi: 10.1034/j.1399-3054.2003.1170109.x – volume-title: the biology of mistletoes year: 1983 ident: 355_CR61 – volume: 31 start-page: 69 year: 1977 ident: 355_CR8 publication-title: Evol – volume: 43 start-page: 50 year: 2011 ident: 355_CR59 publication-title: Biotropica doi: 10.1111/j.1744-7429.2010.00643.x – volume: 17 start-page: 37 year: 2014 ident: 355_CR79 publication-title: PPSE – volume: 46 start-page: 64 year: 2008 ident: 355_CR21 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2007.07.018 – volume: 28 start-page: 59 year: 2016 ident: 355_CR43 publication-title: J Trop For Sci – volume: 29 start-page: 89 year: 2002 ident: 355_CR69 publication-title: Funct Plant Biol doi: 10.1071/PP00159 – volume: 166 start-page: 737 year: 2005 ident: 355_CR57 publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01358.x – volume: 11 start-page: 222 year: 2020 ident: 355_CR23 publication-title: Forests doi: 10.3390/f11020222 – volume: 5 start-page: 929 year: 2010 ident: 355_CR60 publication-title: Plant Signal Behav doi: 10.4161/psb.5.8.11772 – volume: 3 start-page: 85 year: 2005 ident: 355_CR18 publication-title: Himalayan J Sci – volume: 52 start-page: 2043 year: 2001 ident: 355_CR30 publication-title: J Exp Bot doi: 10.1093/jexbot/52.363.2043 – volume: 65 start-page: 497 year: 2009 ident: 355_CR68 publication-title: Pest Manag Sci doi: 10.1002/ps.1714 – ident: 355_CR84 – volume-title: Physiological ecology of tropical plants year: 2008 ident: 355_CR44 – volume: 37 start-page: 338 year: 2017 ident: 355_CR22 publication-title: Tree Physiol doi: 10.1093/treephys/tpw105 – volume: 238 start-page: 148 year: 2018 ident: 355_CR28 publication-title: Flora doi: 10.1016/j.flora.2016.12.011 – volume: 75 start-page: 898 year: 2011 ident: 355_CR54 publication-title: J Arid Environ doi: 10.1016/j.jaridenv.2011.04.026 – ident: 355_CR800 doi: 10.3390/f10100847 – volume: 16 start-page: 78 year: 2016 ident: 355_CR55 publication-title: BMC Evol Biol doi: 10.1186/s12862-016-0648-6 – volume: 95 start-page: 1015 year: 2008 ident: 355_CR73 publication-title: Am J Bot doi: 10.3732/ajb.0800085 – volume: 199 start-page: 181 year: 2004 ident: 355_CR82 publication-title: Flora doi: 10.1078/0367-2530-00147 – volume: 63 start-page: 2565 year: 2012 ident: 355_CR83 publication-title: J Exp Bot doi: 10.1093/jxb/err432 – volume-title: Parasitic Orobanchaceae: parasitic mechanisms and control strategies year: 2013 ident: 355_CR35 doi: 10.1007/978-3-642-38146-1 – volume: 85 start-page: 120 year: 2004 ident: 355_CR50 publication-title: Ecology doi: 10.1890/03-0261 – year: 2004 ident: 355_CR52 publication-title: Plant Health Instructor doi: 10.1094/PHI-I-2004-0330-01 – volume: 131 start-page: 479 year: 2002 ident: 355_CR56 publication-title: Oecologia doi: 10.1007/s00442-002-0923-7 – ident: 355_CR700 doi: 10.1146/annurev.es.25.110194.003213 – volume: 12 start-page: 561 year: 1986 ident: 355_CR13 publication-title: J Chem Ecol doi: 10.1007/BF01020572 – volume: 68 start-page: 1 year: 2020 ident: 355_CR14 publication-title: Aust J Bot doi: 10.1071/BT19137 – volume: 162 start-page: 268 year: 1984 ident: 355_CR65 publication-title: Planta doi: 10.1007/BF00397449 – volume: 76 start-page: 113 year: 2016 ident: 355_CR76 publication-title: West N Am Nat doi: 10.3398/064.076.0112 – volume: 31 start-page: 3 year: 2011 ident: 355_CR9 publication-title: Tree Physiol doi: 10.1093/treephys/tpq108 – ident: 355_CR600 doi: 10.1371/journal.ppat.1005978 – volume: 27 start-page: 226 year: 2013 ident: 355_CR6 publication-title: Acta Bot Bras doi: 10.1590/S0102-33062013000100021 – volume: 30 start-page: 845 year: 2010 ident: 355_CR58 publication-title: Tree Physiol doi: 10.1093/treephys/tpq038 – volume: 87 start-page: 10 year: 2009 ident: 355_CR26 publication-title: Botany doi: 10.1139/B08-096 – volume: 10 start-page: 2 year: 2018 ident: 355_CR46 publication-title: Remote Sens – ident: 355_CR680 doi: 10.1007/s00442-015-3519-8 – volume: 482 start-page: 118806 year: 2021 ident: 355_CR72 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2020.118806 – volume: 45 start-page: 95 year: 2019 ident: 355_CR42 publication-title: J Chem Ecol doi: 10.1007/s10886-018-1039-9 – ident: 355_CR500 doi: 10.1093/treephys/tpv135 – volume: 36 start-page: 562 year: 2016 ident: 355_CR77 publication-title: Tree Physiol doi: 10.1093/treephys/tpw024 – volume: 442 start-page: 53 year: 2018 ident: 355_CR39 publication-title: Dev Biol doi: 10.1016/j.ydbio.2018.06.013 – volume: 29 start-page: 11 year: 2019 ident: 355_CR4 publication-title: Chemoecology doi: 10.1007/s00049-018-0272-6 – volume: 32 start-page: 219 year: 2001 ident: 355_CR75 publication-title: Annu Rev Ecol Syst doi: 10.1146/annurev.ecolsys.32.081501.114024 – volume: 36 start-page: 119 year: 2013 ident: 355_CR31 publication-title: Ethiopia Sinet: Ethiop J Sci – ident: 355_CR53 doi: 10.1002/9780470015902.a0003714.pub2 |
SSID | ssj0000941497 |
Score | 2.3679178 |
SecondaryResourceType | review_article |
Snippet | Background
Mistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining water... BackgroundMistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining water and... BACKGROUND: Mistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining water... Abstract Background Mistletoes are the most successful group of obligatory hemi-parasitic flowering plants that attach to the host via haustorium for obtaining... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 24 |
SubjectTerms | Biology Biotic stress Butterflies & moths Cell walls Chemical interactions Dispersion Earth and Environmental Science Environment expansins Feeders Flowering Flowering plants Flowers & plants haustoria Haustorium herbivores Herbivory Host defense Host plants Host specificity Infections lignin Metabolites Mimicry Mineral nutrients Minerals Mistletoes Nitrogen Nutrients parasite load Parasites Parasitic plants phenolic compounds Phenols Plant growth Plant reproduction Plants Plants (botany) Pollination Resource procurement Review Santalales Secondary metabolites Seed dispersal Specificity Spines Stress (physiology) suberin Survival Terpenes terpenoids Xylem Xyloglucan xyloglucans |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF4hpEpcEFBQAwFtpd5gRdbel4-AiKJK7alIua32KVFFDiXJgX_PzNpJAanlwtWetdczY8983plvCfmWpOZ5ZALziismclbMw1eQIf7I0jeVKez8P36qyZ34PpXTF1t9YU1YRw_cKe4yNc4E7hP3vhZSBhc1TzGKDHFJuRTw6wsx7wWY-t3Vy0Hqr9ddMkZdLngNyIVhRQKunknWvIpEhbD_VZb5ZmG0xJvxHtntE0V61U1wn2yl9oB8ui0k00-fybTbRPKJujbSx_4fPHXhz-q-q8Ki80zRhmCXeVpcFDlI9mhMGZBrwjFYHJsWKIitHvRhhjUxh-RufPvrZsL6XRJYkKpeMu51lUc-V4VrJVcqSp1TcAB8c4qyaoz2wid4ekjmpEHCGZN10Ia7Skuu6yOy3c7b9IVQBKyxcQGieBZyxF0T8kgIDahIx7rhA8LXGrOhpxDHnSxmtkAJo2ynZQtatkXLthmQ882Yh45A47_S12iIjSSSX5cD4BK2dwn7nksMyHBtRtu_kQtbKciUhNYG7vF1cxrsgAskrk3zFcpoKRVyBA7Ixdr8fy_x72kff8S0T8hOhb0V2C_Ph2R7-bhKp5DxLP1Zce5n0276lA priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYoqFIvFQWqbqGVK_VWrK4Tv3IEBEKV2hNIe7P8RK1QQje7B_59Z5xkEahU6jUZ5zFjx98Xz3wm5HOSmue5CcwrrpjIWTEPX0GG_CNL31SmqPN__6Eur8W3hVyMRWH9lO0-LUmWL3UZ1kZ97XkN1INhSgEuf0nWvCA7Erg79uuzscbh15ArB7BfTxUyf236aBYqYv2PEOaTRdEy11zsktcjSKQnQ1TfkK3U7pGX50Vg-n6fLIYNJO-payNdjv_fqQu_1z-HDCzaZYrxg5h0qT8udgD0aEwZWGvCNpgYm3o0xDIPeneL-TAH5Pri_Orsko07JLAgVb1i3Osqz32uis5KrlSUOqfggPTmFGXVGO2FT_D2AOSkQbEZk3XQhrtKS67rt2S77dr0jlAkq7FxAWbwLOScuybkuRAaGJGOdcNnhE8es2GUD8ddLG5toRFG2cHLFrxsi5dtMyNfNm3uBvGMf1qfYiA2lih8XQ50yxs7jiObGmcC94l7Xwspg4uapxhFBpiiXAozcjSF0Y6jsbeVApQktDZwj0-b0xAHXBxxberWaKOlVKgPOCPHU_gfLvH8Y7__P_ND8qrCCgqsiudHZHu1XKcPgGtW_mPpxn8Ad07s6Q priority: 102 providerName: Springer Nature |
Title | Biology and resource acquisition of mistletoes, and the defense responses of host plants |
URI | https://link.springer.com/article/10.1186/s13717-021-00355-9 https://www.proquest.com/docview/2631747789 https://www.proquest.com/docview/2675567393 https://doaj.org/article/e9a8c1be1bb3455cad71edd4f2446aec |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZNlkIvJX1Rt-niQm-NiWXr5VPYLJuGhYbSNrA3YclSCQR7s9495N93RpY3pNBcjJHHD2Zkab7R6BtCvjguqc-VzYygImPei8zAKJgh_vDcVIUK7Pzfr8TlNVuu-CoG3PqYVjmOiWGgbjqLMfLTQsBMx6RU1dn6LsOqUbi6GktoHJAJDMEKwNfkfHH14-c-ygLgBSCAHHfLKHHa0xIQTIaZCbiKxrPq0YwUiPsfeZv_LJCGeefiiLyMDmM6Gyz8ijxz7WvyfCgheQ9ni0A7ff-GrGJbWrdNuolR-bS2d7ubIS8r7XyKVgVLda4_CXLg_qWN84BlHd6D6bKuR0Hc_JGubzFL5i25vlj8nl9msW5CZrkotxk1svC58UVgX_GFaLj0ztYAhb1reFEpaZhxoAdw77hCChrlpZWK1oXkVJbvyGHbte49SRHCNlVtYV73jOe0rqzPGZOAk2RTVjQhdNSdtpFUHGtb3OoALpTQg7416FsHfesqIV_396wHSo0npc_RJHtJpMMODd3mj45_l3ZVrSw1jhpTMs5t3UjqmoZ5cF5E7WxCjkeD6viP9vqhRyXk8_4y2AGXTOrWdTuUkZwLZA1MyMnYER4e8f_P_vD0Gz-SFwXuo8C98fSYHG43O_cJvJutmZIDln-bkslstvy1nMYODa3zguFRzKchbvAXzvX5kA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE81UCBIcKJR105sJweEKGy1pe0KoVbam4lfCKlKtvsQ2j_Fb2Qmj62KRG-9Rc7YicZjez7PC-CtF4qFYW4TI5lMshBkYnAXTAh_BGEKnjfZ-U8ncnyefZ2K6Rb86WNhyK2y3xObjdrVlu7I97nEky5TKi8-zi4TqhpF1tW-hEYrFsd-_Rsh2-LD0Rec33ecH47OPo-TrqpAYoVMlwkzioehCbzJTRK4dEIFb0sEisE7wRGEm8z4VDFUfkROCVryoKzKWcmVYCrFce_AdpYilBnA9sFo8u375lYHwRJCDtVH5-Ryf8FwJJWQJwRZ7URSXDsBm0IB17TbfwyyzTl3-BAedApq_KmVqEew5avHcLctWbnGp1GT5nr9BKZdW1xWLp53VoC4tJerX60fWFyHmKQIJaP2i72GDtXN2PmA2NlTH3LP9QsipGCTeHZBXjlP4fxWOPoMBlVd-R2ICTK7orSoR4RMDFlZ2DDMMoW4TLm0YBGwnnfadknMqZbGhW7ATC51y2-N_NYNv3URwftNn1mbwuNG6gOakg0lpd9uGur5T92tZu2LMrfMeGZMmglhS6eYdy4LqCzJ0tsIdvsJ1d2esNBXEhzBm81rnAcy0ZSVr1dEo4SQlKUwgr1eEK6G-P9vP7_5i6_h3vjs9ESfHE2OX8B9TjEcFJfPdmGwnK_8S9SsluZVJ84x_LjtFfQXxP8veg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE8RKBAkONFo4yS2kwNClO6qpbCqEJX2ZuIXQqqS7WZXaP8av46ZPLYqEr31FjljJxqP7fk8L4A3jkvm49xEWjARZd6LSOMuGBH-8FwXSd5m5_86E0dn2ec5n-_AnyEWhtwqhz2x3ahtbeiOfJwIPOkyKfNi7Hu3iNPD6YfFRUQVpMjSOpTT6ETkxG1-I3xr3h8f4ly_TZLp5Puno6ivMBAZLtJVxLRMfKx90uYp8YmwXHpnSgSN3lmeICDXmXapZKgI8ZySteReGpmzMpGcyRTHvQW7ElFRPILdg8ns9Nv2hgeBE8IPOUTq5GLcMBxJRuQVQRY8HhVXTsO2aMAVTfcf42x75k3vw71eWQ0_dtL1AHZc9RBud-UrN_g0aVNebx7BvG8Ly8qGy94iEJbmYv2r8wkLax-SRKGU1K7Zb-lQ9Qyt84ijHfUhV13XECEFnoSLc_LQeQxnN8LRJzCq6so9hZDgsy1KgzqFz3jMysL4OMskYjRp04IFwAbeKdMnNKe6GueqBTa5UB2_FfJbtfxWRQDvtn0WXTqPa6kPaEq2lJSKu22olz9Vv7KVK8rcMO2Y1mnGuSmtZM7azKPiJEpnAtgbJlT1-0OjLqU5gNfb1zgPZK4pK1eviUZyLihjYQD7gyBcDvH_3352_RdfwR1cOerL8ezkOdxNKJyDQvTZHoxWy7V7gUrWSr_spTmEHze9gP4CHgIzrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biology+and+resource+acquisition+of+mistletoes%2C+and+the+defense+responses+of+host+plants&rft.jtitle=Ecological+processes&rft.au=Muche%2C+Meseret&rft.au=Muasya%2C+A.+Muthama&rft.au=Tsegay%2C+Berhanu+Abraha&rft.date=2022-02-21&rft.issn=2192-1709&rft.eissn=2192-1709&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs13717-021-00355-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13717_021_00355_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon |