Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals

The first hurdle in developing microsatellite markers, cloning, has been overcome by next‐generation sequencing. The second hurdle is testing to differentiate polymorphic from nonpolymorphic loci. The third hurdle, somewhat hidden, is that only polymorphic markers with a large effective number of al...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology resources Vol. 15; no. 1; pp. 17 - 27
Main Authors Vukosavljev, M., Esselink, G. D., van 't Westende, W. P. C., Cox, P., Visser, R. G. F., Arens, P., Smulders, M. J. M.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The first hurdle in developing microsatellite markers, cloning, has been overcome by next‐generation sequencing. The second hurdle is testing to differentiate polymorphic from nonpolymorphic loci. The third hurdle, somewhat hidden, is that only polymorphic markers with a large effective number of alleles are sufficiently informative to be deployed in multiple studies. Both steps are laborious and still performed manually. We have developed a strategy in which we first screen reads from multiple genotypes for repeats that show the most length variants, and only these are subsequently developed into markers. We validated our strategy in tetraploid garden rose using Illumina paired‐end transcriptome sequences of 11 roses. Of 48 tested two markers failed to amplify, but all others were polymorphic. Ten loci amplified more than one locus, indicating duplicated genes or gene families. Completely avoiding duplicated loci will be difficult because the range of numbers of predicted alleles of highly polymorphic single‐ and multilocus markers largely overlapped. Of the remainder, half were replicate markers (i.e. multiple primer pairs for one locus), indicating the difficulty of correctly filtering short reads containing repeat sequences. We subsequently refined the approach to eliminate multiple primer sets to the same loci. The remaining 18 markers were all highly polymorphic, amplifying on average 11.7 alleles per marker (range = 6–20) in 11 tetraploid roses, exceeding the 8.2 alleles per marker of the 24 most polymorphic markers genotyped previously. This strategy therefore represents a major step forward in the development of highly polymorphic microsatellite markers.
AbstractList The first hurdle in developing microsatellite markers, cloning, has been overcome by next-generation sequencing. The second hurdle is testing to differentiate polymorphic from nonpolymorphic loci. The third hurdle, somewhat hidden, is that only polymorphic markers with a large effective number of alleles are sufficiently informative to be deployed in multiple studies. Both steps are laborious and still performed manually. We have developed a strategy in which we first screen reads from multiple genotypes for repeats that show the most length variants, and only these are subsequently developed into markers. We validated our strategy in tetraploid garden rose using Illumina paired-end transcriptome sequences of 11 roses. Of 48 tested two markers failed to amplify, but all others were polymorphic. Ten loci amplified more than one locus, indicating duplicated genes or gene families. Completely avoiding duplicated loci will be difficult because the range of numbers of predicted alleles of highly polymorphic single- and multilocus markers largely overlapped. Of the remainder, half were replicate markers (i.e. multiple primer pairs for one locus), indicating the difficulty of correctly filtering short reads containing repeat sequences. We subsequently refined the approach to eliminate multiple primer sets to the same loci. The remaining 18 markers were all highly polymorphic, amplifying on average 11.7 alleles per marker (range = 6-20) in 11 tetraploid roses, exceeding the 8.2 alleles per marker of the 24 most polymorphic markers genotyped previously. This strategy therefore represents a major step forward in the development of highly polymorphic microsatellite markers.
The first hurdle in developing microsatellite markers, cloning, has been overcome by next generation sequencing. The second hurdle is testing to differentiate polymorphic from non-polymorphic loci. The third hurdle, somewhat hidden, is that only polymorphic markers with a large effective number of alleles are sufficiently informative to be deployed in multiple studies. Both steps are laborious and still done manually. We have developed a strategy in which we first screen reads from multiple genotypes for repeats that show the most length variants, and only these are subsequently developed into markers. We validated our strategy in tetraploid garden rose using Illumina paired-end transcriptome sequences of 11 roses. Out of 48 tested two markers failed to amplify but all others were polymorphic. Ten loci amplified more than one locus, indicating duplicated genes or gene families. Completely avoiding duplicated loci will be difficult because the range of numbers of predicted alleles of highly polymorphic single- and multi-locus markers largely overlapped. Of the remainder, half were replicate markers (i.e., multiple primer pairs for one locus), indicating the difficulty of correctly filtering short reads containing repeat sequences. We subsequently refined the approach to eliminate multiple primer sets to the same loci. The remaining 18 markers were all highly polymorphic, amplifying on average 11.7 alleles per marker (range = 6 to 20) in 11 tetraploid roses, exceeding the 8.2 alleles per marker of the 24 most polymorphic markers genotyped previously. This strategy, therefore, represents a major step forward in the development of highly polymorphic microsatellite markers.
Abstract The first hurdle in developing microsatellite markers, cloning, has been overcome by next‐generation sequencing. The second hurdle is testing to differentiate polymorphic from nonpolymorphic loci. The third hurdle, somewhat hidden, is that only polymorphic markers with a large effective number of alleles are sufficiently informative to be deployed in multiple studies. Both steps are laborious and still performed manually. We have developed a strategy in which we first screen reads from multiple genotypes for repeats that show the most length variants, and only these are subsequently developed into markers. We validated our strategy in tetraploid garden rose using Illumina paired‐end transcriptome sequences of 11 roses. Of 48 tested two markers failed to amplify, but all others were polymorphic. Ten loci amplified more than one locus, indicating duplicated genes or gene families. Completely avoiding duplicated loci will be difficult because the range of numbers of predicted alleles of highly polymorphic single‐ and multilocus markers largely overlapped. Of the remainder, half were replicate markers (i.e. multiple primer pairs for one locus), indicating the difficulty of correctly filtering short reads containing repeat sequences. We subsequently refined the approach to eliminate multiple primer sets to the same loci. The remaining 18 markers were all highly polymorphic, amplifying on average 11.7 alleles per marker (range = 6–20) in 11 tetraploid roses, exceeding the 8.2 alleles per marker of the 24 most polymorphic markers genotyped previously. This strategy therefore represents a major step forward in the development of highly polymorphic microsatellite markers.
Author Vukosavljev, M.
Arens, P.
Cox, P.
Smulders, M. J. M.
van 't Westende, W. P. C.
Esselink, G. D.
Visser, R. G. F.
Author_xml – sequence: 1
  givenname: M.
  surname: Vukosavljev
  fullname: Vukosavljev, M.
  organization: Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, NL-6700AJ, Wageningen, the Netherlands
– sequence: 2
  givenname: G. D.
  surname: Esselink
  fullname: Esselink, G. D.
  organization: Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, NL-6700AJ, Wageningen, the Netherlands
– sequence: 3
  givenname: W. P. C.
  surname: van 't Westende
  fullname: van 't Westende, W. P. C.
  organization: Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, NL-6700AJ, Wageningen, the Netherlands
– sequence: 4
  givenname: P.
  surname: Cox
  fullname: Cox, P.
  organization: Roath BV, Eindhoven, the Netherlands
– sequence: 5
  givenname: R. G. F.
  surname: Visser
  fullname: Visser, R. G. F.
  organization: Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, NL-6700AJ, Wageningen, the Netherlands
– sequence: 6
  givenname: P.
  surname: Arens
  fullname: Arens, P.
  organization: Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, NL-6700AJ, Wageningen, the Netherlands
– sequence: 7
  givenname: M. J. M.
  surname: Smulders
  fullname: Smulders, M. J. M.
  email: Correspondence: Marinus Smulders, Fax: +31 317 418094;, rene.smulders@wur.nl
  organization: Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, NL-6700AJ, Wageningen, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24893879$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gzA1F4sIlrR3Hsc0NlW2LtBTE981ynEnXxbGDnbTs3-gvxmG3K8EF5uAZWc87tsfvYbbnvIMse4rRMU5xghmlBRKCH-Oy5OJBdrDb2dvV_Nt-dhjjNUI1Eqx6lO2XFReEM3GQ3S26zmgDbsxbuAHrh36ufZevzNXKrvPB23Xvw7AyOu-NDj6qEaw1I-S9Ct8hxLxREdrcuz_YAAOoMebG5WNQLupghtH3kEf4MYHTEOdD-smOZrCQsNbcmHZSNj7OHnYpwZNtPso-ny0-nV4Uy3fnb05fLQtNayKKjrZcYV1i1EGtGsYx0yXQTnScYUJ1hxCrmIa6LpuGY1JSRRBXDdWEKdYKcpS93PS9VVfgjEuLdCpoE6VXRlrTBBXW8nYK0tk5DVMTZUWrFEn8YiMegk_viaPsTdRpMMqBn6LEdcUQIpzz_0AJE4JWjCb0-V_otZ-CS1OYqZoyhlmZqJMNNf9GDNDJIZh-vitGcraFnD9eziaQv22RFM-2faemh3bH3_sgAXQ7C2Nh_a9-8u3i8r5xsdGZOMLPnS4ZQ9aMMCq_Xp7Lj1_I8j3_8FqekV_9_tfz
CitedBy_id crossref_primary_10_1007_s00606_015_1274_2
crossref_primary_10_1038_s41598_018_19533_5
crossref_primary_10_1093_jisesa_iev069
crossref_primary_10_1007_s11032_016_0565_9
crossref_primary_10_3390_molecules22081318
crossref_primary_10_1186_s12864_018_5161_4
crossref_primary_10_1038_hortres_2016_52
crossref_primary_10_1371_journal_pone_0151768
crossref_primary_10_2135_cropsci2016_07_0608
crossref_primary_10_1007_s11032_018_0893_z
crossref_primary_10_1007_s11295_018_1259_8
crossref_primary_10_21273_JASHS05040_21
crossref_primary_10_3389_fgene_2019_00992
crossref_primary_10_1371_journal_pone_0178061
crossref_primary_10_3389_fpls_2015_00249
crossref_primary_10_3389_fpls_2021_684122
crossref_primary_10_1007_s11738_016_2184_9
crossref_primary_10_1016_j_gene_2017_12_007
crossref_primary_10_1080_13102818_2021_1969278
crossref_primary_10_3389_fmicb_2015_01462
crossref_primary_10_3390_fishes7050251
crossref_primary_10_1007_s10681_018_2114_6
crossref_primary_10_1016_j_bse_2015_01_017
crossref_primary_10_1371_journal_pone_0181835
crossref_primary_10_1073_pnas_1608743113
crossref_primary_10_1080_0028825X_2017_1340310
crossref_primary_10_1371_journal_pone_0142602
crossref_primary_10_3390_agronomy11040671
crossref_primary_10_1007_s11295_016_1060_5
crossref_primary_10_1007_s11105_019_01189_8
crossref_primary_10_1002_ece3_1514
crossref_primary_10_1038_s41598_018_23438_8
crossref_primary_10_1038_s41598_021_03848_x
crossref_primary_10_1590_0100_29452019081
crossref_primary_10_1371_journal_pone_0232471
crossref_primary_10_1186_s12864_018_5329_y
crossref_primary_10_1371_journal_pone_0265548
crossref_primary_10_1093_aobpla_plu086
Cites_doi 10.1007/s00438-004-1059-8
10.1007/s00122-010-1463-x
10.1111/j.1471-8286.2006.01662.x
10.1016/j.scienta.2010.05.012
10.1186/2041‐2223‐5‐1
10.1016/j.bse.2013.03.048
10.1016/j.foreco.2013.05.026
10.1111/j.1471-8286.2007.01810.x
10.1098/rsob.120054
10.1007/s00122-002-1122-y
10.1007/s00122-004-1903-6
10.1101/gr.6554007
10.1007/s10535-013-0307-3
10.1046/j.1471-8286.2003.00544.x
10.1111/2041-210X.12101
10.21273/JASHS.131.3.380
10.1371/journal.pone.0054721
10.17660/ActaHortic.2012.961.72
10.1093/nar/gkt1313
10.1007/s10592-009-9871-7
10.1371/journal.pone.0081853
10.1007/s001220050409
10.1111/j.1471-8286.2007.01869.x
10.1093/bioinformatics/btr026
10.1111/j.1439‐0523.2012.01984.x
10.1007/s10681-012-0788-8
10.1016/j.bse.2013.05.006
10.1007/s11295-007-0084-2
10.1186/1471-2164-13-640
10.1080/14620316.2013.11512947
10.1186/1471-2156-6-S1-S29
10.1186/1471‐2105‐9‐374
10.1016/j.scienta.2013.05.029
10.1093/nar/gkt333
10.1371/journal.pone.0023283
10.1080/14620316.2013.11512940
10.1371/journal.pone.0030953
10.1016/j.scienta.2013.08.015
10.1007/s00122‐006‐0391‐2
10.1139/g00-096
10.1111/j.1755-0998.2011.03033.x
10.1186/1471-2164-11-570
10.1046/j.1471-8286.2002.00213.x-i2
10.1007/s12686‐012‐9833‐0
10.1007/PL00002912
10.1093/dnares/dsr034
10.1111/j.1471-8286.2006.01352.x
10.1111/1755-0998.12215
10.1038/nbt.1883
10.1111/1755-0998.12099
10.1111/1755‐0998.12078
10.1016/j.bse.2013.03.040
10.1016/j.margen.2013.04.002
10.1186/1471-2229-9-35
10.1007/BF02670468
10.1186/1471‐2105‐7‐438
ContentType Journal Article
Copyright 2014 John Wiley & Sons Ltd
2014 John Wiley & Sons Ltd.
Copyright © 2015 John Wiley & Sons Ltd
Wageningen University & Research
Copyright_xml – notice: 2014 John Wiley & Sons Ltd
– notice: 2014 John Wiley & Sons Ltd.
– notice: Copyright © 2015 John Wiley & Sons Ltd
– notice: Wageningen University & Research
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
QVL
DOI 10.1111/1755-0998.12289
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
NARCIS:Publications
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Entomology Abstracts

MEDLINE
CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1755-0998
EndPage 27
ExternalDocumentID oai_library_wur_nl_wurpubs_454444
3528497111
10_1111_1755_0998_12289
24893879
MEN12289
ark_67375_WNG_SV3LP8RD_F
Genre article
Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: TTI Green Genetics project ‘Hyperrose’
– fundername: TKI Polyploids project
  funderid: BO‐26.03‐002‐001
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
~IA
~WT
AAHBH
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
-
0R
31
3N
AAPBV
GA
HZ
IA
IPNFZ
NF
P4A
QVL
RIG
WT
Y3
ID FETCH-LOGICAL-c5639-f5d8a1c210fe6ab7817c2e5f9f87135cf00747ce662bb81325a308ab5c37a7d93
IEDL.DBID DR2
ISSN 1755-098X
IngestDate Thu Jul 22 21:46:29 EDT 2021
Fri Aug 16 05:49:17 EDT 2024
Fri Aug 16 23:40:41 EDT 2024
Fri Sep 13 04:08:28 EDT 2024
Fri Aug 23 03:54:55 EDT 2024
Sat Sep 28 07:54:10 EDT 2024
Sat Aug 24 00:50:24 EDT 2024
Wed Jan 17 05:09:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords RNA-seq
microsatellite marker
simple sequence repeat
next-generation sequencing
Language English
License 2014 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5639-f5d8a1c210fe6ab7817c2e5f9f87135cf00747ce662bb81325a308ab5c37a7d93
Notes TTI Green Genetics project 'Hyperrose'
Table S1 Reads produced and microsatellite motifs foundTable S2 Overview of studies reporting microsatellite development in polyploids
ark:/67375/WNG-SV3LP8RD-F
ArticleID:MEN12289
TKI Polyploids project - No. BO-26.03-002-001
istex:DA8D41E6B8D41A2C8379B35655CA2E5F70E6803A
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24893879
PQID 1636577172
PQPubID 1096410
PageCount 11
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_454444
proquest_miscellaneous_1647003888
proquest_miscellaneous_1637995475
proquest_journals_1636577172
crossref_primary_10_1111_1755_0998_12289
pubmed_primary_24893879
wiley_primary_10_1111_1755_0998_12289_MEN12289
istex_primary_ark_67375_WNG_SV3LP8RD_F
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate January 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology resources
PublicationTitleAlternate Mol Ecol Resour
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Xing C, Schumacher FR, Xing G, Lu Q, Wang T, Elston RC (2005) Comparison of microsatellites, single-nucleotide polymorphisms (SNPs) and composite markers derived from SNPs in linkage analysis. BMC Genetics, 6(Suppl 1), S29.
Saha MC, Cooper JD, Rouf Mian MA, Chekhovskiy K, May GD (2006) Tall fescue genomic microsatellite markers: development and transferability across multiple grass species. Theoretical and Applied Genetics, 113, 1449-1458. doi:10.1007/s00122-006-0391-2.
Wang JY, Song XM, Li Y, Hou XL (2013) In-silico detection of EST-microsatellite markers in three Brassica species and transferability in B. rapa. Journal of Horticultural Science & Biotechnology, 88, 135-140.
Iwaizumi MG, Tsuda Y, Ohtani M, Tsumura Y, Takahashi M (2013) Recent distribution changes affect geographic clines in genetic diversity and structure of Pinus densiflora natural populations in Japan. Forest Ecology and Management, 304, 407-416.
Ma K-H, Jang D-H, Dixit A et al. (2007) Characterization of 30 new microsatellite markers, developed from enriched genomic DNA library of zoysiagrass Zoysia japonica Steud. Molecular Ecology Notes, 7, 1323-1325.
Tang J, Baldwin SJ, Jacobs JM et al. (2008) Large-scale identification of polymorphic microsatellites using an in silico approach. BMC Bioinformatics, 9, 374. doi:10.1186/1471-2105-9-374.
Smee MR, Pauchet Y, Wilkinson P et al. (2013) Microsatellites for the marsh fritillary butterfly: de novo transcriptome sequencing, and a comparison with amplified fragment length polymorphism (AFLP) markers. PLoS ONE, 8, e54721.
Eschbach E, Schöning S (2013) Identification of high-resolution microsatellites without a priori knowledge of genotypes using a simple scoring approach. Methods in Ecology and Evolution, 4, 1076-1082.
Vukosavljev M, Di Guardo M, van de Weg WE, Arens P, Smulders MJM (2012) Quantification of Allele Dosage in tetraploid Roses. ScienceMED (Bologna), 3, 277-282.
Yan Z, Denneboom C, Hattendorf A et al. (2005) Construction of an integrated map of rose with AFLP, microsatellite, PK, RGA, RFLP, SCAR and morphological markers. Theoretical and Applied Genetics, 110, 766-777.
Cao MD, Tasker E, Willadsen K et al. (2014) Inferring short tandem repeat variation from paired-end short reads. Nucleic Acids Research, 42, e16. doi:10.1093/nar/gkt1313.
Park YH, Ahn SG, Choi YM et al. (2010) Rose (Rosa hybrida L.) EST-derived microsatellite markers and their transferability to strawberry (Fragaria spp.). Scientia Horticulturae, 125, 733-739.
Zitouna N, Marghali S, Gharbi M, Chennaoui-Kourda H, Haddioui A, Trifi-Farah N (2013) Mediterranean Hedysarum phylogeny by transferable microsatellites from Medicago. Biochemical Systematics and Ecology, 50, 129-135.
Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27, 863-864.
Cardoso SD, Gonçalves D, Robalo JI, Almada VC, Canário AVM, Oliveira RF (2013) Efficient isolation of polymorphic microsatellites from high-throughput sequence data based on number of repeats. Marine Genomics, 11, 11-16.
Smulders MJM, Vukosavljev M, Shahin A, van de Weg WE, Arens P (2012) High throughput marker development and application in horticultural crops. Acta Horticulturae (ISHS), 961, 547-551 http://www.actahort.org/books/961/961_72.htm
Shahin A, van Kaauwen M, Esselink D et al. (2012) Generation and analysis of expressed sequence tags in the extreme large genomes Lilium and Tulipa. BMC Genomics, 13, 640.
Guo E, Cui Z, Wu D, Hui M, Liu Y, Wang H (2013) Genetic structure and diversity of Portunus trituberculatus in Chinese population revealed by microsatellite markers. Biochemical Systematics and Ecology, 50, 313-321.
Grabherr MG, Haas BJ, Yassour M et al. (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology, 29, 644-652. doi:10.1038/nbt.1883.
Cheng S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter, 11, 113-116.
Zhang LH, Byrne DH, Ballard RE, Rajapakse S (2006) Microsatellite development in rose and its application in tetraploid mapping. Journal of the American Society of Horticultural Science, 131, 380-387.
Swarts ND, Sinclair EA, Dixon KW (2007) Characterization of microsatellite loci in the endangered grand spider orchid Caladenia huegelii (Orchidaceae). Molecular Ecology Notes, 7, 1141-1143.
Castoe TA, Poole AW, de Koning APJ et al. (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE, 7, e30953. doi:10.1371/journal.pone.0030953.
Duran C, Singhania R, Raman H, Batley J, Edwards D (2013) Predicting polymorphic EST-microsatellites in silico. Molecular Ecology Resources, 13, 538-545. doi:10.1111/1755-0998.12078.
Hibrand Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genetics and Genomes, 4, 11-23.
Esselink GD, Smulders MJM, Vosman B (2003) Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers. Theoretical Applied Genetics, 106, 277-286.
Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphism among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theoretical and Applied Genetics, 94, 264-272.
Doulati-Baneh H, Mohammadi SA, Labra M (2013) Genetic structure and diversity analysis in Vitis vinifera L. cultivars from Iran using microsatellite markers. Scientia Horticulturae, 160, 29-36.
Nordström S, Hedrén M (2007) Development of polymorphic nuclear microsatellite markers for polyploid and diploid members of the orchid genus Dactylorhiza. Molecular Ecology Notes, 7, 644-647.
Kimura T, Nishitani C, Iketani H, Ban Y, Yamamoto T (2006) Development of microsatellite markers in rose. Molecular Ecology Notes, 63, 810-812.
Blair MW, Hurtado N (2013) EST-microsatellite markers from five sequenced cDNA libraries of common bean (Phaseolos vulgaris L.) comparing three bioinformatic algorithms. Molecular Ecology Resources, 13, 688-695.
Liu H, Li S, Hu P et al. (2013) Isolation and characterization of EST-based microsatellite markers for Scatophagus argus based on transcriptome analyses. Conservation Genetics Resources, 5, 483-485. doi:10.1007/s12686-012-9833-0.
Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S et al. (2011) Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Research, 18, 471-482.
Hoffman JI, Nichols HJ (2011) A novel approach for mining polymorphic microsatellite markers In Silico. PLoS ONE, 6, e23283.
Nijveen H, van Kaauwen M, Esselink DG, Hoegen B, Vosman B (2013) QualitySNPng: a user-friendly SNP detection and visualization tool. Nucleic Acids Research, 41, W587-W590. doi:10.1093/nar/gkt333.
Lian C, Hogetsu T (2002) Development of microsatellite markers in black locust (Robinia pseudoacacia) using a dual-supression-PCR technique. Molecular Ecology Notes, 2, 211-213.
Wang B, Ekblom R, Castoe TA et al. (2012) Transcriptome sequencing of black grouse (Tetrao tetrix) for immune gene discovery and microsatellite development. Open Biology, 2, 120054.
Spiller M, Linde M, Hibrand-Saint OL et al. (2010) Towards a unified genetic map for diploid roses. Theoretical and Applied Genetics, 122, 489-500.
Ashkenazi V, Chani E, Lavi U, Levy D, Hillel J, Veilleux RE (2001) Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses. Genome, 44, 50-62.
Baruah A, Naik V, Hendre S, Rajkumar R, Rajendrakumar P, Aggarwal RK (2003) Isolation and characterization of nine microsatellite markers from Coffea arabica L., showing wide cross-species amplifications. Molecular Ecology Notes, 3, 647-650.
Jennings TN, Knaus BJ, Mullins TD et al. (2011) Multiplexed microsatellite recovery using massively parallel sequencing. Molecular Ecology Resources, 11, 1060-1067.
Nybom H, Weising K, Rotter B (2014) DNA fingerprinting in botany: past, present, future. Investigative Genetics, 5, 1. doi:10.1186/2041-2223-5-1.
Tang J, Vosman B, Voorrips RE, van der Linden GC, Leunissen JAM (2006) QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species. BMC Bioinformatics, 7, 438. doi:10.1186/1471-2105-7-438.
Vukosavljev M, Zhang J, Esselink GD et al. (2013) Genetic diversity and differentiation in roses: a garden rose perspective. Scientia Horticulturae, 162, 320-332 http://dx.doi.org/10.1016/j.scienta.2013.08.015
Ansari MJ, Al-Ghamdi A, Kumar R et al. (2013) Characterization and gene mapping of a chlorophyll-deficient mutant clm1 of Triticum monococcum L. Biologia Plantarum, 57, 442-448.
Yuan S, Ge L, Liu C et al. (2013) The development of EST-microsatellite markers in Lilium regale and their cross-amplification in related species. Euphytica, 189, 393-419.
Xiao J, Wu K, Fang DD, Stelly DM, Yu J, Cantrell RG (2009) New microsatellite markers for use in cotton (Gossypium spp.) improvement. Journal of Cotton Science, 13, 75-157.
Barzegar R, Peyvast G, Ahadi AM, Rabiei B, Ebadi AA, Babagolzadeh A (2013) Biochemical systematic, population structure and genetic variability studies among Iranian Cucurbita (Cucurbita pepo L.) accessions, using genomic microsatellites and implications for their breeding potential. Biochemical Systematics and Ecology, 50, 187-198.
Liang X, Chen X, Hong Y et al. (2009) Utility of EST-derived microsatellite in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC Plant Biology, 9, 35.
Meng J, Li D, Yi T, Yang J, Zhao X (2009) Development and characterization of microsatellite loci for Rosa odorata var. gigantea Rehder & EH Wilson (Rosaceae). Conservation Genetics, 10, 1973-1976.
Durand J, Bodénès C, Chancerel E et al. (2010) A fast and cost
2010; 11
2013; 4
2008; 9
2011; 11
2006; 131
2013; 162
2008; 4
2001; 44
2012; 961
2013; 8
2012; 13
2013; 5
2013; 160
2011; 18
2001; 103
2012; 131
2009; 13
2006; 63
2014; 5
1997; 94
2009; 10
2013; 11
2000
2013; 57
2013; 13
2013; 50
2003; 3
2014; 14
2007; 7
2011; 27
2011; 29
2007; 17
2013; 88
2005; 110
2010; 125
2013; 304
2013; 41
2006; 7
2013; 189
2002; 2
2010; 122
2011; 6
2014; 42
2006; 113
2012; 2
2012; 3
2003; 106
1993; 11
2004; 272
2009; 9
2005; 6
2014
2012; 7
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
Vukosavljev M (e_1_2_7_51_1) 2012; 3
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Xiao J (e_1_2_7_55_1) 2009; 13
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
Smulders MJM (e_1_2_7_44_1) 2012; 961
e_1_2_7_29_1
Zhang LH (e_1_2_7_59_1) 2006; 131
Rozen S (e_1_2_7_38_1) 2000
Hibrand Saint Oyant L (e_1_2_7_21_1) 2008; 4
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
Wang JY (e_1_2_7_54_1) 2013; 88
References_xml – volume: 5
  start-page: 483
  year: 2013
  end-page: 485
  article-title: Isolation and characterization of EST‐based microsatellite markers for based on transcriptome analyses
  publication-title: Conservation Genetics Resources
– volume: 189
  start-page: 393
  year: 2013
  end-page: 419
  article-title: The development of EST‐microsatellite markers in and their cross‐amplification in related species
  publication-title: Euphytica
– volume: 8
  start-page: e81853
  year: 2013
  article-title: 32 species validation of a new Illumina paired‐end approach for the development of microsatellites
  publication-title: PLoS ONE
– volume: 961
  start-page: 547
  year: 2012
  end-page: 551
  article-title: High throughput marker development and application in horticultural crops
  publication-title: Acta Horticulturae (ISHS)
– volume: 6
  start-page: S29
  issue: Suppl 1
  year: 2005
  article-title: Comparison of microsatellites, single‐nucleotide polymorphisms (SNPs) and composite markers derived from SNPs in linkage analysis
  publication-title: BMC Genetics
– volume: 94
  start-page: 264
  year: 1997
  end-page: 272
  article-title: Use of short microsatellites from database sequences to generate polymorphism among cultivars and accessions of other species
  publication-title: Theoretical and Applied Genetics
– volume: 5
  start-page: 1
  year: 2014
  article-title: DNA fingerprinting in botany: past, present, future
  publication-title: Investigative Genetics
– volume: 88
  start-page: 135
  year: 2013
  end-page: 140
  article-title: In‐silico detection of EST‐microsatellite markers in three species and transferability in
  publication-title: Journal of Horticultural Science & Biotechnology
– volume: 9
  start-page: 374
  year: 2008
  article-title: Large‐scale identification of polymorphic microsatellites using an in silico approach
  publication-title: BMC Bioinformatics
– year: 2014
– volume: 41
  start-page: W587
  year: 2013
  end-page: W590
  article-title: QualitySNPng: a user‐friendly SNP detection and visualization tool
  publication-title: Nucleic Acids Research
– volume: 113
  start-page: 1449
  year: 2006
  end-page: 1458
  article-title: Tall fescue genomic microsatellite markers: development and transferability across multiple grass species
  publication-title: Theoretical and Applied Genetics
– volume: 50
  start-page: 313
  year: 2013
  end-page: 321
  article-title: Genetic structure and diversity of in Chinese population revealed by microsatellite markers
  publication-title: Biochemical Systematics and Ecology
– volume: 2
  start-page: 120054
  year: 2012
  article-title: Transcriptome sequencing of black grouse ( ) for immune gene discovery and microsatellite development
  publication-title: Open Biology
– volume: 7
  start-page: 1323
  year: 2007
  end-page: 1325
  article-title: Characterization of 30 new microsatellite markers, developed from enriched genomic DNA library of zoysiagrass Steud
  publication-title: Molecular Ecology Notes
– volume: 17
  start-page: 1787
  year: 2007
  end-page: 1796
  article-title: Sequence‐based estimation of minisatellite and microsatellite repeat variability
  publication-title: Genome Research
– volume: 11
  start-page: 1060
  year: 2011
  end-page: 1067
  article-title: Multiplexed microsatellite recovery using massively parallel sequencing
  publication-title: Molecular Ecology Resources
– volume: 13
  start-page: 688
  year: 2013
  end-page: 695
  article-title: EST‐microsatellite markers from five sequenced cDNA libraries of common bean ( L.) comparing three bioinformatic algorithms
  publication-title: Molecular Ecology Resources
– volume: 103
  start-page: 575
  year: 2001
  end-page: 585
  article-title: Two genetic linkage maps of tetraploid roses
  publication-title: Theoretical and Applied Genetics
– volume: 4
  start-page: 11
  year: 2008
  end-page: 23
  article-title: Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits
  publication-title: Tree Genetics and Genomes
– volume: 57
  start-page: 442
  year: 2013
  end-page: 448
  article-title: Characterization and gene mapping of a chlorophyll‐deficient mutant clm1 of L
  publication-title: Biologia Plantarum
– volume: 2
  start-page: 211
  year: 2002
  end-page: 213
  article-title: Development of microsatellite markers in black locust ( ) using a dual‐supression‐PCR technique
  publication-title: Molecular Ecology Notes
– start-page: 365
  year: 2000
  end-page: 386
– volume: 3
  start-page: 647
  year: 2003
  end-page: 650
  article-title: Isolation and characterization of nine microsatellite markers from L., showing wide cross‐species amplifications
  publication-title: Molecular Ecology Notes
– volume: 122
  start-page: 489
  year: 2010
  end-page: 500
  article-title: Towards a unified genetic map for diploid roses
  publication-title: Theoretical and Applied Genetics
– volume: 7
  start-page: 644
  year: 2007
  end-page: 647
  article-title: Development of polymorphic nuclear microsatellite markers for polyploid and diploid members of the orchid genus
  publication-title: Molecular Ecology Notes
– volume: 3
  start-page: 277
  year: 2012
  end-page: 282
  article-title: Quantification of Allele Dosage in tetraploid Roses
  publication-title: ScienceMED (Bologna)
– volume: 131
  start-page: 380
  year: 2006
  end-page: 387
  article-title: Microsatellite development in rose and its application in tetraploid mapping
  publication-title: Journal of the American Society of Horticultural Science
– volume: 44
  start-page: 50
  year: 2001
  end-page: 62
  article-title: Development of microsatellite markers in potato and their use in phylogenetic and fingerprinting analyses
  publication-title: Genome
– volume: 11
  start-page: 11
  year: 2013
  end-page: 16
  article-title: Efficient isolation of polymorphic microsatellites from high‐throughput sequence data based on number of repeats
  publication-title: Marine Genomics
– volume: 9
  start-page: 35
  year: 2009
  article-title: Utility of EST‐derived microsatellite in cultivated peanut ( L.) and wild species
  publication-title: BMC Plant Biology
– volume: 50
  start-page: 129
  year: 2013
  end-page: 135
  article-title: Mediterranean phylogeny by transferable microsatellites from
  publication-title: Biochemical Systematics and Ecology
– volume: 13
  start-page: 538
  year: 2013
  end-page: 545
  article-title: Predicting polymorphic EST‐microsatellites in silico
  publication-title: Molecular Ecology Resources
– volume: 4
  start-page: 1076
  year: 2013
  end-page: 1082
  article-title: Identification of high‐resolution microsatellites without a priori knowledge of genotypes using a simple scoring approach
  publication-title: Methods in Ecology and Evolution
– volume: 14
  start-page: 716
  year: 2014
  end-page: 725
  article-title: Stronger transferability but lower variability in transcriptomic‐ than in anonymous microsatellites: evidence from Hylid frogs
  publication-title: Molecular Ecology Resources
– volume: 106
  start-page: 277
  year: 2003
  end-page: 286
  article-title: Identification of cut rose ( ) and rootstock varieties using robust sequence tagged microsatellite site markers
  publication-title: Theoretical Applied Genetics
– volume: 29
  start-page: 644
  year: 2011
  end-page: 652
  article-title: Full‐length transcriptome assembly from RNA‐seq data without a reference genome
  publication-title: Nature Biotechnology
– volume: 162
  start-page: 320
  year: 2013
  end-page: 332
  article-title: Genetic diversity and differentiation in roses: a garden rose perspective
  publication-title: Scientia Horticulturae
– volume: 11
  start-page: 570
  year: 2010
  article-title: A fast and cost‐effective approach to develop and map EST‐microsatellite markers: oak as a case study
  publication-title: BMC Genomics
– volume: 42
  start-page: e16
  year: 2014
  article-title: Inferring short tandem repeat variation from paired‐end short reads
  publication-title: Nucleic Acids Research
– volume: 160
  start-page: 29
  year: 2013
  end-page: 36
  article-title: Genetic structure and diversity analysis in L. cultivars from Iran using microsatellite markers
  publication-title: Scientia Horticulturae
– volume: 10
  start-page: 1973
  year: 2009
  end-page: 1976
  article-title: Development and characterization of microsatellite loci for var. gigantea Rehder & EH Wilson (Rosaceae)
  publication-title: Conservation Genetics
– volume: 27
  start-page: 863
  year: 2011
  end-page: 864
  article-title: Quality control and preprocessing of metagenomic datasets
  publication-title: Bioinformatics
– volume: 13
  start-page: 640
  year: 2012
  article-title: Generation and analysis of expressed sequence tags in the extreme large genomes and
  publication-title: BMC Genomics
– volume: 125
  start-page: 733
  year: 2010
  end-page: 739
  article-title: Rose ( L.) EST‐derived microsatellite markers and their transferability to strawberry ( spp.)
  publication-title: Scientia Horticulturae
– volume: 63
  start-page: 810
  year: 2006
  end-page: 812
  article-title: Development of microsatellite markers in rose
  publication-title: Molecular Ecology Notes
– volume: 6
  start-page: e23283
  year: 2011
  article-title: A novel approach for mining polymorphic microsatellite markers In Silico
  publication-title: PLoS ONE
– volume: 7
  start-page: 438
  year: 2006
  article-title: QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species
  publication-title: BMC Bioinformatics
– volume: 7
  start-page: 1141
  year: 2007
  end-page: 1143
  article-title: Characterization of microsatellite loci in the endangered grand spider orchid (Orchidaceae)
  publication-title: Molecular Ecology Notes
– volume: 7
  start-page: e30953
  year: 2012
  article-title: Rapid microsatellite identification from Illumina paired‐end genomic sequencing in two birds and a snake
  publication-title: PLoS ONE
– volume: 11
  start-page: 113
  year: 1993
  end-page: 116
  article-title: A simple and efficient method for isolating RNA from pine trees
  publication-title: Plant Molecular Biology Reporter
– volume: 8
  start-page: e54721
  year: 2013
  article-title: Microsatellites for the marsh fritillary butterfly: de novo transcriptome sequencing, and a comparison with amplified fragment length polymorphism (AFLP) markers
  publication-title: PLoS ONE
– volume: 304
  start-page: 407
  year: 2013
  end-page: 416
  article-title: Recent distribution changes affect geographic clines in genetic diversity and structure of Pinus densiflora natural populations in Japan
  publication-title: Forest Ecology and Management
– volume: 110
  start-page: 766
  year: 2005
  end-page: 777
  article-title: Construction of an integrated map of rose with AFLP, microsatellite, PK, RGA, RFLP, SCAR and morphological markers
  publication-title: Theoretical and Applied Genetics
– volume: 18
  start-page: 471
  year: 2011
  end-page: 482
  article-title: Transcriptome sequencing of for development of microsatellite markers and construction of a genetic linkage map
  publication-title: DNA Research
– volume: 131
  start-page: 674
  year: 2012
  end-page: 680
  article-title: Large‐scale development of microsatellite markers in and construction of a genetic map of flue‐cured tobacco
  publication-title: Plant Breeding
– volume: 13
  start-page: 75
  year: 2009
  end-page: 157
  article-title: New microsatellite markers for use in cotton ( spp.) improvement
  publication-title: Journal of Cotton Science
– volume: 88
  start-page: 85
  year: 2013
  end-page: 92
  article-title: The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat
  publication-title: Journal of Horticultural Science and Biotechnology
– volume: 272
  start-page: 308
  year: 2004
  end-page: 327
  article-title: Genetic mapping of EST‐derived microsatellites from the diploid in allotetraploid cotton
  publication-title: Molecular Genetics and Genomics
– volume: 50
  start-page: 187
  year: 2013
  end-page: 198
  article-title: Biochemical systematic, population structure and genetic variability studies among Iranian Cucurbita ( L.) accessions, using genomic microsatellites and implications for their breeding potential
  publication-title: Biochemical Systematics and Ecology
– ident: e_1_2_7_20_1
  doi: 10.1007/s00438-004-1059-8
– ident: e_1_2_7_45_1
  doi: 10.1007/s00122-010-1463-x
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1471-8286.2006.01662.x
– ident: e_1_2_7_36_1
  doi: 10.1016/j.scienta.2010.05.012
– ident: e_1_2_7_35_1
  doi: 10.1186/2041‐2223‐5‐1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.bse.2013.03.048
– ident: e_1_2_7_23_1
  doi: 10.1016/j.foreco.2013.05.026
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1471-8286.2007.01810.x
– ident: e_1_2_7_53_1
  doi: 10.1098/rsob.120054
– ident: e_1_2_7_17_1
  doi: 10.1007/s00122-002-1122-y
– ident: e_1_2_7_57_1
  doi: 10.1007/s00122-004-1903-6
– volume: 13
  start-page: 75
  year: 2009
  ident: e_1_2_7_55_1
  article-title: New microsatellite markers for use in cotton (Gossypium spp.) improvement
  publication-title: Journal of Cotton Science
  contributor:
    fullname: Xiao J
– ident: e_1_2_7_27_1
  doi: 10.1101/gr.6554007
– ident: e_1_2_7_2_1
  doi: 10.1007/s10535-013-0307-3
– ident: e_1_2_7_4_1
  doi: 10.1046/j.1471-8286.2003.00544.x
– ident: e_1_2_7_16_1
  doi: 10.1111/2041-210X.12101
– volume: 131
  start-page: 380
  year: 2006
  ident: e_1_2_7_59_1
  article-title: Microsatellite development in rose and its application in tetraploid mapping
  publication-title: Journal of the American Society of Horticultural Science
  doi: 10.21273/JASHS.131.3.380
  contributor:
    fullname: Zhang LH
– ident: e_1_2_7_42_1
  doi: 10.1371/journal.pone.0054721
– volume: 961
  start-page: 547
  year: 2012
  ident: e_1_2_7_44_1
  article-title: High throughput marker development and application in horticultural crops
  publication-title: Acta Horticulturae (ISHS)
  doi: 10.17660/ActaHortic.2012.961.72
  contributor:
    fullname: Smulders MJM
– ident: e_1_2_7_8_1
  doi: 10.1093/nar/gkt1313
– ident: e_1_2_7_32_1
  doi: 10.1007/s10592-009-9871-7
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.pone.0081853
– ident: e_1_2_7_43_1
  doi: 10.1007/s001220050409
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1471-8286.2007.01869.x
– ident: e_1_2_7_40_1
  doi: 10.1093/bioinformatics/btr026
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1439‐0523.2012.01984.x
– ident: e_1_2_7_58_1
  doi: 10.1007/s10681-012-0788-8
– ident: e_1_2_7_19_1
  doi: 10.1016/j.bse.2013.05.006
– volume: 4
  start-page: 11
  year: 2008
  ident: e_1_2_7_21_1
  article-title: Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits
  publication-title: Tree Genetics and Genomes
  doi: 10.1007/s11295-007-0084-2
  contributor:
    fullname: Hibrand Saint Oyant L
– ident: e_1_2_7_41_1
  doi: 10.1186/1471-2164-13-640
– volume: 88
  start-page: 135
  year: 2013
  ident: e_1_2_7_54_1
  article-title: In‐silico detection of EST‐microsatellite markers in three Brassica species and transferability in B. rapa
  publication-title: Journal of Horticultural Science & Biotechnology
  doi: 10.1080/14620316.2013.11512947
  contributor:
    fullname: Wang JY
– ident: e_1_2_7_56_1
  doi: 10.1186/1471-2156-6-S1-S29
– ident: e_1_2_7_48_1
  doi: 10.1186/1471‐2105‐9‐374
– ident: e_1_2_7_12_1
  doi: 10.1016/j.scienta.2013.05.029
– ident: e_1_2_7_33_1
  doi: 10.1093/nar/gkt333
– ident: e_1_2_7_22_1
  doi: 10.1371/journal.pone.0023283
– ident: e_1_2_7_60_1
  doi: 10.1080/14620316.2013.11512940
– ident: e_1_2_7_10_1
  doi: 10.1371/journal.pone.0030953
– ident: e_1_2_7_52_1
  doi: 10.1016/j.scienta.2013.08.015
– ident: e_1_2_7_39_1
  doi: 10.1007/s00122‐006‐0391‐2
– volume: 3
  start-page: 277
  year: 2012
  ident: e_1_2_7_51_1
  article-title: Quantification of Allele Dosage in tetraploid Roses
  publication-title: ScienceMED (Bologna)
  contributor:
    fullname: Vukosavljev M
– ident: e_1_2_7_3_1
  doi: 10.1139/g00-096
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1755-0998.2011.03033.x
– ident: e_1_2_7_15_1
  doi: 10.1186/1471-2164-11-570
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1471-8286.2002.00213.x-i2
– ident: e_1_2_7_30_1
  doi: 10.1007/s12686‐012‐9833‐0
– ident: e_1_2_7_37_1
  doi: 10.1007/PL00002912
– ident: e_1_2_7_50_1
  doi: 10.1093/dnares/dsr034
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1471-8286.2006.01352.x
– start-page: 365
  volume-title: Bioinformatics Methods and Protocols: Methods in Molecular Biology
  year: 2000
  ident: e_1_2_7_38_1
  contributor:
    fullname: Rozen S
– ident: e_1_2_7_13_1
  doi: 10.1111/1755-0998.12215
– ident: e_1_2_7_18_1
  doi: 10.1038/nbt.1883
– ident: e_1_2_7_7_1
  doi: 10.1111/1755-0998.12099
– ident: e_1_2_7_6_1
– ident: e_1_2_7_14_1
  doi: 10.1111/1755‐0998.12078
– ident: e_1_2_7_61_1
  doi: 10.1016/j.bse.2013.03.040
– ident: e_1_2_7_9_1
  doi: 10.1016/j.margen.2013.04.002
– ident: e_1_2_7_29_1
  doi: 10.1186/1471-2229-9-35
– ident: e_1_2_7_11_1
  doi: 10.1007/BF02670468
– ident: e_1_2_7_47_1
  doi: 10.1186/1471‐2105‐7‐438
SSID ssj0060974
Score 2.3490703
Snippet The first hurdle in developing microsatellite markers, cloning, has been overcome by next‐generation sequencing. The second hurdle is testing to differentiate...
The first hurdle in developing microsatellite markers, cloning, has been overcome by next-generation sequencing. The second hurdle is testing to differentiate...
Abstract The first hurdle in developing microsatellite markers, cloning, has been overcome by next‐generation sequencing. The second hurdle is testing to...
The first hurdle in developing microsatellite markers, cloning, has been overcome by next generation sequencing. The second hurdle is testing to differentiate...
SourceID wageningen
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 17
SubjectTerms Computational Biology - methods
construction
diversity
est-ssr markers
Gene loci
Genetic markers
Genetic Variation
genetic-linkage maps
Genomics
Genotyping Techniques - methods
identification
in-silico
l
microsatellite marker
Microsatellite Repeats
Molecular Sequence Data
next-generation sequencing
Repetitive Sequences, Nucleic Acid
RNA-seq
Rosa - classification
Rosa - genetics
rose
Sequence Analysis, DNA
simple sequence repeat
Transcriptome
transferability
variability
Title Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals
URI https://api.istex.fr/ark:/67375/WNG-SV3LP8RD-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12289
https://www.ncbi.nlm.nih.gov/pubmed/24893879
https://www.proquest.com/docview/1636577172/abstract/
https://search.proquest.com/docview/1637995475
https://search.proquest.com/docview/1647003888
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F454444
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA9yIpwPfn_0PCWCiC9dtk2Tpo-iux7iLXJ6em8hSVNY3G2XbZe79c_wL3Ym_Tj3EEXsSwudtul0JjOT_vILIS-0c9KwjIcsZyKEiF-E2vExDgnkYzvWufUMfMczcXSavD_jPZoQ58K0_BDDgBt6hu-v0cG1qX9xcoh7HG6ZyVEUQ9UAvTDS6WFadDIQSIlx5nmYO1l51pH7IJbnyvU7cek6qvjid0nnTbJ_Do5e-plPuwmtj0jT28T079ICUb6NNo0Z2e9XaB7_62XvkFtdvkpftwZ2l1xz5T1yY-K5rrf3yY-Jp6CAyEXzS_gRrQqKPMiLLV1Vi-2ygo85t3SJ4L9aew7QxtElIoPWNcVAmtOq3JFduxVEiZrOS9pgOPWdW7V0dMB-40N6OCSdD_PK6gfkdDr5_OYo7JZ5CC2H_CgseC51ZKH2LJzQJpVRamPHi6yQuH6gLTzJv3VCxMZIqJ65ZmOpDbcs1WmesYdkr6xK95hQrRNhueOJESKJnDFxpJnIpEkzzZjlAXnVf2S1atk8VF8FoYoVqlh5FQfkpTeCQQ50giC4lKuvs3fq0xf24aM8eaumATnsrUR1_l8ryHIFT6FUjgPyfDgNnou_Y3Tpqo2X8Wx8Kf-TTJLiz1spA_KotcChQTHyBskUWsouTVKVuARVrZA1vDMsdb5Zq3KBO7hDrRKewBaQ1uD-pgd1PJn5g4N_veAJ2YfskrfjVYdkr1lv3FPI4BrzzDvpT5SEP0E
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELdgE2I88HdAYICREOIlVRLHjvOIoKVAW6GxQd8s23GkijapmlSjfAw-MT4nzdYJgRB5SaRcHPt857uzzz8j9EIawxVJqU8ywnxr8XNfGhrAlEAW6EBm2iHwjSdseBp_mNLphb0wDT5EN-EGmuHGa1BwmJC-oOXW8FFbZsp7YWTDhqto3yo9dWHVcQchxYLUITG3xHzawvtANs-lAnYs0z4w-fvv3M4b6ODMqnrh9j7turTOJg1uIb1tTZOK8q23rlVP_7gE9Ph_zb2NbrYuK37dyNgddMUUd9G1voO73txDP_sOhcIaL5ydZyDhMscAhTzf4GU53yxK258zjReQ_1dJBwNaG7yA5KBVhcGWZrgsdmhXZmkNRYVnBa7BorrxrVwY3KV_w0-2GZF41m0tqw7R6aB_8mbotyc9-JpaF8nPacZlqG34mRsmVcLDREeG5mnO4QhBnTucf20Yi5TiNoCmkgRcKqpJIpMsJffRXlEW5iHCUsZMU0NjxVgcGqWiUBKWcpWkkhBNPfRq28ti2QB6iG0gBCwWwGLhWOyhl04KOjrLE8iDS6j4OnknPn8ho0_8-K0YeOhoKyaiHQIqYR1dRhMbLUceet69tsoLKzKyMOXa0ThAvoT-iSZOYP2Wcw89aESwq1AE0EE8sTUl5zIpCjiFqhIAHN5Kljhbr0Qxh5stoRIxje3loUbi_sYHMe5P3MOjf_3gGbo-PBmPxOj95ONjdGCdTdpMXx2hvXq1Nk-sQ1erp05jfwF8Y0Nj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BJtB44HNAYICREOIlVRvHjvOIaMuArZoGg71ZtuNIFW1SNa1G-TP4i_E5H2MTAiHykki5OMnlznfn_PwzwAtlrdA0ZSHNKA9dxM9DZVkfhwSyvumrzHgGvsMJ3z-J35-yFk2Ic2FqfohuwA09w_fX6OCLLP_FyV3cY67JVPQGkasarsJ2zGmEhj087hikeD_1RMyNsDht2H0QzHOpgQuBaRt1_O13WecN2Dlznl74qU8XM1ofksa3QLcvUyNRvvbWK90z3y_xPP7X296Gm03CSl7XFnYHrtjiLlwbebLrzT34MfIcFC50kewcf0TKnCAR8mxDFuVsMy_d15waMkf0X6U8CejKkjlCg5YVwUiakbK4ILu0CxcmKjItyArjqe_dyrklHfgbb9LiIcm0m1hW7cLJePTpzX7YrPMQGuYSpDBnmVAD44rP3HKlEzFITGRZnuYCFxA0uWf5N5bzSGvhymemaF8ozQxNVJKl9D5sFWVhHwJRKuaGWRZrzuOB1ToaKMpToZNUUWpYAK_ajywXNZ2HbMsgVLFEFUuv4gBeeiPo5JxOEAWXMPll8lZ-_EwPjsTxUI4D2GutRDYdQCVdmstZ4mrlKIDn3Wnnuvg_RhW2XHsZT8eXsD_JxAn-vRUigAe1BXYPFCFxkEjck9Jzk5QFrkFVSaQNbwxLnq2XspjhzrVQyZjFbgugNri_6UEejib-4NG_XvAMrh8Nx_Lg3eTDY9hxmSarx672YGu1XNsnLptb6afeX38CfllCEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+development+of+highly+polymorphic+microsatellite+markers+based+on+polymorphic+repeats+in+transcriptome+sequences+of+multiple+individuals&rft.jtitle=Molecular+ecology+resources&rft.au=Vukosavljev%2C+M.&rft.au=Esselink%2C+G.+D.&rft.au=van+%27t+Westende%2C+W.+P.+C.&rft.au=Cox%2C+P.&rft.date=2015-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1755-098X&rft.eissn=1755-0998&rft.volume=15&rft.issue=1&rft.spage=17&rft.epage=27&rft_id=info:doi/10.1111%2F1755-0998.12289&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_SV3LP8RD_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon