Silk Fibroin for Flexible Electronic Devices

Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon‐based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 28; no. 22; pp. 4250 - 4265
Main Authors Zhu, Bowen, Wang, Hong, Leow, Wan Ru, Cai, Yurong, Loh, Xian Jun, Han, Ming-Yong, Chen, Xiaodong
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon‐based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next‐generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state‐of‐the‐art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk‐based electronic devices would open new avenues for employing biomaterials in the design and integration of high‐performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human–machine interfaces. Silk fibroin is an ancient biomaterial with exquisite mechanical, optical, and electrical properties. Its intriguing properties and environmental benignity render silk fibroin compelling for the advancement of next‐generation biocompatible and biodegradable flexible electronic devices.
AbstractList Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon‐based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next‐generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state‐of‐the‐art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk‐based electronic devices would open new avenues for employing biomaterials in the design and integration of high‐performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human–machine interfaces. Silk fibroin is an ancient biomaterial with exquisite mechanical, optical, and electrical properties. Its intriguing properties and environmental benignity render silk fibroin compelling for the advancement of next‐generation biocompatible and biodegradable flexible electronic devices.
Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces.Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces.
Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon‐based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next‐generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state‐of‐the‐art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk‐based electronic devices would open new avenues for employing biomaterials in the design and integration of high‐performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human–machine interfaces.
Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces. Silk fibroin is an ancient biomaterial with exquisite mechanical, optical, and electrical properties. Its intriguing properties and environmental benignity render silk fibroin compelling for the advancement of next-generation biocompatible and biodegradable flexible electronic devices.
Author Chen, Xiaodong
Cai, Yurong
Zhu, Bowen
Han, Ming-Yong
Wang, Hong
Loh, Xian Jun
Leow, Wan Ru
Author_xml – sequence: 1
  givenname: Bowen
  surname: Zhu
  fullname: Zhu, Bowen
  organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
– sequence: 2
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
– sequence: 3
  givenname: Wan Ru
  surname: Leow
  fullname: Leow, Wan Ru
  organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
– sequence: 4
  givenname: Yurong
  surname: Cai
  fullname: Cai, Yurong
  organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
– sequence: 5
  givenname: Xian Jun
  surname: Loh
  fullname: Loh, Xian Jun
  organization: Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 3 Research Link, 117602, Singapore
– sequence: 6
  givenname: Ming-Yong
  surname: Han
  fullname: Han, Ming-Yong
  organization: Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 3 Research Link, 117602, Singapore
– sequence: 7
  givenname: Xiaodong
  surname: Chen
  fullname: Chen, Xiaodong
  email: chenxd@ntu.edu.sg
  organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26684370$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PGzEQQC1EBYFy5VjtsQc2HX_bx4gQaJXSQ4uQuFheZ1ZycXapvWnh33dRAFVIFacZad6bwzsgu13fISHHFKYUgH3yq7WfMqASBNNqh0yoZLQWYOUumYDlsrZKmH1yUMpPALAK1B7ZZ0oZwTVMyMn3mG6rRWxyH7uq7XO1SHgfm4TVWcIw5L6LoZrj7xiwvCfvWp8KHj3NQ3K1OPtxelEvv51_Pp0t6yAVV7XwRrXWA0ivjQqm5dIKATyooL3X40XTVRANp1JLZH5cWYNm5bWAAA3yQ_Jx-_cu9782WAa3jiVgSr7DflMcNUwKw63Qb6PaSqM1ZXREPzyhm2aNK3eX49rnB_ccYwTEFgi5LyVj60Ic_BD7bsg-JkfBPTZ3j83dS_NRm77Snj__V7Bb4U9M-PAG7Wbzr7N_3XrrxjLg_Yvr861Tmmvpri_P3cXcmuWNunRf-F85UaBv
CitedBy_id crossref_primary_10_1016_j_cej_2020_125499
crossref_primary_10_1016_j_ijbiomac_2016_10_047
crossref_primary_10_1002_aelm_201800373
crossref_primary_10_1002_adma_201700217
crossref_primary_10_1002_adma_202411946
crossref_primary_10_1073_pnas_1619392114
crossref_primary_10_1039_D0CP04657D
crossref_primary_10_1002_adfm_202307106
crossref_primary_10_1002_smsc_202300217
crossref_primary_10_1016_j_mtbio_2022_100381
crossref_primary_10_1002_admi_202000743
crossref_primary_10_1007_s10832_017_0104_z
crossref_primary_10_1016_j_nanoen_2019_103885
crossref_primary_10_1016_j_mtsust_2022_100230
crossref_primary_10_1007_s11664_023_10242_y
crossref_primary_10_1039_D1PY00282A
crossref_primary_10_1016_j_compositesa_2019_01_026
crossref_primary_10_3390_electrochem1040022
crossref_primary_10_1021_acsami_0c15530
crossref_primary_10_1002_adsu_202400518
crossref_primary_10_1021_acsabm_3c00593
crossref_primary_10_1039_C8TC02883D
crossref_primary_10_1186_s42490_019_0004_1
crossref_primary_10_1186_s11671_016_1660_x
crossref_primary_10_1016_j_mattod_2018_03_038
crossref_primary_10_1002_adfm_202010461
crossref_primary_10_1007_s12221_019_1206_9
crossref_primary_10_1021_acsnano_9b03454
crossref_primary_10_1002_nano_202200200
crossref_primary_10_1016_j_mattod_2020_08_017
crossref_primary_10_1021_acsami_0c15326
crossref_primary_10_1002_cplu_202100377
crossref_primary_10_1007_s42114_024_00888_5
crossref_primary_10_1016_j_diamond_2023_110483
crossref_primary_10_1039_C8PY01314D
crossref_primary_10_1021_acsami_9b22754
crossref_primary_10_1002_bkcs_11945
crossref_primary_10_1002_advs_201700634
crossref_primary_10_1016_j_mee_2022_111869
crossref_primary_10_1002_advs_202410702
crossref_primary_10_1021_acssuschemeng_1c08227
crossref_primary_10_1016_j_ijbiomac_2020_04_053
crossref_primary_10_1016_j_jmrt_2023_10_111
crossref_primary_10_1002_adfm_202410140
crossref_primary_10_1002_macp_202200119
crossref_primary_10_1002_smll_201903948
crossref_primary_10_1016_j_progpolymsci_2020_101279
crossref_primary_10_1038_s41467_023_43944_2
crossref_primary_10_1039_C8CS00609A
crossref_primary_10_1007_s12274_021_3856_3
crossref_primary_10_1016_j_jsamd_2025_100869
crossref_primary_10_1002_adfm_201808695
crossref_primary_10_1080_15583724_2022_2158467
crossref_primary_10_2174_1389203724666230412092734
crossref_primary_10_1002_app_55213
crossref_primary_10_1002_advs_202200560
crossref_primary_10_1016_j_jcis_2021_12_067
crossref_primary_10_1002_smtd_202001060
crossref_primary_10_1016_j_giant_2024_100313
crossref_primary_10_1016_j_nanoen_2018_03_033
crossref_primary_10_1063_5_0066174
crossref_primary_10_1360_SSC_2022_0155
crossref_primary_10_1088_1748_605X_ac20a0
crossref_primary_10_1021_acsomega_4c08514
crossref_primary_10_3390_nano10030559
crossref_primary_10_1021_acsami_8b13170
crossref_primary_10_1039_C9TC04706A
crossref_primary_10_1016_j_addr_2019_09_003
crossref_primary_10_1088_1361_6439_ac7b0c
crossref_primary_10_1002_er_7393
crossref_primary_10_1002_smtd_202000274
crossref_primary_10_1007_s11432_017_9352_0
crossref_primary_10_1002_adma_202302062
crossref_primary_10_1002_aelm_202300108
crossref_primary_10_1109_TNANO_2021_3064380
crossref_primary_10_1016_j_actbio_2022_09_010
crossref_primary_10_1177_08839115241279867
crossref_primary_10_1016_j_mtcomm_2024_109480
crossref_primary_10_1039_D4BM01347F
crossref_primary_10_1039_C7NR03385K
crossref_primary_10_1016_j_mser_2017_02_001
crossref_primary_10_1002_advs_201801283
crossref_primary_10_1039_C6TC00678G
crossref_primary_10_1016_j_nanoen_2024_110540
crossref_primary_10_1007_s12274_017_1476_8
crossref_primary_10_1016_j_nanoen_2017_10_029
crossref_primary_10_3390_polym12030604
crossref_primary_10_1016_j_jallcom_2020_157289
crossref_primary_10_1016_j_matdes_2022_111120
crossref_primary_10_1016_j_msec_2018_11_010
crossref_primary_10_1016_j_actbio_2022_11_058
crossref_primary_10_3390_s18020645
crossref_primary_10_1002_smll_202300895
crossref_primary_10_1002_app_55482
crossref_primary_10_1038_nnano_2017_4
crossref_primary_10_1016_j_eurpolymj_2024_113058
crossref_primary_10_1002_adfm_202402608
crossref_primary_10_1021_acs_biomac_2c00753
crossref_primary_10_1002_adhm_201901552
crossref_primary_10_1002_smll_201502906
crossref_primary_10_1021_acsnano_8b01435
crossref_primary_10_1002_admt_202201031
crossref_primary_10_1186_s11671_024_04001_z
crossref_primary_10_1016_j_nanoen_2017_09_038
crossref_primary_10_1049_htl_2019_0108
crossref_primary_10_1002_smll_201703164
crossref_primary_10_1002_adfm_202208521
crossref_primary_10_1080_09205063_2017_1386835
crossref_primary_10_1016_j_bios_2024_116853
crossref_primary_10_1021_acsabm_9b00576
crossref_primary_10_1021_acsami_1c07687
crossref_primary_10_1039_D0TC01500H
crossref_primary_10_3390_gels9030250
crossref_primary_10_1021_acssuschemeng_2c07299
crossref_primary_10_26634_jes_12_2_20546
crossref_primary_10_1002_smll_202104482
crossref_primary_10_1002_aelm_201700521
crossref_primary_10_1021_acssuschemeng_4c08242
crossref_primary_10_1016_j_jallcom_2017_06_178
crossref_primary_10_1002_adma_201905522
crossref_primary_10_1039_D2TC04053K
crossref_primary_10_1002_adma_201602994
crossref_primary_10_1002_advs_202302858
crossref_primary_10_1002_adma_201601783
crossref_primary_10_1016_j_progpolymsci_2021_101375
crossref_primary_10_1002_adma_201703331
crossref_primary_10_1021_acsami_0c02190
crossref_primary_10_1002_adem_202100195
crossref_primary_10_3390_biomimetics9060373
crossref_primary_10_1109_TED_2023_3269727
crossref_primary_10_1002_smtd_201800070
crossref_primary_10_1039_D0NJ00351D
crossref_primary_10_1021_acs_biomac_9b00389
crossref_primary_10_1002_admt_202301282
crossref_primary_10_1007_s40820_024_01543_w
crossref_primary_10_1039_D0TC03428B
crossref_primary_10_1002_adfm_201901134
crossref_primary_10_1002_adma_202100221
crossref_primary_10_1002_macp_202300340
crossref_primary_10_1007_s10854_019_02485_5
crossref_primary_10_1088_2053_1591_abb857
crossref_primary_10_1088_2399_1984_ac74f9
crossref_primary_10_1021_acsabm_8b00498
crossref_primary_10_1016_j_apmt_2019_100540
crossref_primary_10_1080_29963176_2024_2417225
crossref_primary_10_1002_adma_201800129
crossref_primary_10_1016_j_cej_2023_144678
crossref_primary_10_1021_acsmaterialslett_2c00598
crossref_primary_10_1021_acsomega_3c08020
crossref_primary_10_1002_adma_201706983
crossref_primary_10_1098_rsif_2018_0305
crossref_primary_10_1002_mame_201700110
crossref_primary_10_1360_nso_20230055
crossref_primary_10_1016_j_cej_2025_160125
crossref_primary_10_1016_j_snb_2021_130297
crossref_primary_10_1002_aelm_202300323
crossref_primary_10_1016_j_nanoms_2021_07_008
crossref_primary_10_1002_adfm_202100451
crossref_primary_10_1002_smll_202310110
crossref_primary_10_1016_j_cej_2020_127960
crossref_primary_10_1080_15440478_2022_2139328
crossref_primary_10_1002_cplu_201800067
crossref_primary_10_1002_smtd_201800295
crossref_primary_10_1002_admt_202001053
crossref_primary_10_1016_j_cej_2021_130195
crossref_primary_10_3390_nano12030503
crossref_primary_10_1021_acs_chemrev_0c00897
crossref_primary_10_1016_j_isci_2022_103940
crossref_primary_10_1002_admi_201600709
crossref_primary_10_1038_s41598_025_91653_1
crossref_primary_10_1016_j_bios_2020_112620
crossref_primary_10_1039_D3RA06290B
crossref_primary_10_1016_j_apmt_2019_100539
crossref_primary_10_1016_j_ceramint_2023_05_243
crossref_primary_10_1002_adfm_202111465
crossref_primary_10_1002_adma_202102302
crossref_primary_10_1109_TNANO_2020_3044243
crossref_primary_10_1021_acsbiomaterials_3c01116
crossref_primary_10_1146_annurev_bioeng_082719_032747
crossref_primary_10_1002_adma_202008308
crossref_primary_10_1016_j_cej_2023_142477
crossref_primary_10_1002_adfm_201902127
crossref_primary_10_1016_j_snb_2018_12_067
crossref_primary_10_1002_adfm_202102923
crossref_primary_10_1016_j_ijbiomac_2021_11_190
crossref_primary_10_1016_j_mtnano_2019_100041
crossref_primary_10_1088_2752_5724_ad5f48
crossref_primary_10_3390_polym12122936
crossref_primary_10_1021_acsami_9b08873
crossref_primary_10_1002_aelm_202000721
crossref_primary_10_1002_adfm_201902374
crossref_primary_10_1021_acsmaterialslett_0c00085
crossref_primary_10_1002_adfm_201603826
crossref_primary_10_1002_adfm_202302929
crossref_primary_10_1002_adfm_201703059
crossref_primary_10_1016_j_orgel_2016_09_017
crossref_primary_10_1039_C8TC05630G
crossref_primary_10_1007_s40843_021_1701_7
crossref_primary_10_1016_j_ccr_2024_216264
crossref_primary_10_1002_adma_202001903
crossref_primary_10_1021_acsnano_7b03119
crossref_primary_10_1007_s10854_021_05327_5
crossref_primary_10_1002_adma_201707624
crossref_primary_10_1088_1361_6528_ac5d9f
crossref_primary_10_1016_j_mtbio_2022_100290
crossref_primary_10_1016_j_snb_2022_131438
crossref_primary_10_1016_j_cej_2021_130091
crossref_primary_10_1002_admi_201700020
crossref_primary_10_1039_D3NR01347B
crossref_primary_10_1021_acssuschemeng_9b05799
crossref_primary_10_1063_5_0096973
crossref_primary_10_1002_adma_202305063
crossref_primary_10_1039_D2TC00679K
crossref_primary_10_1016_j_bios_2023_115890
crossref_primary_10_1039_C8CS00406D
crossref_primary_10_1186_s42825_019_0009_5
crossref_primary_10_1002_adma_201902278
crossref_primary_10_1039_C7NR06807G
crossref_primary_10_1515_ntrev_2023_0578
crossref_primary_10_1016_j_sbsr_2021_100403
crossref_primary_10_1021_acs_chemrev_3c00527
crossref_primary_10_1016_j_msec_2017_08_075
crossref_primary_10_1021_acsnano_8b02244
crossref_primary_10_1177_0883911518818075
crossref_primary_10_1021_acsaelm_3c01663
crossref_primary_10_3390_s23094560
crossref_primary_10_1002_adfm_201904777
crossref_primary_10_1021_acsbiomaterials_4c00254
crossref_primary_10_1002_adfm_202207714
crossref_primary_10_1007_s42114_022_00525_z
crossref_primary_10_1002_adma_201601572
crossref_primary_10_1007_s40843_016_5091_1
crossref_primary_10_1039_C9NJ00482C
crossref_primary_10_1002_adma_201902387
crossref_primary_10_1016_j_biomaterials_2024_122861
crossref_primary_10_1007_s40032_022_00891_z
crossref_primary_10_1002_smll_202403169
crossref_primary_10_1002_aisy_202100280
crossref_primary_10_1002_cey2_186
crossref_primary_10_7498_aps_69_20200617
crossref_primary_10_1016_j_bioadv_2022_212982
crossref_primary_10_1002_admi_202201212
crossref_primary_10_1016_j_bios_2018_08_018
crossref_primary_10_1021_acsami_0c07614
crossref_primary_10_1002_adma_202005910
crossref_primary_10_1016_j_colsurfb_2016_12_013
crossref_primary_10_1016_j_mseb_2023_116536
crossref_primary_10_1016_j_mtchem_2019_04_008
crossref_primary_10_1021_acs_chemrev_3c00301
crossref_primary_10_3390_membranes11110870
crossref_primary_10_1016_j_memori_2023_100088
crossref_primary_10_1021_acsaelm_3c00799
crossref_primary_10_3390_ma10040356
crossref_primary_10_1002_smll_202004129
crossref_primary_10_1002_smll_202202509
crossref_primary_10_1016_j_colsurfa_2020_124896
crossref_primary_10_1007_s42114_021_00322_0
crossref_primary_10_1109_MNANO_2022_3208789
crossref_primary_10_1002_advs_202307232
crossref_primary_10_1039_C9NH00317G
crossref_primary_10_1016_j_mattod_2017_12_001
crossref_primary_10_1080_15583724_2023_2250425
crossref_primary_10_3389_fmats_2019_00331
crossref_primary_10_1016_j_biotechadv_2019_05_004
crossref_primary_10_1021_acsami_9b23378
crossref_primary_10_1016_j_memsci_2024_122517
crossref_primary_10_1021_acsomega_3c06331
crossref_primary_10_1002_adfm_201804510
crossref_primary_10_1002_chem_201800702
crossref_primary_10_1002_adma_202002878
crossref_primary_10_1142_S2339547819300014
crossref_primary_10_1002_advs_201800714
crossref_primary_10_1002_adma_202203193
crossref_primary_10_1007_s11356_023_26135_w
crossref_primary_10_1038_s41570_023_00486_x
crossref_primary_10_1002_marc_202200047
crossref_primary_10_1016_j_ijbiomac_2024_137926
crossref_primary_10_1016_j_bios_2019_111595
crossref_primary_10_3389_fchem_2022_881028
crossref_primary_10_1039_D0RA05990K
crossref_primary_10_1038_s41598_019_42337_0
crossref_primary_10_1002_tcr_201800015
crossref_primary_10_1002_adfm_202104088
crossref_primary_10_1039_D3TB02715E
crossref_primary_10_1016_j_orgel_2017_06_015
crossref_primary_10_1016_j_carbpol_2022_120368
crossref_primary_10_1021_acssuschemeng_1c05757
crossref_primary_10_1002_admt_202301320
crossref_primary_10_3724_SP_J_1249_2019_03221
crossref_primary_10_1016_j_nanoen_2020_104974
crossref_primary_10_1002_adfm_202004554
crossref_primary_10_1557_jmr_2017_349
crossref_primary_10_1002_adfm_201700628
crossref_primary_10_1002_adma_202500073
crossref_primary_10_1002_aelm_202101127
crossref_primary_10_1016_j_matlet_2019_126945
crossref_primary_10_1021_acsomega_2c04729
crossref_primary_10_1021_acsami_8b14918
crossref_primary_10_1016_j_compscitech_2019_107950
crossref_primary_10_1080_03772063_2022_2098183
crossref_primary_10_1016_j_ijbiomac_2023_127641
crossref_primary_10_3389_fmedt_2021_675744
crossref_primary_10_1039_C6NR09916E
crossref_primary_10_1016_j_jhazmat_2020_123675
crossref_primary_10_1016_j_cap_2017_01_024
crossref_primary_10_1016_j_nanoen_2020_104837
crossref_primary_10_1002_slct_202301395
crossref_primary_10_1002_adfm_202006744
crossref_primary_10_1063_1_5139494
crossref_primary_10_1002_adma_202402542
crossref_primary_10_1016_j_eng_2021_06_030
crossref_primary_10_1002_smtd_201600029
crossref_primary_10_1002_adfm_201602908
crossref_primary_10_1002_adfm_201505331
crossref_primary_10_1039_C6NR08055C
crossref_primary_10_1002_adfm_202106446
crossref_primary_10_1016_j_polymer_2022_124541
crossref_primary_10_1021_acssensors_1c01734
crossref_primary_10_1021_acsaelm_0c00648
crossref_primary_10_1021_acsanm_3c06082
crossref_primary_10_1016_j_jma_2021_10_009
crossref_primary_10_1021_acsanm_8b00784
crossref_primary_10_1016_j_scib_2017_10_011
crossref_primary_10_1021_acsaem_2c04160
crossref_primary_10_1039_D0MH00503G
crossref_primary_10_1021_acsami_4c17468
crossref_primary_10_2139_ssrn_4176795
crossref_primary_10_1002_smsc_202200028
crossref_primary_10_1016_j_msec_2018_01_007
crossref_primary_10_1007_s10118_020_2379_9
crossref_primary_10_3390_electronicmat2020015
crossref_primary_10_1002_slct_202000092
crossref_primary_10_1039_C7CS00278E
crossref_primary_10_1021_acsnano_3c11832
crossref_primary_10_1016_j_matpr_2021_03_711
crossref_primary_10_1002_smtd_201700259
crossref_primary_10_1016_j_mtchem_2023_101624
crossref_primary_10_1038_s41467_024_53042_6
crossref_primary_10_1364_AO_486863
crossref_primary_10_1016_j_jallcom_2017_02_052
crossref_primary_10_1021_acsami_8b08014
crossref_primary_10_1021_acsmaterialslett_2c00095
crossref_primary_10_1021_acsami_7b06529
crossref_primary_10_1002_adma_201902434
crossref_primary_10_1002_mame_201800408
crossref_primary_10_1016_j_nxnano_2024_100042
crossref_primary_10_1002_adhm_201801345
crossref_primary_10_1039_C9RA02147G
crossref_primary_10_1039_C8NR08721K
crossref_primary_10_1016_j_compscitech_2021_108927
crossref_primary_10_1038_s41598_017_15395_5
crossref_primary_10_1002_adfm_201801448
crossref_primary_10_1016_j_mtcomm_2019_100776
crossref_primary_10_1002_aelm_201800509
crossref_primary_10_1002_admt_202200745
crossref_primary_10_1021_acsbiomaterials_6b00794
crossref_primary_10_1002_adma_201605529
crossref_primary_10_1039_D2TB01328B
crossref_primary_10_3390_nano9070950
crossref_primary_10_1002_adma_202413515
crossref_primary_10_1016_j_cej_2023_145794
crossref_primary_10_3390_ma18071408
crossref_primary_10_1016_j_mtphys_2017_06_002
crossref_primary_10_1002_aenm_202400101
crossref_primary_10_1002_smll_201802050
crossref_primary_10_1039_D0TA09753E
crossref_primary_10_1021_acsami_8b12523
crossref_primary_10_1021_acsapm_2c00290
crossref_primary_10_1039_D1MH01433A
crossref_primary_10_1002_cjce_23961
crossref_primary_10_1007_s11082_021_02846_7
crossref_primary_10_1039_D2NR05490F
crossref_primary_10_1016_j_cej_2023_143920
crossref_primary_10_1039_C9TB02352F
crossref_primary_10_1002_adfm_201605657
crossref_primary_10_1002_adfm_201807611
crossref_primary_10_1016_j_eml_2024_102279
crossref_primary_10_1080_15421406_2021_1885970
crossref_primary_10_1002_admt_202000430
crossref_primary_10_1021_acs_nanolett_8b03085
crossref_primary_10_1364_OE_26_033575
crossref_primary_10_1002_adma_202211419
crossref_primary_10_1002_adfm_201805305
crossref_primary_10_1016_j_msea_2017_07_006
crossref_primary_10_1039_D2NH00163B
crossref_primary_10_1021_acsami_9b10226
crossref_primary_10_1002_adfm_202213910
crossref_primary_10_1002_aenm_201903357
crossref_primary_10_1002_adfm_202210764
crossref_primary_10_1109_MED_2024_3357657
crossref_primary_10_1002_advs_201600410
crossref_primary_10_1002_ejoc_202101567
crossref_primary_10_1002_pi_6285
crossref_primary_10_1016_j_jallcom_2021_160357
crossref_primary_10_1038_s41598_022_12313_2
crossref_primary_10_1002_adhm_202100460
crossref_primary_10_1007_s11431_018_9403_8
crossref_primary_10_1039_D2TA00386D
crossref_primary_10_1038_s41598_021_94047_1
crossref_primary_10_1039_C8TC03296C
crossref_primary_10_1039_C9TB02570G
crossref_primary_10_1002_macp_202000066
crossref_primary_10_1021_acsabm_0c00807
crossref_primary_10_1002_adma_202412972
crossref_primary_10_3390_bios12110952
crossref_primary_10_1002_adma_202001496
crossref_primary_10_1002_chem_201801302
crossref_primary_10_1007_s11814_024_00320_0
crossref_primary_10_1021_acsbiomaterials_0c01657
crossref_primary_10_1016_j_polymer_2024_127230
crossref_primary_10_1016_j_jechem_2017_10_030
crossref_primary_10_1002_adfm_202303249
crossref_primary_10_1002_adfm_202001565
crossref_primary_10_1021_acsomega_4c05531
crossref_primary_10_1016_j_xcrp_2023_101490
crossref_primary_10_1073_pnas_1911563116
crossref_primary_10_1021_acsphotonics_4c01415
crossref_primary_10_1016_j_carbpol_2022_119645
crossref_primary_10_1016_j_reactfunctpolym_2018_08_010
crossref_primary_10_1002_adhm_202400562
crossref_primary_10_1002_adma_202002695
crossref_primary_10_1002_aelm_201600510
crossref_primary_10_1088_2399_7532_aba6e3
crossref_primary_10_1002_bip_23412
crossref_primary_10_1002_adma_202411659
crossref_primary_10_1021_acs_jpcc_8b03075
crossref_primary_10_1002_adma_201701627
crossref_primary_10_3390_healthcare9020128
crossref_primary_10_1002_adfm_202003635
crossref_primary_10_1039_C6LC00519E
crossref_primary_10_1021_acsabm_0c00933
crossref_primary_10_1016_j_surfin_2025_106042
crossref_primary_10_1016_j_ijbiomac_2024_131638
crossref_primary_10_1021_acsenergylett_8b02408
crossref_primary_10_1063_5_0232757
crossref_primary_10_34133_2019_3018568
crossref_primary_10_1007_s10311_020_01161_z
crossref_primary_10_1016_j_bios_2021_113204
crossref_primary_10_1371_journal_pone_0270021
crossref_primary_10_1021_acsnano_4c18846
crossref_primary_10_1039_C6RA25580A
crossref_primary_10_1007_s11705_022_2222_7
crossref_primary_10_1021_acsnano_8b09651
crossref_primary_10_1063_5_0040497
crossref_primary_10_1080_15980316_2021_1990145
crossref_primary_10_1021_acsami_4c12853
crossref_primary_10_1016_j_chemphys_2018_09_015
crossref_primary_10_1021_acsbiomaterials_1c00513
crossref_primary_10_1002_adfm_202002882
crossref_primary_10_1002_adma_202211202
crossref_primary_10_1002_cssc_201902979
crossref_primary_10_1016_j_ijpharm_2020_119537
crossref_primary_10_1002_slct_202405511
crossref_primary_10_1088_2053_1591_ab43ae
crossref_primary_10_1016_j_snb_2018_09_100
crossref_primary_10_1038_s41378_021_00261_2
crossref_primary_10_3389_fbioe_2021_653033
crossref_primary_10_1002_smll_201600893
crossref_primary_10_1016_j_apmt_2021_101257
crossref_primary_10_1002_adfm_202007188
crossref_primary_10_1016_j_ceramint_2024_04_037
crossref_primary_10_1021_acsmaterialslett_1c00618
crossref_primary_10_3390_bios13080787
crossref_primary_10_1016_j_reactfunctpolym_2017_05_007
crossref_primary_10_1002_adom_202102742
crossref_primary_10_1016_j_mtelec_2023_100075
crossref_primary_10_1002_smll_201800945
crossref_primary_10_1002_adfm_201909540
crossref_primary_10_1002_aisy_202000180
crossref_primary_10_1039_D1MH00143D
crossref_primary_10_3390_pharmaceutics14081616
crossref_primary_10_1021_acsami_2c09576
crossref_primary_10_1039_D1TC00607J
crossref_primary_10_1002_admt_201800248
crossref_primary_10_1002_sstr_202200338
crossref_primary_10_1007_s11664_023_10841_9
crossref_primary_10_1007_s12541_024_01027_2
crossref_primary_10_1016_j_eml_2020_101021
crossref_primary_10_1021_acsami_7b13356
crossref_primary_10_1002_marc_202200103
crossref_primary_10_1002_smll_202411452
crossref_primary_10_1002_adma_202106787
crossref_primary_10_1002_cphc_202100279
crossref_primary_10_1088_1748_605X_ad8850
crossref_primary_10_1016_j_nanoen_2020_104882
Cites_doi 10.1002/adfm.200901363
10.1021/ja052488f
10.1557/mrs.2013.59
10.1088/0957-4484/22/21/215201
10.1039/c3ee22325f
10.1063/1.1805703
10.1002/adfm.201200316
10.1063/1.4862198
10.1126/science.1200770
10.1002/adma.201204692
10.1016/j.orgel.2014.09.042
10.1002/adma.201101263
10.1016/S1369-7021(08)70119-6
10.1002/adfm.201101011
10.1126/science.1232437
10.1021/nn506394r
10.1002/adhm.201200071
10.1039/C4CS00442F
10.1038/nmat2297
10.1098/rsif.2014.0305
10.1002/adfm.200901774
10.1073/pnas.1407743111
10.1002/pi.2827
10.1038/nmat1368
10.1126/science.1226325
10.1088/0957-4484/24/34/345202
10.1038/nmat3755
10.1063/1.4841595
10.1002/adma.200602487
10.1039/c3nr03472k
10.1021/cg101410u
10.1126/science.1154367
10.1002/adma.201304821
10.1002/adma.201104104
10.1016/j.orgel.2011.04.005
10.1038/nnano.2009.456
10.1039/C5RA03501E
10.1002/smll.201402495
10.1088/0957-4484/25/28/285302
10.1038/nature06932
10.1016/S1369-7021(12)70139-6
10.1002/adma.201003860
10.1038/ncomms2832
10.1002/adma.200900375
10.1016/j.jcis.2011.07.009
10.1063/1.3278592
10.1002/adfm.201501389
10.1021/ar2001233
10.1039/b921449f
10.1002/adma.201303470
10.1002/adma.201301921
10.1002/adfm.201100249
10.1002/smll.201300810
10.1073/pnas.0401918101
10.1016/S1369-7021(12)70091-3
10.1002/adfm.201304293
10.1016/j.orgel.2007.05.003
10.1038/ncomms7269
10.1557/mrs.2012.36
10.1002/adma.201000717
10.1002/adma.201204003
10.1039/c3nr01872e
10.1039/C2TB00017B
10.1016/j.actbio.2013.03.004
10.1039/b909902f
10.1007/s13233-014-2071-4
10.1002/adma.201403807
10.1021/nl2009058
10.1002/aenm.201100394
10.1038/nature12314
10.1038/nature03090
10.1039/C3EE43111H
10.1002/adma.201303349
10.1063/1.1579554
10.1002/adfm.201301847
10.1002/adma.200502752
10.1002/adma.200902322
10.1002/adfm.201203491
10.1016/j.progpolymsci.2008.08.002
10.1021/am504163r
10.1002/adma.201201888
10.1002/adma.201301983
10.1002/adma.201003374
10.1038/nprot.2011.379
10.1021/bm4014149
10.1002/adma.200801995
10.1039/b905832j
10.1002/pssa.201329109
10.1038/ncomms1767
10.1002/adma.201201506
10.1016/j.snb.2014.04.079
10.1038/nmat1884
10.1126/science.1206157
10.1038/nphoton.2008.207
10.1002/adma.201104634
10.1002/smll.201300522
10.1002/adma.201103814
10.1039/C3NR06057H
10.1021/cr1001904
10.1002/adma.201102124
10.1063/1.3486157
10.1002/adfm.200601136
10.1016/j.electacta.2015.02.019
10.1016/j.carbon.2007.05.026
10.1002/adfm.201200073
10.1002/smll.201101494
10.1002/adma.201405728
10.1126/science.1261689
10.1063/1.2197973
10.1016/j.progpolymsci.2007.05.013
10.1038/nnano.2014.47
10.1126/science.1188936
10.1038/nmat2834
10.1002/adma.201302823
10.1021/bm200062a
10.1002/adma.201403051
10.1002/adma.201304248
10.1002/mame.201400276
10.1039/C0JM02444A
10.1002/adma.201003601
10.1002/adma.201401513
10.1002/adma.201004071
10.1038/ncomms5779
10.1021/nn2036939
10.1038/519S4a
10.1021/nn102456w
10.1002/smll.201300146
10.1038/nature01809
10.1126/science.aab2750
10.1016/S1369-7021(06)71539-5
10.1016/j.progpolymsci.2015.02.001
10.1038/nmat2745
10.1002/adfm.201303196
10.1002/marc.200700186
10.1002/smll.201401207
10.1126/science.1182383
10.1002/adma.201405807
10.1002/adma.201300920
10.1063/1.2213010
10.1002/smll.201400483
10.1002/adma.201104118
10.1021/cm049598q
10.1016/j.orgel.2012.10.007
10.1088/0957-4484/26/11/115603
10.1063/1.3238552
10.1002/adma.201301332
10.1002/adma.201004692
10.1002/adma.201103592
10.1002/adma.200904054
10.1039/C3CS60235D
10.1039/c2jm34066f
10.1002/adma.201303265
10.1021/nn400731g
10.1038/nmat2023
10.1002/adma.201100984
10.1016/S0142-9612(02)00353-8
10.1007/s12221-013-2006-2
10.1002/adfm.201300127
10.1039/b813846j
10.1002/adfm.201001031
10.1038/44359
10.1038/35104644
10.1038/nnano.2012.240
10.1002/adma.201302240
10.1063/1.4813075
10.1038/nature02498
10.1002/adma.200702559
10.1038/nmat1061
10.1002/adma.200803211
10.1002/adma.201104477
10.1126/science.1160309
10.1063/1.1690870
10.1002/adma.201305682
10.1126/science.1146458
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
NPM
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/adma.201504276
DatabaseName Istex
CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
MEDLINE - Academic
CrossRef
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 4265
ExternalDocumentID 26684370
10_1002_adma_201504276
ADMA201504276
ark_67375_WNG_HD98LZ6N_J
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
FOJGT
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWM
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ADMLS
ADNMO
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c5636-4a86f9a005a786c8f3594403c6c7aa79a071dc4b31575e2ac4b2be8da740c0be3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 23:55:39 EDT 2025
Thu Jul 10 22:50:20 EDT 2025
Thu Apr 03 07:06:31 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Tue Jul 01 00:44:23 EDT 2025
Wed Jan 22 17:06:50 EST 2025
Wed Oct 30 09:51:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords flexible electronics
biomaterials
biointegrated devices
silk fibroin
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5636-4a86f9a005a786c8f3594403c6c7aa79a071dc4b31575e2ac4b2be8da740c0be3
Notes istex:353756D474B086083D1045A6BCF0AD87CE3C9B05
ArticleID:ADMA201504276
ark:/67375/WNG-HD98LZ6N-J
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201504276
PMID 26684370
PQID 1795877121
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_1825483947
proquest_miscellaneous_1795877121
pubmed_primary_26684370
crossref_citationtrail_10_1002_adma_201504276
crossref_primary_10_1002_adma_201504276
wiley_primary_10_1002_adma_201504276_ADMA201504276
istex_primary_ark_67375_WNG_HD98LZ6N_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Jun
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-Jun
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 2008, 321, 1468.
C. H. Wang, C. Y. Hsieh, J. C. Hwang, Adv. Mater. 2011, 23, 1630.
Y. J. Kim, Y. Abe, T. Yanaglura, K. C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M. S. Dresselhaus, Carbon 2007, 45, 2116.
S. W. Hwang, G. Park, H. Cheng, J. K. Song, S. K. Kang, L. Yin, J. H. Kim, F. G. Omenetto, Y. Huang, K. M. Lee, J. A. Rogers, Adv. Mater. 2014, 26, 1992.
C. J. Bettinger, Z. Bao, Polym. Int. 2010, 59, 563.
D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, Nat. Nanotechnol. 2010, 5, 148.
Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44, 5926.
H.-J. Jin, D. L. Kaplan, Nature 2003, 424, 1057.
U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, S. O. Kim, Adv. Mater. 2014, 26, 40.
D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80.
Y. Wen, Y. Liu, Y. Guo, G. Yu, W. Hu, Chem. Rev. 2011, 111, 3358.
E. Kharlampieva, V. Kozlovskaya, R. Gunawidjaja, V. V. Shevchenko, R. Vaia, R. R. Naik, D. L. Kaplan, V. V. Tsukruk, Adv. Funct. Mater. 2010, 20, 840.
M. Irimia-Vladu, P. A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J. W. Fergus, V. F. Razumov, H. Sitter, N. S. Sariciftci, S. Bauer, Adv. Funct. Mater. 2010, 20, 4069.
S. R. Forrest, Nature 2004, 428, 911.
L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu, X. Xie, S.-W. Hwang, H. Jain, S.-K. Kang, Y. Su, R. Li, Y. Huang, J. A. Rogers, Adv. Funct. Mater. 2014, 24, 645.
M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, Z. A. Bao, Adv. Mater. 2013, 25, 5997.
Y. Yang, W. Lu, Nanoscale 2013, 5, 10076.
L. L. Zhang, X. S. Zhao, Chem. Soc. Rev. 2009, 38, 2520.
K. Bourzac, Nature 2015, 519, S4.
H. Tao, S. M. Siebert, M. A. Brenckle, R. D. Averitt, M. Cronin-Golomb, D. L. Kaplan, F. G. Omenetto, Appl. Phys. Lett. 2010, 97, 123702.
Y. He, H. Dong, Q. Meng, L. Jiang, W. Shao, L. He, W. Hu, Adv. Mater. 2011, 23, 5502.
X. You, J. J. Pak, Sens. Actuators, B 2014, 202, 1357.
X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R.-W. Li, Adv. Mater. 2012, 24, 3941.
T.-i. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, M. R. Bruchas, Science 2013, 340, 211.
A. D. Franklin, Science 2015, 349, aab2750.
S. E. Thompson, S. Parthasarathy, Mater. Today 2006, 9, 20.
T. Wang, D. Porter, Z. Shao, Adv. Funct. Mater. 2012, 22, 435.
P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss, Appl. Phys. Lett. 2003, 82, 3964.
A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366.
H. A. Currie, O. Deschaume, R. R. Naik, C. C. Perry, D. L. Kaplan, Adv. Funct. Mater. 2011, 21, 2889.
H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Adv. Mater. 2013, 25, 5498.
M. Muskovich, C. J. Bettinger, Adv. Healthcare Mater. 2012, 1, 248.
S. Yin, Y. Goldovsky, M. Herzberg, L. Liu, H. Sun, Y. Zhang, F. Meng, X. Cao, D. D. Sun, H. Chen, A. Kushmaro, X. Chen, Adv. Funct. Mater. 2013, 23, 2972.
G. Yin, Z. Huang, M. Deng, J. Zeng, J. Gu, J. Colloid Interface Sci 2011, 363, 393.
L.-D. Koh, Y. Cheng, C.-P. Teng, Y.-W. Khin, X.-J. Loh, S.-Y. Tee, M. Low, E. Ye, H.-D. Yu, Y.-W. Zhang, M.-Y. Han, Prog. Polym. Sci. 2015, 46, 86.
X. Xu, B. Liu, Y. Zou, Y. Guo, L. Li, Y. Liu, Adv. Funct. Mater. 2012, 22, 4139.
A. Hübler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A. Wagenpfahl, C. Deibel, V. Dyakonov, Adv. Energy Mater. 2011, 1, 1018.
J.-W. Jeong, W.-H. Yeo, A. Akhtar, J. J. S. Norton, Y.-J. Kwack, S. Li, S.-Y. Jung, Y. Su, W. Lee, J. Xia, H. Cheng, Y. Huang, W.-S. Choi, T. Bretl, J. A. Rogers, Adv. Mater. 2013, 25, 6839.
P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, N. S. Sariciftci, Org. Electron. 2007, 8, 648.
F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Appl. Phys. Lett. 2004, 84, 2673.
M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 499, 458.
S. C. Kundu, B. C. Dash, R. Dash, D. L. Kaplan, Prog. Polym. Sci. 2008, 33, 998.
C. L. Tsai, L. S. Tsai, J. C. Hwang, Org. Electron. 2012, 13, 3315.
M. Karakawa, M. Chikamatsu, Y. Yoshida, R. Azumi, K. Yase, C. Nakamoto, Macromol. Rapid. Comm. 2007, 28, 1479.
P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 2010, 9, 859.
M. Irimia-Vladu, E. D. Głowacki, G. Voss, S. Bauer, N. S. Sariciftci, Mater. Today 2012, 15, 340.
Y. S. Yun, S. Y. Cho, J. Shim, B. H. Kim, S.-J. Chang, S. J. Baek, Y. S. Huh, Y. Tak, Y. W. Park, S. Park, H.-J. Jin, Adv. Mater. 2013, 25, 1993.
D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, J. A. Rogers, Nat. Mater. 2010, 9, 511.
H. Wang, Y. Du, Y. Li, B. Zhu, W. R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Adv. Funct. Mater. 2015, 25, 3825.
X. Zhang, Z. Fan, Q. Lu, Y. Huang, D. L. Kaplan, H. Zhu, Acta Biomater. 2013, 9, 6974.
B. J. Kim, Y. Ko, J. H. Cho, J. Cho, Small 2013, 9, 3784.
K. D. Kim, C. K. Song, Appl. Phys. Lett. 2006, 88, 233508.
J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano 2015, 9, 2556.
F. G. Omenetto, D. L. Kaplan, Nat. Photonics 2008, 2, 641.
D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, Science 2008, 320, 507.
Y. Ko, Y. Kim, H. Baek, J. Cho, ACS Nano 2011, 5, 9918.
A. C. Siegel, S. T. Phillips, B. J. Wiley, G. M. Whitesides, Lab Chip 2009, 9, 2775.
X. Hu, P. Cebe, A. S. Weiss, F. Omenetto, D. L. Kaplan, Mater. Today 2012, 15, 208.
M. Irimia-Vladu, Chem. Soc. Rev. 2014, 43, 588.
Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
J. Kim, A. Banks, H. Cheng, Z. Xie, S. Xu, K.-I. Jang, J. W. Lee, Z. Liu, P. Gutruf, X. Huang, P. Wei, F. Liu, K. Li, M. Dalal, R. Ghaffari, X. Feng, Y. Huang, S. Gupta, U. Paik, J. A. Rogers, Small 2015, 11, 906.
J. Park, S. Y. Park, S.-O. Shim, H. Kang, H. H. Lee, Appl. Phys. Lett. 2004, 85, 3283.
T. Sekitani, T. Someya, Adv. Mater. 2010, 22, 2228.
S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, Adv. Mater. 2014, 26, 149.
T. Wang, R. Che, W. Li, R. Mi, Z. Shao, Cryst. Growth Des. 2011, 11, 2164.
N. C. Tansil, L. D. Koh, M.-Y. Han, Adv. Mater. 2012, 24, 1388.
B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Small 2014, 10, 3625.
R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632.
Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Adv. Mater. 2012, 24, 1844.
Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Adv. Mater. 2011, 23, 4828.
H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett. 2011, 11, 2472.
M. C. Barr, J. A. Rowehl, R. R. Lunt, J. Xu, A. Wang, C. M. Boyce, S. G. Im, V. Bulović, K. K. Gleason, Adv. Mater. 2011, 23, 3500.
X. Fei, Z. Shao, X. Chen, J. Mater. Chem. B 2013, 1, 213.
N. Gogurla, S. P. Mondal, A. K. Sinha, A. K. Katiyar, W. Banerjee, S. C. Kundu, S. K. Ray, Nanotechnology 2013, 24, 345202.
W. Sheng, G. Zhu, D. L. Kaplan, C. Cao, H. Zhu, Q. Lu, Nanotechnology 2015, 26, 115603.
X. Fei, Z. Z. Shao, X. Chen, Nanoscale 2013, 5, 7991.
A. N. Sokolov, B. C. Tee, C. J. Bettinger, J. B.-H. Tok, Z. Bao, Acc. Chem. Res. 2011, 45, 361.
G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, D. L. Kaplan, Biomaterials. 2003, 24, 401.
M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 2013, 6, 1249.
N. E. Kurland, T. Dey, S. C. Kundu, V. K. Yadavalli, Adv. Mater. 2013, 25, 6207.
D.-H. Kim, N. Lu, Y. Huang, J. A. Rogers, MRS Bull. 2012, 37, 226.
M. Hamedi, R. Forchheimer, O. Inganas, Nat. Mater. 2007, 6, 357.
C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, V. V. Tsukruk, Adv. Funct. Mater. 2007, 17, 2229.
A. Sawa, Mater. Today 2008, 11, 28.
H.-B. Yao, J. Ge, L.-B. Mao, Y.-X. Yan, S.-H. Yu, Adv. Mater. 2014, 26, 163.
C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, M. Hedhammar, O. Inganäs, Adv. Mater. 2011, 23, 898.
S.-W. Hwang, D.-H. Kim, H. Tao, T.-i. Kim, S. Kim, K. J. Yu, B. Panilaitis, J.-W. Jeong, J.-K. Song, F. G. Omenetto, J. A. Rogers, Adv. Funct. Mater. 2013, 23, 4087.
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, J. A. Rogers, Science 2011, 333, 838.
C. J. Bettinger, K. M. Cyr, A. Matsumoto, R. Langer, J. T. Borenstein, D. L. Kaplan, Adv. Mater. 2007, 19, 2847.
Y. Wang, X. Yan, R. Dong, Org. Electron. 2014, 15, 3476.
V. Sahu, S. Grover, B. Tulachan, M. Sharma, G. Srivastava, M. Roy, M. Saxena, N. Sethy, K. Bhargava, D. Philip, H. Kim, G. Singh, S. K. Singh, M. Das, R. K. Sharma, Electrochim. Acta 2015, 160, 244.
Y. Zang, F. Zhang, D. Huang, X. Gao, C.-a. Di, D. Zhu, Nat. Commun. 2015, 6.
J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S.-T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, D.-H. Kim, Nat. Commun. 2014, 5.
C. Mukherjee, M. K. Hota, D. Naskar, S. C. Kundu, C. K. Maiti, Phys. Status Solidi 2013, 210, 1797.
R. F. P. Pereira, M. M. Silva, V. de Zea Bermudez, Macromol. Mater. Eng. 2015, DOI: 10.1002/mame.201400276.
Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. C
2010; 97
2013; 4
2013; 1
2014; 27
2014; 26
2004; 3
2014; 25
2014; 24
2008; 33
2012; 15
2013; 7
2012; 13
2013; 8
2013; 5
2013; 6
2014; 22
2011; 111
2013; 9
2010; 22
2010; 20
2009; 95
2007; 8
2014; 15
2007; 6
2008; 20
2012; 24
2010; 5
2012; 22
2010; 4
2014; 11
2014; 10
2010; 9
2001; 414
2011; 363
2007; 17
2007; 19
2010; 329
2011; 1
2010; 327
2010; 39
2013; 103
2013; 340
2012; 37
2004; 428
2011; 6
2011; 5
2011; 7
2014; 43
2004; 432
2005; 127
2003; 24
2015; 519
2005; 4
2013; 210
2007; 318
2013; 25
2010; 59
2015; 347
2013; 24
2013; 23
2008; 7
2011; 11
2011; 12
2015; 349
2008; 2
2007; 32
1999; 401
2015; 46
2007; 28
2014; 5
2013; 14
2013; 12
2015; 44
2011; 22
2011; 21
2011; 23
2003; 82
2014; 9
2014; 7
2014; 6
2012; 337
2014; 202
2004; 101
2015; 160
2004; 85
2011; 333
2015; 6
2004; 84
2015; 5
2009; 21
2006; 9
2015; 11
2006; 18
2008; 11
2008; 321
2008; 320
2014; 111
2015; 9
2011; 332
2015; 26
2015; 25
2015; 27
2012; 3
2012; 1
2003; 424
2013; 38
2004; 16
2006; 88
2009; 9
2013; 499
2011; 45
2015
2008; 453
2007; 45
2009; 38
2014; 104
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_161_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_146_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_173_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_143_1
e_1_2_7_29_1
e_1_2_7_166_1
e_1_2_7_147_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_170_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_148_1
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_171_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_39_1
e_1_2_7_175_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_160_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_27_1
e_1_2_7_164_1
e_1_2_7_145_1
e_1_2_7_168_1
e_1_2_7_149_1
Kim J. (e_1_2_7_40_1) 2014; 5
e_1_2_7_119_1
Mukherjee C. (e_1_2_7_169_1) 2013; 210
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_172_1
e_1_2_7_130_1
e_1_2_7_38_1
e_1_2_7_153_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_138_1
References_xml – reference: E. Kharlampieva, V. Kozlovskaya, R. Gunawidjaja, V. V. Shevchenko, R. Vaia, R. R. Naik, D. L. Kaplan, V. V. Tsukruk, Adv. Funct. Mater. 2010, 20, 840.
– reference: U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, H. Klauk, Adv. Mater. 2011, 23, 654.
– reference: M. Uenuma, K. Kawano, B. Zheng, N. Okamoto, M. Horita, S. Yoshii, I. Yamashita, Y. Uraoka, Nanotechnology 2011, 22, 215201.
– reference: R. Capelli, J. J. Amsden, G. Generali, S. Toffanin, V. Benfenati, M. Muccini, D. L. Kaplan, F. G. Omenetto, R. Zamboni, Org. Electron. 2011, 12, 1146.
– reference: C. Yumusak, T. B. Singh, N. S. Sariciftci, J. G. Grote, Appl. Phys. Lett. 2009, 95, 263304.
– reference: K.-I. Jang, S. Y. Han, S. Xu, K. E. Mathewson, Y. Zhang, J.-W. Jeong, G.-T. Kim, R. C. Webb, J. W. Lee, T. J. Dawidczyk, R. H. Kim, Y. M. Song, W.-H. Yeo, S. Kim, H. Cheng, S. I. Rhee, J. Chung, B. Kim, H. U. Chung, D. Lee, Y. Yang, M. Cho, J. G. Gaspar, R. Carbonari, M. Fabiani, G. Gratton, Y. Huang, J. A. Rogers, Nat. Commun. 2014, 5, 4779.
– reference: M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan, R. R. Naik, N. Verma, F. G. Omenetto, M. C. McAlpine, Nat. Commun. 2012, 3, 763.
– reference: S. R. Forrest, Nature 2004, 428, 911.
– reference: J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
– reference: X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R.-W. Li, Adv. Mater. 2012, 24, 3941.
– reference: B. J. Kim, Y. Ko, J. H. Cho, J. Cho, Small 2013, 9, 3784.
– reference: X. Fei, Z. Shao, X. Chen, J. Mater. Chem. B 2013, 1, 213.
– reference: C. L. Tsai, L. S. Tsai, J. C. Hwang, Org. Electron. 2012, 13, 3315.
– reference: N. C. Tansil, L. D. Koh, M.-Y. Han, Adv. Mater. 2012, 24, 1388.
– reference: L.-S. Tsai, J.-C. Hwang, C.-Y. Lee, Y.-T. Lin, C.-L. Tsai, T.-H. Chang, Y.-L. Chueh, H.-F. Meng, Appl. Phys. Lett. 2013, 103, 233304.
– reference: M. Irimia-Vladu, E. D. Głowacki, G. Voss, S. Bauer, N. S. Sariciftci, Mater. Today 2012, 15, 340.
– reference: F. G. Omenetto, D. L. Kaplan, Nat. Photonics 2008, 2, 641.
– reference: J. Kim, A. Banks, H. Cheng, Z. Xie, S. Xu, K.-I. Jang, J. W. Lee, Z. Liu, P. Gutruf, X. Huang, P. Wei, F. Liu, K. Li, M. Dalal, R. Ghaffari, X. Feng, Y. Huang, S. Gupta, U. Paik, J. A. Rogers, Small 2015, 11, 906.
– reference: J.-W. Jeong, W.-H. Yeo, A. Akhtar, J. J. S. Norton, Y.-J. Kwack, S. Li, S.-Y. Jung, Y. Su, W. Lee, J. Xia, H. Cheng, Y. Huang, W.-S. Choi, T. Bretl, J. A. Rogers, Adv. Mater. 2013, 25, 6839.
– reference: Y. J. Kim, Y. Abe, T. Yanaglura, K. C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M. S. Dresselhaus, Carbon 2007, 45, 2116.
– reference: R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632.
– reference: N. Gogurla, S. P. Mondal, A. K. Sinha, A. K. Katiyar, W. Banerjee, S. C. Kundu, S. K. Ray, Nanotechnology 2013, 24, 345202.
– reference: S. E. Thompson, S. Parthasarathy, Mater. Today 2006, 9, 20.
– reference: Q. Cao, J. A. Rogers, Adv. Mater. 2009, 21, 29.
– reference: S. W. Hwang, S. K. Kang, X. Huang, M. A. Brenckle, F. G. Omenetto, J. A. Rogers, Adv. Mater. 2015, 27, 47.
– reference: M. Muskovich, C. J. Bettinger, Adv. Healthcare Mater. 2012, 1, 248.
– reference: L. L. Zhang, X. S. Zhao, Chem. Soc. Rev. 2009, 38, 2520.
– reference: K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 2004, 432, 488.
– reference: M. Karakawa, M. Chikamatsu, Y. Yoshida, R. Azumi, K. Yase, C. Nakamoto, Macromol. Rapid. Comm. 2007, 28, 1479.
– reference: H. Tao, D. L. Kaplan, F. G. Omenetto, Adv. Mater. 2012, 24, 2824.
– reference: X. Zhang, Z. Fan, Q. Lu, Y. Huang, D. L. Kaplan, H. Zhu, Acta Biomater. 2013, 9, 6974.
– reference: D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, L. Dal Negro, Adv. Mater. 2012, 24, 6088.
– reference: Y. He, H. Dong, Q. Meng, L. Jiang, W. Shao, L. He, W. Hu, Adv. Mater. 2011, 23, 5502.
– reference: S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, F. G. Omenetto, Nat. Nanotechnol. 2014, 9, 306.
– reference: H. A. Currie, O. Deschaume, R. R. Naik, C. C. Perry, D. L. Kaplan, Adv. Funct. Mater. 2011, 21, 2889.
– reference: C.-Y. Hsieh, J.-C. Hwang, T.-H. Chang, J.-Y. Li, S.-H. Chen, L.-K. Mao, L.-S. Tsai, Y.-L. Chueh, P.-C. Lyu, S. S. H. Hsu, Appl. Phys. Lett. 2013, 103, 023303.
– reference: H. Wang, B. Zhu, W. Jiang, Y. Yang, W. R. Leow, H. Wang, X. Chen, Adv. Mater. 2014, 26, 3638.
– reference: R. A. Street, Adv. Mater. 2009, 21, 2007.
– reference: K. Bourzac, Nature 2015, 519, S4.
– reference: H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
– reference: N. E. Kurland, T. Dey, S. C. Kundu, V. K. Yadavalli, Adv. Mater. 2013, 25, 6207.
– reference: D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, Nat. Nanotechnol. 2010, 5, 148.
– reference: X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Adv. Mater. 2014, 26, 1336.
– reference: H.-J. Jin, D. L. Kaplan, Nature 2003, 424, 1057.
– reference: X. Sun, C.-a. Di, Y. Liu, J. Mater. Chem. 2010, 20, 2599.
– reference: M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, Z. A. Bao, Adv. Mater. 2013, 25, 5997.
– reference: C. Kim, A. Facchetti, T. J. Marks, Science 2007, 318, 76.
– reference: P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
– reference: Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Adv. Mater. 2011, 23, 4828.
– reference: C. Vepari, D. L. Kaplan, Prog. Polym. Sci. 2007, 32, 991.
– reference: H.-B. Yao, J. Ge, L.-B. Mao, Y.-X. Yan, S.-H. Yu, Adv. Mater. 2014, 26, 163.
– reference: J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano 2015, 9, 2556.
– reference: W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ. Sci. 2014, 7, 379.
– reference: H. Tao, M. A. Brenckle, M. Yang, J. Zhang, M. Liu, S. M. Siebert, R. D. Averitt, M. S. Mannoor, M. C. McAlpine, J. A. Rogers, D. L. Kaplan, F. G. Omenetto, Adv. Mater. 2012, 24, 1067.
– reference: Y. Cheng, L. D. Koh, D. C. Li, B. H. Ji, M. Y. Han, Y. W. Zhang, J. R. Soc. Interface 2014, 11, 8.
– reference: D. Tobjörk, R. Österbacka, Adv. Mater. 2011, 23, 1935.
– reference: Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44, 5926.
– reference: X. Fei, Z. Z. Shao, X. Chen, Nanoscale 2013, 5, 7991.
– reference: M.-H. Yoon, H. Yan, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 10388.
– reference: J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S.-T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, D.-H. Kim, Nat. Commun. 2014, 5.
– reference: Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
– reference: H. Tao, S. M. Siebert, M. A. Brenckle, R. D. Averitt, M. Cronin-Golomb, D. L. Kaplan, F. G. Omenetto, Appl. Phys. Lett. 2010, 97, 123702.
– reference: C. J. Bettinger, Z. Bao, Polym. Int. 2010, 59, 563.
– reference: H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
– reference: H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Adv. Mater. 2013, 25, 5498.
– reference: Y. Ko, Y. Kim, H. Baek, J. Cho, ACS Nano 2011, 5, 9918.
– reference: N. Qi, B. Zhao, S.-D. Wang, S. S. Al-Deyab, K.-Q. Zhang, RSC Adv. 2015, 5, 50878.
– reference: C. Mukherjee, M. K. Hota, D. Naskar, S. C. Kundu, C. K. Maiti, Phys. Status Solidi 2013, 210, 1797.
– reference: F. Meng, B. Sana, Y. Li, Y. Liu, S. Lim, X. Chen, Small 2014, 10, 277.
– reference: M. Nogi, H. Yano, Adv. Mater. 2008, 20, 1849.
– reference: S. Yin, Y. Goldovsky, M. Herzberg, L. Liu, H. Sun, Y. Zhang, F. Meng, X. Cao, D. D. Sun, H. Chen, A. Kushmaro, X. Chen, Adv. Funct. Mater. 2013, 23, 2972.
– reference: S. W. Hwang, G. Park, H. Cheng, J. K. Song, S. K. Kang, L. Yin, J. H. Kim, F. G. Omenetto, Y. Huang, K. M. Lee, J. A. Rogers, Adv. Mater. 2014, 26, 1992.
– reference: T. Sekitani, T. Someya, Adv. Mater. 2010, 22, 2228.
– reference: L. Liu, Z. Niu, L. Zhang, W. Zhou, X. Chen, S. Xie, Adv. Mater. 2014, 26, 4855.
– reference: X. Fei, M. Jia, X. Du, Y. Yang, R. Zhang, Z. Shao, X. Zhao, X. Chen, Biomacromolecules 2013, 14, 4483.
– reference: R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W.-H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, J. A. Rogers, Nat. Mater. 2013, 12, 938.
– reference: P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, N. S. Sariciftci, Org. Electron. 2007, 8, 648.
– reference: A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366.
– reference: L.-D. Koh, Y. Cheng, C.-P. Teng, Y.-W. Khin, X.-J. Loh, S.-Y. Tee, M. Low, E. Ye, H.-D. Yu, Y.-W. Zhang, M.-Y. Han, Prog. Polym. Sci. 2015, 46, 86.
– reference: F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Appl. Phys. Lett. 2004, 84, 2673.
– reference: D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80.
– reference: T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 2008, 321, 1468.
– reference: E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, V. V. Tsukruk, ACS Nano 2010, 4, 7053.
– reference: J. Wang, S. Kaskel, J. Mater. Chem. 2012, 22, 23710.
– reference: Y. S. Yun, S. Y. Cho, H. J. Jin, Macromol. Res. 2014, 22, 509.
– reference: G. Yin, Z. Huang, M. Deng, J. Zeng, J. Gu, J. Colloid Interface Sci 2011, 363, 393.
– reference: G. Schwartz, B. C. K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, Z. Bao, Nat. Commun. 2013, 4, 1859.
– reference: A. Sawa, Mater. Today 2008, 11, 28.
– reference: H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. J. Stephenson, C. K. King'ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia, D. Mitlin, ACS Nano 2013, 7, 5131.
– reference: C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, M. Hedhammar, O. Inganäs, Adv. Mater. 2011, 23, 898.
– reference: T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. USA 2004, 101, 9966.
– reference: B. Liang, L. Fang, Y. Hu, G. Yang, Q. Zhu, X. Ye, Nanoscale 2014, 6, 4264.
– reference: M. D. Tang-Schomer, X. Hu, M. Hronik-Tupaj, L. W. Tien, M. J. Whalen, F. G. Omenetto, D. L. Kaplan, Adv. Funct. Mater. 2014, 24, 1938.
– reference: X. You, J. J. Pak, Sens. Actuators, B 2014, 202, 1357.
– reference: M. A. McEvoy, N. Correll, Science 2015, 347, 1261689.
– reference: Y. S. Yun, S. Y. Cho, J. Shim, B. H. Kim, S.-J. Chang, S. J. Baek, Y. S. Huh, Y. Tak, Y. W. Park, S. Park, H.-J. Jin, Adv. Mater. 2013, 25, 1993.
– reference: D. H. Kim, Y. S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, J. A. Rogers, Appl. Phys. Lett. 2009, 95, 133701.
– reference: X. Hu, K. Shmelev, L. Sun, E.-S. Gil, S.-H. Park, P. Cebe, D. L. Kaplan, Biomacromolecules 2011, 12, 1686.
– reference: N. C. Tansil, Y. Li, C. P. Teng, S. Zhang, K. Y. Win, X. Chen, X. Y. Liu, M.-Y. Han, Adv. Mater. 2011, 23, 1463.
– reference: H. Tao, S.-W. Hwang, B. Marelli, B. An, J. E. Moreau, M. Yang, M. A. Brenckle, S. Kim, D. L. Kaplan, J. A. Rogers, F. G. Omenetto, Proc. Natl. Acad. Sci. USA 2014, 111, 17385.
– reference: C. J. Bettinger, K. M. Cyr, A. Matsumoto, R. Langer, J. T. Borenstein, D. L. Kaplan, Adv. Mater. 2007, 19, 2847.
– reference: K. D. Kim, C. K. Song, Appl. Phys. Lett. 2006, 88, 233508.
– reference: A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, G. M. Whitesides, Adv. Funct. Mater. 2010, 20, 28.
– reference: Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Adv. Mater. 2012, 24, 1844.
– reference: G. Zheng, Y. Cui, E. Karabulut, L. Wågberg, H. Zhu, L. Hu, MRS Bull. 2013, 38, 320.
– reference: R. F. P. Pereira, M. M. Silva, V. de Zea Bermudez, Macromol. Mater. Eng. 2015, DOI: 10.1002/mame.201400276.
– reference: J.-W. Chang, C.-G. Wang, C.-Y. Huang, T.-D. Tsai, T.-F. Guo, T.-C. Wen, Adv. Mater. 2011, 23, 4077.
– reference: S.-W. Hwang, X. Huang, J.-H. Seo, J.-K. Song, S. Kim, S. Hage-Ali, H.-J. Chung, H. Tao, F. G. Omenetto, Z. Ma, J. A. Rogers, Adv. Mater. 2013, 25, 3526.
– reference: A. C. Siegel, S. T. Phillips, B. J. Wiley, G. M. Whitesides, Lab Chip 2009, 9, 2775.
– reference: C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M. G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B. Tok, Z. Bao, Adv. Mater. 2014, 27, 634.
– reference: X. Huang, Y. Liu, K. Chen, W.-J. Shin, C.-J. Lu, G.-W. Kong, D. Patnaik, S.-H. Lee, J. F. Cortes, J. A. Rogers, Small 2014, 10, 3083.
– reference: S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, Adv. Mater. 2014, 26, 149.
– reference: C. H. Wang, C. Y. Hsieh, J. C. Hwang, Adv. Mater. 2011, 23, 1630.
– reference: D. Qi, Z. Liu, M. Yu, Y. Liu, Y. Tang, J. Lv, Y. Li, J. Wei, B. Liedberg, Z. Yu, X. Chen, Adv. Mater. 2015, 27, 3145.
– reference: D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, J. A. Rogers, Nat. Mater. 2010, 9, 511.
– reference: S.-K. Kang, S.-W. Hwang, H. Cheng, S. Yu, B. H. Kim, J.-H. Kim, Y. Huang, J. A. Rogers, Adv. Funct. Mater. 2014, 24, 4427.
– reference: S.-W. Hwang, D.-H. Kim, H. Tao, T.-i. Kim, S. Kim, K. J. Yu, B. Panilaitis, J.-W. Jeong, J.-K. Song, F. G. Omenetto, J. A. Rogers, Adv. Funct. Mater. 2013, 23, 4087.
– reference: L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu, X. Xie, S.-W. Hwang, H. Jain, S.-K. Kang, Y. Su, R. Li, Y. Huang, J. A. Rogers, Adv. Funct. Mater. 2014, 24, 645.
– reference: J. J. Yang, D. B. Strukov, D. R. Stewart, Nat. Nanotechnol. 2013, 8, 13.
– reference: S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 2010, 9, 859.
– reference: J. Veres, S. Ogier, G. Lloyd, D. de Leeuw, Chem. Mater. 2004, 16, 4543.
– reference: Y. Wen, Y. Liu, Y. Guo, G. Yu, W. Hu, Chem. Rev. 2011, 111, 3358.
– reference: X. Xu, B. Liu, Y. Zou, Y. Guo, L. Li, Y. Liu, Adv. Funct. Mater. 2012, 22, 4139.
– reference: A. N. Sokolov, B. C. Tee, C. J. Bettinger, J. B.-H. Tok, Z. Bao, Acc. Chem. Res. 2011, 45, 361.
– reference: J. Park, S. Y. Park, S.-O. Shim, H. Kang, H. H. Lee, Appl. Phys. Lett. 2004, 85, 3283.
– reference: Y. Yang, W. Lu, Nanoscale 2013, 5, 10076.
– reference: C. J. Bettinger, Z. Bao, Adv. Mater. 2010, 22, 651.
– reference: M. C. Barr, J. A. Rowehl, R. R. Lunt, J. Xu, A. Wang, C. M. Boyce, S. G. Im, V. Bulović, K. K. Gleason, Adv. Mater. 2011, 23, 3500.
– reference: X. Hu, P. Cebe, A. S. Weiss, F. Omenetto, D. L. Kaplan, Mater. Today 2012, 15, 208.
– reference: M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 2013, 6, 1249.
– reference: Y. Choi, Y. Yun, S. Cho, M. Lee, H.-J. Jin, Fiber Polym. 2013, 14, 2006.
– reference: M. W. Jung, S. Myung, K. W. Kim, W. Song, Y.-Y. Jo, S. S. Lee, J. Lim, C.-Y. Park, K.-S. An, Nanotechnology 2014, 25, 285302.
– reference: T. Wang, R. Che, W. Li, R. Mi, Z. Shao, Cryst. Growth Des. 2011, 11, 2164.
– reference: S. C. Kundu, B. C. Dash, R. Dash, D. L. Kaplan, Prog. Polym. Sci. 2008, 33, 998.
– reference: Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, Adv. Mater. 2013, 25, 4035.
– reference: R. Waser, M. Aono, Nat. Mater. 2007, 6, 833.
– reference: Y. Zang, F. Zhang, D. Huang, X. Gao, C.-a. Di, D. Zhu, Nat. Commun. 2015, 6.
– reference: F. Meng, L. Jiang, K. Zheng, C. F. Goh, S. Lim, H. H. Hng, J. Ma, F. Boey, X. Chen, Small 2011, 7, 3016.
– reference: M. Irimia-Vladu, P. A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J. W. Fergus, V. F. Razumov, H. Sitter, N. S. Sariciftci, S. Bauer, Adv. Funct. Mater. 2010, 20, 4069.
– reference: W. Sheng, G. Zhu, D. L. Kaplan, C. Cao, H. Zhu, Q. Lu, Nanotechnology 2015, 26, 115603.
– reference: D. N. Rockwood, R. C. Preda, T. Yucel, X. Wang, M. L. Lovett, D. L. Kaplan, Nat. Protoc. 2011, 6, 1612.
– reference: G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, D. L. Kaplan, Biomaterials. 2003, 24, 401.
– reference: M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 499, 458.
– reference: A. D. Franklin, Science 2015, 349, aab2750.
– reference: T. Wang, D. Porter, Z. Shao, Adv. Funct. Mater. 2012, 22, 435.
– reference: Y. Wang, X. Yan, R. Dong, Org. Electron. 2014, 15, 3476.
– reference: J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603.
– reference: K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, H. Koinuma, Adv. Mater. 2006, 18, 1713.
– reference: D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, J. A. Rogers, Science 2011, 333, 838.
– reference: V. Sahu, S. Grover, B. Tulachan, M. Sharma, G. Srivastava, M. Roy, M. Saxena, N. Sethy, K. Bhargava, D. Philip, H. Kim, G. Singh, S. K. Singh, M. Das, R. K. Sharma, Electrochim. Acta 2015, 160, 244.
– reference: S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, J. A. Rogers, Science 2012, 337, 1640.
– reference: D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, Science 2008, 320, 507.
– reference: J. A. Hagen, W. Li, A. J. Steckl, J. G. Grote, Appl. Phys. Lett. 2006, 88, 171109.
– reference: U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, S. O. Kim, Adv. Mater. 2014, 26, 40.
– reference: T.-i. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, M. R. Bruchas, Science 2013, 340, 211.
– reference: M. Irimia-Vladu, Chem. Soc. Rev. 2014, 43, 588.
– reference: Y. Q. Liu, N. Qi, T. Song, M. L. Jia, Z. H. Xia, Z. C. Yuan, W. Yuan, K. Q. Zhang, B. Q. Sun, ACS Appl. Mater. Interfaces 2014, 6, 20670.
– reference: Z. Niu, H. Dong, B. Zhu, J. Li, H. H. Hng, W. Zhou, X. Chen, S. Xie, Adv. Mater. 2013, 25, 1058.
– reference: H. Wang, Y. Du, Y. Li, B. Zhu, W. R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Adv. Funct. Mater. 2015, 25, 3825.
– reference: J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Adv. Mater. 2010, 22, E170.
– reference: F. G. Omenetto, D. L. Kaplan, Science 2010, 329, 528.
– reference: C. Dagdeviren, S.-W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F. G. Omenetto, Y. Huang, J. A. Rogers, Small 2013, 9, 3398.
– reference: G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, D. M. de Leeuw, Nat. Mater. 2004, 3, 106.
– reference: H. Wang, F. Meng, B. Zhu, W. R. Leow, Y. Liu, X. Chen, Adv. Mater. 2015, DOI: 10.1002/adma.201405728.
– reference: B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Small 2014, 10, 3625.
– reference: P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss, Appl. Phys. Lett. 2003, 82, 3964.
– reference: C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, V. V. Tsukruk, Adv. Funct. Mater. 2007, 17, 2229.
– reference: H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett. 2011, 11, 2472.
– reference: M. K. Hota, M. K. Bera, B. Kundu, S. C. Kundu, C. K. Maiti, Adv. Funct. Mater. 2012, 22, 4493.
– reference: L. Qie, W.-M. Chen, Z.-H. Wang, Q.-G. Shao, X. Li, L.-X. Yuan, X.-L. Hu, W.-X. Zhang, Y.-H. Huang, Adv. Mater. 2012, 24, 2047.
– reference: M. Hamedi, R. Forchheimer, O. Inganas, Nat. Mater. 2007, 6, 357.
– reference: A. Hübler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A. Wagenpfahl, C. Deibel, V. Dyakonov, Adv. Energy Mater. 2011, 1, 1018.
– reference: D.-H. Kim, N. Lu, Y. Huang, J. A. Rogers, MRS Bull. 2012, 37, 226.
– reference: L. Shi, X. Xu, M. Ma, L. Li, Appl. Phys. Lett. 2014, 104, 023302.
– reference: M. Irimia-Vladu, N. S. Sariciftci, S. Bauer, J. Mater. Chem. 2011, 21, 1350.
– volume: 2
  start-page: 641
  year: 2008
  publication-title: Nat. Photonics
– volume: 25
  start-page: 6207
  year: 2013
  publication-title: Adv. Mater.
– volume: 25
  start-page: 1058
  year: 2013
  publication-title: Adv. Mater.
– volume: 321
  start-page: 1468
  year: 2008
  publication-title: Science
– volume: 12
  start-page: 938
  year: 2013
  publication-title: Nat. Mater.
– volume: 11
  start-page: 8
  year: 2014
  publication-title: J. R. Soc. Interface
– volume: 3
  start-page: 106
  year: 2004
  publication-title: Nat. Mater.
– volume: 13
  start-page: 3315
  year: 2012
  publication-title: Org. Electron.
– volume: 453
  start-page: 80
  year: 2008
  publication-title: Nature
– volume: 27
  start-page: 3145
  year: 2015
  publication-title: Adv. Mater.
– volume: 23
  start-page: 2972
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 1938
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 277
  year: 2014
  publication-title: Small
– volume: 25
  start-page: 4035
  year: 2013
  publication-title: Adv. Mater.
– volume: 7
  start-page: 845
  year: 2008
  publication-title: Nat. Mater.
– volume: 5
  start-page: 148
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 648
  year: 2007
  publication-title: Org. Electron.
– volume: 25
  start-page: 5997
  year: 2013
  publication-title: Adv. Mater.
– volume: 20
  start-page: 840
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 499
  start-page: 458
  year: 2013
  publication-title: Nature
– volume: 95
  start-page: 263304
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 4543
  year: 2004
  publication-title: Chem. Mater.
– volume: 6
  start-page: 833
  year: 2007
  publication-title: Nat. Mater.
– volume: 21
  start-page: 2889
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 588
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 2047
  year: 2012
  publication-title: Adv. Mater.
– volume: 82
  start-page: 3964
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 15
  start-page: 340
  year: 2012
  publication-title: Mater. Today
– volume: 8
  start-page: 13
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 25
  start-page: 5498
  year: 2013
  publication-title: Adv. Mater.
– volume: 59
  start-page: 563
  year: 2010
  publication-title: Polym. Int.
– volume: 88
  start-page: 171109
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 215201
  year: 2011
  publication-title: Nanotechnology
– volume: 127
  start-page: 10388
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 3016
  year: 2011
  publication-title: Small
– volume: 22
  start-page: 651
  year: 2010
  publication-title: Adv. Mater.
– volume: 347
  start-page: 1261689
  year: 2015
  publication-title: Science
– volume: 7
  start-page: 379
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: 3500
  year: 2011
  publication-title: Adv. Mater.
– volume: 23
  start-page: 898
  year: 2011
  publication-title: Adv. Mater.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 24
  start-page: 1844
  year: 2012
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2472
  year: 2011
  publication-title: Nano Lett.
– volume: 424
  start-page: 1057
  year: 2003
  publication-title: Nature
– volume: 9
  start-page: 511
  year: 2010
  publication-title: Nat. Mater.
– volume: 97
  start-page: 123702
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 7053
  year: 2010
  publication-title: ACS Nano
– volume: 327
  start-page: 1603
  year: 2010
  publication-title: Science
– volume: 84
  start-page: 2673
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 38
  start-page: 320
  year: 2013
  publication-title: MRS Bull.
– volume: 432
  start-page: 488
  year: 2004
  publication-title: Nature
– volume: 6
  year: 2015
  publication-title: Nat. Commun.
– volume: 85
  start-page: 3283
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 45
  start-page: 361
  year: 2011
  publication-title: Acc. Chem. Res.
– volume: 23
  start-page: 4087
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 3638
  year: 2014
  publication-title: Adv. Mater.
– volume: 15
  start-page: 3476
  year: 2014
  publication-title: Org. Electron.
– volume: 24
  start-page: 4427
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 2599
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 26
  start-page: 115603
  year: 2015
  publication-title: Nanotechnology
– volume: 23
  start-page: 4077
  year: 2011
  publication-title: Adv. Mater.
– volume: 25
  start-page: 3526
  year: 2013
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1479
  year: 2007
  publication-title: Macromol. Rapid. Comm.
– volume: 11
  start-page: 906
  year: 2015
  publication-title: Small
– volume: 44
  start-page: 5926
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 4483
  year: 2013
  publication-title: Biomacromolecules
– volume: 10
  start-page: 3083
  year: 2014
  publication-title: Small
– volume: 24
  start-page: 6088
  year: 2012
  publication-title: Adv. Mater.
– volume: 4
  start-page: 366
  year: 2005
  publication-title: Nat. Mater.
– volume: 21
  start-page: 2007
  year: 2009
  publication-title: Adv. Mater.
– volume: 21
  start-page: 29
  year: 2009
  publication-title: Adv. Mater.
– volume: 21
  start-page: 2632
  year: 2009
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1686
  year: 2011
  publication-title: Biomacromolecules
– volume: 6
  start-page: 357
  year: 2007
  publication-title: Nat. Mater.
– volume: 18
  start-page: 1713
  year: 2006
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1612
  year: 2011
  publication-title: Nat. Protoc.
– volume: 7
  start-page: 5131
  year: 2013
  publication-title: ACS Nano
– volume: 9
  start-page: 2556
  year: 2015
  publication-title: ACS Nano
– volume: 9
  start-page: 3784
  year: 2013
  publication-title: Small
– year: 2015
  publication-title: Macromol. Mater. Eng.
– volume: 22
  start-page: E170
  year: 2010
  publication-title: Adv. Mater.
– volume: 37
  start-page: 226
  year: 2012
  publication-title: MRS Bull.
– volume: 39
  start-page: 2643
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 320
  start-page: 507
  year: 2008
  publication-title: Science
– volume: 401
  start-page: 685
  year: 1999
  publication-title: Nature
– volume: 33
  start-page: 998
  year: 2008
  publication-title: Prog. Polym. Sci.
– volume: 25
  start-page: 1993
  year: 2013
  publication-title: Adv. Mater.
– volume: 14
  start-page: 2006
  year: 2013
  publication-title: Fiber Polym.
– volume: 12
  start-page: 1146
  year: 2011
  publication-title: Org. Electron.
– volume: 23
  start-page: 4828
  year: 2011
  publication-title: Adv. Mater.
– volume: 101
  start-page: 9966
  year: 2004
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 435
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 2228
  year: 2010
  publication-title: Adv. Mater.
– volume: 332
  start-page: 1537
  year: 2011
  publication-title: Science
– volume: 6
  start-page: 20670
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 20
  year: 2006
  publication-title: Mater. Today
– volume: 3
  start-page: 763
  year: 2012
  publication-title: Nat. Commun.
– volume: 11
  start-page: 28
  year: 2008
  publication-title: Mater. Today
– volume: 24
  start-page: 345202
  year: 2013
  publication-title: Nanotechnology
– volume: 26
  start-page: 1336
  year: 2014
  publication-title: Adv. Mater.
– volume: 363
  start-page: 393
  year: 2011
  publication-title: J. Colloid Interface Sci
– volume: 5
  start-page: 4779
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 3398
  year: 2013
  publication-title: Small
– volume: 5
  start-page: 50878
  year: 2015
  publication-title: RSC Adv.
– volume: 103
  start-page: 023303
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 88
  start-page: 233508
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 318
  start-page: 76
  year: 2007
  publication-title: Science
– volume: 5
  start-page: 9918
  year: 2011
  publication-title: ACS Nano
– volume: 9
  start-page: 306
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 21
  start-page: 1350
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 20
  start-page: 4069
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 1388
  year: 2012
  publication-title: Adv. Mater.
– volume: 5
  year: 2014
  publication-title: Nat. Commun.
– volume: 23
  start-page: 5502
  year: 2011
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1067
  year: 2012
  publication-title: Adv. Mater.
– volume: 23
  start-page: 1935
  year: 2011
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6839
  year: 2013
  publication-title: Adv. Mater.
– volume: 1
  start-page: 248
  year: 2012
  publication-title: Adv. Healthcare Mater.
– volume: 4
  start-page: 1859
  year: 2013
  publication-title: Nat. Commun.
– volume: 104
  start-page: 023302
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 46
  start-page: 86
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 6
  start-page: 1249
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 24
  start-page: 401
  year: 2003
  publication-title: Biomaterials.
– volume: 24
  start-page: 2824
  year: 2012
  publication-title: Adv. Mater.
– volume: 45
  start-page: 2116
  year: 2007
  publication-title: Carbon
– volume: 24
  start-page: 3941
  year: 2012
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2775
  year: 2009
  publication-title: Lab Chip
– volume: 95
  start-page: 133701
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 4264
  year: 2014
  publication-title: Nanoscale
– volume: 5
  start-page: 7991
  year: 2013
  publication-title: Nanoscale
– volume: 337
  start-page: 1640
  year: 2012
  publication-title: Science
– volume: 15
  start-page: 208
  year: 2012
  publication-title: Mater. Today
– volume: 26
  start-page: 1992
  year: 2014
  publication-title: Adv. Mater.
– volume: 111
  start-page: 3358
  year: 2011
  publication-title: Chem. Rev.
– volume: 23
  start-page: 1630
  year: 2011
  publication-title: Adv. Mater.
– volume: 23
  start-page: 654
  year: 2011
  publication-title: Adv. Mater.
– volume: 25
  start-page: 285302
  year: 2014
  publication-title: Nanotechnology
– volume: 26
  start-page: 4855
  year: 2014
  publication-title: Adv. Mater.
– volume: 19
  start-page: 2847
  year: 2007
  publication-title: Adv. Mater.
– volume: 210
  start-page: 1797
  year: 2013
  publication-title: Phys. Status Solidi
– volume: 10
  start-page: 3625
  year: 2014
  publication-title: Small
– volume: 329
  start-page: 528
  year: 2010
  publication-title: Science
– volume: 24
  start-page: 645
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 859
  year: 2010
  publication-title: Nat. Mater.
– volume: 26
  start-page: 163
  year: 2014
  publication-title: Adv. Mater.
– volume: 27
  start-page: 47
  year: 2015
  publication-title: Adv. Mater.
– volume: 202
  start-page: 1357
  year: 2014
  publication-title: Sens. Actuators, B
– volume: 1
  start-page: 1018
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 10076
  year: 2013
  publication-title: Nanoscale
– volume: 160
  start-page: 244
  year: 2015
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 4139
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 2229
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 1463
  year: 2011
  publication-title: Adv. Mater.
– volume: 519
  start-page: S4
  year: 2015
  publication-title: Nature
– volume: 11
  start-page: 2164
  year: 2011
  publication-title: Cryst. Growth Des.
– volume: 428
  start-page: 911
  year: 2004
  publication-title: Nature
– volume: 349
  start-page: aab2750
  year: 2015
  publication-title: Science
– volume: 1
  start-page: 213
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 26
  start-page: 149
  year: 2014
  publication-title: Adv. Mater.
– year: 2015
  publication-title: Adv. Mater.
– volume: 22
  start-page: 4493
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 509
  year: 2014
  publication-title: Macromol. Res.
– volume: 9
  start-page: 6974
  year: 2013
  publication-title: Acta Biomater.
– volume: 22
  start-page: 23710
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 32
  start-page: 991
  year: 2007
  publication-title: Prog. Polym. Sci.
– volume: 27
  start-page: 634
  year: 2014
  publication-title: Adv. Mater.
– volume: 340
  start-page: 211
  year: 2013
  publication-title: Science
– volume: 26
  start-page: 40
  year: 2014
  publication-title: Adv. Mater.
– volume: 111
  start-page: 17385
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 103
  start-page: 233304
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 38
  start-page: 2520
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 28
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 1849
  year: 2008
  publication-title: Adv. Mater.
– volume: 25
  start-page: 3825
  year: 2015
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_73_1
  doi: 10.1002/adfm.200901363
– ident: e_1_2_7_134_1
  doi: 10.1021/ja052488f
– ident: e_1_2_7_74_1
  doi: 10.1557/mrs.2013.59
– ident: e_1_2_7_163_1
  doi: 10.1088/0957-4484/22/21/215201
– ident: e_1_2_7_104_1
  doi: 10.1039/c3ee22325f
– ident: e_1_2_7_145_1
  doi: 10.1063/1.1805703
– ident: e_1_2_7_144_1
  doi: 10.1002/adfm.201200316
– ident: e_1_2_7_142_1
  doi: 10.1063/1.4862198
– ident: e_1_2_7_102_1
  doi: 10.1126/science.1200770
– ident: e_1_2_7_110_1
  doi: 10.1002/adma.201204692
– ident: e_1_2_7_167_1
  doi: 10.1016/j.orgel.2014.09.042
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201101263
– ident: e_1_2_7_156_1
  doi: 10.1016/S1369-7021(08)70119-6
– ident: e_1_2_7_123_1
  doi: 10.1002/adfm.201101011
– ident: e_1_2_7_37_1
  doi: 10.1126/science.1232437
– ident: e_1_2_7_111_1
  doi: 10.1021/nn506394r
– ident: e_1_2_7_29_1
  doi: 10.1002/adhm.201200071
– ident: e_1_2_7_93_1
  doi: 10.1039/C4CS00442F
– ident: e_1_2_7_94_1
  doi: 10.1038/nmat2297
– ident: e_1_2_7_77_1
  doi: 10.1098/rsif.2014.0305
– ident: e_1_2_7_115_1
  doi: 10.1002/adfm.200901774
– ident: e_1_2_7_36_1
  doi: 10.1073/pnas.1407743111
– ident: e_1_2_7_75_1
  doi: 10.1002/pi.2827
– ident: e_1_2_7_91_1
  doi: 10.1038/nmat1368
– ident: e_1_2_7_67_1
  doi: 10.1126/science.1226325
– ident: e_1_2_7_170_1
  doi: 10.1088/0957-4484/24/34/345202
– ident: e_1_2_7_46_1
  doi: 10.1038/nmat3755
– ident: e_1_2_7_148_1
  doi: 10.1063/1.4841595
– ident: e_1_2_7_62_1
  doi: 10.1002/adma.200602487
– ident: e_1_2_7_154_1
  doi: 10.1039/c3nr03472k
– ident: e_1_2_7_124_1
  doi: 10.1021/cg101410u
– ident: e_1_2_7_13_1
  doi: 10.1126/science.1154367
– ident: e_1_2_7_66_1
  doi: 10.1002/adma.201304821
– ident: e_1_2_7_158_1
  doi: 10.1002/adma.201104104
– ident: e_1_2_7_146_1
  doi: 10.1016/j.orgel.2011.04.005
– ident: e_1_2_7_155_1
  doi: 10.1038/nnano.2009.456
– ident: e_1_2_7_54_1
  doi: 10.1039/C5RA03501E
– ident: e_1_2_7_41_1
  doi: 10.1002/smll.201402495
– ident: e_1_2_7_82_1
  doi: 10.1088/0957-4484/25/28/285302
– ident: e_1_2_7_150_1
  doi: 10.1038/nature06932
– ident: e_1_2_7_2_1
  doi: 10.1016/S1369-7021(12)70139-6
– ident: e_1_2_7_175_1
  doi: 10.1002/adma.201003860
– ident: e_1_2_7_131_1
  doi: 10.1038/ncomms2832
– ident: e_1_2_7_152_1
  doi: 10.1002/adma.200900375
– ident: e_1_2_7_120_1
  doi: 10.1016/j.jcis.2011.07.009
– ident: e_1_2_7_72_1
  doi: 10.1063/1.3278592
– ident: e_1_2_7_76_1
  doi: 10.1002/adfm.201501389
– ident: e_1_2_7_9_1
  doi: 10.1021/ar2001233
– ident: e_1_2_7_135_1
  doi: 10.1039/b921449f
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201303470
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.201301921
– ident: e_1_2_7_116_1
  doi: 10.1002/adfm.201100249
– ident: e_1_2_7_160_1
  doi: 10.1002/smll.201300810
– ident: e_1_2_7_129_1
  doi: 10.1073/pnas.0401918101
– ident: e_1_2_7_48_1
  doi: 10.1016/S1369-7021(12)70091-3
– ident: e_1_2_7_80_1
  doi: 10.1002/adfm.201304293
– ident: e_1_2_7_166_1
  doi: 10.1016/j.orgel.2007.05.003
– ident: e_1_2_7_132_1
  doi: 10.1038/ncomms7269
– ident: e_1_2_7_44_1
  doi: 10.1557/mrs.2012.36
– ident: e_1_2_7_92_1
  doi: 10.1002/adma.201000717
– ident: e_1_2_7_99_1
  doi: 10.1002/adma.201204003
– ident: e_1_2_7_118_1
  doi: 10.1039/c3nr01872e
– ident: e_1_2_7_119_1
  doi: 10.1039/C2TB00017B
– ident: e_1_2_7_122_1
  doi: 10.1016/j.actbio.2013.03.004
– ident: e_1_2_7_11_1
  doi: 10.1039/b909902f
– ident: e_1_2_7_112_1
  doi: 10.1007/s13233-014-2071-4
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201403807
– ident: e_1_2_7_113_1
  doi: 10.1021/nl2009058
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.201100394
– ident: e_1_2_7_45_1
  doi: 10.1038/nature12314
– ident: e_1_2_7_139_1
  doi: 10.1038/nature03090
– ident: e_1_2_7_103_1
  doi: 10.1039/C3EE43111H
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201303349
– ident: e_1_2_7_127_1
  doi: 10.1063/1.1579554
– ident: e_1_2_7_81_1
  doi: 10.1002/adfm.201301847
– ident: e_1_2_7_149_1
  doi: 10.1002/adma.200502752
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.200902322
– ident: e_1_2_7_100_1
  doi: 10.1002/adfm.201203491
– ident: e_1_2_7_52_1
  doi: 10.1016/j.progpolymsci.2008.08.002
– ident: e_1_2_7_56_1
  doi: 10.1021/am504163r
– ident: e_1_2_7_57_1
  doi: 10.1002/adma.201201888
– ident: e_1_2_7_161_1
  doi: 10.1002/adma.201301983
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201003374
– ident: e_1_2_7_63_1
  doi: 10.1038/nprot.2011.379
– ident: e_1_2_7_114_1
  doi: 10.1021/bm4014149
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.200801995
– ident: e_1_2_7_24_1
  doi: 10.1039/b905832j
– volume: 210
  start-page: 1797
  year: 2013
  ident: e_1_2_7_169_1
  publication-title: Phys. Status Solidi
  doi: 10.1002/pssa.201329109
– ident: e_1_2_7_84_1
  doi: 10.1038/ncomms1767
– ident: e_1_2_7_157_1
  doi: 10.1002/adma.201201506
– ident: e_1_2_7_171_1
  doi: 10.1016/j.snb.2014.04.079
– ident: e_1_2_7_5_1
  doi: 10.1038/nmat1884
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1206157
– ident: e_1_2_7_50_1
  doi: 10.1038/nphoton.2008.207
– ident: e_1_2_7_108_1
  doi: 10.1002/adma.201104634
– ident: e_1_2_7_162_1
  doi: 10.1002/smll.201300522
– ident: e_1_2_7_172_1
  doi: 10.1002/adma.201103814
– ident: e_1_2_7_55_1
  doi: 10.1039/C3NR06057H
– ident: e_1_2_7_125_1
  doi: 10.1021/cr1001904
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201102124
– ident: e_1_2_7_88_1
  doi: 10.1063/1.3486157
– ident: e_1_2_7_168_1
  doi: 10.1002/adfm.200601136
– ident: e_1_2_7_106_1
  doi: 10.1016/j.electacta.2015.02.019
– ident: e_1_2_7_107_1
  doi: 10.1016/j.carbon.2007.05.026
– volume: 5
  year: 2014
  ident: e_1_2_7_40_1
  publication-title: Nat. Commun.
– ident: e_1_2_7_78_1
  doi: 10.1002/adfm.201200073
– ident: e_1_2_7_159_1
  doi: 10.1002/smll.201101494
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201405728
– ident: e_1_2_7_30_1
  doi: 10.1126/science.1261689
– ident: e_1_2_7_71_1
  doi: 10.1063/1.2197973
– ident: e_1_2_7_58_1
  doi: 10.1016/j.progpolymsci.2007.05.013
– ident: e_1_2_7_174_1
  doi: 10.1038/nnano.2014.47
– ident: e_1_2_7_49_1
  doi: 10.1126/science.1188936
– ident: e_1_2_7_128_1
  doi: 10.1038/nmat2834
– ident: e_1_2_7_173_1
  doi: 10.1002/adma.201302823
– ident: e_1_2_7_89_1
  doi: 10.1021/bm200062a
– ident: e_1_2_7_87_1
  doi: 10.1002/adma.201403051
– ident: e_1_2_7_130_1
  doi: 10.1002/adma.201304248
– ident: e_1_2_7_61_1
  doi: 10.1002/mame.201400276
– ident: e_1_2_7_28_1
  doi: 10.1039/C0JM02444A
– ident: e_1_2_7_68_1
  doi: 10.1002/adma.201003601
– ident: e_1_2_7_97_1
  doi: 10.1002/adma.201401513
– ident: e_1_2_7_138_1
  doi: 10.1002/adma.201004071
– ident: e_1_2_7_47_1
  doi: 10.1038/ncomms5779
– ident: e_1_2_7_164_1
  doi: 10.1021/nn2036939
– ident: e_1_2_7_60_1
  doi: 10.1038/519S4a
– ident: e_1_2_7_121_1
  doi: 10.1021/nn102456w
– ident: e_1_2_7_86_1
  doi: 10.1002/smll.201300146
– ident: e_1_2_7_59_1
  doi: 10.1038/nature01809
– ident: e_1_2_7_3_1
  doi: 10.1126/science.aab2750
– ident: e_1_2_7_4_1
  doi: 10.1016/S1369-7021(06)71539-5
– ident: e_1_2_7_64_1
  doi: 10.1016/j.progpolymsci.2015.02.001
– ident: e_1_2_7_39_1
  doi: 10.1038/nmat2745
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.201303196
– ident: e_1_2_7_165_1
  doi: 10.1002/marc.200700186
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.201401207
– ident: e_1_2_7_12_1
  doi: 10.1126/science.1182383
– ident: e_1_2_7_83_1
  doi: 10.1002/adma.201405807
– ident: e_1_2_7_85_1
  doi: 10.1002/adma.201300920
– ident: e_1_2_7_136_1
  doi: 10.1063/1.2213010
– ident: e_1_2_7_43_1
  doi: 10.1002/smll.201400483
– ident: e_1_2_7_65_1
  doi: 10.1002/adma.201104118
– ident: e_1_2_7_133_1
  doi: 10.1021/cm049598q
– ident: e_1_2_7_147_1
  doi: 10.1016/j.orgel.2012.10.007
– ident: e_1_2_7_117_1
  doi: 10.1088/0957-4484/26/11/115603
– ident: e_1_2_7_69_1
  doi: 10.1063/1.3238552
– ident: e_1_2_7_98_1
  doi: 10.1002/adma.201301332
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201004692
– ident: e_1_2_7_141_1
  doi: 10.1002/adma.201103592
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.200904054
– ident: e_1_2_7_1_1
  doi: 10.1039/C3CS60235D
– ident: e_1_2_7_109_1
  doi: 10.1039/c2jm34066f
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201303265
– ident: e_1_2_7_105_1
  doi: 10.1021/nn400731g
– ident: e_1_2_7_153_1
  doi: 10.1038/nmat2023
– ident: e_1_2_7_95_1
  doi: 10.1002/adma.201100984
– ident: e_1_2_7_51_1
  doi: 10.1016/S0142-9612(02)00353-8
– ident: e_1_2_7_140_1
  doi: 10.1007/s12221-013-2006-2
– ident: e_1_2_7_79_1
  doi: 10.1002/adfm.201300127
– ident: e_1_2_7_96_1
  doi: 10.1039/b813846j
– ident: e_1_2_7_22_1
  doi: 10.1002/adfm.201001031
– ident: e_1_2_7_143_1
  doi: 10.1038/44359
– ident: e_1_2_7_90_1
  doi: 10.1038/35104644
– ident: e_1_2_7_151_1
  doi: 10.1038/nnano.2012.240
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201302240
– ident: e_1_2_7_70_1
  doi: 10.1063/1.4813075
– ident: e_1_2_7_6_1
  doi: 10.1038/nature02498
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.200702559
– ident: e_1_2_7_126_1
  doi: 10.1038/nmat1061
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.200803211
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.201104477
– ident: e_1_2_7_15_1
  doi: 10.1126/science.1160309
– ident: e_1_2_7_21_1
  doi: 10.1063/1.1690870
– ident: e_1_2_7_101_1
  doi: 10.1002/adma.201305682
– ident: e_1_2_7_137_1
  doi: 10.1126/science.1146458
SSID ssj0009606
Score 2.651154
SecondaryResourceType review_article
Snippet Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4250
SubjectTerms Biocompatibility
biointegrated devices
Biomaterials
Biomedical materials
Electronic devices
Electronics
flexible electronics
Semiconductors
Silk fibroin
Surgical implants
Title Silk Fibroin for Flexible Electronic Devices
URI https://api.istex.fr/ark:/67375/WNG-HD98LZ6N-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201504276
https://www.ncbi.nlm.nih.gov/pubmed/26684370
https://www.proquest.com/docview/1795877121
https://www.proquest.com/docview/1825483947
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8heBkPMAaDMECZhMYLgSR2_PFYUbqqWvuwgUB7sWzHkVCrFEErof31OydtoBMf0nhzlHNin33nn5Pz7wAOU5sXTsvMJ3exuEGhNJKFSaI8EYWUNs9Y7g8n9wese0l719n1k1P8NT9E88HNW0blr72Ba3N_-kgaqvOKNwgBDU2559z2AVseFf185I_y8Lwi2yNZJBkVc9bGOD1drL6wKq14BT88BzkXEWy1BHXWQc8bX0eeDE-mE3Ni__zD6_ie3n2EtRk-DVv1hNqAJVd-gtUnrIWbcPzrZjQMO_j48U0ZIugNO55V04xceN4k1QnbrvJBW3DZOb8460azpAuRzRhhEdWCFVKjcWoumBUFySSlMbHMcq053uFJbqkhCQI9l2ospsaJXHMa29g48hmWy3HpdiBE7EVyhD8FoxpxnxZWcmLQwaBPI07oAKK50pWdMZL7xBgjVXMpp8prQTVaCOCokb-tuThelPxWjWEjpu-GPoKNZ-pq8F1121L8-M0GqhfA1_kgK7Qr_7NEl248vVfoqDLBeZImr8j47TX2kvIAtusZ0rwRgY-ghMcBpNU4v9Fi1Wr3W83V7v9U-gIfsMzqOLY9WJ7cTd0-IqaJOais4i8SuQkV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4q7QE4sC9hDRLLhbSJ7Xg5cBiRDtN2Zg7QioqLcRxHqmaUQe2MWP4Vf4VfxHMySRnEIiH1wC3LS2I_Pz9_dp6_B_CY2KJ0RqU-uYvFCQpjkSrzJCoSWSpli5QXfnPyaMwHB2z3MD1cg6_tXpiGH6JbcPM9o_bXvoP7BemtU9ZQU9TEQYhoGBF8GVe55z5_xFnbyYudDJv4CSH97f2Xg2iZWCCyKac8YkbyUhk0QCMkt7KkqWIsppZbYYzAOyIpLMtpgmDGEYOHJHeyMILFNs4dxfeegw2fRtzT9WevTxmr_ISgpvejaaQ4ky1PZEy2Vsu7Mg5u-Cb99CuQu4qZ60Gvfxm-tepqYl0mm4t5vmm__MQk-V_p8wpcWkLwsNf0mauw5qprcPEHYsbr8PzN0XQS9rE-s6MqRFwf9j1xaD514XaXNyjMXO1mb8DBmRT3JqxXs8rdhhDhJS0Q4ZWcGYS2RlolaI4-FN02ddIEELWtrO2SdN3n_pjqhi6aaK913Wk9gGed_IeGbuS3kk9ro-nEzPHEB-mJVL8dv9KDTMnhOz7WuwE8aq1Ko-vw_4NM5WaLE42-OJVCJCT5g4xfQcBaMhHArcYkuy8itpOMijgAUhvWX0qse9mo153d-ZeHHsL5wf5oqIc74727cAGv8yZs7x6sz48X7j4CxHn-oO6SIbw_a5v9DsL2ZsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VVkL0gZsSziBxvJA2sR0fDzysSJfttUJA1YoX4ziOVO0qW7W74vhV_BX-EeNkk7KIQ0LqA285Jok9Ho8_O-NvAB4TW5TOqNQnd7E4QWEsUmWeREUiS6VskfLCb07eG_LBPts-TA-X4Gu7F6bhh-gW3HzPqP217-DHRblxRhpqipo3CAENI4LPwyp33OePOGk7fbGVYQs_IaS_-e7lIJrnFYhsyimPmJG8VAbtzwjJrSxpqhiLqeVWGCPwjkgKy3KaIJZxxOAhyZ0sjGCxjXNH8b0XYIXxWPlkEdmbM8IqPx-o2f1oGinOZEsTGZONxfIuDIMrvkU__QrjLkLmeszrX4FvrbaaUJfR-myar9svPxFJ_k_qvAqX5wA87DU95hosueo6rP5Ay3gDnr89Go_CPlZnclSFiOrDvqcNzccu3OyyBoWZq53sTdg_l-LeguVqUrnbECK4pAXiu5Izg8DWSKsEzdGDotOmTpoAoraRtZ1TrvvMH2PdkEUT7bWuO60H8KyTP27IRn4r-bS2mU7MnIx8iJ5I9cHwlR5kSu6-50O9HcCj1qg0Og7_N8hUbjI71eiJUylEQpI_yPj1A6wlEwGsNRbZfRGRnWRUxAGQ2q7-UmLdy_Z63dmdf3noIVx8nfX17tZw5y5cwsu8idm7B8vTk5m7j-hwmj-oO2QIH87bZL8D_L5lcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silk+Fibroin+for+Flexible+Electronic+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Bowen&rft.au=Wang%2C+Hong&rft.au=Leow%2C+Wan+Ru&rft.au=Cai%2C+Yurong&rft.date=2016-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=28&rft.issue=22&rft.spage=4250&rft.epage=4265&rft_id=info:doi/10.1002%2Fadma.201504276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201504276
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon