Silk Fibroin for Flexible Electronic Devices
Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon‐based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 28; no. 22; pp. 4250 - 4265 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon‐based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next‐generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state‐of‐the‐art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk‐based electronic devices would open new avenues for employing biomaterials in the design and integration of high‐performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human–machine interfaces.
Silk fibroin is an ancient biomaterial with exquisite mechanical, optical, and electrical properties. Its intriguing properties and environmental benignity render silk fibroin compelling for the advancement of next‐generation biocompatible and biodegradable flexible electronic devices. |
---|---|
AbstractList | Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon‐based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next‐generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state‐of‐the‐art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk‐based electronic devices would open new avenues for employing biomaterials in the design and integration of high‐performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human–machine interfaces.
Silk fibroin is an ancient biomaterial with exquisite mechanical, optical, and electrical properties. Its intriguing properties and environmental benignity render silk fibroin compelling for the advancement of next‐generation biocompatible and biodegradable flexible electronic devices. Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces.Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces. Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon‐based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next‐generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state‐of‐the‐art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk‐based electronic devices would open new avenues for employing biomaterials in the design and integration of high‐performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human–machine interfaces. Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which traditional silicon-based electronics would confront a mechanical mismatch. Biological polymers offer new opportunities for flexible electronic devices by virtue of their biocompatibility, environmental benignity, and sustainability, as well as low cost. As an intriguing and abundant biomaterial, silk offers exquisite mechanical, optical, and electrical properties that are advantageous toward the development of next-generation biocompatible electronic devices. The utilization of silk fibroin is emphasized as both passive and active components in flexible electronic devices. The employment of biocompatible and biosustainable silk materials revolutionizes state-of-the-art electronic devices and systems that currently rely on conventional semiconductor technologies. Advances in silk-based electronic devices would open new avenues for employing biomaterials in the design and integration of high-performance biointegrated electronics for future applications in consumer electronics, computing technologies, and biomedical diagnosis, as well as human-machine interfaces. Silk fibroin is an ancient biomaterial with exquisite mechanical, optical, and electrical properties. Its intriguing properties and environmental benignity render silk fibroin compelling for the advancement of next-generation biocompatible and biodegradable flexible electronic devices. |
Author | Chen, Xiaodong Cai, Yurong Zhu, Bowen Han, Ming-Yong Wang, Hong Loh, Xian Jun Leow, Wan Ru |
Author_xml | – sequence: 1 givenname: Bowen surname: Zhu fullname: Zhu, Bowen organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore – sequence: 2 givenname: Hong surname: Wang fullname: Wang, Hong organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore – sequence: 3 givenname: Wan Ru surname: Leow fullname: Leow, Wan Ru organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore – sequence: 4 givenname: Yurong surname: Cai fullname: Cai, Yurong organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore – sequence: 5 givenname: Xian Jun surname: Loh fullname: Loh, Xian Jun organization: Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 3 Research Link, 117602, Singapore – sequence: 6 givenname: Ming-Yong surname: Han fullname: Han, Ming-Yong organization: Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 3 Research Link, 117602, Singapore – sequence: 7 givenname: Xiaodong surname: Chen fullname: Chen, Xiaodong email: chenxd@ntu.edu.sg organization: School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26684370$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1PGzEQQC1EBYFy5VjtsQc2HX_bx4gQaJXSQ4uQuFheZ1ZycXapvWnh33dRAFVIFacZad6bwzsgu13fISHHFKYUgH3yq7WfMqASBNNqh0yoZLQWYOUumYDlsrZKmH1yUMpPALAK1B7ZZ0oZwTVMyMn3mG6rRWxyH7uq7XO1SHgfm4TVWcIw5L6LoZrj7xiwvCfvWp8KHj3NQ3K1OPtxelEvv51_Pp0t6yAVV7XwRrXWA0ivjQqm5dIKATyooL3X40XTVRANp1JLZH5cWYNm5bWAAA3yQ_Jx-_cu9782WAa3jiVgSr7DflMcNUwKw63Qb6PaSqM1ZXREPzyhm2aNK3eX49rnB_ccYwTEFgi5LyVj60Ic_BD7bsg-JkfBPTZ3j83dS_NRm77Snj__V7Bb4U9M-PAG7Wbzr7N_3XrrxjLg_Yvr861Tmmvpri_P3cXcmuWNunRf-F85UaBv |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_125499 crossref_primary_10_1016_j_ijbiomac_2016_10_047 crossref_primary_10_1002_aelm_201800373 crossref_primary_10_1002_adma_201700217 crossref_primary_10_1002_adma_202411946 crossref_primary_10_1073_pnas_1619392114 crossref_primary_10_1039_D0CP04657D crossref_primary_10_1002_adfm_202307106 crossref_primary_10_1002_smsc_202300217 crossref_primary_10_1016_j_mtbio_2022_100381 crossref_primary_10_1002_admi_202000743 crossref_primary_10_1007_s10832_017_0104_z crossref_primary_10_1016_j_nanoen_2019_103885 crossref_primary_10_1016_j_mtsust_2022_100230 crossref_primary_10_1007_s11664_023_10242_y crossref_primary_10_1039_D1PY00282A crossref_primary_10_1016_j_compositesa_2019_01_026 crossref_primary_10_3390_electrochem1040022 crossref_primary_10_1021_acsami_0c15530 crossref_primary_10_1002_adsu_202400518 crossref_primary_10_1021_acsabm_3c00593 crossref_primary_10_1039_C8TC02883D crossref_primary_10_1186_s42490_019_0004_1 crossref_primary_10_1186_s11671_016_1660_x crossref_primary_10_1016_j_mattod_2018_03_038 crossref_primary_10_1002_adfm_202010461 crossref_primary_10_1007_s12221_019_1206_9 crossref_primary_10_1021_acsnano_9b03454 crossref_primary_10_1002_nano_202200200 crossref_primary_10_1016_j_mattod_2020_08_017 crossref_primary_10_1021_acsami_0c15326 crossref_primary_10_1002_cplu_202100377 crossref_primary_10_1007_s42114_024_00888_5 crossref_primary_10_1016_j_diamond_2023_110483 crossref_primary_10_1039_C8PY01314D crossref_primary_10_1021_acsami_9b22754 crossref_primary_10_1002_bkcs_11945 crossref_primary_10_1002_advs_201700634 crossref_primary_10_1016_j_mee_2022_111869 crossref_primary_10_1002_advs_202410702 crossref_primary_10_1021_acssuschemeng_1c08227 crossref_primary_10_1016_j_ijbiomac_2020_04_053 crossref_primary_10_1016_j_jmrt_2023_10_111 crossref_primary_10_1002_adfm_202410140 crossref_primary_10_1002_macp_202200119 crossref_primary_10_1002_smll_201903948 crossref_primary_10_1016_j_progpolymsci_2020_101279 crossref_primary_10_1038_s41467_023_43944_2 crossref_primary_10_1039_C8CS00609A crossref_primary_10_1007_s12274_021_3856_3 crossref_primary_10_1016_j_jsamd_2025_100869 crossref_primary_10_1002_adfm_201808695 crossref_primary_10_1080_15583724_2022_2158467 crossref_primary_10_2174_1389203724666230412092734 crossref_primary_10_1002_app_55213 crossref_primary_10_1002_advs_202200560 crossref_primary_10_1016_j_jcis_2021_12_067 crossref_primary_10_1002_smtd_202001060 crossref_primary_10_1016_j_giant_2024_100313 crossref_primary_10_1016_j_nanoen_2018_03_033 crossref_primary_10_1063_5_0066174 crossref_primary_10_1360_SSC_2022_0155 crossref_primary_10_1088_1748_605X_ac20a0 crossref_primary_10_1021_acsomega_4c08514 crossref_primary_10_3390_nano10030559 crossref_primary_10_1021_acsami_8b13170 crossref_primary_10_1039_C9TC04706A crossref_primary_10_1016_j_addr_2019_09_003 crossref_primary_10_1088_1361_6439_ac7b0c crossref_primary_10_1002_er_7393 crossref_primary_10_1002_smtd_202000274 crossref_primary_10_1007_s11432_017_9352_0 crossref_primary_10_1002_adma_202302062 crossref_primary_10_1002_aelm_202300108 crossref_primary_10_1109_TNANO_2021_3064380 crossref_primary_10_1016_j_actbio_2022_09_010 crossref_primary_10_1177_08839115241279867 crossref_primary_10_1016_j_mtcomm_2024_109480 crossref_primary_10_1039_D4BM01347F crossref_primary_10_1039_C7NR03385K crossref_primary_10_1016_j_mser_2017_02_001 crossref_primary_10_1002_advs_201801283 crossref_primary_10_1039_C6TC00678G crossref_primary_10_1016_j_nanoen_2024_110540 crossref_primary_10_1007_s12274_017_1476_8 crossref_primary_10_1016_j_nanoen_2017_10_029 crossref_primary_10_3390_polym12030604 crossref_primary_10_1016_j_jallcom_2020_157289 crossref_primary_10_1016_j_matdes_2022_111120 crossref_primary_10_1016_j_msec_2018_11_010 crossref_primary_10_1016_j_actbio_2022_11_058 crossref_primary_10_3390_s18020645 crossref_primary_10_1002_smll_202300895 crossref_primary_10_1002_app_55482 crossref_primary_10_1038_nnano_2017_4 crossref_primary_10_1016_j_eurpolymj_2024_113058 crossref_primary_10_1002_adfm_202402608 crossref_primary_10_1021_acs_biomac_2c00753 crossref_primary_10_1002_adhm_201901552 crossref_primary_10_1002_smll_201502906 crossref_primary_10_1021_acsnano_8b01435 crossref_primary_10_1002_admt_202201031 crossref_primary_10_1186_s11671_024_04001_z crossref_primary_10_1016_j_nanoen_2017_09_038 crossref_primary_10_1049_htl_2019_0108 crossref_primary_10_1002_smll_201703164 crossref_primary_10_1002_adfm_202208521 crossref_primary_10_1080_09205063_2017_1386835 crossref_primary_10_1016_j_bios_2024_116853 crossref_primary_10_1021_acsabm_9b00576 crossref_primary_10_1021_acsami_1c07687 crossref_primary_10_1039_D0TC01500H crossref_primary_10_3390_gels9030250 crossref_primary_10_1021_acssuschemeng_2c07299 crossref_primary_10_26634_jes_12_2_20546 crossref_primary_10_1002_smll_202104482 crossref_primary_10_1002_aelm_201700521 crossref_primary_10_1021_acssuschemeng_4c08242 crossref_primary_10_1016_j_jallcom_2017_06_178 crossref_primary_10_1002_adma_201905522 crossref_primary_10_1039_D2TC04053K crossref_primary_10_1002_adma_201602994 crossref_primary_10_1002_advs_202302858 crossref_primary_10_1002_adma_201601783 crossref_primary_10_1016_j_progpolymsci_2021_101375 crossref_primary_10_1002_adma_201703331 crossref_primary_10_1021_acsami_0c02190 crossref_primary_10_1002_adem_202100195 crossref_primary_10_3390_biomimetics9060373 crossref_primary_10_1109_TED_2023_3269727 crossref_primary_10_1002_smtd_201800070 crossref_primary_10_1039_D0NJ00351D crossref_primary_10_1021_acs_biomac_9b00389 crossref_primary_10_1002_admt_202301282 crossref_primary_10_1007_s40820_024_01543_w crossref_primary_10_1039_D0TC03428B crossref_primary_10_1002_adfm_201901134 crossref_primary_10_1002_adma_202100221 crossref_primary_10_1002_macp_202300340 crossref_primary_10_1007_s10854_019_02485_5 crossref_primary_10_1088_2053_1591_abb857 crossref_primary_10_1088_2399_1984_ac74f9 crossref_primary_10_1021_acsabm_8b00498 crossref_primary_10_1016_j_apmt_2019_100540 crossref_primary_10_1080_29963176_2024_2417225 crossref_primary_10_1002_adma_201800129 crossref_primary_10_1016_j_cej_2023_144678 crossref_primary_10_1021_acsmaterialslett_2c00598 crossref_primary_10_1021_acsomega_3c08020 crossref_primary_10_1002_adma_201706983 crossref_primary_10_1098_rsif_2018_0305 crossref_primary_10_1002_mame_201700110 crossref_primary_10_1360_nso_20230055 crossref_primary_10_1016_j_cej_2025_160125 crossref_primary_10_1016_j_snb_2021_130297 crossref_primary_10_1002_aelm_202300323 crossref_primary_10_1016_j_nanoms_2021_07_008 crossref_primary_10_1002_adfm_202100451 crossref_primary_10_1002_smll_202310110 crossref_primary_10_1016_j_cej_2020_127960 crossref_primary_10_1080_15440478_2022_2139328 crossref_primary_10_1002_cplu_201800067 crossref_primary_10_1002_smtd_201800295 crossref_primary_10_1002_admt_202001053 crossref_primary_10_1016_j_cej_2021_130195 crossref_primary_10_3390_nano12030503 crossref_primary_10_1021_acs_chemrev_0c00897 crossref_primary_10_1016_j_isci_2022_103940 crossref_primary_10_1002_admi_201600709 crossref_primary_10_1038_s41598_025_91653_1 crossref_primary_10_1016_j_bios_2020_112620 crossref_primary_10_1039_D3RA06290B crossref_primary_10_1016_j_apmt_2019_100539 crossref_primary_10_1016_j_ceramint_2023_05_243 crossref_primary_10_1002_adfm_202111465 crossref_primary_10_1002_adma_202102302 crossref_primary_10_1109_TNANO_2020_3044243 crossref_primary_10_1021_acsbiomaterials_3c01116 crossref_primary_10_1146_annurev_bioeng_082719_032747 crossref_primary_10_1002_adma_202008308 crossref_primary_10_1016_j_cej_2023_142477 crossref_primary_10_1002_adfm_201902127 crossref_primary_10_1016_j_snb_2018_12_067 crossref_primary_10_1002_adfm_202102923 crossref_primary_10_1016_j_ijbiomac_2021_11_190 crossref_primary_10_1016_j_mtnano_2019_100041 crossref_primary_10_1088_2752_5724_ad5f48 crossref_primary_10_3390_polym12122936 crossref_primary_10_1021_acsami_9b08873 crossref_primary_10_1002_aelm_202000721 crossref_primary_10_1002_adfm_201902374 crossref_primary_10_1021_acsmaterialslett_0c00085 crossref_primary_10_1002_adfm_201603826 crossref_primary_10_1002_adfm_202302929 crossref_primary_10_1002_adfm_201703059 crossref_primary_10_1016_j_orgel_2016_09_017 crossref_primary_10_1039_C8TC05630G crossref_primary_10_1007_s40843_021_1701_7 crossref_primary_10_1016_j_ccr_2024_216264 crossref_primary_10_1002_adma_202001903 crossref_primary_10_1021_acsnano_7b03119 crossref_primary_10_1007_s10854_021_05327_5 crossref_primary_10_1002_adma_201707624 crossref_primary_10_1088_1361_6528_ac5d9f crossref_primary_10_1016_j_mtbio_2022_100290 crossref_primary_10_1016_j_snb_2022_131438 crossref_primary_10_1016_j_cej_2021_130091 crossref_primary_10_1002_admi_201700020 crossref_primary_10_1039_D3NR01347B crossref_primary_10_1021_acssuschemeng_9b05799 crossref_primary_10_1063_5_0096973 crossref_primary_10_1002_adma_202305063 crossref_primary_10_1039_D2TC00679K crossref_primary_10_1016_j_bios_2023_115890 crossref_primary_10_1039_C8CS00406D crossref_primary_10_1186_s42825_019_0009_5 crossref_primary_10_1002_adma_201902278 crossref_primary_10_1039_C7NR06807G crossref_primary_10_1515_ntrev_2023_0578 crossref_primary_10_1016_j_sbsr_2021_100403 crossref_primary_10_1021_acs_chemrev_3c00527 crossref_primary_10_1016_j_msec_2017_08_075 crossref_primary_10_1021_acsnano_8b02244 crossref_primary_10_1177_0883911518818075 crossref_primary_10_1021_acsaelm_3c01663 crossref_primary_10_3390_s23094560 crossref_primary_10_1002_adfm_201904777 crossref_primary_10_1021_acsbiomaterials_4c00254 crossref_primary_10_1002_adfm_202207714 crossref_primary_10_1007_s42114_022_00525_z crossref_primary_10_1002_adma_201601572 crossref_primary_10_1007_s40843_016_5091_1 crossref_primary_10_1039_C9NJ00482C crossref_primary_10_1002_adma_201902387 crossref_primary_10_1016_j_biomaterials_2024_122861 crossref_primary_10_1007_s40032_022_00891_z crossref_primary_10_1002_smll_202403169 crossref_primary_10_1002_aisy_202100280 crossref_primary_10_1002_cey2_186 crossref_primary_10_7498_aps_69_20200617 crossref_primary_10_1016_j_bioadv_2022_212982 crossref_primary_10_1002_admi_202201212 crossref_primary_10_1016_j_bios_2018_08_018 crossref_primary_10_1021_acsami_0c07614 crossref_primary_10_1002_adma_202005910 crossref_primary_10_1016_j_colsurfb_2016_12_013 crossref_primary_10_1016_j_mseb_2023_116536 crossref_primary_10_1016_j_mtchem_2019_04_008 crossref_primary_10_1021_acs_chemrev_3c00301 crossref_primary_10_3390_membranes11110870 crossref_primary_10_1016_j_memori_2023_100088 crossref_primary_10_1021_acsaelm_3c00799 crossref_primary_10_3390_ma10040356 crossref_primary_10_1002_smll_202004129 crossref_primary_10_1002_smll_202202509 crossref_primary_10_1016_j_colsurfa_2020_124896 crossref_primary_10_1007_s42114_021_00322_0 crossref_primary_10_1109_MNANO_2022_3208789 crossref_primary_10_1002_advs_202307232 crossref_primary_10_1039_C9NH00317G crossref_primary_10_1016_j_mattod_2017_12_001 crossref_primary_10_1080_15583724_2023_2250425 crossref_primary_10_3389_fmats_2019_00331 crossref_primary_10_1016_j_biotechadv_2019_05_004 crossref_primary_10_1021_acsami_9b23378 crossref_primary_10_1016_j_memsci_2024_122517 crossref_primary_10_1021_acsomega_3c06331 crossref_primary_10_1002_adfm_201804510 crossref_primary_10_1002_chem_201800702 crossref_primary_10_1002_adma_202002878 crossref_primary_10_1142_S2339547819300014 crossref_primary_10_1002_advs_201800714 crossref_primary_10_1002_adma_202203193 crossref_primary_10_1007_s11356_023_26135_w crossref_primary_10_1038_s41570_023_00486_x crossref_primary_10_1002_marc_202200047 crossref_primary_10_1016_j_ijbiomac_2024_137926 crossref_primary_10_1016_j_bios_2019_111595 crossref_primary_10_3389_fchem_2022_881028 crossref_primary_10_1039_D0RA05990K crossref_primary_10_1038_s41598_019_42337_0 crossref_primary_10_1002_tcr_201800015 crossref_primary_10_1002_adfm_202104088 crossref_primary_10_1039_D3TB02715E crossref_primary_10_1016_j_orgel_2017_06_015 crossref_primary_10_1016_j_carbpol_2022_120368 crossref_primary_10_1021_acssuschemeng_1c05757 crossref_primary_10_1002_admt_202301320 crossref_primary_10_3724_SP_J_1249_2019_03221 crossref_primary_10_1016_j_nanoen_2020_104974 crossref_primary_10_1002_adfm_202004554 crossref_primary_10_1557_jmr_2017_349 crossref_primary_10_1002_adfm_201700628 crossref_primary_10_1002_adma_202500073 crossref_primary_10_1002_aelm_202101127 crossref_primary_10_1016_j_matlet_2019_126945 crossref_primary_10_1021_acsomega_2c04729 crossref_primary_10_1021_acsami_8b14918 crossref_primary_10_1016_j_compscitech_2019_107950 crossref_primary_10_1080_03772063_2022_2098183 crossref_primary_10_1016_j_ijbiomac_2023_127641 crossref_primary_10_3389_fmedt_2021_675744 crossref_primary_10_1039_C6NR09916E crossref_primary_10_1016_j_jhazmat_2020_123675 crossref_primary_10_1016_j_cap_2017_01_024 crossref_primary_10_1016_j_nanoen_2020_104837 crossref_primary_10_1002_slct_202301395 crossref_primary_10_1002_adfm_202006744 crossref_primary_10_1063_1_5139494 crossref_primary_10_1002_adma_202402542 crossref_primary_10_1016_j_eng_2021_06_030 crossref_primary_10_1002_smtd_201600029 crossref_primary_10_1002_adfm_201602908 crossref_primary_10_1002_adfm_201505331 crossref_primary_10_1039_C6NR08055C crossref_primary_10_1002_adfm_202106446 crossref_primary_10_1016_j_polymer_2022_124541 crossref_primary_10_1021_acssensors_1c01734 crossref_primary_10_1021_acsaelm_0c00648 crossref_primary_10_1021_acsanm_3c06082 crossref_primary_10_1016_j_jma_2021_10_009 crossref_primary_10_1021_acsanm_8b00784 crossref_primary_10_1016_j_scib_2017_10_011 crossref_primary_10_1021_acsaem_2c04160 crossref_primary_10_1039_D0MH00503G crossref_primary_10_1021_acsami_4c17468 crossref_primary_10_2139_ssrn_4176795 crossref_primary_10_1002_smsc_202200028 crossref_primary_10_1016_j_msec_2018_01_007 crossref_primary_10_1007_s10118_020_2379_9 crossref_primary_10_3390_electronicmat2020015 crossref_primary_10_1002_slct_202000092 crossref_primary_10_1039_C7CS00278E crossref_primary_10_1021_acsnano_3c11832 crossref_primary_10_1016_j_matpr_2021_03_711 crossref_primary_10_1002_smtd_201700259 crossref_primary_10_1016_j_mtchem_2023_101624 crossref_primary_10_1038_s41467_024_53042_6 crossref_primary_10_1364_AO_486863 crossref_primary_10_1016_j_jallcom_2017_02_052 crossref_primary_10_1021_acsami_8b08014 crossref_primary_10_1021_acsmaterialslett_2c00095 crossref_primary_10_1021_acsami_7b06529 crossref_primary_10_1002_adma_201902434 crossref_primary_10_1002_mame_201800408 crossref_primary_10_1016_j_nxnano_2024_100042 crossref_primary_10_1002_adhm_201801345 crossref_primary_10_1039_C9RA02147G crossref_primary_10_1039_C8NR08721K crossref_primary_10_1016_j_compscitech_2021_108927 crossref_primary_10_1038_s41598_017_15395_5 crossref_primary_10_1002_adfm_201801448 crossref_primary_10_1016_j_mtcomm_2019_100776 crossref_primary_10_1002_aelm_201800509 crossref_primary_10_1002_admt_202200745 crossref_primary_10_1021_acsbiomaterials_6b00794 crossref_primary_10_1002_adma_201605529 crossref_primary_10_1039_D2TB01328B crossref_primary_10_3390_nano9070950 crossref_primary_10_1002_adma_202413515 crossref_primary_10_1016_j_cej_2023_145794 crossref_primary_10_3390_ma18071408 crossref_primary_10_1016_j_mtphys_2017_06_002 crossref_primary_10_1002_aenm_202400101 crossref_primary_10_1002_smll_201802050 crossref_primary_10_1039_D0TA09753E crossref_primary_10_1021_acsami_8b12523 crossref_primary_10_1021_acsapm_2c00290 crossref_primary_10_1039_D1MH01433A crossref_primary_10_1002_cjce_23961 crossref_primary_10_1007_s11082_021_02846_7 crossref_primary_10_1039_D2NR05490F crossref_primary_10_1016_j_cej_2023_143920 crossref_primary_10_1039_C9TB02352F crossref_primary_10_1002_adfm_201605657 crossref_primary_10_1002_adfm_201807611 crossref_primary_10_1016_j_eml_2024_102279 crossref_primary_10_1080_15421406_2021_1885970 crossref_primary_10_1002_admt_202000430 crossref_primary_10_1021_acs_nanolett_8b03085 crossref_primary_10_1364_OE_26_033575 crossref_primary_10_1002_adma_202211419 crossref_primary_10_1002_adfm_201805305 crossref_primary_10_1016_j_msea_2017_07_006 crossref_primary_10_1039_D2NH00163B crossref_primary_10_1021_acsami_9b10226 crossref_primary_10_1002_adfm_202213910 crossref_primary_10_1002_aenm_201903357 crossref_primary_10_1002_adfm_202210764 crossref_primary_10_1109_MED_2024_3357657 crossref_primary_10_1002_advs_201600410 crossref_primary_10_1002_ejoc_202101567 crossref_primary_10_1002_pi_6285 crossref_primary_10_1016_j_jallcom_2021_160357 crossref_primary_10_1038_s41598_022_12313_2 crossref_primary_10_1002_adhm_202100460 crossref_primary_10_1007_s11431_018_9403_8 crossref_primary_10_1039_D2TA00386D crossref_primary_10_1038_s41598_021_94047_1 crossref_primary_10_1039_C8TC03296C crossref_primary_10_1039_C9TB02570G crossref_primary_10_1002_macp_202000066 crossref_primary_10_1021_acsabm_0c00807 crossref_primary_10_1002_adma_202412972 crossref_primary_10_3390_bios12110952 crossref_primary_10_1002_adma_202001496 crossref_primary_10_1002_chem_201801302 crossref_primary_10_1007_s11814_024_00320_0 crossref_primary_10_1021_acsbiomaterials_0c01657 crossref_primary_10_1016_j_polymer_2024_127230 crossref_primary_10_1016_j_jechem_2017_10_030 crossref_primary_10_1002_adfm_202303249 crossref_primary_10_1002_adfm_202001565 crossref_primary_10_1021_acsomega_4c05531 crossref_primary_10_1016_j_xcrp_2023_101490 crossref_primary_10_1073_pnas_1911563116 crossref_primary_10_1021_acsphotonics_4c01415 crossref_primary_10_1016_j_carbpol_2022_119645 crossref_primary_10_1016_j_reactfunctpolym_2018_08_010 crossref_primary_10_1002_adhm_202400562 crossref_primary_10_1002_adma_202002695 crossref_primary_10_1002_aelm_201600510 crossref_primary_10_1088_2399_7532_aba6e3 crossref_primary_10_1002_bip_23412 crossref_primary_10_1002_adma_202411659 crossref_primary_10_1021_acs_jpcc_8b03075 crossref_primary_10_1002_adma_201701627 crossref_primary_10_3390_healthcare9020128 crossref_primary_10_1002_adfm_202003635 crossref_primary_10_1039_C6LC00519E crossref_primary_10_1021_acsabm_0c00933 crossref_primary_10_1016_j_surfin_2025_106042 crossref_primary_10_1016_j_ijbiomac_2024_131638 crossref_primary_10_1021_acsenergylett_8b02408 crossref_primary_10_1063_5_0232757 crossref_primary_10_34133_2019_3018568 crossref_primary_10_1007_s10311_020_01161_z crossref_primary_10_1016_j_bios_2021_113204 crossref_primary_10_1371_journal_pone_0270021 crossref_primary_10_1021_acsnano_4c18846 crossref_primary_10_1039_C6RA25580A crossref_primary_10_1007_s11705_022_2222_7 crossref_primary_10_1021_acsnano_8b09651 crossref_primary_10_1063_5_0040497 crossref_primary_10_1080_15980316_2021_1990145 crossref_primary_10_1021_acsami_4c12853 crossref_primary_10_1016_j_chemphys_2018_09_015 crossref_primary_10_1021_acsbiomaterials_1c00513 crossref_primary_10_1002_adfm_202002882 crossref_primary_10_1002_adma_202211202 crossref_primary_10_1002_cssc_201902979 crossref_primary_10_1016_j_ijpharm_2020_119537 crossref_primary_10_1002_slct_202405511 crossref_primary_10_1088_2053_1591_ab43ae crossref_primary_10_1016_j_snb_2018_09_100 crossref_primary_10_1038_s41378_021_00261_2 crossref_primary_10_3389_fbioe_2021_653033 crossref_primary_10_1002_smll_201600893 crossref_primary_10_1016_j_apmt_2021_101257 crossref_primary_10_1002_adfm_202007188 crossref_primary_10_1016_j_ceramint_2024_04_037 crossref_primary_10_1021_acsmaterialslett_1c00618 crossref_primary_10_3390_bios13080787 crossref_primary_10_1016_j_reactfunctpolym_2017_05_007 crossref_primary_10_1002_adom_202102742 crossref_primary_10_1016_j_mtelec_2023_100075 crossref_primary_10_1002_smll_201800945 crossref_primary_10_1002_adfm_201909540 crossref_primary_10_1002_aisy_202000180 crossref_primary_10_1039_D1MH00143D crossref_primary_10_3390_pharmaceutics14081616 crossref_primary_10_1021_acsami_2c09576 crossref_primary_10_1039_D1TC00607J crossref_primary_10_1002_admt_201800248 crossref_primary_10_1002_sstr_202200338 crossref_primary_10_1007_s11664_023_10841_9 crossref_primary_10_1007_s12541_024_01027_2 crossref_primary_10_1016_j_eml_2020_101021 crossref_primary_10_1021_acsami_7b13356 crossref_primary_10_1002_marc_202200103 crossref_primary_10_1002_smll_202411452 crossref_primary_10_1002_adma_202106787 crossref_primary_10_1002_cphc_202100279 crossref_primary_10_1088_1748_605X_ad8850 crossref_primary_10_1016_j_nanoen_2020_104882 |
Cites_doi | 10.1002/adfm.200901363 10.1021/ja052488f 10.1557/mrs.2013.59 10.1088/0957-4484/22/21/215201 10.1039/c3ee22325f 10.1063/1.1805703 10.1002/adfm.201200316 10.1063/1.4862198 10.1126/science.1200770 10.1002/adma.201204692 10.1016/j.orgel.2014.09.042 10.1002/adma.201101263 10.1016/S1369-7021(08)70119-6 10.1002/adfm.201101011 10.1126/science.1232437 10.1021/nn506394r 10.1002/adhm.201200071 10.1039/C4CS00442F 10.1038/nmat2297 10.1098/rsif.2014.0305 10.1002/adfm.200901774 10.1073/pnas.1407743111 10.1002/pi.2827 10.1038/nmat1368 10.1126/science.1226325 10.1088/0957-4484/24/34/345202 10.1038/nmat3755 10.1063/1.4841595 10.1002/adma.200602487 10.1039/c3nr03472k 10.1021/cg101410u 10.1126/science.1154367 10.1002/adma.201304821 10.1002/adma.201104104 10.1016/j.orgel.2011.04.005 10.1038/nnano.2009.456 10.1039/C5RA03501E 10.1002/smll.201402495 10.1088/0957-4484/25/28/285302 10.1038/nature06932 10.1016/S1369-7021(12)70139-6 10.1002/adma.201003860 10.1038/ncomms2832 10.1002/adma.200900375 10.1016/j.jcis.2011.07.009 10.1063/1.3278592 10.1002/adfm.201501389 10.1021/ar2001233 10.1039/b921449f 10.1002/adma.201303470 10.1002/adma.201301921 10.1002/adfm.201100249 10.1002/smll.201300810 10.1073/pnas.0401918101 10.1016/S1369-7021(12)70091-3 10.1002/adfm.201304293 10.1016/j.orgel.2007.05.003 10.1038/ncomms7269 10.1557/mrs.2012.36 10.1002/adma.201000717 10.1002/adma.201204003 10.1039/c3nr01872e 10.1039/C2TB00017B 10.1016/j.actbio.2013.03.004 10.1039/b909902f 10.1007/s13233-014-2071-4 10.1002/adma.201403807 10.1021/nl2009058 10.1002/aenm.201100394 10.1038/nature12314 10.1038/nature03090 10.1039/C3EE43111H 10.1002/adma.201303349 10.1063/1.1579554 10.1002/adfm.201301847 10.1002/adma.200502752 10.1002/adma.200902322 10.1002/adfm.201203491 10.1016/j.progpolymsci.2008.08.002 10.1021/am504163r 10.1002/adma.201201888 10.1002/adma.201301983 10.1002/adma.201003374 10.1038/nprot.2011.379 10.1021/bm4014149 10.1002/adma.200801995 10.1039/b905832j 10.1002/pssa.201329109 10.1038/ncomms1767 10.1002/adma.201201506 10.1016/j.snb.2014.04.079 10.1038/nmat1884 10.1126/science.1206157 10.1038/nphoton.2008.207 10.1002/adma.201104634 10.1002/smll.201300522 10.1002/adma.201103814 10.1039/C3NR06057H 10.1021/cr1001904 10.1002/adma.201102124 10.1063/1.3486157 10.1002/adfm.200601136 10.1016/j.electacta.2015.02.019 10.1016/j.carbon.2007.05.026 10.1002/adfm.201200073 10.1002/smll.201101494 10.1002/adma.201405728 10.1126/science.1261689 10.1063/1.2197973 10.1016/j.progpolymsci.2007.05.013 10.1038/nnano.2014.47 10.1126/science.1188936 10.1038/nmat2834 10.1002/adma.201302823 10.1021/bm200062a 10.1002/adma.201403051 10.1002/adma.201304248 10.1002/mame.201400276 10.1039/C0JM02444A 10.1002/adma.201003601 10.1002/adma.201401513 10.1002/adma.201004071 10.1038/ncomms5779 10.1021/nn2036939 10.1038/519S4a 10.1021/nn102456w 10.1002/smll.201300146 10.1038/nature01809 10.1126/science.aab2750 10.1016/S1369-7021(06)71539-5 10.1016/j.progpolymsci.2015.02.001 10.1038/nmat2745 10.1002/adfm.201303196 10.1002/marc.200700186 10.1002/smll.201401207 10.1126/science.1182383 10.1002/adma.201405807 10.1002/adma.201300920 10.1063/1.2213010 10.1002/smll.201400483 10.1002/adma.201104118 10.1021/cm049598q 10.1016/j.orgel.2012.10.007 10.1088/0957-4484/26/11/115603 10.1063/1.3238552 10.1002/adma.201301332 10.1002/adma.201004692 10.1002/adma.201103592 10.1002/adma.200904054 10.1039/C3CS60235D 10.1039/c2jm34066f 10.1002/adma.201303265 10.1021/nn400731g 10.1038/nmat2023 10.1002/adma.201100984 10.1016/S0142-9612(02)00353-8 10.1007/s12221-013-2006-2 10.1002/adfm.201300127 10.1039/b813846j 10.1002/adfm.201001031 10.1038/44359 10.1038/35104644 10.1038/nnano.2012.240 10.1002/adma.201302240 10.1063/1.4813075 10.1038/nature02498 10.1002/adma.200702559 10.1038/nmat1061 10.1002/adma.200803211 10.1002/adma.201104477 10.1126/science.1160309 10.1063/1.1690870 10.1002/adma.201305682 10.1126/science.1146458 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION NPM 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.201504276 |
DatabaseName | Istex CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 4265 |
ExternalDocumentID | 26684370 10_1002_adma_201504276 ADMA201504276 ark_67375_WNG_HD98LZ6N_J |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWM RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AANHP AAYXX ACRPL ADMLS ADNMO AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c5636-4a86f9a005a786c8f3594403c6c7aa79a071dc4b31575e2ac4b2be8da740c0be3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 23:55:39 EDT 2025 Thu Jul 10 22:50:20 EDT 2025 Thu Apr 03 07:06:31 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Tue Jul 01 00:44:23 EDT 2025 Wed Jan 22 17:06:50 EST 2025 Wed Oct 30 09:51:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | flexible electronics biomaterials biointegrated devices silk fibroin |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5636-4a86f9a005a786c8f3594403c6c7aa79a071dc4b31575e2ac4b2be8da740c0be3 |
Notes | istex:353756D474B086083D1045A6BCF0AD87CE3C9B05 ArticleID:ADMA201504276 ark:/67375/WNG-HD98LZ6N-J ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/adma.201504276 |
PMID | 26684370 |
PQID | 1795877121 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1825483947 proquest_miscellaneous_1795877121 pubmed_primary_26684370 crossref_citationtrail_10_1002_adma_201504276 crossref_primary_10_1002_adma_201504276 wiley_primary_10_1002_adma_201504276_ADMA201504276 istex_primary_ark_67375_WNG_HD98LZ6N_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Jun |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-Jun |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 2008, 321, 1468. C. H. Wang, C. Y. Hsieh, J. C. Hwang, Adv. Mater. 2011, 23, 1630. Y. J. Kim, Y. Abe, T. Yanaglura, K. C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M. S. Dresselhaus, Carbon 2007, 45, 2116. S. W. Hwang, G. Park, H. Cheng, J. K. Song, S. K. Kang, L. Yin, J. H. Kim, F. G. Omenetto, Y. Huang, K. M. Lee, J. A. Rogers, Adv. Mater. 2014, 26, 1992. C. J. Bettinger, Z. Bao, Polym. Int. 2010, 59, 563. D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, Nat. Nanotechnol. 2010, 5, 148. Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44, 5926. H.-J. Jin, D. L. Kaplan, Nature 2003, 424, 1057. U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, S. O. Kim, Adv. Mater. 2014, 26, 40. D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80. Y. Wen, Y. Liu, Y. Guo, G. Yu, W. Hu, Chem. Rev. 2011, 111, 3358. E. Kharlampieva, V. Kozlovskaya, R. Gunawidjaja, V. V. Shevchenko, R. Vaia, R. R. Naik, D. L. Kaplan, V. V. Tsukruk, Adv. Funct. Mater. 2010, 20, 840. M. Irimia-Vladu, P. A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J. W. Fergus, V. F. Razumov, H. Sitter, N. S. Sariciftci, S. Bauer, Adv. Funct. Mater. 2010, 20, 4069. S. R. Forrest, Nature 2004, 428, 911. L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu, X. Xie, S.-W. Hwang, H. Jain, S.-K. Kang, Y. Su, R. Li, Y. Huang, J. A. Rogers, Adv. Funct. Mater. 2014, 24, 645. M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, Z. A. Bao, Adv. Mater. 2013, 25, 5997. Y. Yang, W. Lu, Nanoscale 2013, 5, 10076. L. L. Zhang, X. S. Zhao, Chem. Soc. Rev. 2009, 38, 2520. K. Bourzac, Nature 2015, 519, S4. H. Tao, S. M. Siebert, M. A. Brenckle, R. D. Averitt, M. Cronin-Golomb, D. L. Kaplan, F. G. Omenetto, Appl. Phys. Lett. 2010, 97, 123702. Y. He, H. Dong, Q. Meng, L. Jiang, W. Shao, L. He, W. Hu, Adv. Mater. 2011, 23, 5502. X. You, J. J. Pak, Sens. Actuators, B 2014, 202, 1357. X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R.-W. Li, Adv. Mater. 2012, 24, 3941. T.-i. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, M. R. Bruchas, Science 2013, 340, 211. A. D. Franklin, Science 2015, 349, aab2750. S. E. Thompson, S. Parthasarathy, Mater. Today 2006, 9, 20. T. Wang, D. Porter, Z. Shao, Adv. Funct. Mater. 2012, 22, 435. P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss, Appl. Phys. Lett. 2003, 82, 3964. A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366. H. A. Currie, O. Deschaume, R. R. Naik, C. C. Perry, D. L. Kaplan, Adv. Funct. Mater. 2011, 21, 2889. H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Adv. Mater. 2013, 25, 5498. M. Muskovich, C. J. Bettinger, Adv. Healthcare Mater. 2012, 1, 248. S. Yin, Y. Goldovsky, M. Herzberg, L. Liu, H. Sun, Y. Zhang, F. Meng, X. Cao, D. D. Sun, H. Chen, A. Kushmaro, X. Chen, Adv. Funct. Mater. 2013, 23, 2972. G. Yin, Z. Huang, M. Deng, J. Zeng, J. Gu, J. Colloid Interface Sci 2011, 363, 393. L.-D. Koh, Y. Cheng, C.-P. Teng, Y.-W. Khin, X.-J. Loh, S.-Y. Tee, M. Low, E. Ye, H.-D. Yu, Y.-W. Zhang, M.-Y. Han, Prog. Polym. Sci. 2015, 46, 86. X. Xu, B. Liu, Y. Zou, Y. Guo, L. Li, Y. Liu, Adv. Funct. Mater. 2012, 22, 4139. A. Hübler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A. Wagenpfahl, C. Deibel, V. Dyakonov, Adv. Energy Mater. 2011, 1, 1018. J.-W. Jeong, W.-H. Yeo, A. Akhtar, J. J. S. Norton, Y.-J. Kwack, S. Li, S.-Y. Jung, Y. Su, W. Lee, J. Xia, H. Cheng, Y. Huang, W.-S. Choi, T. Bretl, J. A. Rogers, Adv. Mater. 2013, 25, 6839. P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, N. S. Sariciftci, Org. Electron. 2007, 8, 648. F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Appl. Phys. Lett. 2004, 84, 2673. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 499, 458. S. C. Kundu, B. C. Dash, R. Dash, D. L. Kaplan, Prog. Polym. Sci. 2008, 33, 998. C. L. Tsai, L. S. Tsai, J. C. Hwang, Org. Electron. 2012, 13, 3315. M. Karakawa, M. Chikamatsu, Y. Yoshida, R. Azumi, K. Yase, C. Nakamoto, Macromol. Rapid. Comm. 2007, 28, 1479. P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845. S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 2010, 9, 859. M. Irimia-Vladu, E. D. Głowacki, G. Voss, S. Bauer, N. S. Sariciftci, Mater. Today 2012, 15, 340. Y. S. Yun, S. Y. Cho, J. Shim, B. H. Kim, S.-J. Chang, S. J. Baek, Y. S. Huh, Y. Tak, Y. W. Park, S. Park, H.-J. Jin, Adv. Mater. 2013, 25, 1993. D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, J. A. Rogers, Nat. Mater. 2010, 9, 511. H. Wang, Y. Du, Y. Li, B. Zhu, W. R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Adv. Funct. Mater. 2015, 25, 3825. X. Zhang, Z. Fan, Q. Lu, Y. Huang, D. L. Kaplan, H. Zhu, Acta Biomater. 2013, 9, 6974. B. J. Kim, Y. Ko, J. H. Cho, J. Cho, Small 2013, 9, 3784. K. D. Kim, C. K. Song, Appl. Phys. Lett. 2006, 88, 233508. J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano 2015, 9, 2556. F. G. Omenetto, D. L. Kaplan, Nat. Photonics 2008, 2, 641. D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, Science 2008, 320, 507. Y. Ko, Y. Kim, H. Baek, J. Cho, ACS Nano 2011, 5, 9918. A. C. Siegel, S. T. Phillips, B. J. Wiley, G. M. Whitesides, Lab Chip 2009, 9, 2775. X. Hu, P. Cebe, A. S. Weiss, F. Omenetto, D. L. Kaplan, Mater. Today 2012, 15, 208. M. Irimia-Vladu, Chem. Soc. Rev. 2014, 43, 588. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537. J. Kim, A. Banks, H. Cheng, Z. Xie, S. Xu, K.-I. Jang, J. W. Lee, Z. Liu, P. Gutruf, X. Huang, P. Wei, F. Liu, K. Li, M. Dalal, R. Ghaffari, X. Feng, Y. Huang, S. Gupta, U. Paik, J. A. Rogers, Small 2015, 11, 906. J. Park, S. Y. Park, S.-O. Shim, H. Kang, H. H. Lee, Appl. Phys. Lett. 2004, 85, 3283. T. Sekitani, T. Someya, Adv. Mater. 2010, 22, 2228. S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, Adv. Mater. 2014, 26, 149. T. Wang, R. Che, W. Li, R. Mi, Z. Shao, Cryst. Growth Des. 2011, 11, 2164. N. C. Tansil, L. D. Koh, M.-Y. Han, Adv. Mater. 2012, 24, 1388. B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Small 2014, 10, 3625. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Adv. Mater. 2012, 24, 1844. Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Adv. Mater. 2011, 23, 4828. H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett. 2011, 11, 2472. M. C. Barr, J. A. Rowehl, R. R. Lunt, J. Xu, A. Wang, C. M. Boyce, S. G. Im, V. Bulović, K. K. Gleason, Adv. Mater. 2011, 23, 3500. X. Fei, Z. Shao, X. Chen, J. Mater. Chem. B 2013, 1, 213. N. Gogurla, S. P. Mondal, A. K. Sinha, A. K. Katiyar, W. Banerjee, S. C. Kundu, S. K. Ray, Nanotechnology 2013, 24, 345202. W. Sheng, G. Zhu, D. L. Kaplan, C. Cao, H. Zhu, Q. Lu, Nanotechnology 2015, 26, 115603. X. Fei, Z. Z. Shao, X. Chen, Nanoscale 2013, 5, 7991. A. N. Sokolov, B. C. Tee, C. J. Bettinger, J. B.-H. Tok, Z. Bao, Acc. Chem. Res. 2011, 45, 361. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, D. L. Kaplan, Biomaterials. 2003, 24, 401. M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 2013, 6, 1249. N. E. Kurland, T. Dey, S. C. Kundu, V. K. Yadavalli, Adv. Mater. 2013, 25, 6207. D.-H. Kim, N. Lu, Y. Huang, J. A. Rogers, MRS Bull. 2012, 37, 226. M. Hamedi, R. Forchheimer, O. Inganas, Nat. Mater. 2007, 6, 357. C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, V. V. Tsukruk, Adv. Funct. Mater. 2007, 17, 2229. A. Sawa, Mater. Today 2008, 11, 28. H.-B. Yao, J. Ge, L.-B. Mao, Y.-X. Yan, S.-H. Yu, Adv. Mater. 2014, 26, 163. C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, M. Hedhammar, O. Inganäs, Adv. Mater. 2011, 23, 898. S.-W. Hwang, D.-H. Kim, H. Tao, T.-i. Kim, S. Kim, K. J. Yu, B. Panilaitis, J.-W. Jeong, J.-K. Song, F. G. Omenetto, J. A. Rogers, Adv. Funct. Mater. 2013, 23, 4087. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, J. A. Rogers, Science 2011, 333, 838. C. J. Bettinger, K. M. Cyr, A. Matsumoto, R. Langer, J. T. Borenstein, D. L. Kaplan, Adv. Mater. 2007, 19, 2847. Y. Wang, X. Yan, R. Dong, Org. Electron. 2014, 15, 3476. V. Sahu, S. Grover, B. Tulachan, M. Sharma, G. Srivastava, M. Roy, M. Saxena, N. Sethy, K. Bhargava, D. Philip, H. Kim, G. Singh, S. K. Singh, M. Das, R. K. Sharma, Electrochim. Acta 2015, 160, 244. Y. Zang, F. Zhang, D. Huang, X. Gao, C.-a. Di, D. Zhu, Nat. Commun. 2015, 6. J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S.-T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, D.-H. Kim, Nat. Commun. 2014, 5. C. Mukherjee, M. K. Hota, D. Naskar, S. C. Kundu, C. K. Maiti, Phys. Status Solidi 2013, 210, 1797. R. F. P. Pereira, M. M. Silva, V. de Zea Bermudez, Macromol. Mater. Eng. 2015, DOI: 10.1002/mame.201400276. Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. C 2010; 97 2013; 4 2013; 1 2014; 27 2014; 26 2004; 3 2014; 25 2014; 24 2008; 33 2012; 15 2013; 7 2012; 13 2013; 8 2013; 5 2013; 6 2014; 22 2011; 111 2013; 9 2010; 22 2010; 20 2009; 95 2007; 8 2014; 15 2007; 6 2008; 20 2012; 24 2010; 5 2012; 22 2010; 4 2014; 11 2014; 10 2010; 9 2001; 414 2011; 363 2007; 17 2007; 19 2010; 329 2011; 1 2010; 327 2010; 39 2013; 103 2013; 340 2012; 37 2004; 428 2011; 6 2011; 5 2011; 7 2014; 43 2004; 432 2005; 127 2003; 24 2015; 519 2005; 4 2013; 210 2007; 318 2013; 25 2010; 59 2015; 347 2013; 24 2013; 23 2008; 7 2011; 11 2011; 12 2015; 349 2008; 2 2007; 32 1999; 401 2015; 46 2007; 28 2014; 5 2013; 14 2013; 12 2015; 44 2011; 22 2011; 21 2011; 23 2003; 82 2014; 9 2014; 7 2014; 6 2012; 337 2014; 202 2004; 101 2015; 160 2004; 85 2011; 333 2015; 6 2004; 84 2015; 5 2009; 21 2006; 9 2015; 11 2006; 18 2008; 11 2008; 321 2008; 320 2014; 111 2015; 9 2011; 332 2015; 26 2015; 25 2015; 27 2012; 3 2012; 1 2003; 424 2013; 38 2004; 16 2006; 88 2009; 9 2013; 499 2011; 45 2015 2008; 453 2007; 45 2009; 38 2014; 104 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_161_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_146_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_173_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_166_1 e_1_2_7_147_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_170_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_171_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_175_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_164_1 e_1_2_7_145_1 e_1_2_7_168_1 e_1_2_7_149_1 Kim J. (e_1_2_7_40_1) 2014; 5 e_1_2_7_119_1 Mukherjee C. (e_1_2_7_169_1) 2013; 210 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_172_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_138_1 |
References_xml | – reference: E. Kharlampieva, V. Kozlovskaya, R. Gunawidjaja, V. V. Shevchenko, R. Vaia, R. R. Naik, D. L. Kaplan, V. V. Tsukruk, Adv. Funct. Mater. 2010, 20, 840. – reference: U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, H. Klauk, Adv. Mater. 2011, 23, 654. – reference: M. Uenuma, K. Kawano, B. Zheng, N. Okamoto, M. Horita, S. Yoshii, I. Yamashita, Y. Uraoka, Nanotechnology 2011, 22, 215201. – reference: R. Capelli, J. J. Amsden, G. Generali, S. Toffanin, V. Benfenati, M. Muccini, D. L. Kaplan, F. G. Omenetto, R. Zamboni, Org. Electron. 2011, 12, 1146. – reference: C. Yumusak, T. B. Singh, N. S. Sariciftci, J. G. Grote, Appl. Phys. Lett. 2009, 95, 263304. – reference: K.-I. Jang, S. Y. Han, S. Xu, K. E. Mathewson, Y. Zhang, J.-W. Jeong, G.-T. Kim, R. C. Webb, J. W. Lee, T. J. Dawidczyk, R. H. Kim, Y. M. Song, W.-H. Yeo, S. Kim, H. Cheng, S. I. Rhee, J. Chung, B. Kim, H. U. Chung, D. Lee, Y. Yang, M. Cho, J. G. Gaspar, R. Carbonari, M. Fabiani, G. Gratton, Y. Huang, J. A. Rogers, Nat. Commun. 2014, 5, 4779. – reference: M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan, R. R. Naik, N. Verma, F. G. Omenetto, M. C. McAlpine, Nat. Commun. 2012, 3, 763. – reference: S. R. Forrest, Nature 2004, 428, 911. – reference: J. M. Tarascon, M. Armand, Nature 2001, 414, 359. – reference: X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R.-W. Li, Adv. Mater. 2012, 24, 3941. – reference: B. J. Kim, Y. Ko, J. H. Cho, J. Cho, Small 2013, 9, 3784. – reference: X. Fei, Z. Shao, X. Chen, J. Mater. Chem. B 2013, 1, 213. – reference: C. L. Tsai, L. S. Tsai, J. C. Hwang, Org. Electron. 2012, 13, 3315. – reference: N. C. Tansil, L. D. Koh, M.-Y. Han, Adv. Mater. 2012, 24, 1388. – reference: L.-S. Tsai, J.-C. Hwang, C.-Y. Lee, Y.-T. Lin, C.-L. Tsai, T.-H. Chang, Y.-L. Chueh, H.-F. Meng, Appl. Phys. Lett. 2013, 103, 233304. – reference: M. Irimia-Vladu, E. D. Głowacki, G. Voss, S. Bauer, N. S. Sariciftci, Mater. Today 2012, 15, 340. – reference: F. G. Omenetto, D. L. Kaplan, Nat. Photonics 2008, 2, 641. – reference: J. Kim, A. Banks, H. Cheng, Z. Xie, S. Xu, K.-I. Jang, J. W. Lee, Z. Liu, P. Gutruf, X. Huang, P. Wei, F. Liu, K. Li, M. Dalal, R. Ghaffari, X. Feng, Y. Huang, S. Gupta, U. Paik, J. A. Rogers, Small 2015, 11, 906. – reference: J.-W. Jeong, W.-H. Yeo, A. Akhtar, J. J. S. Norton, Y.-J. Kwack, S. Li, S.-Y. Jung, Y. Su, W. Lee, J. Xia, H. Cheng, Y. Huang, W.-S. Choi, T. Bretl, J. A. Rogers, Adv. Mater. 2013, 25, 6839. – reference: Y. J. Kim, Y. Abe, T. Yanaglura, K. C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M. S. Dresselhaus, Carbon 2007, 45, 2116. – reference: R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632. – reference: N. Gogurla, S. P. Mondal, A. K. Sinha, A. K. Katiyar, W. Banerjee, S. C. Kundu, S. K. Ray, Nanotechnology 2013, 24, 345202. – reference: S. E. Thompson, S. Parthasarathy, Mater. Today 2006, 9, 20. – reference: Q. Cao, J. A. Rogers, Adv. Mater. 2009, 21, 29. – reference: S. W. Hwang, S. K. Kang, X. Huang, M. A. Brenckle, F. G. Omenetto, J. A. Rogers, Adv. Mater. 2015, 27, 47. – reference: M. Muskovich, C. J. Bettinger, Adv. Healthcare Mater. 2012, 1, 248. – reference: L. L. Zhang, X. S. Zhao, Chem. Soc. Rev. 2009, 38, 2520. – reference: K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 2004, 432, 488. – reference: M. Karakawa, M. Chikamatsu, Y. Yoshida, R. Azumi, K. Yase, C. Nakamoto, Macromol. Rapid. Comm. 2007, 28, 1479. – reference: H. Tao, D. L. Kaplan, F. G. Omenetto, Adv. Mater. 2012, 24, 2824. – reference: X. Zhang, Z. Fan, Q. Lu, Y. Huang, D. L. Kaplan, H. Zhu, Acta Biomater. 2013, 9, 6974. – reference: D. Lin, H. Tao, J. Trevino, J. P. Mondia, D. L. Kaplan, F. G. Omenetto, L. Dal Negro, Adv. Mater. 2012, 24, 6088. – reference: Y. He, H. Dong, Q. Meng, L. Jiang, W. Shao, L. He, W. Hu, Adv. Mater. 2011, 23, 5502. – reference: S. Kim, B. Marelli, M. A. Brenckle, A. N. Mitropoulos, E.-S. Gil, K. Tsioris, H. Tao, D. L. Kaplan, F. G. Omenetto, Nat. Nanotechnol. 2014, 9, 306. – reference: H. A. Currie, O. Deschaume, R. R. Naik, C. C. Perry, D. L. Kaplan, Adv. Funct. Mater. 2011, 21, 2889. – reference: C.-Y. Hsieh, J.-C. Hwang, T.-H. Chang, J.-Y. Li, S.-H. Chen, L.-K. Mao, L.-S. Tsai, Y.-L. Chueh, P.-C. Lyu, S. S. H. Hsu, Appl. Phys. Lett. 2013, 103, 023303. – reference: H. Wang, B. Zhu, W. Jiang, Y. Yang, W. R. Leow, H. Wang, X. Chen, Adv. Mater. 2014, 26, 3638. – reference: R. A. Street, Adv. Mater. 2009, 21, 2007. – reference: K. Bourzac, Nature 2015, 519, S4. – reference: H. Klauk, Chem. Soc. Rev. 2010, 39, 2643. – reference: N. E. Kurland, T. Dey, S. C. Kundu, V. K. Yadavalli, Adv. Mater. 2013, 25, 6207. – reference: D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, Nat. Nanotechnol. 2010, 5, 148. – reference: X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Adv. Mater. 2014, 26, 1336. – reference: H.-J. Jin, D. L. Kaplan, Nature 2003, 424, 1057. – reference: X. Sun, C.-a. Di, Y. Liu, J. Mater. Chem. 2010, 20, 2599. – reference: M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, Z. A. Bao, Adv. Mater. 2013, 25, 5997. – reference: C. Kim, A. Facchetti, T. J. Marks, Science 2007, 318, 76. – reference: P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845. – reference: Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Adv. Mater. 2011, 23, 4828. – reference: C. Vepari, D. L. Kaplan, Prog. Polym. Sci. 2007, 32, 991. – reference: H.-B. Yao, J. Ge, L.-B. Mao, Y.-X. Yan, S.-H. Yu, Adv. Mater. 2014, 26, 163. – reference: J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano 2015, 9, 2556. – reference: W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Energy Environ. Sci. 2014, 7, 379. – reference: H. Tao, M. A. Brenckle, M. Yang, J. Zhang, M. Liu, S. M. Siebert, R. D. Averitt, M. S. Mannoor, M. C. McAlpine, J. A. Rogers, D. L. Kaplan, F. G. Omenetto, Adv. Mater. 2012, 24, 1067. – reference: Y. Cheng, L. D. Koh, D. C. Li, B. H. Ji, M. Y. Han, Y. W. Zhang, J. R. Soc. Interface 2014, 11, 8. – reference: D. Tobjörk, R. Österbacka, Adv. Mater. 2011, 23, 1935. – reference: Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 2015, 44, 5926. – reference: X. Fei, Z. Z. Shao, X. Chen, Nanoscale 2013, 5, 7991. – reference: M.-H. Yoon, H. Yan, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 10388. – reference: J. Kim, M. Lee, H. J. Shim, R. Ghaffari, H. R. Cho, D. Son, Y. H. Jung, M. Soh, C. Choi, S. Jung, K. Chu, D. Jeon, S.-T. Lee, J. H. Kim, S. H. Choi, T. Hyeon, D.-H. Kim, Nat. Commun. 2014, 5. – reference: Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537. – reference: H. Tao, S. M. Siebert, M. A. Brenckle, R. D. Averitt, M. Cronin-Golomb, D. L. Kaplan, F. G. Omenetto, Appl. Phys. Lett. 2010, 97, 123702. – reference: C. J. Bettinger, Z. Bao, Polym. Int. 2010, 59, 563. – reference: H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685. – reference: H. Wang, F. Meng, Y. Cai, L. Zheng, Y. Li, Y. Liu, Y. Jiang, X. Wang, X. Chen, Adv. Mater. 2013, 25, 5498. – reference: Y. Ko, Y. Kim, H. Baek, J. Cho, ACS Nano 2011, 5, 9918. – reference: N. Qi, B. Zhao, S.-D. Wang, S. S. Al-Deyab, K.-Q. Zhang, RSC Adv. 2015, 5, 50878. – reference: C. Mukherjee, M. K. Hota, D. Naskar, S. C. Kundu, C. K. Maiti, Phys. Status Solidi 2013, 210, 1797. – reference: F. Meng, B. Sana, Y. Li, Y. Liu, S. Lim, X. Chen, Small 2014, 10, 277. – reference: M. Nogi, H. Yano, Adv. Mater. 2008, 20, 1849. – reference: S. Yin, Y. Goldovsky, M. Herzberg, L. Liu, H. Sun, Y. Zhang, F. Meng, X. Cao, D. D. Sun, H. Chen, A. Kushmaro, X. Chen, Adv. Funct. Mater. 2013, 23, 2972. – reference: S. W. Hwang, G. Park, H. Cheng, J. K. Song, S. K. Kang, L. Yin, J. H. Kim, F. G. Omenetto, Y. Huang, K. M. Lee, J. A. Rogers, Adv. Mater. 2014, 26, 1992. – reference: T. Sekitani, T. Someya, Adv. Mater. 2010, 22, 2228. – reference: L. Liu, Z. Niu, L. Zhang, W. Zhou, X. Chen, S. Xie, Adv. Mater. 2014, 26, 4855. – reference: X. Fei, M. Jia, X. Du, Y. Yang, R. Zhang, Z. Shao, X. Zhao, X. Chen, Biomacromolecules 2013, 14, 4483. – reference: R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.-S. Kim, W.-H. Yeo, J. S. Park, J. Song, Y. Li, Y. Huang, A. M. Gorbach, J. A. Rogers, Nat. Mater. 2013, 12, 938. – reference: P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, N. S. Sariciftci, Org. Electron. 2007, 8, 648. – reference: A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366. – reference: L.-D. Koh, Y. Cheng, C.-P. Teng, Y.-W. Khin, X.-J. Loh, S.-Y. Tee, M. Low, E. Ye, H.-D. Yu, Y.-W. Zhang, M.-Y. Han, Prog. Polym. Sci. 2015, 46, 86. – reference: F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Appl. Phys. Lett. 2004, 84, 2673. – reference: D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, Nature 2008, 453, 80. – reference: T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, T. Someya, Science 2008, 321, 1468. – reference: E. Kharlampieva, V. Kozlovskaya, B. Wallet, V. V. Shevchenko, R. R. Naik, R. Vaia, D. L. Kaplan, V. V. Tsukruk, ACS Nano 2010, 4, 7053. – reference: J. Wang, S. Kaskel, J. Mater. Chem. 2012, 22, 23710. – reference: Y. S. Yun, S. Y. Cho, H. J. Jin, Macromol. Res. 2014, 22, 509. – reference: G. Yin, Z. Huang, M. Deng, J. Zeng, J. Gu, J. Colloid Interface Sci 2011, 363, 393. – reference: G. Schwartz, B. C. K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, Z. Bao, Nat. Commun. 2013, 4, 1859. – reference: A. Sawa, Mater. Today 2008, 11, 28. – reference: H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T. J. Stephenson, C. K. King'ondu, C. M. B. Holt, B. C. Olsen, J. K. Tak, D. Harfield, A. O. Anyia, D. Mitlin, ACS Nano 2013, 7, 5131. – reference: C. Müller, M. Hamedi, R. Karlsson, R. Jansson, R. Marcilla, M. Hedhammar, O. Inganäs, Adv. Mater. 2011, 23, 898. – reference: T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. USA 2004, 101, 9966. – reference: B. Liang, L. Fang, Y. Hu, G. Yang, Q. Zhu, X. Ye, Nanoscale 2014, 6, 4264. – reference: M. D. Tang-Schomer, X. Hu, M. Hronik-Tupaj, L. W. Tien, M. J. Whalen, F. G. Omenetto, D. L. Kaplan, Adv. Funct. Mater. 2014, 24, 1938. – reference: X. You, J. J. Pak, Sens. Actuators, B 2014, 202, 1357. – reference: M. A. McEvoy, N. Correll, Science 2015, 347, 1261689. – reference: Y. S. Yun, S. Y. Cho, J. Shim, B. H. Kim, S.-J. Chang, S. J. Baek, Y. S. Huh, Y. Tak, Y. W. Park, S. Park, H.-J. Jin, Adv. Mater. 2013, 25, 1993. – reference: D. H. Kim, Y. S. Kim, J. Amsden, B. Panilaitis, D. L. Kaplan, F. G. Omenetto, M. R. Zakin, J. A. Rogers, Appl. Phys. Lett. 2009, 95, 133701. – reference: X. Hu, K. Shmelev, L. Sun, E.-S. Gil, S.-H. Park, P. Cebe, D. L. Kaplan, Biomacromolecules 2011, 12, 1686. – reference: N. C. Tansil, Y. Li, C. P. Teng, S. Zhang, K. Y. Win, X. Chen, X. Y. Liu, M.-Y. Han, Adv. Mater. 2011, 23, 1463. – reference: H. Tao, S.-W. Hwang, B. Marelli, B. An, J. E. Moreau, M. Yang, M. A. Brenckle, S. Kim, D. L. Kaplan, J. A. Rogers, F. G. Omenetto, Proc. Natl. Acad. Sci. USA 2014, 111, 17385. – reference: C. J. Bettinger, K. M. Cyr, A. Matsumoto, R. Langer, J. T. Borenstein, D. L. Kaplan, Adv. Mater. 2007, 19, 2847. – reference: K. D. Kim, C. K. Song, Appl. Phys. Lett. 2006, 88, 233508. – reference: A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, G. M. Whitesides, Adv. Funct. Mater. 2010, 20, 28. – reference: Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Adv. Mater. 2012, 24, 1844. – reference: G. Zheng, Y. Cui, E. Karabulut, L. Wågberg, H. Zhu, L. Hu, MRS Bull. 2013, 38, 320. – reference: R. F. P. Pereira, M. M. Silva, V. de Zea Bermudez, Macromol. Mater. Eng. 2015, DOI: 10.1002/mame.201400276. – reference: J.-W. Chang, C.-G. Wang, C.-Y. Huang, T.-D. Tsai, T.-F. Guo, T.-C. Wen, Adv. Mater. 2011, 23, 4077. – reference: S.-W. Hwang, X. Huang, J.-H. Seo, J.-K. Song, S. Kim, S. Hage-Ali, H.-J. Chung, H. Tao, F. G. Omenetto, Z. Ma, J. A. Rogers, Adv. Mater. 2013, 25, 3526. – reference: A. C. Siegel, S. T. Phillips, B. J. Wiley, G. M. Whitesides, Lab Chip 2009, 9, 2775. – reference: C. Pang, J. H. Koo, A. Nguyen, J. M. Caves, M. G. Kim, A. Chortos, K. Kim, P. J. Wang, J. B. Tok, Z. Bao, Adv. Mater. 2014, 27, 634. – reference: X. Huang, Y. Liu, K. Chen, W.-J. Shin, C.-J. Lu, G.-W. Kong, D. Patnaik, S.-H. Lee, J. F. Cortes, J. A. Rogers, Small 2014, 10, 3083. – reference: S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, Adv. Mater. 2014, 26, 149. – reference: C. H. Wang, C. Y. Hsieh, J. C. Hwang, Adv. Mater. 2011, 23, 1630. – reference: D. Qi, Z. Liu, M. Yu, Y. Liu, Y. Tang, J. Lv, Y. Li, J. Wei, B. Liedberg, Z. Yu, X. Chen, Adv. Mater. 2015, 27, 3145. – reference: D.-H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, J. A. Rogers, Nat. Mater. 2010, 9, 511. – reference: S.-K. Kang, S.-W. Hwang, H. Cheng, S. Yu, B. H. Kim, J.-H. Kim, Y. Huang, J. A. Rogers, Adv. Funct. Mater. 2014, 24, 4427. – reference: S.-W. Hwang, D.-H. Kim, H. Tao, T.-i. Kim, S. Kim, K. J. Yu, B. Panilaitis, J.-W. Jeong, J.-K. Song, F. G. Omenetto, J. A. Rogers, Adv. Funct. Mater. 2013, 23, 4087. – reference: L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu, X. Xie, S.-W. Hwang, H. Jain, S.-K. Kang, Y. Su, R. Li, Y. Huang, J. A. Rogers, Adv. Funct. Mater. 2014, 24, 645. – reference: J. J. Yang, D. B. Strukov, D. R. Stewart, Nat. Nanotechnol. 2013, 8, 13. – reference: S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, Z. Bao, Nat. Mater. 2010, 9, 859. – reference: J. Veres, S. Ogier, G. Lloyd, D. de Leeuw, Chem. Mater. 2004, 16, 4543. – reference: Y. Wen, Y. Liu, Y. Guo, G. Yu, W. Hu, Chem. Rev. 2011, 111, 3358. – reference: X. Xu, B. Liu, Y. Zou, Y. Guo, L. Li, Y. Liu, Adv. Funct. Mater. 2012, 22, 4139. – reference: A. N. Sokolov, B. C. Tee, C. J. Bettinger, J. B.-H. Tok, Z. Bao, Acc. Chem. Res. 2011, 45, 361. – reference: J. Park, S. Y. Park, S.-O. Shim, H. Kang, H. H. Lee, Appl. Phys. Lett. 2004, 85, 3283. – reference: Y. Yang, W. Lu, Nanoscale 2013, 5, 10076. – reference: C. J. Bettinger, Z. Bao, Adv. Mater. 2010, 22, 651. – reference: M. C. Barr, J. A. Rowehl, R. R. Lunt, J. Xu, A. Wang, C. M. Boyce, S. G. Im, V. Bulović, K. K. Gleason, Adv. Mater. 2011, 23, 3500. – reference: X. Hu, P. Cebe, A. S. Weiss, F. Omenetto, D. L. Kaplan, Mater. Today 2012, 15, 208. – reference: M. Biswal, A. Banerjee, M. Deo, S. Ogale, Energy Environ. Sci. 2013, 6, 1249. – reference: Y. Choi, Y. Yun, S. Cho, M. Lee, H.-J. Jin, Fiber Polym. 2013, 14, 2006. – reference: M. W. Jung, S. Myung, K. W. Kim, W. Song, Y.-Y. Jo, S. S. Lee, J. Lim, C.-Y. Park, K.-S. An, Nanotechnology 2014, 25, 285302. – reference: T. Wang, R. Che, W. Li, R. Mi, Z. Shao, Cryst. Growth Des. 2011, 11, 2164. – reference: S. C. Kundu, B. C. Dash, R. Dash, D. L. Kaplan, Prog. Polym. Sci. 2008, 33, 998. – reference: Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, X. Chen, Adv. Mater. 2013, 25, 4035. – reference: R. Waser, M. Aono, Nat. Mater. 2007, 6, 833. – reference: Y. Zang, F. Zhang, D. Huang, X. Gao, C.-a. Di, D. Zhu, Nat. Commun. 2015, 6. – reference: F. Meng, L. Jiang, K. Zheng, C. F. Goh, S. Lim, H. H. Hng, J. Ma, F. Boey, X. Chen, Small 2011, 7, 3016. – reference: M. Irimia-Vladu, P. A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, J. W. Fergus, V. F. Razumov, H. Sitter, N. S. Sariciftci, S. Bauer, Adv. Funct. Mater. 2010, 20, 4069. – reference: W. Sheng, G. Zhu, D. L. Kaplan, C. Cao, H. Zhu, Q. Lu, Nanotechnology 2015, 26, 115603. – reference: D. N. Rockwood, R. C. Preda, T. Yucel, X. Wang, M. L. Lovett, D. L. Kaplan, Nat. Protoc. 2011, 6, 1612. – reference: G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, D. L. Kaplan, Biomaterials. 2003, 24, 401. – reference: M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, Nature 2013, 499, 458. – reference: A. D. Franklin, Science 2015, 349, aab2750. – reference: T. Wang, D. Porter, Z. Shao, Adv. Funct. Mater. 2012, 22, 435. – reference: Y. Wang, X. Yan, R. Dong, Org. Electron. 2014, 15, 3476. – reference: J. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603. – reference: K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, H. Koinuma, Adv. Mater. 2006, 18, 1713. – reference: D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. McCormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, J. A. Rogers, Science 2011, 333, 838. – reference: V. Sahu, S. Grover, B. Tulachan, M. Sharma, G. Srivastava, M. Roy, M. Saxena, N. Sethy, K. Bhargava, D. Philip, H. Kim, G. Singh, S. K. Singh, M. Das, R. K. Sharma, Electrochim. Acta 2015, 160, 244. – reference: S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, J. A. Rogers, Science 2012, 337, 1640. – reference: D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, Science 2008, 320, 507. – reference: J. A. Hagen, W. Li, A. J. Steckl, J. G. Grote, Appl. Phys. Lett. 2006, 88, 171109. – reference: U. N. Maiti, W. J. Lee, J. M. Lee, Y. Oh, J. Y. Kim, J. E. Kim, J. Shim, T. H. Han, S. O. Kim, Adv. Mater. 2014, 26, 40. – reference: T.-i. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li, J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, C. Lu, S. D. Lee, I.-S. Song, G. Shin, R. Al-Hasani, S. Kim, M. P. Tan, Y. Huang, F. G. Omenetto, J. A. Rogers, M. R. Bruchas, Science 2013, 340, 211. – reference: M. Irimia-Vladu, Chem. Soc. Rev. 2014, 43, 588. – reference: Y. Q. Liu, N. Qi, T. Song, M. L. Jia, Z. H. Xia, Z. C. Yuan, W. Yuan, K. Q. Zhang, B. Q. Sun, ACS Appl. Mater. Interfaces 2014, 6, 20670. – reference: Z. Niu, H. Dong, B. Zhu, J. Li, H. H. Hng, W. Zhou, X. Chen, S. Xie, Adv. Mater. 2013, 25, 1058. – reference: H. Wang, Y. Du, Y. Li, B. Zhu, W. R. Leow, Y. Li, J. Pan, T. Wu, X. Chen, Adv. Funct. Mater. 2015, 25, 3825. – reference: J. Cabana, L. Monconduit, D. Larcher, M. R. Palacín, Adv. Mater. 2010, 22, E170. – reference: F. G. Omenetto, D. L. Kaplan, Science 2010, 329, 528. – reference: C. Dagdeviren, S.-W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F. G. Omenetto, Y. Huang, J. A. Rogers, Small 2013, 9, 3398. – reference: G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.-H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, D. M. de Leeuw, Nat. Mater. 2004, 3, 106. – reference: H. Wang, F. Meng, B. Zhu, W. R. Leow, Y. Liu, X. Chen, Adv. Mater. 2015, DOI: 10.1002/adma.201405728. – reference: B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Small 2014, 10, 3625. – reference: P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, S. D. Theiss, Appl. Phys. Lett. 2003, 82, 3964. – reference: C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. K. Gupta, D. L. Kaplan, R. R. Naik, V. V. Tsukruk, Adv. Funct. Mater. 2007, 17, 2229. – reference: H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett. 2011, 11, 2472. – reference: M. K. Hota, M. K. Bera, B. Kundu, S. C. Kundu, C. K. Maiti, Adv. Funct. Mater. 2012, 22, 4493. – reference: L. Qie, W.-M. Chen, Z.-H. Wang, Q.-G. Shao, X. Li, L.-X. Yuan, X.-L. Hu, W.-X. Zhang, Y.-H. Huang, Adv. Mater. 2012, 24, 2047. – reference: M. Hamedi, R. Forchheimer, O. Inganas, Nat. Mater. 2007, 6, 357. – reference: A. Hübler, B. Trnovec, T. Zillger, M. Ali, N. Wetzold, M. Mingebach, A. Wagenpfahl, C. Deibel, V. Dyakonov, Adv. Energy Mater. 2011, 1, 1018. – reference: D.-H. Kim, N. Lu, Y. Huang, J. A. Rogers, MRS Bull. 2012, 37, 226. – reference: L. Shi, X. Xu, M. Ma, L. Li, Appl. Phys. Lett. 2014, 104, 023302. – reference: M. Irimia-Vladu, N. S. Sariciftci, S. Bauer, J. Mater. Chem. 2011, 21, 1350. – volume: 2 start-page: 641 year: 2008 publication-title: Nat. Photonics – volume: 25 start-page: 6207 year: 2013 publication-title: Adv. Mater. – volume: 25 start-page: 1058 year: 2013 publication-title: Adv. Mater. – volume: 321 start-page: 1468 year: 2008 publication-title: Science – volume: 12 start-page: 938 year: 2013 publication-title: Nat. Mater. – volume: 11 start-page: 8 year: 2014 publication-title: J. R. Soc. Interface – volume: 3 start-page: 106 year: 2004 publication-title: Nat. Mater. – volume: 13 start-page: 3315 year: 2012 publication-title: Org. Electron. – volume: 453 start-page: 80 year: 2008 publication-title: Nature – volume: 27 start-page: 3145 year: 2015 publication-title: Adv. Mater. – volume: 23 start-page: 2972 year: 2013 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 1938 year: 2014 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 277 year: 2014 publication-title: Small – volume: 25 start-page: 4035 year: 2013 publication-title: Adv. Mater. – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 5 start-page: 148 year: 2010 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 648 year: 2007 publication-title: Org. Electron. – volume: 25 start-page: 5997 year: 2013 publication-title: Adv. Mater. – volume: 20 start-page: 840 year: 2010 publication-title: Adv. Funct. Mater. – volume: 499 start-page: 458 year: 2013 publication-title: Nature – volume: 95 start-page: 263304 year: 2009 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 4543 year: 2004 publication-title: Chem. Mater. – volume: 6 start-page: 833 year: 2007 publication-title: Nat. Mater. – volume: 21 start-page: 2889 year: 2011 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 588 year: 2014 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 2047 year: 2012 publication-title: Adv. Mater. – volume: 82 start-page: 3964 year: 2003 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 340 year: 2012 publication-title: Mater. Today – volume: 8 start-page: 13 year: 2013 publication-title: Nat. Nanotechnol. – volume: 25 start-page: 5498 year: 2013 publication-title: Adv. Mater. – volume: 59 start-page: 563 year: 2010 publication-title: Polym. Int. – volume: 88 start-page: 171109 year: 2006 publication-title: Appl. Phys. Lett. – volume: 22 start-page: 215201 year: 2011 publication-title: Nanotechnology – volume: 127 start-page: 10388 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 3016 year: 2011 publication-title: Small – volume: 22 start-page: 651 year: 2010 publication-title: Adv. Mater. – volume: 347 start-page: 1261689 year: 2015 publication-title: Science – volume: 7 start-page: 379 year: 2014 publication-title: Energy Environ. Sci. – volume: 23 start-page: 3500 year: 2011 publication-title: Adv. Mater. – volume: 23 start-page: 898 year: 2011 publication-title: Adv. Mater. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 24 start-page: 1844 year: 2012 publication-title: Adv. Mater. – volume: 11 start-page: 2472 year: 2011 publication-title: Nano Lett. – volume: 424 start-page: 1057 year: 2003 publication-title: Nature – volume: 9 start-page: 511 year: 2010 publication-title: Nat. Mater. – volume: 97 start-page: 123702 year: 2010 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 7053 year: 2010 publication-title: ACS Nano – volume: 327 start-page: 1603 year: 2010 publication-title: Science – volume: 84 start-page: 2673 year: 2004 publication-title: Appl. Phys. Lett. – volume: 38 start-page: 320 year: 2013 publication-title: MRS Bull. – volume: 432 start-page: 488 year: 2004 publication-title: Nature – volume: 6 year: 2015 publication-title: Nat. Commun. – volume: 85 start-page: 3283 year: 2004 publication-title: Appl. Phys. Lett. – volume: 45 start-page: 361 year: 2011 publication-title: Acc. Chem. Res. – volume: 23 start-page: 4087 year: 2013 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 3638 year: 2014 publication-title: Adv. Mater. – volume: 15 start-page: 3476 year: 2014 publication-title: Org. Electron. – volume: 24 start-page: 4427 year: 2014 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 2599 year: 2010 publication-title: J. Mater. Chem. – volume: 26 start-page: 115603 year: 2015 publication-title: Nanotechnology – volume: 23 start-page: 4077 year: 2011 publication-title: Adv. Mater. – volume: 25 start-page: 3526 year: 2013 publication-title: Adv. Mater. – volume: 28 start-page: 1479 year: 2007 publication-title: Macromol. Rapid. Comm. – volume: 11 start-page: 906 year: 2015 publication-title: Small – volume: 44 start-page: 5926 year: 2015 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 4483 year: 2013 publication-title: Biomacromolecules – volume: 10 start-page: 3083 year: 2014 publication-title: Small – volume: 24 start-page: 6088 year: 2012 publication-title: Adv. Mater. – volume: 4 start-page: 366 year: 2005 publication-title: Nat. Mater. – volume: 21 start-page: 2007 year: 2009 publication-title: Adv. Mater. – volume: 21 start-page: 29 year: 2009 publication-title: Adv. Mater. – volume: 21 start-page: 2632 year: 2009 publication-title: Adv. Mater. – volume: 12 start-page: 1686 year: 2011 publication-title: Biomacromolecules – volume: 6 start-page: 357 year: 2007 publication-title: Nat. Mater. – volume: 18 start-page: 1713 year: 2006 publication-title: Adv. Mater. – volume: 6 start-page: 1612 year: 2011 publication-title: Nat. Protoc. – volume: 7 start-page: 5131 year: 2013 publication-title: ACS Nano – volume: 9 start-page: 2556 year: 2015 publication-title: ACS Nano – volume: 9 start-page: 3784 year: 2013 publication-title: Small – year: 2015 publication-title: Macromol. Mater. Eng. – volume: 22 start-page: E170 year: 2010 publication-title: Adv. Mater. – volume: 37 start-page: 226 year: 2012 publication-title: MRS Bull. – volume: 39 start-page: 2643 year: 2010 publication-title: Chem. Soc. Rev. – volume: 320 start-page: 507 year: 2008 publication-title: Science – volume: 401 start-page: 685 year: 1999 publication-title: Nature – volume: 33 start-page: 998 year: 2008 publication-title: Prog. Polym. Sci. – volume: 25 start-page: 1993 year: 2013 publication-title: Adv. Mater. – volume: 14 start-page: 2006 year: 2013 publication-title: Fiber Polym. – volume: 12 start-page: 1146 year: 2011 publication-title: Org. Electron. – volume: 23 start-page: 4828 year: 2011 publication-title: Adv. Mater. – volume: 101 start-page: 9966 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 435 year: 2012 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 2228 year: 2010 publication-title: Adv. Mater. – volume: 332 start-page: 1537 year: 2011 publication-title: Science – volume: 6 start-page: 20670 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 20 year: 2006 publication-title: Mater. Today – volume: 3 start-page: 763 year: 2012 publication-title: Nat. Commun. – volume: 11 start-page: 28 year: 2008 publication-title: Mater. Today – volume: 24 start-page: 345202 year: 2013 publication-title: Nanotechnology – volume: 26 start-page: 1336 year: 2014 publication-title: Adv. Mater. – volume: 363 start-page: 393 year: 2011 publication-title: J. Colloid Interface Sci – volume: 5 start-page: 4779 year: 2014 publication-title: Nat. Commun. – volume: 9 start-page: 3398 year: 2013 publication-title: Small – volume: 5 start-page: 50878 year: 2015 publication-title: RSC Adv. – volume: 103 start-page: 023303 year: 2013 publication-title: Appl. Phys. Lett. – volume: 88 start-page: 233508 year: 2006 publication-title: Appl. Phys. Lett. – volume: 318 start-page: 76 year: 2007 publication-title: Science – volume: 5 start-page: 9918 year: 2011 publication-title: ACS Nano – volume: 9 start-page: 306 year: 2014 publication-title: Nat. Nanotechnol. – volume: 21 start-page: 1350 year: 2011 publication-title: J. Mater. Chem. – volume: 20 start-page: 4069 year: 2010 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 1388 year: 2012 publication-title: Adv. Mater. – volume: 5 year: 2014 publication-title: Nat. Commun. – volume: 23 start-page: 5502 year: 2011 publication-title: Adv. Mater. – volume: 24 start-page: 1067 year: 2012 publication-title: Adv. Mater. – volume: 23 start-page: 1935 year: 2011 publication-title: Adv. Mater. – volume: 25 start-page: 6839 year: 2013 publication-title: Adv. Mater. – volume: 1 start-page: 248 year: 2012 publication-title: Adv. Healthcare Mater. – volume: 4 start-page: 1859 year: 2013 publication-title: Nat. Commun. – volume: 104 start-page: 023302 year: 2014 publication-title: Appl. Phys. Lett. – volume: 46 start-page: 86 year: 2015 publication-title: Prog. Polym. Sci. – volume: 6 start-page: 1249 year: 2013 publication-title: Energy Environ. Sci. – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 24 start-page: 401 year: 2003 publication-title: Biomaterials. – volume: 24 start-page: 2824 year: 2012 publication-title: Adv. Mater. – volume: 45 start-page: 2116 year: 2007 publication-title: Carbon – volume: 24 start-page: 3941 year: 2012 publication-title: Adv. Mater. – volume: 9 start-page: 2775 year: 2009 publication-title: Lab Chip – volume: 95 start-page: 133701 year: 2009 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 4264 year: 2014 publication-title: Nanoscale – volume: 5 start-page: 7991 year: 2013 publication-title: Nanoscale – volume: 337 start-page: 1640 year: 2012 publication-title: Science – volume: 15 start-page: 208 year: 2012 publication-title: Mater. Today – volume: 26 start-page: 1992 year: 2014 publication-title: Adv. Mater. – volume: 111 start-page: 3358 year: 2011 publication-title: Chem. Rev. – volume: 23 start-page: 1630 year: 2011 publication-title: Adv. Mater. – volume: 23 start-page: 654 year: 2011 publication-title: Adv. Mater. – volume: 25 start-page: 285302 year: 2014 publication-title: Nanotechnology – volume: 26 start-page: 4855 year: 2014 publication-title: Adv. Mater. – volume: 19 start-page: 2847 year: 2007 publication-title: Adv. Mater. – volume: 210 start-page: 1797 year: 2013 publication-title: Phys. Status Solidi – volume: 10 start-page: 3625 year: 2014 publication-title: Small – volume: 329 start-page: 528 year: 2010 publication-title: Science – volume: 24 start-page: 645 year: 2014 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 859 year: 2010 publication-title: Nat. Mater. – volume: 26 start-page: 163 year: 2014 publication-title: Adv. Mater. – volume: 27 start-page: 47 year: 2015 publication-title: Adv. Mater. – volume: 202 start-page: 1357 year: 2014 publication-title: Sens. Actuators, B – volume: 1 start-page: 1018 year: 2011 publication-title: Adv. Energy Mater. – volume: 5 start-page: 10076 year: 2013 publication-title: Nanoscale – volume: 160 start-page: 244 year: 2015 publication-title: Electrochim. Acta – volume: 22 start-page: 4139 year: 2012 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 2229 year: 2007 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 1463 year: 2011 publication-title: Adv. Mater. – volume: 519 start-page: S4 year: 2015 publication-title: Nature – volume: 11 start-page: 2164 year: 2011 publication-title: Cryst. Growth Des. – volume: 428 start-page: 911 year: 2004 publication-title: Nature – volume: 349 start-page: aab2750 year: 2015 publication-title: Science – volume: 1 start-page: 213 year: 2013 publication-title: J. Mater. Chem. B – volume: 26 start-page: 149 year: 2014 publication-title: Adv. Mater. – year: 2015 publication-title: Adv. Mater. – volume: 22 start-page: 4493 year: 2012 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 509 year: 2014 publication-title: Macromol. Res. – volume: 9 start-page: 6974 year: 2013 publication-title: Acta Biomater. – volume: 22 start-page: 23710 year: 2012 publication-title: J. Mater. Chem. – volume: 32 start-page: 991 year: 2007 publication-title: Prog. Polym. Sci. – volume: 27 start-page: 634 year: 2014 publication-title: Adv. Mater. – volume: 340 start-page: 211 year: 2013 publication-title: Science – volume: 26 start-page: 40 year: 2014 publication-title: Adv. Mater. – volume: 111 start-page: 17385 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 103 start-page: 233304 year: 2013 publication-title: Appl. Phys. Lett. – volume: 38 start-page: 2520 year: 2009 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 28 year: 2010 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 1849 year: 2008 publication-title: Adv. Mater. – volume: 25 start-page: 3825 year: 2015 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_73_1 doi: 10.1002/adfm.200901363 – ident: e_1_2_7_134_1 doi: 10.1021/ja052488f – ident: e_1_2_7_74_1 doi: 10.1557/mrs.2013.59 – ident: e_1_2_7_163_1 doi: 10.1088/0957-4484/22/21/215201 – ident: e_1_2_7_104_1 doi: 10.1039/c3ee22325f – ident: e_1_2_7_145_1 doi: 10.1063/1.1805703 – ident: e_1_2_7_144_1 doi: 10.1002/adfm.201200316 – ident: e_1_2_7_142_1 doi: 10.1063/1.4862198 – ident: e_1_2_7_102_1 doi: 10.1126/science.1200770 – ident: e_1_2_7_110_1 doi: 10.1002/adma.201204692 – ident: e_1_2_7_167_1 doi: 10.1016/j.orgel.2014.09.042 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201101263 – ident: e_1_2_7_156_1 doi: 10.1016/S1369-7021(08)70119-6 – ident: e_1_2_7_123_1 doi: 10.1002/adfm.201101011 – ident: e_1_2_7_37_1 doi: 10.1126/science.1232437 – ident: e_1_2_7_111_1 doi: 10.1021/nn506394r – ident: e_1_2_7_29_1 doi: 10.1002/adhm.201200071 – ident: e_1_2_7_93_1 doi: 10.1039/C4CS00442F – ident: e_1_2_7_94_1 doi: 10.1038/nmat2297 – ident: e_1_2_7_77_1 doi: 10.1098/rsif.2014.0305 – ident: e_1_2_7_115_1 doi: 10.1002/adfm.200901774 – ident: e_1_2_7_36_1 doi: 10.1073/pnas.1407743111 – ident: e_1_2_7_75_1 doi: 10.1002/pi.2827 – ident: e_1_2_7_91_1 doi: 10.1038/nmat1368 – ident: e_1_2_7_67_1 doi: 10.1126/science.1226325 – ident: e_1_2_7_170_1 doi: 10.1088/0957-4484/24/34/345202 – ident: e_1_2_7_46_1 doi: 10.1038/nmat3755 – ident: e_1_2_7_148_1 doi: 10.1063/1.4841595 – ident: e_1_2_7_62_1 doi: 10.1002/adma.200602487 – ident: e_1_2_7_154_1 doi: 10.1039/c3nr03472k – ident: e_1_2_7_124_1 doi: 10.1021/cg101410u – ident: e_1_2_7_13_1 doi: 10.1126/science.1154367 – ident: e_1_2_7_66_1 doi: 10.1002/adma.201304821 – ident: e_1_2_7_158_1 doi: 10.1002/adma.201104104 – ident: e_1_2_7_146_1 doi: 10.1016/j.orgel.2011.04.005 – ident: e_1_2_7_155_1 doi: 10.1038/nnano.2009.456 – ident: e_1_2_7_54_1 doi: 10.1039/C5RA03501E – ident: e_1_2_7_41_1 doi: 10.1002/smll.201402495 – ident: e_1_2_7_82_1 doi: 10.1088/0957-4484/25/28/285302 – ident: e_1_2_7_150_1 doi: 10.1038/nature06932 – ident: e_1_2_7_2_1 doi: 10.1016/S1369-7021(12)70139-6 – ident: e_1_2_7_175_1 doi: 10.1002/adma.201003860 – ident: e_1_2_7_131_1 doi: 10.1038/ncomms2832 – ident: e_1_2_7_152_1 doi: 10.1002/adma.200900375 – ident: e_1_2_7_120_1 doi: 10.1016/j.jcis.2011.07.009 – ident: e_1_2_7_72_1 doi: 10.1063/1.3278592 – ident: e_1_2_7_76_1 doi: 10.1002/adfm.201501389 – ident: e_1_2_7_9_1 doi: 10.1021/ar2001233 – ident: e_1_2_7_135_1 doi: 10.1039/b921449f – ident: e_1_2_7_31_1 doi: 10.1002/adma.201303470 – ident: e_1_2_7_42_1 doi: 10.1002/adma.201301921 – ident: e_1_2_7_116_1 doi: 10.1002/adfm.201100249 – ident: e_1_2_7_160_1 doi: 10.1002/smll.201300810 – ident: e_1_2_7_129_1 doi: 10.1073/pnas.0401918101 – ident: e_1_2_7_48_1 doi: 10.1016/S1369-7021(12)70091-3 – ident: e_1_2_7_80_1 doi: 10.1002/adfm.201304293 – ident: e_1_2_7_166_1 doi: 10.1016/j.orgel.2007.05.003 – ident: e_1_2_7_132_1 doi: 10.1038/ncomms7269 – ident: e_1_2_7_44_1 doi: 10.1557/mrs.2012.36 – ident: e_1_2_7_92_1 doi: 10.1002/adma.201000717 – ident: e_1_2_7_99_1 doi: 10.1002/adma.201204003 – ident: e_1_2_7_118_1 doi: 10.1039/c3nr01872e – ident: e_1_2_7_119_1 doi: 10.1039/C2TB00017B – ident: e_1_2_7_122_1 doi: 10.1016/j.actbio.2013.03.004 – ident: e_1_2_7_11_1 doi: 10.1039/b909902f – ident: e_1_2_7_112_1 doi: 10.1007/s13233-014-2071-4 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201403807 – ident: e_1_2_7_113_1 doi: 10.1021/nl2009058 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.201100394 – ident: e_1_2_7_45_1 doi: 10.1038/nature12314 – ident: e_1_2_7_139_1 doi: 10.1038/nature03090 – ident: e_1_2_7_103_1 doi: 10.1039/C3EE43111H – ident: e_1_2_7_16_1 doi: 10.1002/adma.201303349 – ident: e_1_2_7_127_1 doi: 10.1063/1.1579554 – ident: e_1_2_7_81_1 doi: 10.1002/adfm.201301847 – ident: e_1_2_7_149_1 doi: 10.1002/adma.200502752 – ident: e_1_2_7_19_1 doi: 10.1002/adma.200902322 – ident: e_1_2_7_100_1 doi: 10.1002/adfm.201203491 – ident: e_1_2_7_52_1 doi: 10.1016/j.progpolymsci.2008.08.002 – ident: e_1_2_7_56_1 doi: 10.1021/am504163r – ident: e_1_2_7_57_1 doi: 10.1002/adma.201201888 – ident: e_1_2_7_161_1 doi: 10.1002/adma.201301983 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201003374 – ident: e_1_2_7_63_1 doi: 10.1038/nprot.2011.379 – ident: e_1_2_7_114_1 doi: 10.1021/bm4014149 – ident: e_1_2_7_8_1 doi: 10.1002/adma.200801995 – ident: e_1_2_7_24_1 doi: 10.1039/b905832j – volume: 210 start-page: 1797 year: 2013 ident: e_1_2_7_169_1 publication-title: Phys. Status Solidi doi: 10.1002/pssa.201329109 – ident: e_1_2_7_84_1 doi: 10.1038/ncomms1767 – ident: e_1_2_7_157_1 doi: 10.1002/adma.201201506 – ident: e_1_2_7_171_1 doi: 10.1016/j.snb.2014.04.079 – ident: e_1_2_7_5_1 doi: 10.1038/nmat1884 – ident: e_1_2_7_14_1 doi: 10.1126/science.1206157 – ident: e_1_2_7_50_1 doi: 10.1038/nphoton.2008.207 – ident: e_1_2_7_108_1 doi: 10.1002/adma.201104634 – ident: e_1_2_7_162_1 doi: 10.1002/smll.201300522 – ident: e_1_2_7_172_1 doi: 10.1002/adma.201103814 – ident: e_1_2_7_55_1 doi: 10.1039/C3NR06057H – ident: e_1_2_7_125_1 doi: 10.1021/cr1001904 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201102124 – ident: e_1_2_7_88_1 doi: 10.1063/1.3486157 – ident: e_1_2_7_168_1 doi: 10.1002/adfm.200601136 – ident: e_1_2_7_106_1 doi: 10.1016/j.electacta.2015.02.019 – ident: e_1_2_7_107_1 doi: 10.1016/j.carbon.2007.05.026 – volume: 5 year: 2014 ident: e_1_2_7_40_1 publication-title: Nat. Commun. – ident: e_1_2_7_78_1 doi: 10.1002/adfm.201200073 – ident: e_1_2_7_159_1 doi: 10.1002/smll.201101494 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201405728 – ident: e_1_2_7_30_1 doi: 10.1126/science.1261689 – ident: e_1_2_7_71_1 doi: 10.1063/1.2197973 – ident: e_1_2_7_58_1 doi: 10.1016/j.progpolymsci.2007.05.013 – ident: e_1_2_7_174_1 doi: 10.1038/nnano.2014.47 – ident: e_1_2_7_49_1 doi: 10.1126/science.1188936 – ident: e_1_2_7_128_1 doi: 10.1038/nmat2834 – ident: e_1_2_7_173_1 doi: 10.1002/adma.201302823 – ident: e_1_2_7_89_1 doi: 10.1021/bm200062a – ident: e_1_2_7_87_1 doi: 10.1002/adma.201403051 – ident: e_1_2_7_130_1 doi: 10.1002/adma.201304248 – ident: e_1_2_7_61_1 doi: 10.1002/mame.201400276 – ident: e_1_2_7_28_1 doi: 10.1039/C0JM02444A – ident: e_1_2_7_68_1 doi: 10.1002/adma.201003601 – ident: e_1_2_7_97_1 doi: 10.1002/adma.201401513 – ident: e_1_2_7_138_1 doi: 10.1002/adma.201004071 – ident: e_1_2_7_47_1 doi: 10.1038/ncomms5779 – ident: e_1_2_7_164_1 doi: 10.1021/nn2036939 – ident: e_1_2_7_60_1 doi: 10.1038/519S4a – ident: e_1_2_7_121_1 doi: 10.1021/nn102456w – ident: e_1_2_7_86_1 doi: 10.1002/smll.201300146 – ident: e_1_2_7_59_1 doi: 10.1038/nature01809 – ident: e_1_2_7_3_1 doi: 10.1126/science.aab2750 – ident: e_1_2_7_4_1 doi: 10.1016/S1369-7021(06)71539-5 – ident: e_1_2_7_64_1 doi: 10.1016/j.progpolymsci.2015.02.001 – ident: e_1_2_7_39_1 doi: 10.1038/nmat2745 – ident: e_1_2_7_38_1 doi: 10.1002/adfm.201303196 – ident: e_1_2_7_165_1 doi: 10.1002/marc.200700186 – ident: e_1_2_7_35_1 doi: 10.1002/smll.201401207 – ident: e_1_2_7_12_1 doi: 10.1126/science.1182383 – ident: e_1_2_7_83_1 doi: 10.1002/adma.201405807 – ident: e_1_2_7_85_1 doi: 10.1002/adma.201300920 – ident: e_1_2_7_136_1 doi: 10.1063/1.2213010 – ident: e_1_2_7_43_1 doi: 10.1002/smll.201400483 – ident: e_1_2_7_65_1 doi: 10.1002/adma.201104118 – ident: e_1_2_7_133_1 doi: 10.1021/cm049598q – ident: e_1_2_7_147_1 doi: 10.1016/j.orgel.2012.10.007 – ident: e_1_2_7_117_1 doi: 10.1088/0957-4484/26/11/115603 – ident: e_1_2_7_69_1 doi: 10.1063/1.3238552 – ident: e_1_2_7_98_1 doi: 10.1002/adma.201301332 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201004692 – ident: e_1_2_7_141_1 doi: 10.1002/adma.201103592 – ident: e_1_2_7_17_1 doi: 10.1002/adma.200904054 – ident: e_1_2_7_1_1 doi: 10.1039/C3CS60235D – ident: e_1_2_7_109_1 doi: 10.1039/c2jm34066f – ident: e_1_2_7_10_1 doi: 10.1002/adma.201303265 – ident: e_1_2_7_105_1 doi: 10.1021/nn400731g – ident: e_1_2_7_153_1 doi: 10.1038/nmat2023 – ident: e_1_2_7_95_1 doi: 10.1002/adma.201100984 – ident: e_1_2_7_51_1 doi: 10.1016/S0142-9612(02)00353-8 – ident: e_1_2_7_140_1 doi: 10.1007/s12221-013-2006-2 – ident: e_1_2_7_79_1 doi: 10.1002/adfm.201300127 – ident: e_1_2_7_96_1 doi: 10.1039/b813846j – ident: e_1_2_7_22_1 doi: 10.1002/adfm.201001031 – ident: e_1_2_7_143_1 doi: 10.1038/44359 – ident: e_1_2_7_90_1 doi: 10.1038/35104644 – ident: e_1_2_7_151_1 doi: 10.1038/nnano.2012.240 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201302240 – ident: e_1_2_7_70_1 doi: 10.1063/1.4813075 – ident: e_1_2_7_6_1 doi: 10.1038/nature02498 – ident: e_1_2_7_23_1 doi: 10.1002/adma.200702559 – ident: e_1_2_7_126_1 doi: 10.1038/nmat1061 – ident: e_1_2_7_7_1 doi: 10.1002/adma.200803211 – ident: e_1_2_7_53_1 doi: 10.1002/adma.201104477 – ident: e_1_2_7_15_1 doi: 10.1126/science.1160309 – ident: e_1_2_7_21_1 doi: 10.1063/1.1690870 – ident: e_1_2_7_101_1 doi: 10.1002/adma.201305682 – ident: e_1_2_7_137_1 doi: 10.1126/science.1146458 |
SSID | ssj0009606 |
Score | 2.651154 |
SecondaryResourceType | review_article |
Snippet | Flexible electronic devices are necessary for applications involving unconventional interfaces, such as soft and curved biological systems, in which... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4250 |
SubjectTerms | Biocompatibility biointegrated devices Biomaterials Biomedical materials Electronic devices Electronics flexible electronics Semiconductors Silk fibroin Surgical implants |
Title | Silk Fibroin for Flexible Electronic Devices |
URI | https://api.istex.fr/ark:/67375/WNG-HD98LZ6N-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201504276 https://www.ncbi.nlm.nih.gov/pubmed/26684370 https://www.proquest.com/docview/1795877121 https://www.proquest.com/docview/1825483947 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8heBkPMAaDMECZhMYLgSR2_PFYUbqqWvuwgUB7sWzHkVCrFEErof31OydtoBMf0nhzlHNin33nn5Pz7wAOU5sXTsvMJ3exuEGhNJKFSaI8EYWUNs9Y7g8n9wese0l719n1k1P8NT9E88HNW0blr72Ba3N_-kgaqvOKNwgBDU2559z2AVseFf185I_y8Lwi2yNZJBkVc9bGOD1drL6wKq14BT88BzkXEWy1BHXWQc8bX0eeDE-mE3Ni__zD6_ie3n2EtRk-DVv1hNqAJVd-gtUnrIWbcPzrZjQMO_j48U0ZIugNO55V04xceN4k1QnbrvJBW3DZOb8460azpAuRzRhhEdWCFVKjcWoumBUFySSlMbHMcq053uFJbqkhCQI9l2ospsaJXHMa29g48hmWy3HpdiBE7EVyhD8FoxpxnxZWcmLQwaBPI07oAKK50pWdMZL7xBgjVXMpp8prQTVaCOCokb-tuThelPxWjWEjpu-GPoKNZ-pq8F1121L8-M0GqhfA1_kgK7Qr_7NEl248vVfoqDLBeZImr8j47TX2kvIAtusZ0rwRgY-ghMcBpNU4v9Fi1Wr3W83V7v9U-gIfsMzqOLY9WJ7cTd0-IqaJOais4i8SuQkV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4q7QE4sC9hDRLLhbSJ7Xg5cBiRDtN2Zg7QioqLcRxHqmaUQe2MWP4Vf4VfxHMySRnEIiH1wC3LS2I_Pz9_dp6_B_CY2KJ0RqU-uYvFCQpjkSrzJCoSWSpli5QXfnPyaMwHB2z3MD1cg6_tXpiGH6JbcPM9o_bXvoP7BemtU9ZQU9TEQYhoGBF8GVe55z5_xFnbyYudDJv4CSH97f2Xg2iZWCCyKac8YkbyUhk0QCMkt7KkqWIsppZbYYzAOyIpLMtpgmDGEYOHJHeyMILFNs4dxfeegw2fRtzT9WevTxmr_ISgpvejaaQ4ky1PZEy2Vsu7Mg5u-Cb99CuQu4qZ60Gvfxm-tepqYl0mm4t5vmm__MQk-V_p8wpcWkLwsNf0mauw5qprcPEHYsbr8PzN0XQS9rE-s6MqRFwf9j1xaD514XaXNyjMXO1mb8DBmRT3JqxXs8rdhhDhJS0Q4ZWcGYS2RlolaI4-FN02ddIEELWtrO2SdN3n_pjqhi6aaK913Wk9gGed_IeGbuS3kk9ro-nEzPHEB-mJVL8dv9KDTMnhOz7WuwE8aq1Ko-vw_4NM5WaLE42-OJVCJCT5g4xfQcBaMhHArcYkuy8itpOMijgAUhvWX0qse9mo153d-ZeHHsL5wf5oqIc74727cAGv8yZs7x6sz48X7j4CxHn-oO6SIbw_a5v9DsL2ZsQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9QwEB6VVkL0gZsSziBxvJA2sR0fDzysSJfttUJA1YoX4ziOVO0qW7W74vhV_BX-EeNkk7KIQ0LqA285Jok9Ho8_O-NvAB4TW5TOqNQnd7E4QWEsUmWeREUiS6VskfLCb07eG_LBPts-TA-X4Gu7F6bhh-gW3HzPqP217-DHRblxRhpqipo3CAENI4LPwyp33OePOGk7fbGVYQs_IaS_-e7lIJrnFYhsyimPmJG8VAbtzwjJrSxpqhiLqeVWGCPwjkgKy3KaIJZxxOAhyZ0sjGCxjXNH8b0XYIXxWPlkEdmbM8IqPx-o2f1oGinOZEsTGZONxfIuDIMrvkU__QrjLkLmeszrX4FvrbaaUJfR-myar9svPxFJ_k_qvAqX5wA87DU95hosueo6rP5Ay3gDnr89Go_CPlZnclSFiOrDvqcNzccu3OyyBoWZq53sTdg_l-LeguVqUrnbECK4pAXiu5Izg8DWSKsEzdGDotOmTpoAoraRtZ1TrvvMH2PdkEUT7bWuO60H8KyTP27IRn4r-bS2mU7MnIx8iJ5I9cHwlR5kSu6-50O9HcCj1qg0Og7_N8hUbjI71eiJUylEQpI_yPj1A6wlEwGsNRbZfRGRnWRUxAGQ2q7-UmLdy_Z63dmdf3noIVx8nfX17tZw5y5cwsu8idm7B8vTk5m7j-hwmj-oO2QIH87bZL8D_L5lcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silk+Fibroin+for+Flexible+Electronic+Devices&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Bowen&rft.au=Wang%2C+Hong&rft.au=Leow%2C+Wan+Ru&rft.au=Cai%2C+Yurong&rft.date=2016-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=28&rft.issue=22&rft.spage=4250&rft.epage=4265&rft_id=info:doi/10.1002%2Fadma.201504276&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201504276 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |