OptM: estimating the optimal number of migration edges on population trees using Treemix

Abstract The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred...

Full description

Saved in:
Bibliographic Details
Published inBiology methods and protocols Vol. 6; no. 1; p. bpab017
Main Author Fitak, Robert R
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called “OptM” and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix.
AbstractList The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called “OptM” and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix.
Abstract The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called “OptM” and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix.
The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called "OptM" and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix.The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called "OptM" and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix.
The software Treemix has become extensively used to estimate the number of migration events, or edges ( m ), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δ m ) across incremental values of m . Repurposed from its original use to estimate the number of population clusters in the software Structure (Δ K ), I show using simulated populations that Δ m performs equally as well as current recommendations for Treemix . A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called “OptM” and as a web application ( https://rfitak.shinyapps.io/OptM/ ) to interface directly with the output files of Treemix .
Author Fitak, Robert R
AuthorAffiliation Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida , Orlando, FL 32816, USA
AuthorAffiliation_xml – name: Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida , Orlando, FL 32816, USA
Author_xml – sequence: 1
  givenname: Robert R
  orcidid: 0000-0002-7398-6259
  surname: Fitak
  fullname: Fitak, Robert R
  email: Robert.fitak@ucf.edu
  organization: Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
BookMark eNqNUctK7TAUDaL4_gFHhTtxUk262zS9A0HEFyhOFJyFNN09J9ImNWkv1783x3PwNRBHWdl7rbVfO2TdOouEHDB6xGgFx7VxPY5z14TjelA1ZeUa2c6g4qmoMlj_hLfIfghPlFIm8oJRtkm2IC-qAopsmzzeDePt3wTDaHo1GjtLxjkmblh8u8ROfY0-cW3Sm5mPeWcTbGYYkggGN0zdMjZ6jLEpLPT3Effm_x7ZaFUXcH_17pKHi_P7s6v05u7y-uz0JtUFB5ZqbHMmoAEBSmjgmikF0NCmzIHRGsuMto1iuhRNzakQectZyyi2qOJASsAuOVn6DlPdY6PRjl51cvBxAP8inTLya8aauZy5f1LkJa-ARoPDlYF3z1NchOxN0Nh1yqKbgsyKUpQ8KwVE6p9v1Cc3eRvHk8B4lXMhaBFZ2ZKlvQvBY_veDKNycTv5cTu5ul0UiW8ibca35camTfezNF1K3TT8ptQrQUe2sA
CitedBy_id crossref_primary_10_1111_jeb_14190
crossref_primary_10_1002_ece3_70909
crossref_primary_10_1111_jbg_12862
crossref_primary_10_1093_molbev_msad013
crossref_primary_10_1111_jse_13020
crossref_primary_10_3390_ani13223439
crossref_primary_10_1016_j_ijbiomac_2024_131796
crossref_primary_10_1038_s44185_023_00020_8
crossref_primary_10_1002_ajb2_16467
crossref_primary_10_1093_molbev_msae108
crossref_primary_10_7554_eLife_85725
crossref_primary_10_1111_mec_16687
crossref_primary_10_1371_journal_pone_0275989
crossref_primary_10_1111_mec_17094
crossref_primary_10_1093_icesjms_fsae057
crossref_primary_10_1038_s41437_024_00734_w
crossref_primary_10_1111_age_13344
crossref_primary_10_1016_j_ympev_2023_107701
crossref_primary_10_3389_fpls_2024_1457980
crossref_primary_10_1111_jipb_13653
crossref_primary_10_1111_syen_12631
crossref_primary_10_1126_science_ade0664
crossref_primary_10_1007_s10126_024_10408_7
crossref_primary_10_1016_j_ympev_2023_107784
crossref_primary_10_1111_mec_17527
crossref_primary_10_3390_d14080666
crossref_primary_10_1111_conl_13019
crossref_primary_10_1093_molbev_msac274
crossref_primary_10_1655_Herpetologica_D_23_00048
crossref_primary_10_1093_molbev_msae057
crossref_primary_10_7554_eLife_71572
crossref_primary_10_1093_botlinnean_boac027
crossref_primary_10_1111_mec_17367
crossref_primary_10_1111_mec_17128
crossref_primary_10_1111_mec_16951
crossref_primary_10_1111_plb_13769
crossref_primary_10_1371_journal_pbio_3001890
crossref_primary_10_1093_sysbio_syae053
crossref_primary_10_1016_j_aquaculture_2024_741335
crossref_primary_10_1093_plphys_kiae512
crossref_primary_10_1016_j_ympev_2022_107677
crossref_primary_10_3390_ani14050699
crossref_primary_10_1111_jipb_13884
crossref_primary_10_3389_fgene_2022_993959
crossref_primary_10_1038_s41467_024_49769_x
crossref_primary_10_1016_j_xplc_2022_100325
crossref_primary_10_1093_molbev_msae006
crossref_primary_10_1111_ddi_13676
crossref_primary_10_1111_mec_16944
crossref_primary_10_1016_j_flora_2024_152507
crossref_primary_10_1111_jse_13123
crossref_primary_10_1002_ece3_10861
crossref_primary_10_1016_j_isci_2024_110396
crossref_primary_10_1093_g3journal_jkad218
crossref_primary_10_3389_fgene_2023_1298565
crossref_primary_10_3390_genes15101307
crossref_primary_10_3389_fgene_2023_1109490
crossref_primary_10_1080_00071668_2024_2379968
crossref_primary_10_1111_mec_16426
crossref_primary_10_1371_journal_pone_0291814
crossref_primary_10_1002_ajb2_16245
crossref_primary_10_1093_aob_mcac091
crossref_primary_10_1111_gcb_70010
crossref_primary_10_1111_jeb_14219
crossref_primary_10_1016_j_isci_2022_104620
crossref_primary_10_1016_j_ympev_2023_107966
crossref_primary_10_1080_19768354_2022_2141316
crossref_primary_10_1007_s42995_024_00216_2
crossref_primary_10_1111_mec_17190
crossref_primary_10_1038_s41598_024_53414_4
crossref_primary_10_1111_mec_17508
crossref_primary_10_1111_eva_13522
crossref_primary_10_31083_j_fbl2709258
crossref_primary_10_1038_s44185_024_00038_6
crossref_primary_10_1111_mec_17464
crossref_primary_10_3389_fpls_2024_1303625
crossref_primary_10_1016_j_cell_2023_02_005
crossref_primary_10_1186_s12862_024_02266_7
crossref_primary_10_1111_mec_17580
crossref_primary_10_1007_s10592_024_01668_w
crossref_primary_10_1111_mec_17067
crossref_primary_10_1093_molbev_msae087
crossref_primary_10_1111_jbi_14362
crossref_primary_10_3390_ani14213154
crossref_primary_10_3390_insects13030264
crossref_primary_10_1093_jas_skae165
crossref_primary_10_1186_s12711_024_00880_z
crossref_primary_10_1186_s12711_023_00869_0
crossref_primary_10_1111_mec_17611
crossref_primary_10_3390_horticulturae11010106
crossref_primary_10_1093_hr_uhad041
crossref_primary_10_1016_j_scitotenv_2023_166698
crossref_primary_10_3389_fpls_2024_1449006
crossref_primary_10_1007_s11295_023_01606_w
crossref_primary_10_1080_1828051X_2024_2398777
crossref_primary_10_1093_aob_mcad120
crossref_primary_10_1371_journal_pone_0295043
crossref_primary_10_1134_S102279542207002X
crossref_primary_10_3390_ani14111629
crossref_primary_10_1186_s12864_024_10084_w
crossref_primary_10_1093_jhered_esac038
crossref_primary_10_1111_age_13425
crossref_primary_10_1016_j_jenvman_2024_123085
crossref_primary_10_1038_s41477_025_01942_w
crossref_primary_10_3389_fpls_2022_984422
crossref_primary_10_1111_eva_13584
crossref_primary_10_1111_tpj_16455
crossref_primary_10_3390_d15050627
crossref_primary_10_1111_jbi_14739
crossref_primary_10_1016_j_scitotenv_2023_169679
crossref_primary_10_1038_s41598_025_85756_y
crossref_primary_10_1038_s41598_025_89498_9
crossref_primary_10_1111_mec_17687
crossref_primary_10_1111_eva_70033
crossref_primary_10_1038_s41437_023_00653_2
crossref_primary_10_1126_science_add8655
crossref_primary_10_1007_s10592_024_01665_z
crossref_primary_10_1093_gigascience_giae064
crossref_primary_10_1186_s43897_024_00120_4
crossref_primary_10_1111_mec_17560
crossref_primary_10_1111_jbi_14861
crossref_primary_10_1016_j_ympev_2024_108282
crossref_primary_10_3390_biology12070979
crossref_primary_10_1016_j_aqrep_2024_102356
crossref_primary_10_1016_j_ympev_2024_108167
crossref_primary_10_1186_s13059_024_03203_z
crossref_primary_10_1038_s41598_024_63272_9
crossref_primary_10_1111_zsc_12706
crossref_primary_10_1186_s13059_025_03535_4
crossref_primary_10_1186_s12711_022_00718_6
crossref_primary_10_1186_s12915_023_01722_y
crossref_primary_10_1093_molbev_msad199
crossref_primary_10_1111_mec_17718
crossref_primary_10_1655_Herpetologica_D_22_00044
crossref_primary_10_1186_s12864_024_10739_8
crossref_primary_10_1111_mec_17038
crossref_primary_10_1111_eva_13330
crossref_primary_10_1111_mec_16502
crossref_primary_10_1126_sciadv_adh3425
crossref_primary_10_1038_s41437_023_00601_0
crossref_primary_10_1093_sysbio_syad073
crossref_primary_10_1016_j_gecco_2024_e02870
crossref_primary_10_1016_j_ympev_2023_107804
crossref_primary_10_1038_s41477_023_01526_6
crossref_primary_10_1093_g3journal_jkac323
crossref_primary_10_1016_j_cub_2024_08_046
crossref_primary_10_1371_journal_ppat_1012811
crossref_primary_10_1093_molbev_msad082
crossref_primary_10_1016_j_psj_2025_105060
crossref_primary_10_1002_ece3_10675
crossref_primary_10_1007_s00253_024_13267_3
crossref_primary_10_1111_mec_16859
crossref_primary_10_1002_ece3_10278
crossref_primary_10_1002_ece3_11407
crossref_primary_10_1038_s41437_022_00517_1
crossref_primary_10_1093_nargab_lqae034
crossref_primary_10_1111_mec_17301
crossref_primary_10_1371_journal_pone_0314509
crossref_primary_10_1111_mec_17304
crossref_primary_10_3389_fpls_2024_1369732
crossref_primary_10_1111_mec_16295
crossref_primary_10_1186_s12864_025_11484_2
crossref_primary_10_3389_fpls_2022_999964
crossref_primary_10_1016_j_xplc_2023_100563
crossref_primary_10_1016_j_ympev_2024_108220
crossref_primary_10_1111_tpj_16270
crossref_primary_10_1038_s42003_024_06809_y
Cites_doi 10.1111/j.1365-294X.2005.02553.x
10.1086/519795
10.1371/journal.pgen.1002967
10.1093/genetics/155.2.945
10.1038/cr.2015.147
10.1534/genetics.116.195164
10.3389/fgene.2013.00098
10.1016/j.tree.2013.09.008
10.1371/journal.pgen.1004254
10.1038/ncomms11693
10.1073/pnas.0903341106
10.1016/j.celrep.2017.03.079
10.1016/j.tvjl.2011.06.013
10.1890/070179
10.1093/bioinformatics/btw355
10.1038/s41467-018-02867-z
10.1093/bioinformatics/btr330
10.1016/j.ympev.2016.05.034
10.1111/mec.14187
10.3201/eid2206.151565
10.1371/journal.pgen.1002316
10.1038/s41467-018-03206-y
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. 2021
The Author(s) 2021. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. 2021
– notice: The Author(s) 2021. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1093/biomethods/bpab017
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2396-8923
ExternalDocumentID PMC8476930
10_1093_biomethods_bpab017
10.1093/biomethods/bpab017
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
ABDBF
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ACUHS
AENZO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AVWKF
BAYMD
BBNVY
BENPR
BHPHI
CCPQU
EBS
EJD
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IHR
ISR
ITC
KSI
M7P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PIMPY
RPM
TOX
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c5631-cef4183d383a8c36c1aa33d0d74310be720fda1c78db60884f61f10efea001a83
IEDL.DBID BENPR
ISSN 2396-8923
IngestDate Thu Aug 21 18:20:49 EDT 2025
Fri Jul 11 06:28:17 EDT 2025
Fri Jul 25 11:50:20 EDT 2025
Tue Jul 01 03:32:50 EDT 2025
Thu Apr 24 23:13:06 EDT 2025
Wed Apr 02 07:00:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords population genomics
SNPs
likelihood
structure
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5631-cef4183d383a8c36c1aa33d0d74310be720fda1c78db60884f61f10efea001a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7398-6259
OpenAccessLink https://www.proquest.com/docview/3169468805?pq-origsite=%requestingapplication%
PMID 34595352
PQID 3169468805
PQPubID 7121356
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8476930
proquest_miscellaneous_2578762783
proquest_journals_3169468805
crossref_primary_10_1093_biomethods_bpab017
crossref_citationtrail_10_1093_biomethods_bpab017
oup_primary_10_1093_biomethods_bpab017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Biology methods and protocols
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Lee (2021092805433257600_bpab017-B27) 1903
Porras-Hurtado (2021092805433257600_bpab017-B12) 2013; 4
Card (2021092805433257600_bpab017-B5) 2016; 102
Decker (2021092805433257600_bpab017-B6) 2014; 10
Parker (2021092805433257600_bpab017-B8) 2017; 19
Wang (2021092805433257600_bpab017-B24) 2016; 26
Janes (2021092805433257600_bpab017-B28) 2017; 26
Teixeira (2021092805433257600_bpab017-B3) 2016; 22
Lequarré (2021092805433257600_bpab017-B21) 2011; 189
Evanno (2021092805433257600_bpab017-B10) 2005; 14
R Core Development Team (2021092805433257600_bpab017-B15) 2017
Alberto (2021092805433257600_bpab017-B9) 2018; 9
Pickrell (2021092805433257600_bpab017-B2) 2012; 8
Novembre (2021092805433257600_bpab017-B13) 2016; 204
Foote (2021092805433257600_bpab017-B7) 2016; 7
Lee (2021092805433257600_bpab017-B26) 1897
Sonderegger (2021092805433257600_bpab017-B16) 2009; 7
Pritchard (2021092805433257600_bpab017-B11) 2000; 155
Purcell (2021092805433257600_bpab017-B23) 2007; 81
DeGiorgio (2021092805433257600_bpab017-B19) 2009; 106
Danecek (2021092805433257600_bpab017-B20) 2011; 27
von Wettberg (2021092805433257600_bpab017-B4) 2018; 9
Ellegren (2021092805433257600_bpab017-B1) 2014; 29
Palamara (2021092805433257600_bpab017-B18) 2016; 32
Akaike (2021092805433257600_bpab017-B17) 1973
Pilot (2021092805433257600_bpab017-B25) 2015; 282
Vaysse (2021092805433257600_bpab017-B22) 2011; 7
Pritchard (2021092805433257600_bpab017-B14) 2010
References_xml – volume: 14
  start-page: 2611
  year: 2005
  ident: 2021092805433257600_bpab017-B10
  article-title: Detecting the number of clusters of individuals using the software structure: a simulation study
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2005.02553.x
– volume: 81
  start-page: 559
  year: 2007
  ident: 2021092805433257600_bpab017-B23
  article-title: PLINK: A tool set for whole-genome association and population-based linkage analyses
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– volume: 8
  start-page: e1002967
  year: 2012
  ident: 2021092805433257600_bpab017-B2
  article-title: Inference of population splits and mixtures from genome-wide allele frequency data
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002967
– volume: 155
  start-page: 945
  year: 2000
  ident: 2021092805433257600_bpab017-B11
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
  doi: 10.1093/genetics/155.2.945
– year: 2010
  ident: 2021092805433257600_bpab017-B14
– start-page: 267
  volume-title: Second International Symposium on Information Theory
  year: 1973
  ident: 2021092805433257600_bpab017-B17
– volume: 26
  start-page: 21
  year: 2016
  ident: 2021092805433257600_bpab017-B24
  article-title: Out of southern East Asia: the natural history of domestic dogs across the world
  publication-title: Cell Res
  doi: 10.1038/cr.2015.147
– volume-title: A History and Description of the Modern Dogs of Great Britain and Ireland. Sporting Division
  year: 1897
  ident: 2021092805433257600_bpab017-B26
– volume: 204
  start-page: 391
  year: 2016
  ident: 2021092805433257600_bpab017-B13
  article-title: Pritchard, Stephens, and Donnelly on population structure
  publication-title: Genetics
  doi: 10.1534/genetics.116.195164
– volume: 4
  start-page: 98
  year: 2013
  ident: 2021092805433257600_bpab017-B12
  article-title: An overview of STRUCTURE: applications, parameter settings, and supporting software
  publication-title: Front Genet
  doi: 10.3389/fgene.2013.00098
– volume: 29
  start-page: 51
  year: 2014
  ident: 2021092805433257600_bpab017-B1
  article-title: Genome sequencing and population genomics in non-model organisms
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2013.09.008
– volume: 10
  start-page: e1004254
  year: 2014
  ident: 2021092805433257600_bpab017-B6
  article-title: Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004254
– volume: 7
  start-page: 11693
  year: 2016
  ident: 2021092805433257600_bpab017-B7
  article-title: Genome-culture coevolution promotes rapid divergence of killer whale ecotypes
  publication-title: Nat Commun
  doi: 10.1038/ncomms11693
– volume: 106
  start-page: 16057
  year: 2009
  ident: 2021092805433257600_bpab017-B19
  article-title: Explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0903341106
– volume: 19
  start-page: 697
  year: 2017
  ident: 2021092805433257600_bpab017-B8
  article-title: Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.03.079
– year: 2017
  ident: 2021092805433257600_bpab017-B15
– volume: 189
  start-page: 155
  year: 2011
  ident: 2021092805433257600_bpab017-B21
  article-title: LUPA: a European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs
  publication-title: Vet J
  doi: 10.1016/j.tvjl.2011.06.013
– volume: 7
  start-page: 190
  year: 2009
  ident: 2021092805433257600_bpab017-B16
  article-title: Using SiZer to detect thresholds in ecological data
  publication-title: Front Ecol Environ
  doi: 10.1890/070179
– volume: 32
  start-page: 3032
  year: 2016
  ident: 2021092805433257600_bpab017-B18
  article-title: ARGON: fast, whole-genome simulation of the discrete time Wright-fisher process
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw355
– volume: 9
  start-page: 649
  year: 2018
  ident: 2021092805433257600_bpab017-B4
  article-title: Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-02867-z
– volume: 27
  start-page: 2156
  year: 2011
  ident: 2021092805433257600_bpab017-B20
  article-title: The variant call format and VCFtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr330
– volume: 102
  start-page: 104
  year: 2016
  ident: 2021092805433257600_bpab017-B5
  article-title: Phylogeographic and population genetic analyses reveal multiple species of Boa and independent origins of insular dwarfism
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2016.05.034
– volume: 26
  start-page: 3594
  year: 2017
  ident: 2021092805433257600_bpab017-B28
  article-title: The K = 2 conundrum
  publication-title: Mol Ecol
  doi: 10.1111/mec.14187
– volume: 22
  start-page: 1022
  year: 2016
  ident: 2021092805433257600_bpab017-B3
  article-title: Use of population genetics to assess the ecology, evolution, and population structure of Coccidioides
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2206.151565
– volume: 7
  start-page: e1002316
  year: 2011
  ident: 2021092805433257600_bpab017-B22
  article-title: Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002316
– volume: 282
  start-page: 20152189
  year: 2015
  ident: 2021092805433257600_bpab017-B25
  article-title: On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia
  publication-title: Proc Biol Sci
– volume: 9
  start-page: 813
  year: 2018
  ident: 2021092805433257600_bpab017-B9
  article-title: Convergent genomic signatures of domestication in sheep and goats
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03206-y
– volume-title: A History and Description of the Modern Dogs of Great Britain and Ireland. The Terriers
  year: 1903
  ident: 2021092805433257600_bpab017-B27
SSID ssj0001845101
Score 2.5672545
Snippet Abstract The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele...
The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele...
The software Treemix has become extensively used to estimate the number of migration events, or edges ( m ), on population trees from genome-wide allele...
SourceID pubmedcentral
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage bpab017
SubjectTerms Bioinformatics
Biology
Datasets
Domestic animals
Gene frequency
Genomes
Genomics
Innovations
Migration
Population
Population genetics
Simulation
Software packages
Trees
Title OptM: estimating the optimal number of migration edges on population trees using Treemix
URI https://www.proquest.com/docview/3169468805
https://www.proquest.com/docview/2578762783
https://pubmed.ncbi.nlm.nih.gov/PMC8476930
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ra9swED7WlEJfSre2NGtWNBh9GSaWpShuX0o3Usqg7Rgp5M1IspQGWturU2j_fe9sJVleyl6MjGQMd6e70-nuPoBviVGGO6MiNbAmkiIx1APSRGjNpbfcDHNHhcLXN-rqTv6aDCYh4FaHtMqFTmwUdV5aipH3BVenUqG0Dc6rvxGhRtHtaoDQ2IBNVMFp2oHNH6Ob339WUZZUktCFahk8vfebqnbCZq77ptImbpDKVhZprcqNnM31VMl_bM_lLuwEp5FdtFz-CB9c8Qm2WhjJ1z2Y3Fbz6zNG_TLI_yymDL06Vlb0-sBazA9WevY4m7b8ZhREqxkOqiV-F6Pr6ZpRHvyUjXH8OHvZh7vL0fjnVRQQEyI7UIJH1nmJezTHY6dOrVCWay1EHufkJ8TGDZPY55rbYZobhfpFesU9j513GmmlU3EAnaIs3CEw6RODzpb3aPKlR6uVoud4ap3RyvpY2C7wBdUyG9qJE6rFQ9Zea4tsReksULoL35ffVG0zjXdXnyAz_mthb8GvLOzAOlvJSxe-Lqdx79CFiC5c-VxnjbpShDXSheEan5d_pe7b6zPF7L7pwo1mnWAkP7__8yPYTigLpgna9KAzf3p2X9CNmZvjIKvHTRgAn-PbyRtwxPzS
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8TFxF2QAjAS8oahy7boqEEJdNHVsLQp3Ut8x27FJpSwLpBPtT_EbOyaWlLxMve0tkJ5aOz-Xz5ZwP4EVklOHOqED1rQmkiAzVgDQBRnPpLTeD1FGi8HiiRify86w_24I_bS4MXatsfWLlqNPc0h55T3A1lAq1rf-u-BEQaxSdrrYUGrVaHLnLX7hkK98efsL5fRlFB_vTj6OgYRUIbF8JHljnJepxikszHVuhLNdaiDRMKZaGxg2i0Kea20GcGoU2KL3inofOO40uXccC_3sDtqVQYdSB7Q_7k6_f1rs6sSQlb7JzwqHoVVn0xAVd9kyhTVgxo60j4EZWHYHbzauZ_8S6gzuw04BU9r7Wqruw5bJ7cLOmrby8D7MvxXL8hlF9DsK72ZwhimR5Qa9nrOYYYbln54t5rV-MNu1Khg_Fii-M0XF4yeje_ZxN8fl88fsBnFyLLB9CJ8sz9wiY9JFBcOc9QgzpMUrGiFSH1hmtrA-F7QJvpZbYpnw5sWicJfUxukjWkk4aSXfh9eqboi7ecWXvVzgZ_9Vxr52vpLH4MlnrZxeer5rRVukARmcuvyiTyj0q4jbpwmBjnlejUrXvzZZs8b2q-o0wgmgrH189-DO4NZqOj5Pjw8nRLtyO6AZOtWG0B53lzwv3BCHU0jxt9JbB6XWbyl-znTdx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OptM%3A+estimating+the+optimal+number+of+migration+edges+on+population+trees+using+Treemix&rft.jtitle=Biology+methods+and+protocols&rft.au=Fitak%2C+Robert+R&rft.date=2021&rft.pub=Oxford+University+Press&rft.eissn=2396-8923&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1093%2Fbiomethods%2Fbpab017&rft.externalDocID=10.1093%2Fbiomethods%2Fbpab017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8923&client=summon