OptM: estimating the optimal number of migration edges on population trees using Treemix
Abstract The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred...
Saved in:
Published in | Biology methods and protocols Vol. 6; no. 1; p. bpab017 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called “OptM” and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix. |
---|---|
AbstractList | The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called “OptM” and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix. Abstract The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called “OptM” and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix. The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called "OptM" and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix.The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δm) across incremental values of m. Repurposed from its original use to estimate the number of population clusters in the software Structure (ΔK), I show using simulated populations that Δm performs equally as well as current recommendations for Treemix. A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called "OptM" and as a web application (https://rfitak.shinyapps.io/OptM/) to interface directly with the output files of Treemix. The software Treemix has become extensively used to estimate the number of migration events, or edges ( m ), on population trees from genome-wide allele frequency data. However, the appropriate number of edges to include remains unclear. Here, I show that an optimal value of m can be inferred from the second-order rate of change in likelihood (Δ m ) across incremental values of m . Repurposed from its original use to estimate the number of population clusters in the software Structure (Δ K ), I show using simulated populations that Δ m performs equally as well as current recommendations for Treemix . A demonstration of an empirical dataset from domestic dogs indicates that this method may be preferable in large, complex population histories and can prioritize migration events for subsequent investigation. The method has been implemented in a freely available R package called “OptM” and as a web application ( https://rfitak.shinyapps.io/OptM/ ) to interface directly with the output files of Treemix . |
Author | Fitak, Robert R |
AuthorAffiliation | Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida , Orlando, FL 32816, USA |
AuthorAffiliation_xml | – name: Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida , Orlando, FL 32816, USA |
Author_xml | – sequence: 1 givenname: Robert R orcidid: 0000-0002-7398-6259 surname: Fitak fullname: Fitak, Robert R email: Robert.fitak@ucf.edu organization: Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA |
BookMark | eNqNUctK7TAUDaL4_gFHhTtxUk262zS9A0HEFyhOFJyFNN09J9ImNWkv1783x3PwNRBHWdl7rbVfO2TdOouEHDB6xGgFx7VxPY5z14TjelA1ZeUa2c6g4qmoMlj_hLfIfghPlFIm8oJRtkm2IC-qAopsmzzeDePt3wTDaHo1GjtLxjkmblh8u8ROfY0-cW3Sm5mPeWcTbGYYkggGN0zdMjZ6jLEpLPT3Effm_x7ZaFUXcH_17pKHi_P7s6v05u7y-uz0JtUFB5ZqbHMmoAEBSmjgmikF0NCmzIHRGsuMto1iuhRNzakQectZyyi2qOJASsAuOVn6DlPdY6PRjl51cvBxAP8inTLya8aauZy5f1LkJa-ARoPDlYF3z1NchOxN0Nh1yqKbgsyKUpQ8KwVE6p9v1Cc3eRvHk8B4lXMhaBFZ2ZKlvQvBY_veDKNycTv5cTu5ul0UiW8ibca35camTfezNF1K3TT8ptQrQUe2sA |
CitedBy_id | crossref_primary_10_1111_jeb_14190 crossref_primary_10_1002_ece3_70909 crossref_primary_10_1111_jbg_12862 crossref_primary_10_1093_molbev_msad013 crossref_primary_10_1111_jse_13020 crossref_primary_10_3390_ani13223439 crossref_primary_10_1016_j_ijbiomac_2024_131796 crossref_primary_10_1038_s44185_023_00020_8 crossref_primary_10_1002_ajb2_16467 crossref_primary_10_1093_molbev_msae108 crossref_primary_10_7554_eLife_85725 crossref_primary_10_1111_mec_16687 crossref_primary_10_1371_journal_pone_0275989 crossref_primary_10_1111_mec_17094 crossref_primary_10_1093_icesjms_fsae057 crossref_primary_10_1038_s41437_024_00734_w crossref_primary_10_1111_age_13344 crossref_primary_10_1016_j_ympev_2023_107701 crossref_primary_10_3389_fpls_2024_1457980 crossref_primary_10_1111_jipb_13653 crossref_primary_10_1111_syen_12631 crossref_primary_10_1126_science_ade0664 crossref_primary_10_1007_s10126_024_10408_7 crossref_primary_10_1016_j_ympev_2023_107784 crossref_primary_10_1111_mec_17527 crossref_primary_10_3390_d14080666 crossref_primary_10_1111_conl_13019 crossref_primary_10_1093_molbev_msac274 crossref_primary_10_1655_Herpetologica_D_23_00048 crossref_primary_10_1093_molbev_msae057 crossref_primary_10_7554_eLife_71572 crossref_primary_10_1093_botlinnean_boac027 crossref_primary_10_1111_mec_17367 crossref_primary_10_1111_mec_17128 crossref_primary_10_1111_mec_16951 crossref_primary_10_1111_plb_13769 crossref_primary_10_1371_journal_pbio_3001890 crossref_primary_10_1093_sysbio_syae053 crossref_primary_10_1016_j_aquaculture_2024_741335 crossref_primary_10_1093_plphys_kiae512 crossref_primary_10_1016_j_ympev_2022_107677 crossref_primary_10_3390_ani14050699 crossref_primary_10_1111_jipb_13884 crossref_primary_10_3389_fgene_2022_993959 crossref_primary_10_1038_s41467_024_49769_x crossref_primary_10_1016_j_xplc_2022_100325 crossref_primary_10_1093_molbev_msae006 crossref_primary_10_1111_ddi_13676 crossref_primary_10_1111_mec_16944 crossref_primary_10_1016_j_flora_2024_152507 crossref_primary_10_1111_jse_13123 crossref_primary_10_1002_ece3_10861 crossref_primary_10_1016_j_isci_2024_110396 crossref_primary_10_1093_g3journal_jkad218 crossref_primary_10_3389_fgene_2023_1298565 crossref_primary_10_3390_genes15101307 crossref_primary_10_3389_fgene_2023_1109490 crossref_primary_10_1080_00071668_2024_2379968 crossref_primary_10_1111_mec_16426 crossref_primary_10_1371_journal_pone_0291814 crossref_primary_10_1002_ajb2_16245 crossref_primary_10_1093_aob_mcac091 crossref_primary_10_1111_gcb_70010 crossref_primary_10_1111_jeb_14219 crossref_primary_10_1016_j_isci_2022_104620 crossref_primary_10_1016_j_ympev_2023_107966 crossref_primary_10_1080_19768354_2022_2141316 crossref_primary_10_1007_s42995_024_00216_2 crossref_primary_10_1111_mec_17190 crossref_primary_10_1038_s41598_024_53414_4 crossref_primary_10_1111_mec_17508 crossref_primary_10_1111_eva_13522 crossref_primary_10_31083_j_fbl2709258 crossref_primary_10_1038_s44185_024_00038_6 crossref_primary_10_1111_mec_17464 crossref_primary_10_3389_fpls_2024_1303625 crossref_primary_10_1016_j_cell_2023_02_005 crossref_primary_10_1186_s12862_024_02266_7 crossref_primary_10_1111_mec_17580 crossref_primary_10_1007_s10592_024_01668_w crossref_primary_10_1111_mec_17067 crossref_primary_10_1093_molbev_msae087 crossref_primary_10_1111_jbi_14362 crossref_primary_10_3390_ani14213154 crossref_primary_10_3390_insects13030264 crossref_primary_10_1093_jas_skae165 crossref_primary_10_1186_s12711_024_00880_z crossref_primary_10_1186_s12711_023_00869_0 crossref_primary_10_1111_mec_17611 crossref_primary_10_3390_horticulturae11010106 crossref_primary_10_1093_hr_uhad041 crossref_primary_10_1016_j_scitotenv_2023_166698 crossref_primary_10_3389_fpls_2024_1449006 crossref_primary_10_1007_s11295_023_01606_w crossref_primary_10_1080_1828051X_2024_2398777 crossref_primary_10_1093_aob_mcad120 crossref_primary_10_1371_journal_pone_0295043 crossref_primary_10_1134_S102279542207002X crossref_primary_10_3390_ani14111629 crossref_primary_10_1186_s12864_024_10084_w crossref_primary_10_1093_jhered_esac038 crossref_primary_10_1111_age_13425 crossref_primary_10_1016_j_jenvman_2024_123085 crossref_primary_10_1038_s41477_025_01942_w crossref_primary_10_3389_fpls_2022_984422 crossref_primary_10_1111_eva_13584 crossref_primary_10_1111_tpj_16455 crossref_primary_10_3390_d15050627 crossref_primary_10_1111_jbi_14739 crossref_primary_10_1016_j_scitotenv_2023_169679 crossref_primary_10_1038_s41598_025_85756_y crossref_primary_10_1038_s41598_025_89498_9 crossref_primary_10_1111_mec_17687 crossref_primary_10_1111_eva_70033 crossref_primary_10_1038_s41437_023_00653_2 crossref_primary_10_1126_science_add8655 crossref_primary_10_1007_s10592_024_01665_z crossref_primary_10_1093_gigascience_giae064 crossref_primary_10_1186_s43897_024_00120_4 crossref_primary_10_1111_mec_17560 crossref_primary_10_1111_jbi_14861 crossref_primary_10_1016_j_ympev_2024_108282 crossref_primary_10_3390_biology12070979 crossref_primary_10_1016_j_aqrep_2024_102356 crossref_primary_10_1016_j_ympev_2024_108167 crossref_primary_10_1186_s13059_024_03203_z crossref_primary_10_1038_s41598_024_63272_9 crossref_primary_10_1111_zsc_12706 crossref_primary_10_1186_s13059_025_03535_4 crossref_primary_10_1186_s12711_022_00718_6 crossref_primary_10_1186_s12915_023_01722_y crossref_primary_10_1093_molbev_msad199 crossref_primary_10_1111_mec_17718 crossref_primary_10_1655_Herpetologica_D_22_00044 crossref_primary_10_1186_s12864_024_10739_8 crossref_primary_10_1111_mec_17038 crossref_primary_10_1111_eva_13330 crossref_primary_10_1111_mec_16502 crossref_primary_10_1126_sciadv_adh3425 crossref_primary_10_1038_s41437_023_00601_0 crossref_primary_10_1093_sysbio_syad073 crossref_primary_10_1016_j_gecco_2024_e02870 crossref_primary_10_1016_j_ympev_2023_107804 crossref_primary_10_1038_s41477_023_01526_6 crossref_primary_10_1093_g3journal_jkac323 crossref_primary_10_1016_j_cub_2024_08_046 crossref_primary_10_1371_journal_ppat_1012811 crossref_primary_10_1093_molbev_msad082 crossref_primary_10_1016_j_psj_2025_105060 crossref_primary_10_1002_ece3_10675 crossref_primary_10_1007_s00253_024_13267_3 crossref_primary_10_1111_mec_16859 crossref_primary_10_1002_ece3_10278 crossref_primary_10_1002_ece3_11407 crossref_primary_10_1038_s41437_022_00517_1 crossref_primary_10_1093_nargab_lqae034 crossref_primary_10_1111_mec_17301 crossref_primary_10_1371_journal_pone_0314509 crossref_primary_10_1111_mec_17304 crossref_primary_10_3389_fpls_2024_1369732 crossref_primary_10_1111_mec_16295 crossref_primary_10_1186_s12864_025_11484_2 crossref_primary_10_3389_fpls_2022_999964 crossref_primary_10_1016_j_xplc_2023_100563 crossref_primary_10_1016_j_ympev_2024_108220 crossref_primary_10_1111_tpj_16270 crossref_primary_10_1038_s42003_024_06809_y |
Cites_doi | 10.1111/j.1365-294X.2005.02553.x 10.1086/519795 10.1371/journal.pgen.1002967 10.1093/genetics/155.2.945 10.1038/cr.2015.147 10.1534/genetics.116.195164 10.3389/fgene.2013.00098 10.1016/j.tree.2013.09.008 10.1371/journal.pgen.1004254 10.1038/ncomms11693 10.1073/pnas.0903341106 10.1016/j.celrep.2017.03.079 10.1016/j.tvjl.2011.06.013 10.1890/070179 10.1093/bioinformatics/btw355 10.1038/s41467-018-02867-z 10.1093/bioinformatics/btr330 10.1016/j.ympev.2016.05.034 10.1111/mec.14187 10.3201/eid2206.151565 10.1371/journal.pgen.1002316 10.1038/s41467-018-03206-y |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. 2021 The Author(s) 2021. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. 2021 – notice: The Author(s) 2021. Published by Oxford University Press. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1093/biomethods/bpab017 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2396-8923 |
ExternalDocumentID | PMC8476930 10_1093_biomethods_bpab017 10.1093/biomethods/bpab017 |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP ABDBF ABEJV ABGNP ABPTD ABXVV ACGFS ACUHS AENZO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMNDL AVWKF BAYMD BBNVY BENPR BHPHI CCPQU EBS EJD ESX GROUPED_DOAJ H13 HCIFZ IAO IHR ISR ITC KSI M7P M~E O9- OAWHX OJQWA OK1 PEELM PIMPY RPM TOX AAYXX CITATION PHGZM PHGZT 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c5631-cef4183d383a8c36c1aa33d0d74310be720fda1c78db60884f61f10efea001a83 |
IEDL.DBID | BENPR |
ISSN | 2396-8923 |
IngestDate | Thu Aug 21 18:20:49 EDT 2025 Fri Jul 11 06:28:17 EDT 2025 Fri Jul 25 11:50:20 EDT 2025 Tue Jul 01 03:32:50 EDT 2025 Thu Apr 24 23:13:06 EDT 2025 Wed Apr 02 07:00:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | population genomics SNPs likelihood structure |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5631-cef4183d383a8c36c1aa33d0d74310be720fda1c78db60884f61f10efea001a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7398-6259 |
OpenAccessLink | https://www.proquest.com/docview/3169468805?pq-origsite=%requestingapplication% |
PMID | 34595352 |
PQID | 3169468805 |
PQPubID | 7121356 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8476930 proquest_miscellaneous_2578762783 proquest_journals_3169468805 crossref_primary_10_1093_biomethods_bpab017 crossref_citationtrail_10_1093_biomethods_bpab017 oup_primary_10_1093_biomethods_bpab017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Biology methods and protocols |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Lee (2021092805433257600_bpab017-B27) 1903 Porras-Hurtado (2021092805433257600_bpab017-B12) 2013; 4 Card (2021092805433257600_bpab017-B5) 2016; 102 Decker (2021092805433257600_bpab017-B6) 2014; 10 Parker (2021092805433257600_bpab017-B8) 2017; 19 Wang (2021092805433257600_bpab017-B24) 2016; 26 Janes (2021092805433257600_bpab017-B28) 2017; 26 Teixeira (2021092805433257600_bpab017-B3) 2016; 22 Lequarré (2021092805433257600_bpab017-B21) 2011; 189 Evanno (2021092805433257600_bpab017-B10) 2005; 14 R Core Development Team (2021092805433257600_bpab017-B15) 2017 Alberto (2021092805433257600_bpab017-B9) 2018; 9 Pickrell (2021092805433257600_bpab017-B2) 2012; 8 Novembre (2021092805433257600_bpab017-B13) 2016; 204 Foote (2021092805433257600_bpab017-B7) 2016; 7 Lee (2021092805433257600_bpab017-B26) 1897 Sonderegger (2021092805433257600_bpab017-B16) 2009; 7 Pritchard (2021092805433257600_bpab017-B11) 2000; 155 Purcell (2021092805433257600_bpab017-B23) 2007; 81 DeGiorgio (2021092805433257600_bpab017-B19) 2009; 106 Danecek (2021092805433257600_bpab017-B20) 2011; 27 von Wettberg (2021092805433257600_bpab017-B4) 2018; 9 Ellegren (2021092805433257600_bpab017-B1) 2014; 29 Palamara (2021092805433257600_bpab017-B18) 2016; 32 Akaike (2021092805433257600_bpab017-B17) 1973 Pilot (2021092805433257600_bpab017-B25) 2015; 282 Vaysse (2021092805433257600_bpab017-B22) 2011; 7 Pritchard (2021092805433257600_bpab017-B14) 2010 |
References_xml | – volume: 14 start-page: 2611 year: 2005 ident: 2021092805433257600_bpab017-B10 article-title: Detecting the number of clusters of individuals using the software structure: a simulation study publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2005.02553.x – volume: 81 start-page: 559 year: 2007 ident: 2021092805433257600_bpab017-B23 article-title: PLINK: A tool set for whole-genome association and population-based linkage analyses publication-title: Am J Hum Genet doi: 10.1086/519795 – volume: 8 start-page: e1002967 year: 2012 ident: 2021092805433257600_bpab017-B2 article-title: Inference of population splits and mixtures from genome-wide allele frequency data publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002967 – volume: 155 start-page: 945 year: 2000 ident: 2021092805433257600_bpab017-B11 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics doi: 10.1093/genetics/155.2.945 – year: 2010 ident: 2021092805433257600_bpab017-B14 – start-page: 267 volume-title: Second International Symposium on Information Theory year: 1973 ident: 2021092805433257600_bpab017-B17 – volume: 26 start-page: 21 year: 2016 ident: 2021092805433257600_bpab017-B24 article-title: Out of southern East Asia: the natural history of domestic dogs across the world publication-title: Cell Res doi: 10.1038/cr.2015.147 – volume-title: A History and Description of the Modern Dogs of Great Britain and Ireland. Sporting Division year: 1897 ident: 2021092805433257600_bpab017-B26 – volume: 204 start-page: 391 year: 2016 ident: 2021092805433257600_bpab017-B13 article-title: Pritchard, Stephens, and Donnelly on population structure publication-title: Genetics doi: 10.1534/genetics.116.195164 – volume: 4 start-page: 98 year: 2013 ident: 2021092805433257600_bpab017-B12 article-title: An overview of STRUCTURE: applications, parameter settings, and supporting software publication-title: Front Genet doi: 10.3389/fgene.2013.00098 – volume: 29 start-page: 51 year: 2014 ident: 2021092805433257600_bpab017-B1 article-title: Genome sequencing and population genomics in non-model organisms publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2013.09.008 – volume: 10 start-page: e1004254 year: 2014 ident: 2021092805433257600_bpab017-B6 article-title: Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004254 – volume: 7 start-page: 11693 year: 2016 ident: 2021092805433257600_bpab017-B7 article-title: Genome-culture coevolution promotes rapid divergence of killer whale ecotypes publication-title: Nat Commun doi: 10.1038/ncomms11693 – volume: 106 start-page: 16057 year: 2009 ident: 2021092805433257600_bpab017-B19 article-title: Explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0903341106 – volume: 19 start-page: 697 year: 2017 ident: 2021092805433257600_bpab017-B8 article-title: Genomic analyses reveal the influence of geographic origin, migration, and hybridization on modern dog breed development publication-title: Cell Rep doi: 10.1016/j.celrep.2017.03.079 – year: 2017 ident: 2021092805433257600_bpab017-B15 – volume: 189 start-page: 155 year: 2011 ident: 2021092805433257600_bpab017-B21 article-title: LUPA: a European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs publication-title: Vet J doi: 10.1016/j.tvjl.2011.06.013 – volume: 7 start-page: 190 year: 2009 ident: 2021092805433257600_bpab017-B16 article-title: Using SiZer to detect thresholds in ecological data publication-title: Front Ecol Environ doi: 10.1890/070179 – volume: 32 start-page: 3032 year: 2016 ident: 2021092805433257600_bpab017-B18 article-title: ARGON: fast, whole-genome simulation of the discrete time Wright-fisher process publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw355 – volume: 9 start-page: 649 year: 2018 ident: 2021092805433257600_bpab017-B4 article-title: Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation publication-title: Nat Commun doi: 10.1038/s41467-018-02867-z – volume: 27 start-page: 2156 year: 2011 ident: 2021092805433257600_bpab017-B20 article-title: The variant call format and VCFtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr330 – volume: 102 start-page: 104 year: 2016 ident: 2021092805433257600_bpab017-B5 article-title: Phylogeographic and population genetic analyses reveal multiple species of Boa and independent origins of insular dwarfism publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2016.05.034 – volume: 26 start-page: 3594 year: 2017 ident: 2021092805433257600_bpab017-B28 article-title: The K = 2 conundrum publication-title: Mol Ecol doi: 10.1111/mec.14187 – volume: 22 start-page: 1022 year: 2016 ident: 2021092805433257600_bpab017-B3 article-title: Use of population genetics to assess the ecology, evolution, and population structure of Coccidioides publication-title: Emerg Infect Dis doi: 10.3201/eid2206.151565 – volume: 7 start-page: e1002316 year: 2011 ident: 2021092805433257600_bpab017-B22 article-title: Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002316 – volume: 282 start-page: 20152189 year: 2015 ident: 2021092805433257600_bpab017-B25 article-title: On the origin of mongrels: evolutionary history of free-breeding dogs in Eurasia publication-title: Proc Biol Sci – volume: 9 start-page: 813 year: 2018 ident: 2021092805433257600_bpab017-B9 article-title: Convergent genomic signatures of domestication in sheep and goats publication-title: Nat Commun doi: 10.1038/s41467-018-03206-y – volume-title: A History and Description of the Modern Dogs of Great Britain and Ireland. The Terriers year: 1903 ident: 2021092805433257600_bpab017-B27 |
SSID | ssj0001845101 |
Score | 2.5672545 |
Snippet | Abstract
The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele... The software Treemix has become extensively used to estimate the number of migration events, or edges (m), on population trees from genome-wide allele... The software Treemix has become extensively used to estimate the number of migration events, or edges ( m ), on population trees from genome-wide allele... |
SourceID | pubmedcentral proquest crossref oup |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | bpab017 |
SubjectTerms | Bioinformatics Biology Datasets Domestic animals Gene frequency Genomes Genomics Innovations Migration Population Population genetics Simulation Software packages Trees |
Title | OptM: estimating the optimal number of migration edges on population trees using Treemix |
URI | https://www.proquest.com/docview/3169468805 https://www.proquest.com/docview/2578762783 https://pubmed.ncbi.nlm.nih.gov/PMC8476930 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ra9swED7WlEJfSre2NGtWNBh9GSaWpShuX0o3Usqg7Rgp5M1IspQGWturU2j_fe9sJVleyl6MjGQMd6e70-nuPoBviVGGO6MiNbAmkiIx1APSRGjNpbfcDHNHhcLXN-rqTv6aDCYh4FaHtMqFTmwUdV5aipH3BVenUqG0Dc6rvxGhRtHtaoDQ2IBNVMFp2oHNH6Ob339WUZZUktCFahk8vfebqnbCZq77ptImbpDKVhZprcqNnM31VMl_bM_lLuwEp5FdtFz-CB9c8Qm2WhjJ1z2Y3Fbz6zNG_TLI_yymDL06Vlb0-sBazA9WevY4m7b8ZhREqxkOqiV-F6Pr6ZpRHvyUjXH8OHvZh7vL0fjnVRQQEyI7UIJH1nmJezTHY6dOrVCWay1EHufkJ8TGDZPY55rbYZobhfpFesU9j513GmmlU3EAnaIs3CEw6RODzpb3aPKlR6uVoud4ap3RyvpY2C7wBdUyG9qJE6rFQ9Zea4tsReksULoL35ffVG0zjXdXnyAz_mthb8GvLOzAOlvJSxe-Lqdx79CFiC5c-VxnjbpShDXSheEan5d_pe7b6zPF7L7pwo1mnWAkP7__8yPYTigLpgna9KAzf3p2X9CNmZvjIKvHTRgAn-PbyRtwxPzS |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8TFxF2QAjAS8oahy7boqEEJdNHVsLQp3Ut8x27FJpSwLpBPtT_EbOyaWlLxMve0tkJ5aOz-Xz5ZwP4EVklOHOqED1rQmkiAzVgDQBRnPpLTeD1FGi8HiiRify86w_24I_bS4MXatsfWLlqNPc0h55T3A1lAq1rf-u-BEQaxSdrrYUGrVaHLnLX7hkK98efsL5fRlFB_vTj6OgYRUIbF8JHljnJepxikszHVuhLNdaiDRMKZaGxg2i0Kea20GcGoU2KL3inofOO40uXccC_3sDtqVQYdSB7Q_7k6_f1rs6sSQlb7JzwqHoVVn0xAVd9kyhTVgxo60j4EZWHYHbzauZ_8S6gzuw04BU9r7Wqruw5bJ7cLOmrby8D7MvxXL8hlF9DsK72ZwhimR5Qa9nrOYYYbln54t5rV-MNu1Khg_Fii-M0XF4yeje_ZxN8fl88fsBnFyLLB9CJ8sz9wiY9JFBcOc9QgzpMUrGiFSH1hmtrA-F7QJvpZbYpnw5sWicJfUxukjWkk4aSXfh9eqboi7ecWXvVzgZ_9Vxr52vpLH4MlnrZxeer5rRVukARmcuvyiTyj0q4jbpwmBjnlejUrXvzZZs8b2q-o0wgmgrH189-DO4NZqOj5Pjw8nRLtyO6AZOtWG0B53lzwv3BCHU0jxt9JbB6XWbyl-znTdx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OptM%3A+estimating+the+optimal+number+of+migration+edges+on+population+trees+using+Treemix&rft.jtitle=Biology+methods+and+protocols&rft.au=Fitak%2C+Robert+R&rft.date=2021&rft.pub=Oxford+University+Press&rft.eissn=2396-8923&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1093%2Fbiomethods%2Fbpab017&rft.externalDocID=10.1093%2Fbiomethods%2Fbpab017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2396-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2396-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2396-8923&client=summon |