Cover

Loading…
Abstract How many dimensions (trait‐axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high‐quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large‐scale community structure.
AbstractList How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure. [PUBLICATION ABSTRACT]
How many dimensions (trait‐axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high‐quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large‐scale community structure.
How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small (&lt;10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure.
How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure.
How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure.How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure.
How many dimensions (trait-axes) are required to predict whether two species interact? This unansweredquestion originated with the idea of ecological niches, and yet bears relevance today for understanding whatdetermines network structure. Here, we analyse a set of 200 ecological networks, including food webs,antagonistic and mutualistic networks, and find that the number of dimensions needed to completelyexplain all interactions is small ( &lt; 10), with model selection favouring less than five. Using 18 high-qualitywebs including several species traits, we identify which traits contribute the most to explaining networkstructure. We show that accounting for a few traits dramatically improves our understanding of the structureof ecological networks. Matching traits for resources and consumers, for example, fruit size and billgape, are the most successful combinations. These results link ecologically important species attributes tolarge-scale community structure.
Author Chacoff, Natacha P.
Pizo, Marco Aurelio
Eklöf, Anna
Tylianakis, Jason M.
Galetti, Mauro
Lomáscolo, Silvia Beatriz
Martín González, Ana M.
Guimarães, Paulo R.
Vázquez, Diego P.
Bosch, Jordi
Rader, Romina
Castro-Urgal, Rocío
de Sassi, Claudio
Allesina, Stefano
Jacob, Ute
Rodrigo, Anselm
Kopp, Jason
Dalsgaard, Bo
Author_xml – sequence: 1
  givenname: Anna
  surname: Eklöf
  fullname: Eklöf, Anna
  email: Correspondence: , anna.eklof@liu.se
  organization: Department of Ecology & Evolution, University of Chicago, IL, Chicago, USA
– sequence: 2
  givenname: Ute
  surname: Jacob
  fullname: Jacob, Ute
  organization: Institute for Hydrobiology and Fisheries Science, Hamburg, Germany
– sequence: 3
  givenname: Jason
  surname: Kopp
  fullname: Kopp, Jason
  organization: Department of Ecology & Evolution, University of Chicago, IL, Chicago, USA
– sequence: 4
  givenname: Jordi
  surname: Bosch
  fullname: Bosch, Jordi
  organization: CREAF - Ecology Unit, Universitat Autónoma de Barcelona, Barcelona, Spain
– sequence: 5
  givenname: Rocío
  surname: Castro-Urgal
  fullname: Castro-Urgal, Rocío
  organization: Institut Mediterrani d'Estudis Avanc¸ats (CSIC-UIB), Mallorca, Balearic Islands, Spain
– sequence: 6
  givenname: Natacha P.
  surname: Chacoff
  fullname: Chacoff, Natacha P.
  organization: Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Mendoza, Argentina
– sequence: 7
  givenname: Bo
  surname: Dalsgaard
  fullname: Dalsgaard, Bo
  organization: Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, Copenhagen, Denmark
– sequence: 8
  givenname: Claudio
  surname: de Sassi
  fullname: de Sassi, Claudio
  organization: School of Biological Sciences, University of Canterbury, Canterbury, New Zealand
– sequence: 9
  givenname: Mauro
  surname: Galetti
  fullname: Galetti, Mauro
  organization: Departamento de Ecologia, Universidade Estadual Paulista, Rio Claro, Brazil
– sequence: 10
  givenname: Paulo R.
  surname: Guimarães
  fullname: Guimarães, Paulo R.
  organization: Departamento de Ecologia, I.B, Universidade de São Paulo, Sao Paulo, Brazil
– sequence: 11
  givenname: Silvia Beatriz
  surname: Lomáscolo
  fullname: Lomáscolo, Silvia Beatriz
  organization: Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Mendoza, Argentina
– sequence: 12
  givenname: Ana M.
  surname: Martín González
  fullname: Martín González, Ana M.
  organization: Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, Copenhagen, Denmark
– sequence: 13
  givenname: Marco Aurelio
  surname: Pizo
  fullname: Pizo, Marco Aurelio
  organization: Departamento de Zoologia, Universidade Estadual Paulista, São Paulo, Brazil
– sequence: 14
  givenname: Romina
  surname: Rader
  fullname: Rader, Romina
  organization: Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden
– sequence: 15
  givenname: Anselm
  surname: Rodrigo
  fullname: Rodrigo, Anselm
  organization: CREAF - Ecology Unit, Universitat Autónoma de Barcelona, Barcelona, Spain
– sequence: 16
  givenname: Jason M.
  surname: Tylianakis
  fullname: Tylianakis, Jason M.
  organization: School of Biological Sciences, University of Canterbury, Canterbury, New Zealand
– sequence: 17
  givenname: Diego P.
  surname: Vázquez
  fullname: Vázquez, Diego P.
  organization: Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Mendoza, Argentina
– sequence: 18
  givenname: Stefano
  surname: Allesina
  fullname: Allesina, Stefano
  organization: Department of Ecology & Evolution, University of Chicago, Chicago, IL, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27283696$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23438174$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-89672$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-161703$$DView record from Swedish Publication Index
BookMark eNqN0l1rFDEUBuAgLfbLC_-ALIhgodPmazLJZV3XqiwVcWmlNyGbOVPTZidrMsO6_960u12hUGluEsLzhnDO2UNbbWgBodcEH5O8TsDDMaFYkhdol3BBCky53Nqc2c8dtJfSDcaEqoq8RDuUcSZJxXfR4eQXDGo3gza50BrvuuUgNAOwwYdrZ40ftNAtQrxNB2i7MT7Bq_W-jyafRpPh52L87ezL8HRc2FIwUnDLm4pVoLCpayYsU8IqhSk0glBprYBpaYGDgXwNGJdQY3wf4WQKFdtHR6tn0wLm_VTPo5uZuNTBOP3RXZzqEK916jURpMLsedy7XkslKpr5-xWfx_C7h9TpmUsWvDcthD5pwkpKFRECP4MyyRTlosz07SN6E_qYq3mnqMy1LoXM6s1a9dMZ1JuvPjQjg3drYFKufBNNa1365yoqmVAiu8OVszGkFKHZEIL13UDoPBD6fiCyPXlkretMl3vdReP8_xIL52H59NN6NB49JIpVwqUO_mwSJt5qkfta6svzM_3hhxhfld-_6iH7Cw3-0oQ
CitedBy_id crossref_primary_10_1002_jmor_21516
crossref_primary_10_1111_ele_13510
crossref_primary_10_3354_ame01771
crossref_primary_10_1098_rstb_2015_0268
crossref_primary_10_1111_brv_13094
crossref_primary_10_1111_gcb_15732
crossref_primary_10_1093_biosci_biad089
crossref_primary_10_1111_geb_12346
crossref_primary_10_1111_1365_2745_13108
crossref_primary_10_1111_ecog_04006
crossref_primary_10_1093_icb_icac147
crossref_primary_10_1111_1365_2656_12459
crossref_primary_10_1111_ecog_05452
crossref_primary_10_1111_2041_210X_12103
crossref_primary_10_1556_168_2019_20_2_5
crossref_primary_10_1111_ele_12312
crossref_primary_10_1002_ecs2_4614
crossref_primary_10_1007_s40823_018_0031_y
crossref_primary_10_1146_annurev_ecolsys_110316_022928
crossref_primary_10_1063_1_4953163
crossref_primary_10_1111_1365_2745_13334
crossref_primary_10_1098_rspa_2023_0284
crossref_primary_10_1111_2041_210X_13329
crossref_primary_10_1007_s11692_017_9409_8
crossref_primary_10_1111_oik_02256
crossref_primary_10_1111_2041_210X_13569
crossref_primary_10_1038_s41559_019_0899_x
crossref_primary_10_1111_oik_06737
crossref_primary_10_1890_ES14_00515_1
crossref_primary_10_1016_j_jtbi_2013_06_004
crossref_primary_10_3389_fmars_2016_00182
crossref_primary_10_1098_rspb_2016_2664
crossref_primary_10_1016_j_pecon_2017_09_003
crossref_primary_10_1016_j_tree_2024_04_002
crossref_primary_10_1093_aobpla_plv076
crossref_primary_10_1111_2041_210X_12471
crossref_primary_10_1371_journal_pone_0195919
crossref_primary_10_1111_ele_14383
crossref_primary_10_1038_srep45908
crossref_primary_10_1098_rspb_2013_2397
crossref_primary_10_1016_j_fooweb_2023_e00333
crossref_primary_10_1038_s41598_017_15496_1
crossref_primary_10_1111_1365_2435_13784
crossref_primary_10_1111_gcb_15196
crossref_primary_10_1111_oik_05670
crossref_primary_10_1002_ecm_1415
crossref_primary_10_1007_s10530_021_02484_w
crossref_primary_10_1038_s41558_020_0698_z
crossref_primary_10_1139_cjfas_2016_0176
crossref_primary_10_1109_JSTARS_2023_3342985
crossref_primary_10_1016_j_ecocom_2022_101003
crossref_primary_10_1111_ecog_05229
crossref_primary_10_1371_journal_pclm_0000358
crossref_primary_10_1111_oik_10446
crossref_primary_10_1002_ecy_2465
crossref_primary_10_1111_ele_14368
crossref_primary_10_1111_1365_2656_70013
crossref_primary_10_1111_ele_13279
crossref_primary_10_1111_jzo_12612
crossref_primary_10_1111_ele_12865
crossref_primary_10_1111_1365_2656_70011
crossref_primary_10_1103_PhysRevResearch_3_023117
crossref_primary_10_1111_j_1600_0706_2013_01011_x
crossref_primary_10_1111_1365_2656_12892
crossref_primary_10_1103_PhysRevE_110_034313
crossref_primary_10_1002_ece3_8916
crossref_primary_10_1111_1365_2435_14253
crossref_primary_10_1016_j_agee_2014_02_017
crossref_primary_10_1111_1365_2435_12763
crossref_primary_10_1111_aec_12560
crossref_primary_10_1111_geb_13348
crossref_primary_10_1111_ele_13966
crossref_primary_10_1007_s42974_021_00067_2
crossref_primary_10_1016_j_ecss_2020_107097
crossref_primary_10_1016_j_jtbi_2013_05_004
crossref_primary_10_1111_ele_14134
crossref_primary_10_1111_ecog_03187
crossref_primary_10_1111_ecog_06453
crossref_primary_10_1111_2041_210X_13125
crossref_primary_10_1371_journal_pone_0205854
crossref_primary_10_1098_rspb_2024_0269
crossref_primary_10_1101_cshperspect_a041448
crossref_primary_10_1016_j_ecolmodel_2021_109508
crossref_primary_10_1111_1365_2435_12530
crossref_primary_10_1890_13_1424_1
crossref_primary_10_1111_oik_01426
crossref_primary_10_1016_j_ecolind_2018_04_050
crossref_primary_10_1098_rspb_2015_2444
crossref_primary_10_1371_journal_pone_0252448
crossref_primary_10_1002_ecy_70011
crossref_primary_10_1016_j_tree_2024_01_009
crossref_primary_10_1038_s41559_019_1070_4
crossref_primary_10_1002_ecm_1331
crossref_primary_10_1098_rspb_2013_3203
crossref_primary_10_1111_2041_210X_14228
crossref_primary_10_1098_rspb_2020_1889
crossref_primary_10_1007_s10144_018_0628_3
crossref_primary_10_1016_j_tree_2016_06_009
crossref_primary_10_1111_2041_210X_13493
crossref_primary_10_1111_ecog_00819
crossref_primary_10_1038_s41467_018_07677_x
crossref_primary_10_1111_ele_12612
crossref_primary_10_1002_etc_5629
crossref_primary_10_1371_journal_pone_0306342
crossref_primary_10_1038_ncomms8842
crossref_primary_10_1890_14_0024_1
crossref_primary_10_1515_mammalia_2014_0058
crossref_primary_10_1038_s41467_020_17894_y
crossref_primary_10_1111_2041_210X_14358
crossref_primary_10_1017_S003118202000133X
crossref_primary_10_1111_1365_2435_12669
crossref_primary_10_3389_fevo_2022_804138
crossref_primary_10_1111_brv_12433
crossref_primary_10_1111_1365_2435_12666
crossref_primary_10_1098_rstb_2023_0180
crossref_primary_10_1002_ece3_6411
crossref_primary_10_1007_s12080_014_0229_5
crossref_primary_10_1111_ele_13592
crossref_primary_10_1016_j_ecss_2023_108411
crossref_primary_10_1016_j_foreco_2018_05_039
crossref_primary_10_1126_sciadv_1500558
crossref_primary_10_1002_ecy_3047
crossref_primary_10_1016_j_wsee_2025_03_004
crossref_primary_10_1111_ele_12946
crossref_primary_10_1002_ecy_3285
crossref_primary_10_1016_j_ecolmodel_2020_109161
crossref_primary_10_1007_s00442_018_4322_0
crossref_primary_10_1016_j_tree_2022_06_004
crossref_primary_10_1111_2041_210X_12192
crossref_primary_10_1016_j_cois_2015_04_017
crossref_primary_10_1111_1365_2435_13254
crossref_primary_10_1111_ele_12955
crossref_primary_10_1111_1365_2656_13274
crossref_primary_10_1111_ddi_12458
crossref_primary_10_1111_oik_01439
crossref_primary_10_1111_1365_2656_14124
crossref_primary_10_1111_ele_12395
crossref_primary_10_1016_j_jtbi_2016_03_042
crossref_primary_10_1111_ele_14212
crossref_primary_10_1002_ece3_2865
crossref_primary_10_1098_rstb_2021_0063
crossref_primary_10_1002_ecy_70001
crossref_primary_10_1016_j_tree_2015_03_014
crossref_primary_10_1038_ncomms13965
crossref_primary_10_1111_oik_02894
crossref_primary_10_1111_oik_08512
crossref_primary_10_1002_ecy_2523
crossref_primary_10_1111_1365_2435_14340
crossref_primary_10_1111_oik_04712
crossref_primary_10_1890_13_2229_1
crossref_primary_10_1002_ecs2_3018
crossref_primary_10_1016_j_landusepol_2018_11_043
crossref_primary_10_1111_ele_13334
crossref_primary_10_1111_ecog_01714
crossref_primary_10_1002_ece3_8055
crossref_primary_10_1007_s12080_015_0273_9
crossref_primary_10_1093_comnet_cnv023
crossref_primary_10_1111_nph_16192
crossref_primary_10_1111_oik_07337
crossref_primary_10_1007_s11258_020_01032_1
crossref_primary_10_1002_ecy_3028
crossref_primary_10_1098_rspb_2014_2947
crossref_primary_10_1111_1365_2435_14231
crossref_primary_10_1086_675363
crossref_primary_10_1016_j_tree_2018_04_009
crossref_primary_10_1111_gcb_13601
crossref_primary_10_1111_oik_02305
crossref_primary_10_1111_ecog_00976
crossref_primary_10_1111_ecog_05869
crossref_primary_10_1111_ecog_03443
crossref_primary_10_1111_oik_08650
crossref_primary_10_1111_ele_12938
crossref_primary_10_1111_oik_05387
crossref_primary_10_1016_j_jtbi_2016_10_007
crossref_primary_10_1371_journal_pbio_1002527
crossref_primary_10_1016_j_ecoinf_2024_102696
crossref_primary_10_1111_oik_10521
crossref_primary_10_1016_j_fooweb_2018_e00093
crossref_primary_10_1111_ele_12342
crossref_primary_10_1038_srep14865
crossref_primary_10_1017_S0376892914000307
crossref_primary_10_1017_S0266467419000178
crossref_primary_10_1111_oik_08443
crossref_primary_10_1016_j_jtbi_2025_112091
crossref_primary_10_1016_j_isci_2024_110962
crossref_primary_10_1111_ele_13567
crossref_primary_10_1111_brv_12250
crossref_primary_10_1002_ece3_2780
crossref_primary_10_1007_s00442_022_05151_6
crossref_primary_10_1016_j_tree_2022_05_006
crossref_primary_10_3389_fevo_2017_00057
crossref_primary_10_1111_ecog_07028
crossref_primary_10_1371_journal_pone_0208720
crossref_primary_10_1098_rspb_2023_2771
crossref_primary_10_1111_ele_70073
crossref_primary_10_1038_srep06440
crossref_primary_10_1111_jbi_13493
crossref_primary_10_1016_j_tplants_2022_04_002
crossref_primary_10_1016_j_cois_2017_05_012
crossref_primary_10_1111_brv_13105
crossref_primary_10_1093_icb_icae070
crossref_primary_10_1038_s41467_018_05610_w
crossref_primary_10_1111_1365_2745_13207
crossref_primary_10_1111_ele_13096
crossref_primary_10_1093_jeb_voae069
crossref_primary_10_1086_689891
crossref_primary_10_1038_s41467_018_05056_0
crossref_primary_10_1111_brv_12828
crossref_primary_10_1038_s41467_020_15688_w
crossref_primary_10_1111_1365_2656_13207
crossref_primary_10_1016_j_gecco_2025_e03523
crossref_primary_10_1016_j_tree_2022_11_004
crossref_primary_10_1146_annurev_ecolsys_110316_022821
crossref_primary_10_1086_733415
crossref_primary_10_7717_peerj_3644
crossref_primary_10_1111_1365_2435_13237
crossref_primary_10_1111_1365_2435_14206
crossref_primary_10_1111_1365_2656_12484
crossref_primary_10_1016_j_ecocom_2016_07_005
crossref_primary_10_1016_j_fooweb_2022_e00246
crossref_primary_10_1111_geb_12193
crossref_primary_10_1126_science_adj1856
crossref_primary_10_1140_epjb_s10051_023_00630_y
crossref_primary_10_1038_s41467_024_53001_1
crossref_primary_10_1111_1365_2435_14442
crossref_primary_10_1111_1365_2435_12943
crossref_primary_10_3389_fevo_2021_698885
Cites_doi 10.1890/11-0200.1
10.7208/chicago/9780226118697.001.0001
10.1073/pnas.0910582106
10.1007/BFb0070404
10.1111/j.1365-2656.2011.01883.x
10.1126/science.1156269
10.1016/B978-0-12-381363-3.00003-4
10.1038/nature02327
10.1016/B978-0-12-386475-8.00005-8
10.1046/j.1461-0248.2003.00403.x
10.1038/35004572
10.1111/j.1365-2656.2010.01778.x
10.1016/j.jtbi.2010.06.040
10.1002/j.1537-2197.1982.tb13237.x
10.1098/rsif.2010.0111
10.1007/s00442-008-1255-z
10.1098/rstb.2010.0145
10.1046/j.1365-2745.2001.00553.x
10.1111/j.1461-0248.2009.01296.x
10.1016/S0304-3800(99)00022-8
10.1073/pnas.0603844103
10.1890/03-9000
10.1111/j.1365-2656.2011.01812.x
10.1007/s00285-010-0383-3
10.1016/0166-218X(94)90143-0
10.1016/j.disc.2008.04.011
10.1098/rspb.2011.2149
10.1890/07-1241.1
10.1007/BF00346475
10.1093/aob/mcp057
10.1890/10-1594.1
10.2307/1936841
10.1038/nature05429
10.1073/pnas.0710672105
10.1016/j.jtbi.2010.11.045
10.1016/j.ecocom.2007.06.013
10.1038/nature10853
10.7208/chicago/9780226101811.001.0001
ContentType Journal Article
Copyright 2013 Blackwell Publishing Ltd/CNRS
2014 INIST-CNRS
2013 Blackwell Publishing Ltd/CNRS.
Copyright © 2013 Blackwell Publishing Ltd/CNRS
Copyright_xml – notice: 2013 Blackwell Publishing Ltd/CNRS
– notice: 2014 INIST-CNRS
– notice: 2013 Blackwell Publishing Ltd/CNRS.
– notice: Copyright © 2013 Blackwell Publishing Ltd/CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
ADTPV
AOWAS
DG8
DG7
DOI 10.1111/ele.12081
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Linköpings universitet
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts

MEDLINE

Ecology Abstracts
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1461-0248
Editor Dunne, Jennifer
Editor_xml – sequence: 19
  givenname: Jennifer
  surname: Dunne
  fullname: Dunne, Jennifer
EndPage 583
ExternalDocumentID oai_DiVA_org_su_161703
oai_DiVA_org_liu_89672
2948068401
23438174
27283696
10_1111_ele_12081
ELE12081
ark_67375_WNG_BS6LZ5QJ_C
Genre letter
Letter
Research Support, Non-U.S. Gov't
Feature
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7X8
ADTPV
AOWAS
DG8
DG7
ID FETCH-LOGICAL-c5631-4c4f737e90add36c396c9902ef6128cc6eb5ce4eaec99e005ed004f73741be73
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Thu Aug 21 06:18:22 EDT 2025
Thu Aug 21 06:51:31 EDT 2025
Thu Jul 10 18:05:56 EDT 2025
Fri Jul 11 05:54:42 EDT 2025
Fri Jul 25 10:51:51 EDT 2025
Thu Apr 03 06:58:37 EDT 2025
Mon Jul 21 09:13:26 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Tue Jul 01 02:29:39 EDT 2025
Wed Jan 22 17:01:26 EST 2025
Wed Oct 30 09:54:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords scaling
Food web
niche space
Trophic structure
species traits
Ecological niche
intervality
food web structure
Ecological networks
Language English
License CC BY 4.0
2013 Blackwell Publishing Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5631-4c4f737e90add36c396c9902ef6128cc6eb5ce4eaec99e005ed004f73741be73
Notes  
istex:F28355C5D77C65CF0E8BD13491480FBBC71F08F4
ark:/67375/WNG-BS6LZ5QJ-C
ArticleID:ELE12081
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
ObjectType-Correspondence-1
content type line 23
OpenAccessLink http://doi.org/10.1111/ele.12081
PMID 23438174
PQID 1328438568
PQPubID 32390
PageCount 7
ParticipantIDs swepub_primary_oai_DiVA_org_su_161703
swepub_primary_oai_DiVA_org_liu_89672
proquest_miscellaneous_1352291660
proquest_miscellaneous_1338392465
proquest_journals_1328438568
pubmed_primary_23438174
pascalfrancis_primary_27283696
crossref_primary_10_1111_ele_12081
crossref_citationtrail_10_1111_ele_12081
wiley_primary_10_1111_ele_12081_ELE12081
istex_primary_ark_67375_WNG_BS6LZ5QJ_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2013
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: May 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Kratochvíl, J. (1994). A special planar satisfiability problem and a consequence of its np-completeness. Discrete Appl. Math., 52, 233-252.
Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol. Evol., 19, 605-611.
Cagnolo, L., Salvo, A. & Valladares, G. (2011). Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J. Anim. Ecol., 80, 342-351.
Optiz, S. (1996). Trophic Interactions in Caribbean Coral Reefs. Tech. Rep. 43, ICLARM, Manila.
Roberts, F.S. (1969). On the Boxicity and Cubicity of a Graph. Academic Press, New York.
Ueckert, D.N. & Hansen, R.M. (1971). Dietary overlap of grasshoppers on sandhill rangeland in northeastern colorado. Oecologia, 8, 276-295.
Stouffer, D.B., Camacho, J. & Amaral, L.A.N. (2006). A robust measure of food web intervality. P. Nat. Acad. Sci. U.S.A., 103, 19015-19020.
Allesina, S., Alonso, D. & Pascual, M. (2008). A general model for food web structure. Science, 320, 658-661.
Jacob, U. (2005). Trophic Dynamics of Antarctic Shelf Ecosystems - Food Webs and Energy Flow Budgets, Thesis. University of Bremen, Germany.
Rossberg, A.G., Brännström, Å. & Dieckmann, U. (2010). Food-web structure in low-and high-dimensional trophic niche spaces. J. Roy. Soc. Int., 7, 1735-1743.
Forrest, J., Miller-Rushing, A.J., Forrest, J. & Miller-Rushing, A.J. (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. T. Roy. Soc. B, 365, 3101-3112.
Riede, J.O., Rall, B.C., Banasek-Richter, C., Navarrete, S.A., Wieters, E.A., Emmerson, M.C., Jacob, U. & Brose, U. (2010). Scaling of food-web properties with diversity and complexity across ecosystems. Adv. Ecol. Res., 42, 139-170.
Galetti, M. & Pizo, M.A. (1996). Fruit eating by birds in a forest fragment in southeastern brazil. Ararajuba, 4, 71-79.
Williams, R.J. & Purves, D.W. (2011). The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology, 92, 1849-1857.
Bosch, J., Martín González, A.M., Rodrigo, A. & Navarro, D. (2009). Plant-pollinator networks: adding the pollinators perspective. Ecol. Lett., 12, 409-419.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
Dalsgaard, B., Martín González, A.M., Olesen, J.M., Ollerton, J., Timmermann, A., Andersen, L.H. & Tossas, A.G. (2009). Plant-hummingbird interactions in the west indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia, 159, 757-766.
Bersier, L.F. & Kehrli, P. (2008). The signature of phylogenetic constraints on food-web structure. Ecol. Compl., 5, 132-139.
Cattin, M.F., Bersier, L.F., Banasˇek-Richter, C., Baltensperger, R. & Gabriel, J.P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835-839.
Jacob, U., Thierry, A., Brose, U., Arntz, W.E., Berg, S., Brey, T., Fetzer, I., Jonsson, T., Mintenbeck, K., Mollmann, C. et al. (2011). The role of body size in complex food webs: a cold case. Adv. Ecol. Res, 45, 181-223.
Williams, R.J. & Martinez, N.D. (2000). Simple rules yield complex food webs. Nature, 404, 180-183.
Chase, J.M. & Leibold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago, IL.
Cohen, J.E., Schittler, D.N., Raffaelli, D.G. & Reuman, D.C. (2009). Food webs are more than the sum of their tritrophic parts. P. Nat. Acad. Sci. U.S.A., 106, 22335-22340.
Stouffer, D.B., Rezende, E.L. & Amaral, L.A.N. (2011). The role of body mass in diet contiguity and food-web structure. J. Anim. Ecol., 80, 632-639.
McCullen, C.K. (1993). Flower-visiting insects of the galapagos islands. Pan-Pac. Entomol., 69, 95-106.
Thompson, J.N. (2005). The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago, IL.
Petchey, O.L., Beckerman, A.P., Riede, J.O. & Warren, P.H. (2008). Size, foraging, and food web structure. P. Nat. Acad. Sci. U.S.A., 105, 4191-4196.
Diamond, S.E., Frame, A.M., Martin, R.A. & Buckley, L.B. (2011). Species' traits predict phenological responses to climate change in butterflies. Ecology, 92, 1005-1012.
Sunil, C.L. & Ashik, M.K. (2009). An upper bound for cubicity in terms of boxicity. Discrete Math., 309, 2571-2574.
Allesina, S. (2011). Predicting trophic relations in ecological networks: a test of the allometric diet breadth model. J. Theor. Biol., 279, 161-168.
Tylianakis, J.M., Tscharntke, T. & Lewis, O.T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202-205.
Vázquez, D.P., Blüthgen, N., Cagnolo, L. & Chacoff, N.P. (2009). Uniting pattern and process in plant-animal mutualistic networks: a review. Ann. Bot. London, 103, 1445-1457.
Christian, R.R. & Luczkovich, J.J. (1999). Organizing and understanding a winter's seagrass foodweb network through effective trophic levels. Ecol. Model., 117, 99-124.
Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer Verlag, New York.
Petanidou, T. (1991). Pollination Ecology in a Phryganic Ecosystem, Thesis. Aristotelian University, Greece.
Brännström, Å., Carlsson, L. & Rossberg, A.G. (2011). Rigorous conditions for food-web intervality in high-dimensional trophic niche spaces. J. Math. Biol., 63, 575-592.
Gilman, R.T., Nuismer, S.L. & Jhwueng, D.C. (2012). Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature, 483, 328-330.
Eklöf, A., Helmus, M.R., Moore, M. & Allesina, S. (2012). Relevance of evolutionary history for food web structure. P. Roy. Soc. Lond. B: Bio., 279, 1588-1596.
Chacoff, N.P., Vázquez, D.P., Lomáscolo, S.B., Stevani, E.L., Dorado, J. & Padrón, B. (2012). Evaluating sampling completeness in a desert plant-pollinator network. J. Anim. Ecol., 81, 190-200.
Inouye, D.W. (1980). The terminology of floral larceny. Ecology, 61, 1251-1253.
Mouillot, D., Krasnov, B.R. & Poulin, R. (2008). High intervality explained by phylogenetic constraints in host-parasite webs. Ecology, 89, 2043-2051.
Zook, A.E., Eklöf, A., Jacob, U. & Allesina, S. (2011). Food webs: ordering species according to body size yields high degree of intervality. J. Theor. Biol., 271, 106-113.
Arroyo, M.T.K., Primack, R. & Armesto, J. (1982). Community studies in pollination ecology in the high temperate andes of central chile. i. pollination mechanisms and altitudinal variation. Am. J. Bot., 69, 82-97.
Jordano, P., Bascompte, J. & Olesen, J.M. (2003). Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett., 6, 69-81.
1993; 69
2007; 445
2011; 279
2004; 85
2012; 81
2012; 483
2011; 80
1980; 61
2010; 365
2008
1996
2008; 5
2005
2008; 105
2003
2002
1991
2008; 320
2004; 427
2011; 271
2009; 159
1978
2009; 12
1982; 69
1971; 8
2010; 42
2009; 309
2004; 19
2003; 6
2011; 92
2000; 404
2011; 63
2008; 89
2011; 45
1999; 117
2012; 279
1996; 4
1994; 52
1969
2010; 7
2009; 103
1968
2006; 103
2009; 106
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_46_1
Optiz S. (e_1_2_7_31_1) 1996
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
Stouffer D.B. (e_1_2_7_39_1) 2006; 103
Burnham K.P. (e_1_2_7_10_1) 2002
Roberts F.S. (e_1_2_7_35_1) 1969
Galetti M. (e_1_2_7_22_1) 1996; 4
Jacob U. (e_1_2_7_25_1) 2005
Petanidou T. (e_1_2_7_32_1) 1991
e_1_2_7_30_1
McCullen C.K. (e_1_2_7_29_1) 1993; 69
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – reference: Dalsgaard, B., Martín González, A.M., Olesen, J.M., Ollerton, J., Timmermann, A., Andersen, L.H. & Tossas, A.G. (2009). Plant-hummingbird interactions in the west indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia, 159, 757-766.
– reference: Bersier, L.F. & Kehrli, P. (2008). The signature of phylogenetic constraints on food-web structure. Ecol. Compl., 5, 132-139.
– reference: Williams, R.J. & Purves, D.W. (2011). The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology, 92, 1849-1857.
– reference: McCullen, C.K. (1993). Flower-visiting insects of the galapagos islands. Pan-Pac. Entomol., 69, 95-106.
– reference: Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol. Evol., 19, 605-611.
– reference: Vázquez, D.P., Blüthgen, N., Cagnolo, L. & Chacoff, N.P. (2009). Uniting pattern and process in plant-animal mutualistic networks: a review. Ann. Bot. London, 103, 1445-1457.
– reference: Arroyo, M.T.K., Primack, R. & Armesto, J. (1982). Community studies in pollination ecology in the high temperate andes of central chile. i. pollination mechanisms and altitudinal variation. Am. J. Bot., 69, 82-97.
– reference: Kratochvíl, J. (1994). A special planar satisfiability problem and a consequence of its np-completeness. Discrete Appl. Math., 52, 233-252.
– reference: Brännström, Å., Carlsson, L. & Rossberg, A.G. (2011). Rigorous conditions for food-web intervality in high-dimensional trophic niche spaces. J. Math. Biol., 63, 575-592.
– reference: Riede, J.O., Rall, B.C., Banasek-Richter, C., Navarrete, S.A., Wieters, E.A., Emmerson, M.C., Jacob, U. & Brose, U. (2010). Scaling of food-web properties with diversity and complexity across ecosystems. Adv. Ecol. Res., 42, 139-170.
– reference: Sunil, C.L. & Ashik, M.K. (2009). An upper bound for cubicity in terms of boxicity. Discrete Math., 309, 2571-2574.
– reference: Chacoff, N.P., Vázquez, D.P., Lomáscolo, S.B., Stevani, E.L., Dorado, J. & Padrón, B. (2012). Evaluating sampling completeness in a desert plant-pollinator network. J. Anim. Ecol., 81, 190-200.
– reference: Mouillot, D., Krasnov, B.R. & Poulin, R. (2008). High intervality explained by phylogenetic constraints in host-parasite webs. Ecology, 89, 2043-2051.
– reference: Cohen, J.E., Schittler, D.N., Raffaelli, D.G. & Reuman, D.C. (2009). Food webs are more than the sum of their tritrophic parts. P. Nat. Acad. Sci. U.S.A., 106, 22335-22340.
– reference: Optiz, S. (1996). Trophic Interactions in Caribbean Coral Reefs. Tech. Rep. 43, ICLARM, Manila.
– reference: Bosch, J., Martín González, A.M., Rodrigo, A. & Navarro, D. (2009). Plant-pollinator networks: adding the pollinators perspective. Ecol. Lett., 12, 409-419.
– reference: Jacob, U., Thierry, A., Brose, U., Arntz, W.E., Berg, S., Brey, T., Fetzer, I., Jonsson, T., Mintenbeck, K., Mollmann, C. et al. (2011). The role of body size in complex food webs: a cold case. Adv. Ecol. Res, 45, 181-223.
– reference: Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
– reference: Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer Verlag, New York.
– reference: Stouffer, D.B., Camacho, J. & Amaral, L.A.N. (2006). A robust measure of food web intervality. P. Nat. Acad. Sci. U.S.A., 103, 19015-19020.
– reference: Thompson, J.N. (2005). The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago, IL.
– reference: Tylianakis, J.M., Tscharntke, T. & Lewis, O.T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202-205.
– reference: Petchey, O.L., Beckerman, A.P., Riede, J.O. & Warren, P.H. (2008). Size, foraging, and food web structure. P. Nat. Acad. Sci. U.S.A., 105, 4191-4196.
– reference: Eklöf, A., Helmus, M.R., Moore, M. & Allesina, S. (2012). Relevance of evolutionary history for food web structure. P. Roy. Soc. Lond. B: Bio., 279, 1588-1596.
– reference: Cagnolo, L., Salvo, A. & Valladares, G. (2011). Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J. Anim. Ecol., 80, 342-351.
– reference: Stouffer, D.B., Rezende, E.L. & Amaral, L.A.N. (2011). The role of body mass in diet contiguity and food-web structure. J. Anim. Ecol., 80, 632-639.
– reference: Allesina, S. (2011). Predicting trophic relations in ecological networks: a test of the allometric diet breadth model. J. Theor. Biol., 279, 161-168.
– reference: Allesina, S., Alonso, D. & Pascual, M. (2008). A general model for food web structure. Science, 320, 658-661.
– reference: Gilman, R.T., Nuismer, S.L. & Jhwueng, D.C. (2012). Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature, 483, 328-330.
– reference: Forrest, J., Miller-Rushing, A.J., Forrest, J. & Miller-Rushing, A.J. (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. T. Roy. Soc. B, 365, 3101-3112.
– reference: Galetti, M. & Pizo, M.A. (1996). Fruit eating by birds in a forest fragment in southeastern brazil. Ararajuba, 4, 71-79.
– reference: Ueckert, D.N. & Hansen, R.M. (1971). Dietary overlap of grasshoppers on sandhill rangeland in northeastern colorado. Oecologia, 8, 276-295.
– reference: Jacob, U. (2005). Trophic Dynamics of Antarctic Shelf Ecosystems - Food Webs and Energy Flow Budgets, Thesis. University of Bremen, Germany.
– reference: Jordano, P., Bascompte, J. & Olesen, J.M. (2003). Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett., 6, 69-81.
– reference: Petanidou, T. (1991). Pollination Ecology in a Phryganic Ecosystem, Thesis. Aristotelian University, Greece.
– reference: Williams, R.J. & Martinez, N.D. (2000). Simple rules yield complex food webs. Nature, 404, 180-183.
– reference: Diamond, S.E., Frame, A.M., Martin, R.A. & Buckley, L.B. (2011). Species' traits predict phenological responses to climate change in butterflies. Ecology, 92, 1005-1012.
– reference: Rossberg, A.G., Brännström, Å. & Dieckmann, U. (2010). Food-web structure in low-and high-dimensional trophic niche spaces. J. Roy. Soc. Int., 7, 1735-1743.
– reference: Zook, A.E., Eklöf, A., Jacob, U. & Allesina, S. (2011). Food webs: ordering species according to body size yields high degree of intervality. J. Theor. Biol., 271, 106-113.
– reference: Cattin, M.F., Bersier, L.F., Banasˇek-Richter, C., Baltensperger, R. & Gabriel, J.P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835-839.
– reference: Roberts, F.S. (1969). On the Boxicity and Cubicity of a Graph. Academic Press, New York.
– reference: Chase, J.M. & Leibold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago, IL.
– reference: Inouye, D.W. (1980). The terminology of floral larceny. Ecology, 61, 1251-1253.
– reference: Christian, R.R. & Luczkovich, J.J. (1999). Organizing and understanding a winter's seagrass foodweb network through effective trophic levels. Ecol. Model., 117, 99-124.
– volume: 61
  start-page: 1251
  year: 1980
  end-page: 1253
  article-title: The terminology of floral larceny
  publication-title: Ecology
– volume: 81
  start-page: 190
  year: 2012
  end-page: 200
  article-title: Evaluating sampling completeness in a desert plant–pollinator network
  publication-title: J. Anim. Ecol.
– start-page: 477
  year: 1978
  end-page: 490
  article-title: Food webs, competition graphs, and the boxicity of ecological phase space
– volume: 106
  start-page: 22335
  year: 2009
  end-page: 22340
  article-title: Food webs are more than the sum of their tritrophic parts
  publication-title: P. Nat. Acad. Sci. U.S.A.
– volume: 404
  start-page: 180
  year: 2000
  end-page: 183
  article-title: Simple rules yield complex food webs
  publication-title: Nature
– year: 2005
– volume: 427
  start-page: 835
  year: 2004
  end-page: 839
  article-title: Phylogenetic constraints and adaptation explain food‐web structure
  publication-title: Nature
– year: 2003
– volume: 365
  start-page: 3101
  year: 2010
  end-page: 3112
  article-title: Toward a synthetic understanding of the role of phenology in ecology and evolution
  publication-title: Philos. T. Roy. Soc. B
– volume: 6
  start-page: 69
  year: 2003
  end-page: 81
  article-title: Invariant properties in coevolutionary networks of plant–animal interactions
  publication-title: Ecol. Lett.
– volume: 445
  start-page: 202
  year: 2007
  end-page: 205
  article-title: Habitat modification alters the structure of tropical host–parasitoid food webs
  publication-title: Nature
– year: 1996
– volume: 483
  start-page: 328
  year: 2012
  end-page: 330
  article-title: Coevolution in multidimensional trait space favours escape from parasites and pathogens
  publication-title: Nature
– year: 1968
  article-title: Interval graphs and food webs: a finding and a problem
– volume: 12
  start-page: 409
  year: 2009
  end-page: 419
  article-title: Plant–pollinator networks: adding the pollinators perspective
  publication-title: Ecol. Lett.
– volume: 5
  start-page: 132
  year: 2008
  end-page: 139
  article-title: The signature of phylogenetic constraints on food‐web structure
  publication-title: Ecol. Compl.
– volume: 80
  start-page: 342
  year: 2011
  end-page: 351
  article-title: Network topology: patterns and mechanisms in plant‐herbivore and host‐parasitoid food webs
  publication-title: J. Anim. Ecol.
– volume: 42
  start-page: 139
  year: 2010
  end-page: 170
  article-title: Scaling of food‐web properties with diversity and complexity across ecosystems
  publication-title: Adv. Ecol. Res.
– volume: 320
  start-page: 658
  year: 2008
  end-page: 661
  article-title: A general model for food web structure
  publication-title: Science
– volume: 85
  start-page: 1771
  year: 2004
  end-page: 1789
  article-title: Toward a metabolic theory of ecology
  publication-title: Ecology
– volume: 7
  start-page: 1735
  year: 2010
  end-page: 1743
  article-title: Food‐web structure in low‐and high‐dimensional trophic niche spaces
  publication-title: J. Roy. Soc. Int.
– volume: 117
  start-page: 99
  year: 1999
  end-page: 124
  article-title: Organizing and understanding a winter's seagrass foodweb network through effective trophic levels
  publication-title: Ecol. Model.
– volume: 309
  start-page: 2571
  year: 2009
  end-page: 2574
  article-title: An upper bound for cubicity in terms of boxicity
  publication-title: Discrete Math.
– volume: 80
  start-page: 632
  year: 2011
  end-page: 639
  article-title: The role of body mass in diet contiguity and food‐web structure
  publication-title: J. Anim. Ecol.
– volume: 279
  start-page: 1588
  year: 2012
  end-page: 1596
  article-title: Relevance of evolutionary history for food web structure
  publication-title: P. Roy. Soc. Lond. B: Bio
– volume: 69
  start-page: 82
  year: 1982
  end-page: 97
  article-title: Community studies in pollination ecology in the high temperate andes of central chile. i. pollination mechanisms and altitudinal variation
  publication-title: Am. J. Bot.
– volume: 271
  start-page: 106
  year: 2011
  end-page: 113
  article-title: Food webs: ordering species according to body size yields high degree of intervality
  publication-title: J. Theor. Biol.
– year: 2002
– volume: 105
  start-page: 4191
  year: 2008
  end-page: 4196
  article-title: Size, foraging, and food web structure
  publication-title: P. Nat. Acad. Sci. U.S.A.
– year: 1969
– volume: 279
  start-page: 161
  year: 2011
  end-page: 168
  article-title: Predicting trophic relations in ecological networks: a test of the allometric diet breadth model
  publication-title: J. Theor. Biol.
– volume: 89
  start-page: 2043
  year: 2008
  end-page: 2051
  article-title: High intervality explained by phylogenetic constraints in host‐parasite webs
  publication-title: Ecology
– volume: 19
  start-page: 605
  year: 2004
  end-page: 611
  article-title: Plant coexistence and the niche
  publication-title: Trends Ecol. Evol.
– volume: 159
  start-page: 757
  year: 2009
  end-page: 766
  article-title: Plant–hummingbird interactions in the west indies: floral specialisation gradients associated with environment and hummingbird size
  publication-title: Oecologia
– volume: 45
  start-page: 181
  year: 2011
  end-page: 223
  article-title: The role of body size in complex food webs: a cold case
  publication-title: Adv. Ecol. Res
– volume: 69
  start-page: 95
  year: 1993
  end-page: 106
  article-title: Flower‐visiting insects of the galapagos islands
  publication-title: Pan‐Pac. Entomol.
– volume: 4
  start-page: 71
  year: 1996
  end-page: 79
  article-title: Fruit eating by birds in a forest fragment in southeastern brazil
  publication-title: Ararajuba
– volume: 52
  start-page: 233
  year: 1994
  end-page: 252
  article-title: A special planar satisfiability problem and a consequence of its np‐completeness
  publication-title: Discrete Appl. Math.
– volume: 103
  start-page: 19015
  year: 2006
  end-page: 19020
  article-title: A robust measure of food web intervality
  publication-title: P. Nat. Acad. Sci. U.S.A.
– volume: 8
  start-page: 276
  year: 1971
  end-page: 295
  article-title: Dietary overlap of grasshoppers on sandhill rangeland in northeastern colorado
  publication-title: Oecologia
– year: 2008
  article-title: Lower bounds for boxicity
– year: 1991
– volume: 92
  start-page: 1849
  year: 2011
  end-page: 1857
  article-title: The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs
  publication-title: Ecology
– volume: 63
  start-page: 575
  year: 2011
  end-page: 592
  article-title: Rigorous conditions for food‐web intervality in high‐dimensional trophic niche spaces
  publication-title: J. Math. Biol.
– volume: 92
  start-page: 1005
  year: 2011
  end-page: 1012
  article-title: Species' traits predict phenological responses to climate change in butterflies
  publication-title: Ecology
– volume: 103
  start-page: 1445
  year: 2009
  end-page: 1457
  article-title: Uniting pattern and process in plant–animal mutualistic networks: a review
  publication-title: Ann. Bot. London
– ident: e_1_2_7_47_1
  doi: 10.1890/11-0200.1
– volume-title: Trophic Dynamics of Antarctic Shelf Ecosystems – Food Webs and Energy Flow Budgets, Thesis
  year: 2005
  ident: e_1_2_7_25_1
– ident: e_1_2_7_42_1
  doi: 10.7208/chicago/9780226118697.001.0001
– ident: e_1_2_7_17_1
  doi: 10.1073/pnas.0910582106
– ident: e_1_2_7_36_1
  doi: 10.1007/BFb0070404
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1365-2656.2011.01883.x
– ident: e_1_2_7_4_1
  doi: 10.1126/science.1156269
– ident: e_1_2_7_34_1
  doi: 10.1016/B978-0-12-381363-3.00003-4
– ident: e_1_2_7_12_1
  doi: 10.1038/nature02327
– ident: e_1_2_7_26_1
  doi: 10.1016/B978-0-12-386475-8.00005-8
– ident: e_1_2_7_27_1
  doi: 10.1046/j.1461-0248.2003.00403.x
– ident: e_1_2_7_46_1
  doi: 10.1038/35004572
– volume-title: Model Selection and Multimodel Inference: A Practical Information‐theoretic Approach
  year: 2002
  ident: e_1_2_7_10_1
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1365-2656.2010.01778.x
– volume-title: Trophic Interactions in Caribbean Coral Reefs
  year: 1996
  ident: e_1_2_7_31_1
– volume-title: Pollination Ecology in a Phryganic Ecosystem, Thesis
  year: 1991
  ident: e_1_2_7_32_1
– ident: e_1_2_7_3_1
  doi: 10.1016/j.jtbi.2010.06.040
– ident: e_1_2_7_5_1
  doi: 10.1002/j.1537-2197.1982.tb13237.x
– ident: e_1_2_7_37_1
  doi: 10.1098/rsif.2010.0111
– volume-title: On the Boxicity and Cubicity of a Graph
  year: 1969
  ident: e_1_2_7_35_1
– ident: e_1_2_7_18_1
  doi: 10.1007/s00442-008-1255-z
– ident: e_1_2_7_21_1
  doi: 10.1098/rstb.2010.0145
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1365-2745.2001.00553.x
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1461-0248.2009.01296.x
– ident: e_1_2_7_15_1
  doi: 10.1016/S0304-3800(99)00022-8
– volume: 103
  start-page: 19015
  year: 2006
  ident: e_1_2_7_39_1
  article-title: A robust measure of food web intervality
  publication-title: P. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0603844103
– ident: e_1_2_7_9_1
  doi: 10.1890/03-9000
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1365-2656.2011.01812.x
– ident: e_1_2_7_16_1
– ident: e_1_2_7_2_1
– ident: e_1_2_7_8_1
  doi: 10.1007/s00285-010-0383-3
– ident: e_1_2_7_28_1
  doi: 10.1016/0166-218X(94)90143-0
– ident: e_1_2_7_41_1
  doi: 10.1016/j.disc.2008.04.011
– ident: e_1_2_7_20_1
  doi: 10.1098/rspb.2011.2149
– ident: e_1_2_7_30_1
  doi: 10.1890/07-1241.1
– ident: e_1_2_7_44_1
  doi: 10.1007/BF00346475
– ident: e_1_2_7_45_1
  doi: 10.1093/aob/mcp057
– volume: 4
  start-page: 71
  year: 1996
  ident: e_1_2_7_22_1
  article-title: Fruit eating by birds in a forest fragment in southeastern brazil
  publication-title: Ararajuba
– ident: e_1_2_7_19_1
  doi: 10.1890/10-1594.1
– ident: e_1_2_7_24_1
  doi: 10.2307/1936841
– ident: e_1_2_7_43_1
  doi: 10.1038/nature05429
– ident: e_1_2_7_33_1
  doi: 10.1073/pnas.0710672105
– volume: 69
  start-page: 95
  year: 1993
  ident: e_1_2_7_29_1
  article-title: Flower‐visiting insects of the galapagos islands
  publication-title: Pan‐Pac. Entomol.
– ident: e_1_2_7_48_1
  doi: 10.1016/j.jtbi.2010.11.045
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ecocom.2007.06.013
– ident: e_1_2_7_23_1
  doi: 10.1038/nature10853
– ident: e_1_2_7_14_1
  doi: 10.7208/chicago/9780226101811.001.0001
SSID ssj0012971
Score 2.53218
Snippet How many dimensions (trait‐axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches,...
How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches,...
How many dimensions (trait-axes) are required to predict whether two species interact? This unansweredquestion originated with the idea of ecological niches,...
SourceID swepub
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 577
SubjectTerms Animal and plant ecology
Animal, plant and microbial ecology
Animals
Biological and medical sciences
Community ecology
Community structure
Ecological networks
Ecology
Ecosystem
Food Chain
Food chains
food web structure
Food webs
Fundamental and applied biological sciences. Psychology
General aspects
intervality
Models, Biological
Models, Theoretical
Multifactorial Inheritance
niche space
scaling
species traits
Symbiosis
Title The dimensionality of ecological networks
URI https://api.istex.fr/ark:/67375/WNG-BS6LZ5QJ-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12081
https://www.ncbi.nlm.nih.gov/pubmed/23438174
https://www.proquest.com/docview/1328438568
https://www.proquest.com/docview/1338392465
https://www.proquest.com/docview/1352291660
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-89672
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-161703
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KRfBFWz9ja4miog85cvuVBJ_aerWUWlCrHkVYks1ESktOLhew_vXO7ibRk_qBbyE7C8nszM5vktnfADxGCspqnJeUpqoyEqwQUU4YLooVyyuZM0R3UPj1kdp_Lw6mcroCL_qzMJ4fYvjgZj3D7dfWwfOi-cnJaVcejVnsjl3bWi0LiN4O1FEUxnyyJRSly4xPO1YhW8UzzFyKRVesWr_a2si8IfVUvq_FZcBzYBVdBrQuIu3dgE_9u_hClLNRuyhG5tsvNI__-bJrcL1DquG2N611WMH6Jlz1vSsv6Gri-K4vbsFzMrWwtF0CPMMH4fpwVoVo-n01rH2teXMbjvcmx7v7UdeBITJScUoujagSnmAW0zbIleGZMhS-GFYEjFJjFBbSoMAc6TaSQ2NJTmeniHGBCb8Dq_WsxnsQxiVhGZlkrMpQ8IqyvLiUZZGZkhCQxHEAz_ql0KZjJ7dNMs51n6WQCrRTQQCPBtEvnpLjMqGnbj0HiXx-ZmvYEqk_Hr3SO-_U4Yl8c6B3A9haWvBhAksIealMBbDZW4Du_LvRlMOngqdSpQE8HIbJM-3vlrzGWWtluEWfQsk_yRD-JYSu4gDueuv68QDc0q8lIoAn3tyGEUsJ_vL0w7aezT_r89NWp5lK2F_kmlbbXDbmpGpnar9Xnp4cTtzF_X8X3YBrzHUKsbWgm7C6mLf4gPDaothyjvkdTuE4rA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9Ki-hL_bbRWqOo6EOO3H4lAV9qvXrW64F61UOQJdlspLTk5O4C1r_e2d1k9aR-4FtIZiGZndn5zWb2NwAPNQZl0c9LTFNFGTFSsChHDBfFguQVz4nW9qDw4VgMj9jBlE_X4Fl3FsbxQ_gNN-MZdr02Dm42pH_yclyWe30Sm3PXG6ajt02o3nryKAxkLt1iAhNmQqctr5Cp4_FDV6LRhlHsV1MdmS9QQZXrbHEe9PS8oquQ1sak_cvwqfsaV4py0muWRU99-4Xo8X8_9wpstmA13HXWdRXWdH0NLrj2lWd4NbCU12fX4SlaW1iaRgGO5AOhfTirQq26pTWsXbn54gZM9geTvWHUNmGIFBcU80vFqoQmOotxJaRC0UwojGBEV4iNUqWELrjSTOcab2v0aV2i35khrF_ohN6E9XpW6y0I4xLhDE8yUmWa0QoTvbjkZZGpEkEQ1_0AnnRzIVVLUG76ZJzKLlFBFUirggAeeNEvjpXjPKHHdkK9RD4_MWVsCZcfxi_l83di9JG_OZB7AeyszLgfQBIEXyITAWx3JiBbF19ITONTRlMu0gDu-8fonOaPS17rWWNkqAGgaJ1_kkEIjCBdxAHccub14wWoYWBLWACPnL35J4YV_MXx-105m3-Wp8eNTDORkL_ILRpp0tmYoqqtrf1eeXIwGtiL2_8ueg8uDieHIzl6NX59By4R2zjElIZuw_py3ui7CN-WxY710u-6ZjzH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED9Nm0B84f0IjBEQIPiQKvUrifg01pYxSsVjgwohWYntoGlTOrWNxPjrOdtJoGg8xLcoPkvJ-c73u-T8O4CHBoOy6Oca01ShI0YKFuWI4aJYkLzkOTHGHRR-PRG7B2xvyqdr8Kw9C-P5IboPbtYz3H5tHfxElz85Oe7KvT6J7bHrDSbi1Jr04F3HHYVxzGdbTGC-TOi0oRWyZTzd1JVgtGH1-tUWR-YL1E_pG1uchTw7WtFVROtC0ugSfG5fxleiHPXqZdFT337hefzPt70MFxuoGm5727oCa6a6Cud888pTvBo6wuvTa_AUbS3Utk2Ap_hAYB_OytCodmMNK19svrgO-6Ph_s5u1LRgiBQXFLNLxcqEJiaLcR-kQtFMKIxfxJSIjFKlhCm4MszkBm8b9Gij0evsFNYvTEJvwHo1q8wtCGONYIYnGSkzw2iJaV6suS4ypRECcdMP4Em7FFI19OS2S8axbNMUVIF0KgjgQSd64jk5zhJ67Nazk8jnR7aILeHy4-SFfP5ejD_xt3tyJ4CtlQXvJpAEoZfIRACbrQXIxsEXEpP4lNGUizSA-90wuqb935JXZlZbGWrhJxP8TzIIgBGiiziAm966fjwAtfxrCQvgkTe3bsRygg8OP2zL2fyLPD6sZZqJhPxFblFLm8zGFFXtTO33ypPD8dBd3P530Xtw_s1gJMcvJ6_uwAXiuobYutBNWF_Oa3MXsduy2HI--h3zSjt_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dimensionality+of+ecological+networks&rft.jtitle=Ecology+letters&rft.au=Ekl%C3%B6f%2C+Anna&rft.au=Jacob%2C+Ute&rft.au=Kopp%2C+Jason&rft.au=Bosch%2C+Jordi&rft.date=2013-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=16&rft.issue=5&rft.spage=577&rft.epage=583&rft_id=info:doi/10.1111%2Fele.12081&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_BS6LZ5QJ_C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon