The dimensionality of ecological networks
How many dimensions (trait‐axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, includi...
Saved in:
Published in | Ecology letters Vol. 16; no. 5; pp. 577 - 583 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.05.2013
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | How many dimensions (trait‐axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high‐quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large‐scale community structure. |
---|---|
AbstractList | How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure. [PUBLICATION ABSTRACT] How many dimensions (trait‐axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high‐quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large‐scale community structure. How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small (<10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure. How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure. How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure.How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches, and yet bears relevance today for understanding what determines network structure. Here, we analyse a set of 200 ecological networks, including food webs, antagonistic and mutualistic networks, and find that the number of dimensions needed to completely explain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-quality webs including several species traits, we identify which traits contribute the most to explaining network structure. We show that accounting for a few traits dramatically improves our understanding of the structure of ecological networks. Matching traits for resources and consumers, for example, fruit size and bill gape, are the most successful combinations. These results link ecologically important species attributes to large-scale community structure. How many dimensions (trait-axes) are required to predict whether two species interact? This unansweredquestion originated with the idea of ecological niches, and yet bears relevance today for understanding whatdetermines network structure. Here, we analyse a set of 200 ecological networks, including food webs,antagonistic and mutualistic networks, and find that the number of dimensions needed to completelyexplain all interactions is small ( < 10), with model selection favouring less than five. Using 18 high-qualitywebs including several species traits, we identify which traits contribute the most to explaining networkstructure. We show that accounting for a few traits dramatically improves our understanding of the structureof ecological networks. Matching traits for resources and consumers, for example, fruit size and billgape, are the most successful combinations. These results link ecologically important species attributes tolarge-scale community structure. |
Author | Chacoff, Natacha P. Pizo, Marco Aurelio Eklöf, Anna Tylianakis, Jason M. Galetti, Mauro Lomáscolo, Silvia Beatriz Martín González, Ana M. Guimarães, Paulo R. Vázquez, Diego P. Bosch, Jordi Rader, Romina Castro-Urgal, Rocío de Sassi, Claudio Allesina, Stefano Jacob, Ute Rodrigo, Anselm Kopp, Jason Dalsgaard, Bo |
Author_xml | – sequence: 1 givenname: Anna surname: Eklöf fullname: Eklöf, Anna email: Correspondence: , anna.eklof@liu.se organization: Department of Ecology & Evolution, University of Chicago, IL, Chicago, USA – sequence: 2 givenname: Ute surname: Jacob fullname: Jacob, Ute organization: Institute for Hydrobiology and Fisheries Science, Hamburg, Germany – sequence: 3 givenname: Jason surname: Kopp fullname: Kopp, Jason organization: Department of Ecology & Evolution, University of Chicago, IL, Chicago, USA – sequence: 4 givenname: Jordi surname: Bosch fullname: Bosch, Jordi organization: CREAF - Ecology Unit, Universitat Autónoma de Barcelona, Barcelona, Spain – sequence: 5 givenname: Rocío surname: Castro-Urgal fullname: Castro-Urgal, Rocío organization: Institut Mediterrani d'Estudis Avanc¸ats (CSIC-UIB), Mallorca, Balearic Islands, Spain – sequence: 6 givenname: Natacha P. surname: Chacoff fullname: Chacoff, Natacha P. organization: Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Mendoza, Argentina – sequence: 7 givenname: Bo surname: Dalsgaard fullname: Dalsgaard, Bo organization: Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, Copenhagen, Denmark – sequence: 8 givenname: Claudio surname: de Sassi fullname: de Sassi, Claudio organization: School of Biological Sciences, University of Canterbury, Canterbury, New Zealand – sequence: 9 givenname: Mauro surname: Galetti fullname: Galetti, Mauro organization: Departamento de Ecologia, Universidade Estadual Paulista, Rio Claro, Brazil – sequence: 10 givenname: Paulo R. surname: Guimarães fullname: Guimarães, Paulo R. organization: Departamento de Ecologia, I.B, Universidade de São Paulo, Sao Paulo, Brazil – sequence: 11 givenname: Silvia Beatriz surname: Lomáscolo fullname: Lomáscolo, Silvia Beatriz organization: Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Mendoza, Argentina – sequence: 12 givenname: Ana M. surname: Martín González fullname: Martín González, Ana M. organization: Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, Copenhagen, Denmark – sequence: 13 givenname: Marco Aurelio surname: Pizo fullname: Pizo, Marco Aurelio organization: Departamento de Zoologia, Universidade Estadual Paulista, São Paulo, Brazil – sequence: 14 givenname: Romina surname: Rader fullname: Rader, Romina organization: Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden – sequence: 15 givenname: Anselm surname: Rodrigo fullname: Rodrigo, Anselm organization: CREAF - Ecology Unit, Universitat Autónoma de Barcelona, Barcelona, Spain – sequence: 16 givenname: Jason M. surname: Tylianakis fullname: Tylianakis, Jason M. organization: School of Biological Sciences, University of Canterbury, Canterbury, New Zealand – sequence: 17 givenname: Diego P. surname: Vázquez fullname: Vázquez, Diego P. organization: Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Mendoza, Argentina – sequence: 18 givenname: Stefano surname: Allesina fullname: Allesina, Stefano organization: Department of Ecology & Evolution, University of Chicago, Chicago, IL, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27283696$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23438174$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-89672$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-161703$$DView record from Swedish Publication Index |
BookMark | eNqN0l1rFDEUBuAgLfbLC_-ALIhgodPmazLJZV3XqiwVcWmlNyGbOVPTZidrMsO6_960u12hUGluEsLzhnDO2UNbbWgBodcEH5O8TsDDMaFYkhdol3BBCky53Nqc2c8dtJfSDcaEqoq8RDuUcSZJxXfR4eQXDGo3gza50BrvuuUgNAOwwYdrZ40ftNAtQrxNB2i7MT7Bq_W-jyafRpPh52L87ezL8HRc2FIwUnDLm4pVoLCpayYsU8IqhSk0glBprYBpaYGDgXwNGJdQY3wf4WQKFdtHR6tn0wLm_VTPo5uZuNTBOP3RXZzqEK916jURpMLsedy7XkslKpr5-xWfx_C7h9TpmUsWvDcthD5pwkpKFRECP4MyyRTlosz07SN6E_qYq3mnqMy1LoXM6s1a9dMZ1JuvPjQjg3drYFKufBNNa1365yoqmVAiu8OVszGkFKHZEIL13UDoPBD6fiCyPXlkretMl3vdReP8_xIL52H59NN6NB49JIpVwqUO_mwSJt5qkfta6svzM_3hhxhfld-_6iH7Cw3-0oQ |
CitedBy_id | crossref_primary_10_1002_jmor_21516 crossref_primary_10_1111_ele_13510 crossref_primary_10_3354_ame01771 crossref_primary_10_1098_rstb_2015_0268 crossref_primary_10_1111_brv_13094 crossref_primary_10_1111_gcb_15732 crossref_primary_10_1093_biosci_biad089 crossref_primary_10_1111_geb_12346 crossref_primary_10_1111_1365_2745_13108 crossref_primary_10_1111_ecog_04006 crossref_primary_10_1093_icb_icac147 crossref_primary_10_1111_1365_2656_12459 crossref_primary_10_1111_ecog_05452 crossref_primary_10_1111_2041_210X_12103 crossref_primary_10_1556_168_2019_20_2_5 crossref_primary_10_1111_ele_12312 crossref_primary_10_1002_ecs2_4614 crossref_primary_10_1007_s40823_018_0031_y crossref_primary_10_1146_annurev_ecolsys_110316_022928 crossref_primary_10_1063_1_4953163 crossref_primary_10_1111_1365_2745_13334 crossref_primary_10_1098_rspa_2023_0284 crossref_primary_10_1111_2041_210X_13329 crossref_primary_10_1007_s11692_017_9409_8 crossref_primary_10_1111_oik_02256 crossref_primary_10_1111_2041_210X_13569 crossref_primary_10_1038_s41559_019_0899_x crossref_primary_10_1111_oik_06737 crossref_primary_10_1890_ES14_00515_1 crossref_primary_10_1016_j_jtbi_2013_06_004 crossref_primary_10_3389_fmars_2016_00182 crossref_primary_10_1098_rspb_2016_2664 crossref_primary_10_1016_j_pecon_2017_09_003 crossref_primary_10_1016_j_tree_2024_04_002 crossref_primary_10_1093_aobpla_plv076 crossref_primary_10_1111_2041_210X_12471 crossref_primary_10_1371_journal_pone_0195919 crossref_primary_10_1111_ele_14383 crossref_primary_10_1038_srep45908 crossref_primary_10_1098_rspb_2013_2397 crossref_primary_10_1016_j_fooweb_2023_e00333 crossref_primary_10_1038_s41598_017_15496_1 crossref_primary_10_1111_1365_2435_13784 crossref_primary_10_1111_gcb_15196 crossref_primary_10_1111_oik_05670 crossref_primary_10_1002_ecm_1415 crossref_primary_10_1007_s10530_021_02484_w crossref_primary_10_1038_s41558_020_0698_z crossref_primary_10_1139_cjfas_2016_0176 crossref_primary_10_1109_JSTARS_2023_3342985 crossref_primary_10_1016_j_ecocom_2022_101003 crossref_primary_10_1111_ecog_05229 crossref_primary_10_1371_journal_pclm_0000358 crossref_primary_10_1111_oik_10446 crossref_primary_10_1002_ecy_2465 crossref_primary_10_1111_ele_14368 crossref_primary_10_1111_1365_2656_70013 crossref_primary_10_1111_ele_13279 crossref_primary_10_1111_jzo_12612 crossref_primary_10_1111_ele_12865 crossref_primary_10_1111_1365_2656_70011 crossref_primary_10_1103_PhysRevResearch_3_023117 crossref_primary_10_1111_j_1600_0706_2013_01011_x crossref_primary_10_1111_1365_2656_12892 crossref_primary_10_1103_PhysRevE_110_034313 crossref_primary_10_1002_ece3_8916 crossref_primary_10_1111_1365_2435_14253 crossref_primary_10_1016_j_agee_2014_02_017 crossref_primary_10_1111_1365_2435_12763 crossref_primary_10_1111_aec_12560 crossref_primary_10_1111_geb_13348 crossref_primary_10_1111_ele_13966 crossref_primary_10_1007_s42974_021_00067_2 crossref_primary_10_1016_j_ecss_2020_107097 crossref_primary_10_1016_j_jtbi_2013_05_004 crossref_primary_10_1111_ele_14134 crossref_primary_10_1111_ecog_03187 crossref_primary_10_1111_ecog_06453 crossref_primary_10_1111_2041_210X_13125 crossref_primary_10_1371_journal_pone_0205854 crossref_primary_10_1098_rspb_2024_0269 crossref_primary_10_1101_cshperspect_a041448 crossref_primary_10_1016_j_ecolmodel_2021_109508 crossref_primary_10_1111_1365_2435_12530 crossref_primary_10_1890_13_1424_1 crossref_primary_10_1111_oik_01426 crossref_primary_10_1016_j_ecolind_2018_04_050 crossref_primary_10_1098_rspb_2015_2444 crossref_primary_10_1371_journal_pone_0252448 crossref_primary_10_1002_ecy_70011 crossref_primary_10_1016_j_tree_2024_01_009 crossref_primary_10_1038_s41559_019_1070_4 crossref_primary_10_1002_ecm_1331 crossref_primary_10_1098_rspb_2013_3203 crossref_primary_10_1111_2041_210X_14228 crossref_primary_10_1098_rspb_2020_1889 crossref_primary_10_1007_s10144_018_0628_3 crossref_primary_10_1016_j_tree_2016_06_009 crossref_primary_10_1111_2041_210X_13493 crossref_primary_10_1111_ecog_00819 crossref_primary_10_1038_s41467_018_07677_x crossref_primary_10_1111_ele_12612 crossref_primary_10_1002_etc_5629 crossref_primary_10_1371_journal_pone_0306342 crossref_primary_10_1038_ncomms8842 crossref_primary_10_1890_14_0024_1 crossref_primary_10_1515_mammalia_2014_0058 crossref_primary_10_1038_s41467_020_17894_y crossref_primary_10_1111_2041_210X_14358 crossref_primary_10_1017_S003118202000133X crossref_primary_10_1111_1365_2435_12669 crossref_primary_10_3389_fevo_2022_804138 crossref_primary_10_1111_brv_12433 crossref_primary_10_1111_1365_2435_12666 crossref_primary_10_1098_rstb_2023_0180 crossref_primary_10_1002_ece3_6411 crossref_primary_10_1007_s12080_014_0229_5 crossref_primary_10_1111_ele_13592 crossref_primary_10_1016_j_ecss_2023_108411 crossref_primary_10_1016_j_foreco_2018_05_039 crossref_primary_10_1126_sciadv_1500558 crossref_primary_10_1002_ecy_3047 crossref_primary_10_1016_j_wsee_2025_03_004 crossref_primary_10_1111_ele_12946 crossref_primary_10_1002_ecy_3285 crossref_primary_10_1016_j_ecolmodel_2020_109161 crossref_primary_10_1007_s00442_018_4322_0 crossref_primary_10_1016_j_tree_2022_06_004 crossref_primary_10_1111_2041_210X_12192 crossref_primary_10_1016_j_cois_2015_04_017 crossref_primary_10_1111_1365_2435_13254 crossref_primary_10_1111_ele_12955 crossref_primary_10_1111_1365_2656_13274 crossref_primary_10_1111_ddi_12458 crossref_primary_10_1111_oik_01439 crossref_primary_10_1111_1365_2656_14124 crossref_primary_10_1111_ele_12395 crossref_primary_10_1016_j_jtbi_2016_03_042 crossref_primary_10_1111_ele_14212 crossref_primary_10_1002_ece3_2865 crossref_primary_10_1098_rstb_2021_0063 crossref_primary_10_1002_ecy_70001 crossref_primary_10_1016_j_tree_2015_03_014 crossref_primary_10_1038_ncomms13965 crossref_primary_10_1111_oik_02894 crossref_primary_10_1111_oik_08512 crossref_primary_10_1002_ecy_2523 crossref_primary_10_1111_1365_2435_14340 crossref_primary_10_1111_oik_04712 crossref_primary_10_1890_13_2229_1 crossref_primary_10_1002_ecs2_3018 crossref_primary_10_1016_j_landusepol_2018_11_043 crossref_primary_10_1111_ele_13334 crossref_primary_10_1111_ecog_01714 crossref_primary_10_1002_ece3_8055 crossref_primary_10_1007_s12080_015_0273_9 crossref_primary_10_1093_comnet_cnv023 crossref_primary_10_1111_nph_16192 crossref_primary_10_1111_oik_07337 crossref_primary_10_1007_s11258_020_01032_1 crossref_primary_10_1002_ecy_3028 crossref_primary_10_1098_rspb_2014_2947 crossref_primary_10_1111_1365_2435_14231 crossref_primary_10_1086_675363 crossref_primary_10_1016_j_tree_2018_04_009 crossref_primary_10_1111_gcb_13601 crossref_primary_10_1111_oik_02305 crossref_primary_10_1111_ecog_00976 crossref_primary_10_1111_ecog_05869 crossref_primary_10_1111_ecog_03443 crossref_primary_10_1111_oik_08650 crossref_primary_10_1111_ele_12938 crossref_primary_10_1111_oik_05387 crossref_primary_10_1016_j_jtbi_2016_10_007 crossref_primary_10_1371_journal_pbio_1002527 crossref_primary_10_1016_j_ecoinf_2024_102696 crossref_primary_10_1111_oik_10521 crossref_primary_10_1016_j_fooweb_2018_e00093 crossref_primary_10_1111_ele_12342 crossref_primary_10_1038_srep14865 crossref_primary_10_1017_S0376892914000307 crossref_primary_10_1017_S0266467419000178 crossref_primary_10_1111_oik_08443 crossref_primary_10_1016_j_jtbi_2025_112091 crossref_primary_10_1016_j_isci_2024_110962 crossref_primary_10_1111_ele_13567 crossref_primary_10_1111_brv_12250 crossref_primary_10_1002_ece3_2780 crossref_primary_10_1007_s00442_022_05151_6 crossref_primary_10_1016_j_tree_2022_05_006 crossref_primary_10_3389_fevo_2017_00057 crossref_primary_10_1111_ecog_07028 crossref_primary_10_1371_journal_pone_0208720 crossref_primary_10_1098_rspb_2023_2771 crossref_primary_10_1111_ele_70073 crossref_primary_10_1038_srep06440 crossref_primary_10_1111_jbi_13493 crossref_primary_10_1016_j_tplants_2022_04_002 crossref_primary_10_1016_j_cois_2017_05_012 crossref_primary_10_1111_brv_13105 crossref_primary_10_1093_icb_icae070 crossref_primary_10_1038_s41467_018_05610_w crossref_primary_10_1111_1365_2745_13207 crossref_primary_10_1111_ele_13096 crossref_primary_10_1093_jeb_voae069 crossref_primary_10_1086_689891 crossref_primary_10_1038_s41467_018_05056_0 crossref_primary_10_1111_brv_12828 crossref_primary_10_1038_s41467_020_15688_w crossref_primary_10_1111_1365_2656_13207 crossref_primary_10_1016_j_gecco_2025_e03523 crossref_primary_10_1016_j_tree_2022_11_004 crossref_primary_10_1146_annurev_ecolsys_110316_022821 crossref_primary_10_1086_733415 crossref_primary_10_7717_peerj_3644 crossref_primary_10_1111_1365_2435_13237 crossref_primary_10_1111_1365_2435_14206 crossref_primary_10_1111_1365_2656_12484 crossref_primary_10_1016_j_ecocom_2016_07_005 crossref_primary_10_1016_j_fooweb_2022_e00246 crossref_primary_10_1111_geb_12193 crossref_primary_10_1126_science_adj1856 crossref_primary_10_1140_epjb_s10051_023_00630_y crossref_primary_10_1038_s41467_024_53001_1 crossref_primary_10_1111_1365_2435_14442 crossref_primary_10_1111_1365_2435_12943 crossref_primary_10_3389_fevo_2021_698885 |
Cites_doi | 10.1890/11-0200.1 10.7208/chicago/9780226118697.001.0001 10.1073/pnas.0910582106 10.1007/BFb0070404 10.1111/j.1365-2656.2011.01883.x 10.1126/science.1156269 10.1016/B978-0-12-381363-3.00003-4 10.1038/nature02327 10.1016/B978-0-12-386475-8.00005-8 10.1046/j.1461-0248.2003.00403.x 10.1038/35004572 10.1111/j.1365-2656.2010.01778.x 10.1016/j.jtbi.2010.06.040 10.1002/j.1537-2197.1982.tb13237.x 10.1098/rsif.2010.0111 10.1007/s00442-008-1255-z 10.1098/rstb.2010.0145 10.1046/j.1365-2745.2001.00553.x 10.1111/j.1461-0248.2009.01296.x 10.1016/S0304-3800(99)00022-8 10.1073/pnas.0603844103 10.1890/03-9000 10.1111/j.1365-2656.2011.01812.x 10.1007/s00285-010-0383-3 10.1016/0166-218X(94)90143-0 10.1016/j.disc.2008.04.011 10.1098/rspb.2011.2149 10.1890/07-1241.1 10.1007/BF00346475 10.1093/aob/mcp057 10.1890/10-1594.1 10.2307/1936841 10.1038/nature05429 10.1073/pnas.0710672105 10.1016/j.jtbi.2010.11.045 10.1016/j.ecocom.2007.06.013 10.1038/nature10853 10.7208/chicago/9780226101811.001.0001 |
ContentType | Journal Article |
Copyright | 2013 Blackwell Publishing Ltd/CNRS 2014 INIST-CNRS 2013 Blackwell Publishing Ltd/CNRS. Copyright © 2013 Blackwell Publishing Ltd/CNRS |
Copyright_xml | – notice: 2013 Blackwell Publishing Ltd/CNRS – notice: 2014 INIST-CNRS – notice: 2013 Blackwell Publishing Ltd/CNRS. – notice: Copyright © 2013 Blackwell Publishing Ltd/CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 ADTPV AOWAS DG8 DG7 |
DOI | 10.1111/ele.12081 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic SwePub SwePub Articles SWEPUB Linköpings universitet SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Ecology Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE Ecology Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1461-0248 |
Editor | Dunne, Jennifer |
Editor_xml | – sequence: 19 givenname: Jennifer surname: Dunne fullname: Dunne, Jennifer |
EndPage | 583 |
ExternalDocumentID | oai_DiVA_org_su_161703 oai_DiVA_org_liu_89672 2948068401 23438174 27283696 10_1111_ele_12081 ELE12081 ark_67375_WNG_BS6LZ5QJ_C |
Genre | letter Letter Research Support, Non-U.S. Gov't Feature |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ N~3 O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7SN 7SS 7U9 C1K H94 M7N 7X8 ADTPV AOWAS DG8 DG7 |
ID | FETCH-LOGICAL-c5631-4c4f737e90add36c396c9902ef6128cc6eb5ce4eaec99e005ed004f73741be73 |
IEDL.DBID | DR2 |
ISSN | 1461-023X 1461-0248 |
IngestDate | Thu Aug 21 06:18:22 EDT 2025 Thu Aug 21 06:51:31 EDT 2025 Thu Jul 10 18:05:56 EDT 2025 Fri Jul 11 05:54:42 EDT 2025 Fri Jul 25 10:51:51 EDT 2025 Thu Apr 03 06:58:37 EDT 2025 Mon Jul 21 09:13:26 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Tue Jul 01 02:29:39 EDT 2025 Wed Jan 22 17:01:26 EST 2025 Wed Oct 30 09:54:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | scaling Food web niche space Trophic structure species traits Ecological niche intervality food web structure Ecological networks |
Language | English |
License | CC BY 4.0 2013 Blackwell Publishing Ltd/CNRS. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5631-4c4f737e90add36c396c9902ef6128cc6eb5ce4eaec99e005ed004f73741be73 |
Notes | istex:F28355C5D77C65CF0E8BD13491480FBBC71F08F4 ark:/67375/WNG-BS6LZ5QJ-C ArticleID:ELE12081 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 ObjectType-Correspondence-1 content type line 23 |
OpenAccessLink | http://doi.org/10.1111/ele.12081 |
PMID | 23438174 |
PQID | 1328438568 |
PQPubID | 32390 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_161703 swepub_primary_oai_DiVA_org_liu_89672 proquest_miscellaneous_1352291660 proquest_miscellaneous_1338392465 proquest_journals_1328438568 pubmed_primary_23438174 pascalfrancis_primary_27283696 crossref_primary_10_1111_ele_12081 crossref_citationtrail_10_1111_ele_12081 wiley_primary_10_1111_ele_12081_ELE12081 istex_primary_ark_67375_WNG_BS6LZ5QJ_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2013 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: May 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England – name: Paris |
PublicationTitle | Ecology letters |
PublicationTitleAlternate | Ecol Lett |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Kratochvíl, J. (1994). A special planar satisfiability problem and a consequence of its np-completeness. Discrete Appl. Math., 52, 233-252. Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol. Evol., 19, 605-611. Cagnolo, L., Salvo, A. & Valladares, G. (2011). Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J. Anim. Ecol., 80, 342-351. Optiz, S. (1996). Trophic Interactions in Caribbean Coral Reefs. Tech. Rep. 43, ICLARM, Manila. Roberts, F.S. (1969). On the Boxicity and Cubicity of a Graph. Academic Press, New York. Ueckert, D.N. & Hansen, R.M. (1971). Dietary overlap of grasshoppers on sandhill rangeland in northeastern colorado. Oecologia, 8, 276-295. Stouffer, D.B., Camacho, J. & Amaral, L.A.N. (2006). A robust measure of food web intervality. P. Nat. Acad. Sci. U.S.A., 103, 19015-19020. Allesina, S., Alonso, D. & Pascual, M. (2008). A general model for food web structure. Science, 320, 658-661. Jacob, U. (2005). Trophic Dynamics of Antarctic Shelf Ecosystems - Food Webs and Energy Flow Budgets, Thesis. University of Bremen, Germany. Rossberg, A.G., Brännström, Å. & Dieckmann, U. (2010). Food-web structure in low-and high-dimensional trophic niche spaces. J. Roy. Soc. Int., 7, 1735-1743. Forrest, J., Miller-Rushing, A.J., Forrest, J. & Miller-Rushing, A.J. (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. T. Roy. Soc. B, 365, 3101-3112. Riede, J.O., Rall, B.C., Banasek-Richter, C., Navarrete, S.A., Wieters, E.A., Emmerson, M.C., Jacob, U. & Brose, U. (2010). Scaling of food-web properties with diversity and complexity across ecosystems. Adv. Ecol. Res., 42, 139-170. Galetti, M. & Pizo, M.A. (1996). Fruit eating by birds in a forest fragment in southeastern brazil. Ararajuba, 4, 71-79. Williams, R.J. & Purves, D.W. (2011). The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology, 92, 1849-1857. Bosch, J., Martín González, A.M., Rodrigo, A. & Navarro, D. (2009). Plant-pollinator networks: adding the pollinators perspective. Ecol. Lett., 12, 409-419. Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. Dalsgaard, B., Martín González, A.M., Olesen, J.M., Ollerton, J., Timmermann, A., Andersen, L.H. & Tossas, A.G. (2009). Plant-hummingbird interactions in the west indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia, 159, 757-766. Bersier, L.F. & Kehrli, P. (2008). The signature of phylogenetic constraints on food-web structure. Ecol. Compl., 5, 132-139. Cattin, M.F., Bersier, L.F., Banasˇek-Richter, C., Baltensperger, R. & Gabriel, J.P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835-839. Jacob, U., Thierry, A., Brose, U., Arntz, W.E., Berg, S., Brey, T., Fetzer, I., Jonsson, T., Mintenbeck, K., Mollmann, C. et al. (2011). The role of body size in complex food webs: a cold case. Adv. Ecol. Res, 45, 181-223. Williams, R.J. & Martinez, N.D. (2000). Simple rules yield complex food webs. Nature, 404, 180-183. Chase, J.M. & Leibold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago, IL. Cohen, J.E., Schittler, D.N., Raffaelli, D.G. & Reuman, D.C. (2009). Food webs are more than the sum of their tritrophic parts. P. Nat. Acad. Sci. U.S.A., 106, 22335-22340. Stouffer, D.B., Rezende, E.L. & Amaral, L.A.N. (2011). The role of body mass in diet contiguity and food-web structure. J. Anim. Ecol., 80, 632-639. McCullen, C.K. (1993). Flower-visiting insects of the galapagos islands. Pan-Pac. Entomol., 69, 95-106. Thompson, J.N. (2005). The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago, IL. Petchey, O.L., Beckerman, A.P., Riede, J.O. & Warren, P.H. (2008). Size, foraging, and food web structure. P. Nat. Acad. Sci. U.S.A., 105, 4191-4196. Diamond, S.E., Frame, A.M., Martin, R.A. & Buckley, L.B. (2011). Species' traits predict phenological responses to climate change in butterflies. Ecology, 92, 1005-1012. Sunil, C.L. & Ashik, M.K. (2009). An upper bound for cubicity in terms of boxicity. Discrete Math., 309, 2571-2574. Allesina, S. (2011). Predicting trophic relations in ecological networks: a test of the allometric diet breadth model. J. Theor. Biol., 279, 161-168. Tylianakis, J.M., Tscharntke, T. & Lewis, O.T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202-205. Vázquez, D.P., Blüthgen, N., Cagnolo, L. & Chacoff, N.P. (2009). Uniting pattern and process in plant-animal mutualistic networks: a review. Ann. Bot. London, 103, 1445-1457. Christian, R.R. & Luczkovich, J.J. (1999). Organizing and understanding a winter's seagrass foodweb network through effective trophic levels. Ecol. Model., 117, 99-124. Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer Verlag, New York. Petanidou, T. (1991). Pollination Ecology in a Phryganic Ecosystem, Thesis. Aristotelian University, Greece. Brännström, Å., Carlsson, L. & Rossberg, A.G. (2011). Rigorous conditions for food-web intervality in high-dimensional trophic niche spaces. J. Math. Biol., 63, 575-592. Gilman, R.T., Nuismer, S.L. & Jhwueng, D.C. (2012). Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature, 483, 328-330. Eklöf, A., Helmus, M.R., Moore, M. & Allesina, S. (2012). Relevance of evolutionary history for food web structure. P. Roy. Soc. Lond. B: Bio., 279, 1588-1596. Chacoff, N.P., Vázquez, D.P., Lomáscolo, S.B., Stevani, E.L., Dorado, J. & Padrón, B. (2012). Evaluating sampling completeness in a desert plant-pollinator network. J. Anim. Ecol., 81, 190-200. Inouye, D.W. (1980). The terminology of floral larceny. Ecology, 61, 1251-1253. Mouillot, D., Krasnov, B.R. & Poulin, R. (2008). High intervality explained by phylogenetic constraints in host-parasite webs. Ecology, 89, 2043-2051. Zook, A.E., Eklöf, A., Jacob, U. & Allesina, S. (2011). Food webs: ordering species according to body size yields high degree of intervality. J. Theor. Biol., 271, 106-113. Arroyo, M.T.K., Primack, R. & Armesto, J. (1982). Community studies in pollination ecology in the high temperate andes of central chile. i. pollination mechanisms and altitudinal variation. Am. J. Bot., 69, 82-97. Jordano, P., Bascompte, J. & Olesen, J.M. (2003). Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett., 6, 69-81. 1993; 69 2007; 445 2011; 279 2004; 85 2012; 81 2012; 483 2011; 80 1980; 61 2010; 365 2008 1996 2008; 5 2005 2008; 105 2003 2002 1991 2008; 320 2004; 427 2011; 271 2009; 159 1978 2009; 12 1982; 69 1971; 8 2010; 42 2009; 309 2004; 19 2003; 6 2011; 92 2000; 404 2011; 63 2008; 89 2011; 45 1999; 117 2012; 279 1996; 4 1994; 52 1969 2010; 7 2009; 103 1968 2006; 103 2009; 106 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_46_1 Optiz S. (e_1_2_7_31_1) 1996 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 Stouffer D.B. (e_1_2_7_39_1) 2006; 103 Burnham K.P. (e_1_2_7_10_1) 2002 Roberts F.S. (e_1_2_7_35_1) 1969 Galetti M. (e_1_2_7_22_1) 1996; 4 Jacob U. (e_1_2_7_25_1) 2005 Petanidou T. (e_1_2_7_32_1) 1991 e_1_2_7_30_1 McCullen C.K. (e_1_2_7_29_1) 1993; 69 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
References_xml | – reference: Dalsgaard, B., Martín González, A.M., Olesen, J.M., Ollerton, J., Timmermann, A., Andersen, L.H. & Tossas, A.G. (2009). Plant-hummingbird interactions in the west indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia, 159, 757-766. – reference: Bersier, L.F. & Kehrli, P. (2008). The signature of phylogenetic constraints on food-web structure. Ecol. Compl., 5, 132-139. – reference: Williams, R.J. & Purves, D.W. (2011). The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology, 92, 1849-1857. – reference: McCullen, C.K. (1993). Flower-visiting insects of the galapagos islands. Pan-Pac. Entomol., 69, 95-106. – reference: Silvertown, J. (2004). Plant coexistence and the niche. Trends Ecol. Evol., 19, 605-611. – reference: Vázquez, D.P., Blüthgen, N., Cagnolo, L. & Chacoff, N.P. (2009). Uniting pattern and process in plant-animal mutualistic networks: a review. Ann. Bot. London, 103, 1445-1457. – reference: Arroyo, M.T.K., Primack, R. & Armesto, J. (1982). Community studies in pollination ecology in the high temperate andes of central chile. i. pollination mechanisms and altitudinal variation. Am. J. Bot., 69, 82-97. – reference: Kratochvíl, J. (1994). A special planar satisfiability problem and a consequence of its np-completeness. Discrete Appl. Math., 52, 233-252. – reference: Brännström, Å., Carlsson, L. & Rossberg, A.G. (2011). Rigorous conditions for food-web intervality in high-dimensional trophic niche spaces. J. Math. Biol., 63, 575-592. – reference: Riede, J.O., Rall, B.C., Banasek-Richter, C., Navarrete, S.A., Wieters, E.A., Emmerson, M.C., Jacob, U. & Brose, U. (2010). Scaling of food-web properties with diversity and complexity across ecosystems. Adv. Ecol. Res., 42, 139-170. – reference: Sunil, C.L. & Ashik, M.K. (2009). An upper bound for cubicity in terms of boxicity. Discrete Math., 309, 2571-2574. – reference: Chacoff, N.P., Vázquez, D.P., Lomáscolo, S.B., Stevani, E.L., Dorado, J. & Padrón, B. (2012). Evaluating sampling completeness in a desert plant-pollinator network. J. Anim. Ecol., 81, 190-200. – reference: Mouillot, D., Krasnov, B.R. & Poulin, R. (2008). High intervality explained by phylogenetic constraints in host-parasite webs. Ecology, 89, 2043-2051. – reference: Cohen, J.E., Schittler, D.N., Raffaelli, D.G. & Reuman, D.C. (2009). Food webs are more than the sum of their tritrophic parts. P. Nat. Acad. Sci. U.S.A., 106, 22335-22340. – reference: Optiz, S. (1996). Trophic Interactions in Caribbean Coral Reefs. Tech. Rep. 43, ICLARM, Manila. – reference: Bosch, J., Martín González, A.M., Rodrigo, A. & Navarro, D. (2009). Plant-pollinator networks: adding the pollinators perspective. Ecol. Lett., 12, 409-419. – reference: Jacob, U., Thierry, A., Brose, U., Arntz, W.E., Berg, S., Brey, T., Fetzer, I., Jonsson, T., Mintenbeck, K., Mollmann, C. et al. (2011). The role of body size in complex food webs: a cold case. Adv. Ecol. Res, 45, 181-223. – reference: Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. – reference: Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer Verlag, New York. – reference: Stouffer, D.B., Camacho, J. & Amaral, L.A.N. (2006). A robust measure of food web intervality. P. Nat. Acad. Sci. U.S.A., 103, 19015-19020. – reference: Thompson, J.N. (2005). The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago, IL. – reference: Tylianakis, J.M., Tscharntke, T. & Lewis, O.T. (2007). Habitat modification alters the structure of tropical host-parasitoid food webs. Nature, 445, 202-205. – reference: Petchey, O.L., Beckerman, A.P., Riede, J.O. & Warren, P.H. (2008). Size, foraging, and food web structure. P. Nat. Acad. Sci. U.S.A., 105, 4191-4196. – reference: Eklöf, A., Helmus, M.R., Moore, M. & Allesina, S. (2012). Relevance of evolutionary history for food web structure. P. Roy. Soc. Lond. B: Bio., 279, 1588-1596. – reference: Cagnolo, L., Salvo, A. & Valladares, G. (2011). Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J. Anim. Ecol., 80, 342-351. – reference: Stouffer, D.B., Rezende, E.L. & Amaral, L.A.N. (2011). The role of body mass in diet contiguity and food-web structure. J. Anim. Ecol., 80, 632-639. – reference: Allesina, S. (2011). Predicting trophic relations in ecological networks: a test of the allometric diet breadth model. J. Theor. Biol., 279, 161-168. – reference: Allesina, S., Alonso, D. & Pascual, M. (2008). A general model for food web structure. Science, 320, 658-661. – reference: Gilman, R.T., Nuismer, S.L. & Jhwueng, D.C. (2012). Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature, 483, 328-330. – reference: Forrest, J., Miller-Rushing, A.J., Forrest, J. & Miller-Rushing, A.J. (2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. T. Roy. Soc. B, 365, 3101-3112. – reference: Galetti, M. & Pizo, M.A. (1996). Fruit eating by birds in a forest fragment in southeastern brazil. Ararajuba, 4, 71-79. – reference: Ueckert, D.N. & Hansen, R.M. (1971). Dietary overlap of grasshoppers on sandhill rangeland in northeastern colorado. Oecologia, 8, 276-295. – reference: Jacob, U. (2005). Trophic Dynamics of Antarctic Shelf Ecosystems - Food Webs and Energy Flow Budgets, Thesis. University of Bremen, Germany. – reference: Jordano, P., Bascompte, J. & Olesen, J.M. (2003). Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett., 6, 69-81. – reference: Petanidou, T. (1991). Pollination Ecology in a Phryganic Ecosystem, Thesis. Aristotelian University, Greece. – reference: Williams, R.J. & Martinez, N.D. (2000). Simple rules yield complex food webs. Nature, 404, 180-183. – reference: Diamond, S.E., Frame, A.M., Martin, R.A. & Buckley, L.B. (2011). Species' traits predict phenological responses to climate change in butterflies. Ecology, 92, 1005-1012. – reference: Rossberg, A.G., Brännström, Å. & Dieckmann, U. (2010). Food-web structure in low-and high-dimensional trophic niche spaces. J. Roy. Soc. Int., 7, 1735-1743. – reference: Zook, A.E., Eklöf, A., Jacob, U. & Allesina, S. (2011). Food webs: ordering species according to body size yields high degree of intervality. J. Theor. Biol., 271, 106-113. – reference: Cattin, M.F., Bersier, L.F., Banasˇek-Richter, C., Baltensperger, R. & Gabriel, J.P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835-839. – reference: Roberts, F.S. (1969). On the Boxicity and Cubicity of a Graph. Academic Press, New York. – reference: Chase, J.M. & Leibold, M.A. (2003). Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago, IL. – reference: Inouye, D.W. (1980). The terminology of floral larceny. Ecology, 61, 1251-1253. – reference: Christian, R.R. & Luczkovich, J.J. (1999). Organizing and understanding a winter's seagrass foodweb network through effective trophic levels. Ecol. Model., 117, 99-124. – volume: 61 start-page: 1251 year: 1980 end-page: 1253 article-title: The terminology of floral larceny publication-title: Ecology – volume: 81 start-page: 190 year: 2012 end-page: 200 article-title: Evaluating sampling completeness in a desert plant–pollinator network publication-title: J. Anim. Ecol. – start-page: 477 year: 1978 end-page: 490 article-title: Food webs, competition graphs, and the boxicity of ecological phase space – volume: 106 start-page: 22335 year: 2009 end-page: 22340 article-title: Food webs are more than the sum of their tritrophic parts publication-title: P. Nat. Acad. Sci. U.S.A. – volume: 404 start-page: 180 year: 2000 end-page: 183 article-title: Simple rules yield complex food webs publication-title: Nature – year: 2005 – volume: 427 start-page: 835 year: 2004 end-page: 839 article-title: Phylogenetic constraints and adaptation explain food‐web structure publication-title: Nature – year: 2003 – volume: 365 start-page: 3101 year: 2010 end-page: 3112 article-title: Toward a synthetic understanding of the role of phenology in ecology and evolution publication-title: Philos. T. Roy. Soc. B – volume: 6 start-page: 69 year: 2003 end-page: 81 article-title: Invariant properties in coevolutionary networks of plant–animal interactions publication-title: Ecol. Lett. – volume: 445 start-page: 202 year: 2007 end-page: 205 article-title: Habitat modification alters the structure of tropical host–parasitoid food webs publication-title: Nature – year: 1996 – volume: 483 start-page: 328 year: 2012 end-page: 330 article-title: Coevolution in multidimensional trait space favours escape from parasites and pathogens publication-title: Nature – year: 1968 article-title: Interval graphs and food webs: a finding and a problem – volume: 12 start-page: 409 year: 2009 end-page: 419 article-title: Plant–pollinator networks: adding the pollinators perspective publication-title: Ecol. Lett. – volume: 5 start-page: 132 year: 2008 end-page: 139 article-title: The signature of phylogenetic constraints on food‐web structure publication-title: Ecol. Compl. – volume: 80 start-page: 342 year: 2011 end-page: 351 article-title: Network topology: patterns and mechanisms in plant‐herbivore and host‐parasitoid food webs publication-title: J. Anim. Ecol. – volume: 42 start-page: 139 year: 2010 end-page: 170 article-title: Scaling of food‐web properties with diversity and complexity across ecosystems publication-title: Adv. Ecol. Res. – volume: 320 start-page: 658 year: 2008 end-page: 661 article-title: A general model for food web structure publication-title: Science – volume: 85 start-page: 1771 year: 2004 end-page: 1789 article-title: Toward a metabolic theory of ecology publication-title: Ecology – volume: 7 start-page: 1735 year: 2010 end-page: 1743 article-title: Food‐web structure in low‐and high‐dimensional trophic niche spaces publication-title: J. Roy. Soc. Int. – volume: 117 start-page: 99 year: 1999 end-page: 124 article-title: Organizing and understanding a winter's seagrass foodweb network through effective trophic levels publication-title: Ecol. Model. – volume: 309 start-page: 2571 year: 2009 end-page: 2574 article-title: An upper bound for cubicity in terms of boxicity publication-title: Discrete Math. – volume: 80 start-page: 632 year: 2011 end-page: 639 article-title: The role of body mass in diet contiguity and food‐web structure publication-title: J. Anim. Ecol. – volume: 279 start-page: 1588 year: 2012 end-page: 1596 article-title: Relevance of evolutionary history for food web structure publication-title: P. Roy. Soc. Lond. B: Bio – volume: 69 start-page: 82 year: 1982 end-page: 97 article-title: Community studies in pollination ecology in the high temperate andes of central chile. i. pollination mechanisms and altitudinal variation publication-title: Am. J. Bot. – volume: 271 start-page: 106 year: 2011 end-page: 113 article-title: Food webs: ordering species according to body size yields high degree of intervality publication-title: J. Theor. Biol. – year: 2002 – volume: 105 start-page: 4191 year: 2008 end-page: 4196 article-title: Size, foraging, and food web structure publication-title: P. Nat. Acad. Sci. U.S.A. – year: 1969 – volume: 279 start-page: 161 year: 2011 end-page: 168 article-title: Predicting trophic relations in ecological networks: a test of the allometric diet breadth model publication-title: J. Theor. Biol. – volume: 89 start-page: 2043 year: 2008 end-page: 2051 article-title: High intervality explained by phylogenetic constraints in host‐parasite webs publication-title: Ecology – volume: 19 start-page: 605 year: 2004 end-page: 611 article-title: Plant coexistence and the niche publication-title: Trends Ecol. Evol. – volume: 159 start-page: 757 year: 2009 end-page: 766 article-title: Plant–hummingbird interactions in the west indies: floral specialisation gradients associated with environment and hummingbird size publication-title: Oecologia – volume: 45 start-page: 181 year: 2011 end-page: 223 article-title: The role of body size in complex food webs: a cold case publication-title: Adv. Ecol. Res – volume: 69 start-page: 95 year: 1993 end-page: 106 article-title: Flower‐visiting insects of the galapagos islands publication-title: Pan‐Pac. Entomol. – volume: 4 start-page: 71 year: 1996 end-page: 79 article-title: Fruit eating by birds in a forest fragment in southeastern brazil publication-title: Ararajuba – volume: 52 start-page: 233 year: 1994 end-page: 252 article-title: A special planar satisfiability problem and a consequence of its np‐completeness publication-title: Discrete Appl. Math. – volume: 103 start-page: 19015 year: 2006 end-page: 19020 article-title: A robust measure of food web intervality publication-title: P. Nat. Acad. Sci. U.S.A. – volume: 8 start-page: 276 year: 1971 end-page: 295 article-title: Dietary overlap of grasshoppers on sandhill rangeland in northeastern colorado publication-title: Oecologia – year: 2008 article-title: Lower bounds for boxicity – year: 1991 – volume: 92 start-page: 1849 year: 2011 end-page: 1857 article-title: The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs publication-title: Ecology – volume: 63 start-page: 575 year: 2011 end-page: 592 article-title: Rigorous conditions for food‐web intervality in high‐dimensional trophic niche spaces publication-title: J. Math. Biol. – volume: 92 start-page: 1005 year: 2011 end-page: 1012 article-title: Species' traits predict phenological responses to climate change in butterflies publication-title: Ecology – volume: 103 start-page: 1445 year: 2009 end-page: 1457 article-title: Uniting pattern and process in plant–animal mutualistic networks: a review publication-title: Ann. Bot. London – ident: e_1_2_7_47_1 doi: 10.1890/11-0200.1 – volume-title: Trophic Dynamics of Antarctic Shelf Ecosystems – Food Webs and Energy Flow Budgets, Thesis year: 2005 ident: e_1_2_7_25_1 – ident: e_1_2_7_42_1 doi: 10.7208/chicago/9780226118697.001.0001 – ident: e_1_2_7_17_1 doi: 10.1073/pnas.0910582106 – ident: e_1_2_7_36_1 doi: 10.1007/BFb0070404 – ident: e_1_2_7_13_1 doi: 10.1111/j.1365-2656.2011.01883.x – ident: e_1_2_7_4_1 doi: 10.1126/science.1156269 – ident: e_1_2_7_34_1 doi: 10.1016/B978-0-12-381363-3.00003-4 – ident: e_1_2_7_12_1 doi: 10.1038/nature02327 – ident: e_1_2_7_26_1 doi: 10.1016/B978-0-12-386475-8.00005-8 – ident: e_1_2_7_27_1 doi: 10.1046/j.1461-0248.2003.00403.x – ident: e_1_2_7_46_1 doi: 10.1038/35004572 – volume-title: Model Selection and Multimodel Inference: A Practical Information‐theoretic Approach year: 2002 ident: e_1_2_7_10_1 – ident: e_1_2_7_11_1 doi: 10.1111/j.1365-2656.2010.01778.x – volume-title: Trophic Interactions in Caribbean Coral Reefs year: 1996 ident: e_1_2_7_31_1 – volume-title: Pollination Ecology in a Phryganic Ecosystem, Thesis year: 1991 ident: e_1_2_7_32_1 – ident: e_1_2_7_3_1 doi: 10.1016/j.jtbi.2010.06.040 – ident: e_1_2_7_5_1 doi: 10.1002/j.1537-2197.1982.tb13237.x – ident: e_1_2_7_37_1 doi: 10.1098/rsif.2010.0111 – volume-title: On the Boxicity and Cubicity of a Graph year: 1969 ident: e_1_2_7_35_1 – ident: e_1_2_7_18_1 doi: 10.1007/s00442-008-1255-z – ident: e_1_2_7_21_1 doi: 10.1098/rstb.2010.0145 – ident: e_1_2_7_38_1 doi: 10.1046/j.1365-2745.2001.00553.x – ident: e_1_2_7_7_1 doi: 10.1111/j.1461-0248.2009.01296.x – ident: e_1_2_7_15_1 doi: 10.1016/S0304-3800(99)00022-8 – volume: 103 start-page: 19015 year: 2006 ident: e_1_2_7_39_1 article-title: A robust measure of food web intervality publication-title: P. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.0603844103 – ident: e_1_2_7_9_1 doi: 10.1890/03-9000 – ident: e_1_2_7_40_1 doi: 10.1111/j.1365-2656.2011.01812.x – ident: e_1_2_7_16_1 – ident: e_1_2_7_2_1 – ident: e_1_2_7_8_1 doi: 10.1007/s00285-010-0383-3 – ident: e_1_2_7_28_1 doi: 10.1016/0166-218X(94)90143-0 – ident: e_1_2_7_41_1 doi: 10.1016/j.disc.2008.04.011 – ident: e_1_2_7_20_1 doi: 10.1098/rspb.2011.2149 – ident: e_1_2_7_30_1 doi: 10.1890/07-1241.1 – ident: e_1_2_7_44_1 doi: 10.1007/BF00346475 – ident: e_1_2_7_45_1 doi: 10.1093/aob/mcp057 – volume: 4 start-page: 71 year: 1996 ident: e_1_2_7_22_1 article-title: Fruit eating by birds in a forest fragment in southeastern brazil publication-title: Ararajuba – ident: e_1_2_7_19_1 doi: 10.1890/10-1594.1 – ident: e_1_2_7_24_1 doi: 10.2307/1936841 – ident: e_1_2_7_43_1 doi: 10.1038/nature05429 – ident: e_1_2_7_33_1 doi: 10.1073/pnas.0710672105 – volume: 69 start-page: 95 year: 1993 ident: e_1_2_7_29_1 article-title: Flower‐visiting insects of the galapagos islands publication-title: Pan‐Pac. Entomol. – ident: e_1_2_7_48_1 doi: 10.1016/j.jtbi.2010.11.045 – ident: e_1_2_7_6_1 doi: 10.1016/j.ecocom.2007.06.013 – ident: e_1_2_7_23_1 doi: 10.1038/nature10853 – ident: e_1_2_7_14_1 doi: 10.7208/chicago/9780226101811.001.0001 |
SSID | ssj0012971 |
Score | 2.53218 |
Snippet | How many dimensions (trait‐axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches,... How many dimensions (trait-axes) are required to predict whether two species interact? This unanswered question originated with the idea of ecological niches,... How many dimensions (trait-axes) are required to predict whether two species interact? This unansweredquestion originated with the idea of ecological niches,... |
SourceID | swepub proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 577 |
SubjectTerms | Animal and plant ecology Animal, plant and microbial ecology Animals Biological and medical sciences Community ecology Community structure Ecological networks Ecology Ecosystem Food Chain Food chains food web structure Food webs Fundamental and applied biological sciences. Psychology General aspects intervality Models, Biological Models, Theoretical Multifactorial Inheritance niche space scaling species traits Symbiosis |
Title | The dimensionality of ecological networks |
URI | https://api.istex.fr/ark:/67375/WNG-BS6LZ5QJ-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fele.12081 https://www.ncbi.nlm.nih.gov/pubmed/23438174 https://www.proquest.com/docview/1328438568 https://www.proquest.com/docview/1338392465 https://www.proquest.com/docview/1352291660 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-89672 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-161703 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KRfBFWz9ja4miog85cvuVBJ_aerWUWlCrHkVYks1ESktOLhew_vXO7ibRk_qBbyE7C8nszM5vktnfADxGCspqnJeUpqoyEqwQUU4YLooVyyuZM0R3UPj1kdp_Lw6mcroCL_qzMJ4fYvjgZj3D7dfWwfOi-cnJaVcejVnsjl3bWi0LiN4O1FEUxnyyJRSly4xPO1YhW8UzzFyKRVesWr_a2si8IfVUvq_FZcBzYBVdBrQuIu3dgE_9u_hClLNRuyhG5tsvNI__-bJrcL1DquG2N611WMH6Jlz1vSsv6Gri-K4vbsFzMrWwtF0CPMMH4fpwVoVo-n01rH2teXMbjvcmx7v7UdeBITJScUoujagSnmAW0zbIleGZMhS-GFYEjFJjFBbSoMAc6TaSQ2NJTmeniHGBCb8Dq_WsxnsQxiVhGZlkrMpQ8IqyvLiUZZGZkhCQxHEAz_ql0KZjJ7dNMs51n6WQCrRTQQCPBtEvnpLjMqGnbj0HiXx-ZmvYEqk_Hr3SO-_U4Yl8c6B3A9haWvBhAksIealMBbDZW4Du_LvRlMOngqdSpQE8HIbJM-3vlrzGWWtluEWfQsk_yRD-JYSu4gDueuv68QDc0q8lIoAn3tyGEUsJ_vL0w7aezT_r89NWp5lK2F_kmlbbXDbmpGpnar9Xnp4cTtzF_X8X3YBrzHUKsbWgm7C6mLf4gPDaothyjvkdTuE4rA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9Ki-hL_bbRWqOo6EOO3H4lAV9qvXrW64F61UOQJdlspLTk5O4C1r_e2d1k9aR-4FtIZiGZndn5zWb2NwAPNQZl0c9LTFNFGTFSsChHDBfFguQVz4nW9qDw4VgMj9jBlE_X4Fl3FsbxQ_gNN-MZdr02Dm42pH_yclyWe30Sm3PXG6ajt02o3nryKAxkLt1iAhNmQqctr5Cp4_FDV6LRhlHsV1MdmS9QQZXrbHEe9PS8oquQ1sak_cvwqfsaV4py0muWRU99-4Xo8X8_9wpstmA13HXWdRXWdH0NLrj2lWd4NbCU12fX4SlaW1iaRgGO5AOhfTirQq26pTWsXbn54gZM9geTvWHUNmGIFBcU80vFqoQmOotxJaRC0UwojGBEV4iNUqWELrjSTOcab2v0aV2i35khrF_ohN6E9XpW6y0I4xLhDE8yUmWa0QoTvbjkZZGpEkEQ1_0AnnRzIVVLUG76ZJzKLlFBFUirggAeeNEvjpXjPKHHdkK9RD4_MWVsCZcfxi_l83di9JG_OZB7AeyszLgfQBIEXyITAWx3JiBbF19ITONTRlMu0gDu-8fonOaPS17rWWNkqAGgaJ1_kkEIjCBdxAHccub14wWoYWBLWACPnL35J4YV_MXx-105m3-Wp8eNTDORkL_ILRpp0tmYoqqtrf1eeXIwGtiL2_8ueg8uDieHIzl6NX59By4R2zjElIZuw_py3ui7CN-WxY710u-6ZjzH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED9Nm0B84f0IjBEQIPiQKvUrifg01pYxSsVjgwohWYntoGlTOrWNxPjrOdtJoGg8xLcoPkvJ-c73u-T8O4CHBoOy6Oca01ShI0YKFuWI4aJYkLzkOTHGHRR-PRG7B2xvyqdr8Kw9C-P5IboPbtYz3H5tHfxElz85Oe7KvT6J7bHrDSbi1Jr04F3HHYVxzGdbTGC-TOi0oRWyZTzd1JVgtGH1-tUWR-YL1E_pG1uchTw7WtFVROtC0ugSfG5fxleiHPXqZdFT337hefzPt70MFxuoGm5727oCa6a6Cud888pTvBo6wuvTa_AUbS3Utk2Ap_hAYB_OytCodmMNK19svrgO-6Ph_s5u1LRgiBQXFLNLxcqEJiaLcR-kQtFMKIxfxJSIjFKlhCm4MszkBm8b9Gij0evsFNYvTEJvwHo1q8wtCGONYIYnGSkzw2iJaV6suS4ypRECcdMP4Em7FFI19OS2S8axbNMUVIF0KgjgQSd64jk5zhJ67Nazk8jnR7aILeHy4-SFfP5ejD_xt3tyJ4CtlQXvJpAEoZfIRACbrQXIxsEXEpP4lNGUizSA-90wuqb935JXZlZbGWrhJxP8TzIIgBGiiziAm966fjwAtfxrCQvgkTe3bsRygg8OP2zL2fyLPD6sZZqJhPxFblFLm8zGFFXtTO33ypPD8dBd3P530Xtw_s1gJMcvJ6_uwAXiuobYutBNWF_Oa3MXsduy2HI--h3zSjt_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dimensionality+of+ecological+networks&rft.jtitle=Ecology+letters&rft.au=Ekl%C3%B6f%2C+Anna&rft.au=Jacob%2C+Ute&rft.au=Kopp%2C+Jason&rft.au=Bosch%2C+Jordi&rft.date=2013-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=16&rft.issue=5&rft.spage=577&rft.epage=583&rft_id=info:doi/10.1111%2Fele.12081&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_BS6LZ5QJ_C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon |