Transcriptional profiling predicts overwhelming homology of schwann cells, olfactory ensheathing cells, and schwann cell-like glia
Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)‐positive cells, originating from different tissues. Because of their pro‐regenerative capacities, these cells are subjects in e...
Saved in:
Published in | Glia Vol. 62; no. 10; pp. 1559 - 1581 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.10.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)‐positive cells, originating from different tissues. Because of their pro‐regenerative capacities, these cells are subjects in experimental transplantation‐based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus‐infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type‐specific identity included an up‐regulation of HOXD8 and HOXC4 in SCs, and an up‐regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type‐specific biomarkers employing supervised clustering with a K‐nearest‐neighbors algorithm and correlation‐based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1‐positive, AQP1‐negative OECs and/or axons, whereas sciatic nerves displayed multifocal non‐myelinated, AQP1‐positive, SCRG1‐negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014;62:1559–1581
Main Points
Microarray‐based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell‐like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions.
Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell‐like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo.
Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell‐like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells. |
---|---|
AbstractList | Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014;62:1559-1581 Main Points Microarray-based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell-like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions. Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell-like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo. Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell-like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells. [PUBLICATION ABSTRACT] Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs.Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)‐positive cells, originating from different tissues. Because of their pro‐regenerative capacities, these cells are subjects in experimental transplantation‐based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus‐infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro , employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type‐specific identity included an up‐regulation of HOXD8 and HOXC4 in SCs, and an up‐regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type‐specific biomarkers employing supervised clustering with a K‐nearest‐neighbors algorithm and correlation‐based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro . Furthermore, canine and murine olfactory nerves showed SCRG1‐positive, AQP1‐negative OECs and/or axons, whereas sciatic nerves displayed multifocal non‐myelinated, AQP1‐positive, SCRG1‐negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014;62:1559–1581 Microarray‐based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell‐like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions. Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell‐like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo. Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell‐like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells. Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014; 62:1559-1581 Main Points * Microarray-based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell-like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions. * Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell-like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo. * Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell-like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells. Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)‐positive cells, originating from different tissues. Because of their pro‐regenerative capacities, these cells are subjects in experimental transplantation‐based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus‐infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type‐specific identity included an up‐regulation of HOXD8 and HOXC4 in SCs, and an up‐regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type‐specific biomarkers employing supervised clustering with a K‐nearest‐neighbors algorithm and correlation‐based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1‐positive, AQP1‐negative OECs and/or axons, whereas sciatic nerves displayed multifocal non‐myelinated, AQP1‐positive, SCRG1‐negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014;62:1559–1581 Main Points Microarray‐based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell‐like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions. Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell‐like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo. Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell‐like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells. |
Author | Deschl, Ulrich Baumgärtner, Wolfgang Kalkuhl, Arno Becker, Kathrin Lehmbecker, Annika Kegler, Kristel Ulrich, Reiner Ziege, Susanne Imbschweiler, Ilka Wewetzer, Konstantin |
Author_xml | – sequence: 1 givenname: Reiner surname: Ulrich fullname: Ulrich, Reiner email: reiner.ulrich@tiho-hannover.de organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany – sequence: 2 givenname: Ilka surname: Imbschweiler fullname: Imbschweiler, Ilka organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany – sequence: 3 givenname: Arno surname: Kalkuhl fullname: Kalkuhl, Arno organization: Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany – sequence: 4 givenname: Annika surname: Lehmbecker fullname: Lehmbecker, Annika organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany – sequence: 5 givenname: Susanne surname: Ziege fullname: Ziege, Susanne organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany – sequence: 6 givenname: Kristel surname: Kegler fullname: Kegler, Kristel organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany – sequence: 7 givenname: Kathrin surname: Becker fullname: Becker, Kathrin organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany – sequence: 8 givenname: Ulrich surname: Deschl fullname: Deschl, Ulrich organization: Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany – sequence: 9 givenname: Konstantin surname: Wewetzer fullname: Wewetzer, Konstantin organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany – sequence: 10 givenname: Wolfgang surname: Baumgärtner fullname: Baumgärtner, Wolfgang organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24889922$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEURi1URNPChh-ARmKDEFP8moeXpSKhUgQsipDYWB7Pdcatxw72hJAtv5yZJq1EhRArv865ur7fCTrywQNCzwk-IxjTtytn1RmlFcaP0IxgUeeEsPIIzXAteE64IMfoJKVrjMl4qJ6gY8rrWghKZ-jXVVQ-6WjXgw1euWwdg7HO-tW4g9bqIWXhB8RtB66fbrvQBxdWuyyYLOluq7zPNDiX3mTBGaWHEHcZ-NSBGrpJODwq3_7B587eQDa1_hQ9NsoleHZYT9GX-furiw_58tPi8uJ8meuiZDivuW4aYKotG20aoFiUpGFCG6gE47TWQGsDhtWsLZpWMcMbwhUoqnmtRo-dolf7uuMXv28gDbK3aWpFeQibJElRYsKxIOV_oEVRUlzRakRfPkCvwyaOk7yleEGFqKaCLw7UpumhletoexV38i6IEXi9B3QMKUUw9wjBckpZTqOStymPMH4AazuoKcAhKuv-rpC9srUOdv8oLhfLy_M7J987Ng3w895R8UaWFasK-fXjQjL8bj5ffvssCfsNH1HLMw |
CODEN | GLIAEJ |
CitedBy_id | crossref_primary_10_1002_term_2478 crossref_primary_10_1002_glia_23515 crossref_primary_10_3389_fcell_2021_660259 crossref_primary_10_1002_glia_23870 crossref_primary_10_1371_journal_pone_0133916 crossref_primary_10_3389_fcell_2022_999322 crossref_primary_10_1177_0300985817709887 crossref_primary_10_1177_0300985818781930 crossref_primary_10_5607_en_2019_28_1_74 crossref_primary_10_1038_s41598_017_14246_7 crossref_primary_10_1002_glia_22816 crossref_primary_10_1016_j_vetimm_2018_11_003 crossref_primary_10_3390_cells9081848 crossref_primary_10_1038_s41598_020_61852_z crossref_primary_10_1371_journal_pone_0183572 crossref_primary_10_1186_s12974_015_0462_x crossref_primary_10_3390_bioengineering7020037 crossref_primary_10_1002_glia_23027 crossref_primary_10_1371_journal_pone_0213252 crossref_primary_10_31083_j_jin2305107 crossref_primary_10_3389_fimmu_2023_1280186 crossref_primary_10_1016_j_ijdevneu_2015_02_005 crossref_primary_10_1111_neup_12357 crossref_primary_10_1111_joa_13484 crossref_primary_10_1016_j_expneurol_2021_113660 crossref_primary_10_1002_glia_23045 crossref_primary_10_1002_cne_24628 crossref_primary_10_1007_s12035_016_9709_5 crossref_primary_10_3390_v6072571 crossref_primary_10_1016_j_neuroscience_2024_09_037 |
Cites_doi | 10.3727/096368910X522081 10.1093/nar/gkq388 10.1038/labinvest.3700654 10.1523/JNEUROSCI.6087-10.2011 10.1016/0306-4522(92)90094-I 10.5966/sctm.2011-0042 10.1093/nar/gkr991 10.1177/0300985811410720 10.1038/75556 10.1016/j.immuni.2014.01.006 10.1093/bioinformatics/btl602 10.1002/glia.440030602 10.1016/j.expneurol.2011.03.001 10.1159/000217965 10.1186/gb-2005-6-3-r22 10.1006/dbio.1993.1033 10.1523/JNEUROSCI.5225-09.2010 10.1073/pnas.1012248107 10.1186/1471-2105-9-58 10.1002/glia.20771 10.3727/096368911X627444 10.1093/bioinformatics/btq710 10.1083/jcb.200305078 10.1007/s00441-002-0607-y 10.1016/j.bbrc.2005.10.140 10.1002/glia.22452 10.1083/jcb.3.6.839 10.1111/j.1365-2990.2008.00958.x 10.1186/1756-6606-4-34 10.1038/75050 10.1002/cne.22459 10.1111/j.1750-3639.2012.00617.x 10.1002/glia.20149 10.1038/nprot.2008.211 10.1007/s00441-006-0238-9 10.1002/glia.22298 10.4161/auto.2228 10.1038/nrd961 10.1080/14653240600855905 10.1002/glia.20336 10.1017/S1464793106007068 10.1016/j.expneurol.2010.08.029 10.1007/s00401-007-0307-5 10.1161/01.RES.84.10.1234 10.1111/j.1365-2990.2008.00956.x 10.1007/s11064-013-1023-2 10.1002/(SICI)1098-1136(200003)30:1<49::AID-GLIA6>3.0.CO;2-M 10.1158/0008-5472.CAN-06-2563 10.1242/dev.01429 10.1023/B:NEUR.0000010089.37032.48 10.1002/(SICI)1098-1136(199607)17:3<217::AID-GLIA4>3.0.CO;2-Y 10.1093/nar/gkr988 10.1002/ar.b.10015 10.1016/j.exphem.2005.07.003 10.1371/journal.pone.0001203 10.1073/pnas.0504609102 10.1016/j.brainres.2008.08.092 10.1002/glia.22270 10.1046/j.0962-1083.2001.01452.x 10.56808/2985-1130.2299 10.1016/S0301-472X(00)00135-1 10.1242/dev.02787 10.1002/glia.20697 10.4049/jimmunol.177.10.7303 10.1073/pnas.0902161106 10.1016/j.matbio.2009.06.001 10.1523/JNEUROSCI.0867-10.2010 10.1093/brain/123.8.1581 10.1186/1471-2105-11-567 10.2460/ajvr.67.6.1050 10.1093/nar/gkg121 10.1186/1471-2105-8-426 10.1007/s12035-012-8286-5 10.1267/ahc.38.37 10.1111/j.1582-4934.2008.00646.x 10.1016/j.jneumeth.2008.08.030 10.2144/03342mt01 10.1093/brain/aws268 10.1002/1097-4547(20000715)61:2<172::AID-JNR8>3.0.CO;2-C 10.1093/bioinformatics/btk005 10.1002/glia.20195 10.1038/ncpneuro0447 10.1016/j.cell.2006.07.024 10.1159/000149987 10.1038/ng0704-664 10.1523/JNEUROSCI.4178-07.2008 10.1089/neu.2005.22.1282 10.1016/0306-4522(92)90134-N 10.1002/glia.20718 10.4103/2277-9175.96067 10.1186/gb-2003-4-5-p3 10.1006/dbio.1996.0027 10.1186/1471-2164-11-305 10.1002/cne.21519 10.1016/S0014-4886(03)00270-X 10.1038/nrn1746 10.1016/j.stem.2010.04.002 10.1093/jnci/djk018 10.1016/j.virusres.2009.04.027 10.1371/journal.pone.0017107 10.1016/j.jviromet.2009.04.030 10.1002/hep.23930 10.1152/physrev.2001.81.2.871 10.1002/glia.21213 |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 |
DOI | 10.1002/glia.22700 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic MEDLINE CrossRef Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1098-1136 |
EndPage | 1581 |
ExternalDocumentID | 3407890701 24889922 10_1002_glia_22700 GLIA22700 ark_67375_WNG_30BFFLZP_1 |
Genre | article Journal Article Comparative Study |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7T7 7TK 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 K9. M7N P64 7X8 |
ID | FETCH-LOGICAL-c5630-84cbbe3ad6bcfbe20961b39cfe793428ce28fef383d5bda3f4b14aea2c48ae3a3 |
IEDL.DBID | DR2 |
ISSN | 0894-1491 1098-1136 |
IngestDate | Fri Jul 11 04:23:14 EDT 2025 Fri Jul 11 09:17:34 EDT 2025 Fri Jul 25 12:20:24 EDT 2025 Thu Apr 03 06:53:32 EDT 2025 Tue Jul 01 02:15:01 EDT 2025 Thu Apr 24 22:55:47 EDT 2025 Wed Jan 22 16:19:35 EST 2025 Wed Oct 30 09:53:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | microarray aquaporin 1 stimulator of chondrogenesis 1 canine distemper virus biomarker nerve growth factor receptor p75 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5630-84cbbe3ad6bcfbe20961b39cfe793428ce28fef383d5bda3f4b14aea2c48ae3a3 |
Notes | ArticleID:GLIA22700 ark:/67375/WNG-30BFFLZP-1 istex:484254172B2697DED438596099A0D830AD2D7AD3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/glia.22700 |
PMID | 24889922 |
PQID | 1554529976 |
PQPubID | 996331 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_1560140916 proquest_miscellaneous_1555620727 proquest_journals_1554529976 pubmed_primary_24889922 crossref_primary_10_1002_glia_22700 crossref_citationtrail_10_1002_glia_22700 wiley_primary_10_1002_glia_22700_GLIA22700 istex_primary_ark_67375_WNG_30BFFLZP_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2014 |
PublicationDateYYYYMMDD | 2014-10-01 |
PublicationDate_xml | – month: 10 year: 2014 text: October 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Glia |
PublicationTitleAlternate | Glia |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J, Garcia F, Marba M, Montaner D, Dopazo J. 2010. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38:W210-W213. Nakamura T, Fidler IJ, Coombes KR. 2007. Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment. Cancer Res 67:139-148. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274-288. Ito D, Ibanez C, Ogawa H, Franklin RJ, Jeffery ND. 2006. Comparison of cell populations derived from canine olfactory bulb and olfactory mucosal cultures. Am J Vet Res 67:1050-1056. Matsuzaki T, Ablimit A, Tajika Y, Suzuki T, Aoki T, Hagiwara H, Takata K. 2005. Water channel aquaporin 1 (AQP1) is present in the perineurium and perichondrium. Acta Histochem Cytochem 38:37-42. Katoh H, Shibata S, Fukuda K, Sato M, Satoh E, Nagoshi N, Minematsu T, Matsuzaki Y, Akazawa C, Toyama Y, Nakamura M, Okano H. 2011. The dual origin of the peripheral olfactory system: placode and neural crest. Mol Brain 4:34. Wewetzer K, Radtke C, Kocsis J, Baumgärtner W. 2011. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol 229:80-87. Daga A, Podesta M, Capra MC, Piaggio G, Frassoni F, Corte G. 2000. The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors. Exp Hematol 28:569-574. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. 2003. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34:374-378. Allison DB, Page GP, Beasley TM, Edwards JW. 2006. DNA microarrays and related genomics techniques: design, analysis, and interpretation of experiments. Boca Raton, FL: Chapman&Hall/CRC. Phinney DG, Gray AJ, Hill K, Pandey A. 2005. Murine mesenchymal and embryonic stem cells express a similar Hox gene profile. Biochem Biophys Res Commun 338:1759-1765. Zellmer S, Schmidt-Heck W, Godoy P, Weng H, Meyer C, Lehmann T, Sparna T, Schormann W, Hammad S, Kreutz C, Timmer J, von Weizsacker F, Thurmann PA, Merfort I, Guthke R, Dooley S, Hengstler JG, Gebhardt R. 2010. Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52:2127-2136. Baumann N, Pham-Dinh D. 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871-927. Jeffery ND, Lakatos A, Franklin RJ. 2005. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma 22:1282-1293. Sul JY, Wu CW, Zeng F, Jochems J, Lee MT, Kim TK, Peritz T, Buckley P, Cappelleri DJ, Maronski M, Kim M, Kumar V, Meaney D, Kim J, Eberwine J. 2009. Transcriptome transfer produces a predictable cellular phenotype. Proc Natl Acad Sci USA 106:7624-7629. Field P, Li Y, Raisman G. 2003. Ensheathment of the olfactory nerves in the adult rat. J Neurocytol 32:317-324. Imbschweiler I, Seehusen F, Peck CT, Omar M, Baumgärtner W, Wewetzer K. 2012. Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage. Glia 60:358-371. Lankford KL, Sasaki M, Radtke C, Kocsis JD. 2008. Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X-irradiated spinal cord not shared by Schwann cells. Glia 56:1664-1678. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Harrow J, Herrero J, Hubbard TJ, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle SM. 2012. Ensembl 2012. Nucleic Acids Res 40:D84-90. Techangamsuwan S, Imbschweiler I, Kreutzer R, Kreutzer M, Baumgärtner W, Wewetzer K. 2008. Similar behaviour and primate-like properties of adult canine Schwann cells and olfactory ensheathing cells in long-term culture. Brain Res 1240:31-38. Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJM. 2010. CNS-resident glial progenitor/stem cells produce schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578-590. Vickaryous MK, Hall BK. 2006. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc 81:425-455. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29. Russ J, Futschik ME. 2010. Comparison and consolidation of microarray data sets of human tissue expression. BMC Genomics 11:305. Shields SD, Moore KD, Phelps PE, Basbaum AI. 2010. Olfactory ensheathing glia express aquaporin 1. J Comp Neurol 518:4329-4341. Kueh JL, Raisman G, Li Y, Stevens R, Li D. 2011. Comparison of bulbar and mucosal olfactory ensheathing cells using FACS and simultaneous antigenic bivariate cell cycle analysis. Glia 59:1658-1671. Dupuy A, Simon RM. 2007. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147-157. Razavi S, Ahmadi N, Kazemi M, Mardani M, Esfandiari E. 2012. Efficient transdifferentiation of human adipose-derived stem cells into Schwann-like cells: A promise for treatment of demyelinating diseases. Adv Biomed Res 1:12. Kuegler PB, Zimmer B, Waldmann T, Baudis B, Ilmjarv S, Hescheler J, Gaughwin P, Brundin P, Mundy W, Bal-Price AK, Schrattenholz A, Krause KH, van Thriel C, Rao MS, Kadereit S, Leist M. 2010. Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX 27:17-42. Bellini A, Mattoli S. 2007. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858-870. Bock P, Beineke A, Techangamsuwan S, Baumgärtner W, Wewetzer K. 2007. Differential expression of HNK-1 and p75(NTR) in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro. J Comp Neurol 505:572-585. Vukovic J, Marmorstein LY, McLaughlin PJ, Sasaki T, Plant GW, Harvey AR, Ruitenberg MJ. 2009a. Lack of fibulin-3 alters regenerative tissue responses in the primary olfactory pathway. Matrix Biol 28:406-415. Ulrich R, Seeliger F, Kreutzer M, Germann PG, Baumgärtner W. 2008. Limited remyelination in Theiler's murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)-positive putative oligodendroglial progenitor cells. Neuropathol Appl Neurobiol 34:603-620. Gudiño-Cabrera G, Nieto-Sampedro M. 2000. Schwann-like macroglia in adult rat brain. Glia 30:49-63. Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W. 2010. Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. J Cell Mol Med 14:434-448. Jessen KR, Mirsky R. 2005. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671-682. Vincent AJ, Taylor JM, Choi-Lundberg DL, West AK, Chuah MI. 2005. Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia 51:132-147. Schwartz SM. 1999. The definition of cell type. Circ Res 84:1234-1235. Techangamsuwan S, D'cundi EAO, Imbschweiler I, Gerhauser I, Wewetzer K, Baumgärtner W. 2011. Cell-cell interaction appears to represent a pivotal factor for susceptibility of adult canine Schwann cell-like brain glia to canine distemper virus infection in vitro. Thai J Vet Med 41:213-225. Butte A. 2002. The use and analysis of microarray data. Nat Rev Drug Discov 1:951-960. Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC. 2000. Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. J Neurosci Res 61:172-185. Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 4:44-57. Horresh I, Bar V, Kissil JL, Peles E. 2010. Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J Neurosci 30:2480-2489. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J Neurosci 28:264-278. Bartenhagen C, Klein HU, Ruckert C, Jiang X, Dugas M. 2010. Comparative study of unsupervised dimensio 2010; 11 2010; 14 2010; 107 2013; 61 2005; 338 2003; 271 2008; 34 2011; 59 2007; 505 2006; 177 2008; 1240 2010; 27 2010; 518 2012; 135 2009b; 57 2006; 22 2005; 102 2004; 36 2008; 28 2007; 8 2003; 162 1992; 47 2002; 309 2007; 2 2000; 123 2007; 3 1992; 49 2006; 326 2007; 67 2012; 21 2010; 30 2010; 6 2010; 38 1996; 17 2006; 53 2002; 1 2008; 56 2011; 4 2014; 40 2011; 6 2007; 99 2003; 31 2003; 32 2003; 34 1990; 3 2003; 184 2005; 6 2007; 87 2012; 46 2010; 52 2012; 40 2009; 106 2012; 60 2000; 6 2013; 23 2009; 160 2008; 9 1999; 84 2005; 22 2007; 134 2004; 131 2006; 67 2009a; 144 1996; 173 2011; 20 2000; 61 2003; 4 2009a; 28 2011; 27 2005; 38 2006; 126 2007; 23 2005; 33 2000; 28 2000; 25 2011; 31 2006; 8 2005; 438 2006 2006; 2 2005; 49 1839 1957; 3 2007; 114 2006; 81 2001; 81 2009b; 176 2011; 229 2013; 38 2012; 1 2000; 30 2005; 51 2011; 41 2009; 4 2011; 49 1993; 155 1987; 27 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 Techangamsuwan S (e_1_2_6_88_1) 2011; 41 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 Allison DB (e_1_2_6_2_1) 2006 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 Schwann T (e_1_2_6_79_1) 1839 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_61_1 e_1_2_6_101_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_100_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_103_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 Kuegler PB (e_1_2_6_53_1) 2010; 27 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – reference: Martinez FO, Gordon S, Locati M, Mantovani A. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303-7311. – reference: Schwartz SM. 1999. The definition of cell type. Circ Res 84:1234-1235. – reference: Jeffery ND, Lakatos A, Franklin RJ. 2005. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma 22:1282-1293. – reference: Russ J, Futschik ME. 2010. Comparison and consolidation of microarray data sets of human tissue expression. BMC Genomics 11:305. – reference: Jen CH, Yang TP, Tung CY, Su SH, Lin CH, Hsu MT, Wang HW. 2008. Signature Evaluation Tool (SET): a Java-based tool to evaluate and visualize the sample discrimination abilities of gene expression signatures. BMC Bioinformatics 9:58. – reference: Techangamsuwan S, Imbschweiler I, Kreutzer R, Kreutzer M, Baumgärtner W, Wewetzer K. 2008. Similar behaviour and primate-like properties of adult canine Schwann cells and olfactory ensheathing cells in long-term culture. Brain Res 1240:31-38. – reference: Gao HW, He CY, Fang XD, Hou X, Feng XC, Yang H, Zhao XJ, Ma TH. 2006. Localization of aquaporin-1 water channel in glial cells of the human peripheral nervous system. Glia 53:783-787. – reference: De Lorenzo AJ. 1957. Electron microscopic observations of the olfactory mucosa and olfactory nerve. J Biophys Biochem Cytol 3:839-850. – reference: Vukovic J, Ruitenberg MJ, Roet K, Franssen E, Arulpragasam A, Sasaki T, Verhaagen J, Harvey AR, Busfield SJ, Plant GW. 2009b. The glycoprotein fibulin-3 regulates morphology and motility of olfactory ensheathing cells in vitro. Glia 57:424-443. – reference: Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A. 2000. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6:568-572. – reference: Franssen EH, De Bree FM, Essing AH, Ramón-Cueto A, Verhaagen J. 2008. Comparative gene expression profiling of olfactory ensheathing glia and Schwann cells indicates distinct tissue repair characteristics of olfactory ensheathing glia. Glia 56:1285-1298. – reference: Horresh I, Bar V, Kissil JL, Peles E. 2010. Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J Neurosci 30:2480-2489. – reference: Techangamsuwan S, D'cundi EAO, Imbschweiler I, Gerhauser I, Wewetzer K, Baumgärtner W. 2011. Cell-cell interaction appears to represent a pivotal factor for susceptibility of adult canine Schwann cell-like brain glia to canine distemper virus infection in vitro. Thai J Vet Med 41:213-225. – reference: Ito D, Ibanez C, Ogawa H, Franklin RJ, Jeffery ND. 2006. Comparison of cell populations derived from canine olfactory bulb and olfactory mucosal cultures. Am J Vet Res 67:1050-1056. – reference: Franceschini IA, Barnett SC. 1996. Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Dev Biol 173:327-343. – reference: Bock P, Beineke A, Techangamsuwan S, Baumgärtner W, Wewetzer K. 2007. Differential expression of HNK-1 and p75(NTR) in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro. J Comp Neurol 505:572-585. – reference: Lakatos A, Barnett SC, Franklin RJ. 2003. Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp Neurol 184:237-246. – reference: Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, van de Rijn M, Botstein D, Brown PO, Pollack JR. 2005. A DNA microarray survey of gene expression in normal human tissues. Genome Biol 6:R22. – reference: Schwann T. 1839. Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Berlin, Germany: Verlag der Sanderschen Buchhandlung. – reference: Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. 2003. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34:374-378. – reference: Phinney DG, Gray AJ, Hill K, Pandey A. 2005. Murine mesenchymal and embryonic stem cells express a similar Hox gene profile. Biochem Biophys Res Commun 338:1759-1765. – reference: Zellmer S, Schmidt-Heck W, Godoy P, Weng H, Meyer C, Lehmann T, Sparna T, Schormann W, Hammad S, Kreutz C, Timmer J, von Weizsacker F, Thurmann PA, Merfort I, Guthke R, Dooley S, Hengstler JG, Gebhardt R. 2010. Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52:2127-2136. – reference: Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J Neurosci 28:264-278. – reference: Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. 2003. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 4:P3. – reference: Barnett SC, Hutchins AM, Noble M. 1993. Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev Biol 155:337-350. – reference: Vukovic J, Marmorstein LY, McLaughlin PJ, Sasaki T, Plant GW, Harvey AR, Ruitenberg MJ. 2009a. Lack of fibulin-3 alters regenerative tissue responses in the primary olfactory pathway. Matrix Biol 28:406-415. – reference: Techangamsuwan S, Kreutzer R, Kreutzer M, Imbschweiler I, Rohn K, Wewetzer K, Baumgärtner W. 2009b. Transfection of adult canine Schwann cells and olfactory ensheathing cells at early and late passage with human TERT differentially affects growth factor responsiveness and in vitro growth. J Neurosci Methods 176:112-120. – reference: Katoh H, Shibata S, Fukuda K, Sato M, Satoh E, Nagoshi N, Minematsu T, Matsuzaki Y, Akazawa C, Toyama Y, Nakamura M, Okano H. 2011. The dual origin of the peripheral olfactory system: placode and neural crest. Mol Brain 4:34. – reference: Franklin RJ, Gilson JM, Franceschini IA, Barnett SC. 1996. Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia 17:217-224. – reference: Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD. 2005. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402-1416. – reference: Bellini A, Mattoli S. 2007. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858-870. – reference: Granger N, Blamires H, Franklin RJ, Jeffery ND. 2012. Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain 135:3227-3237. – reference: Krudewig C, Deschl U, Wewetzer K. 2006. Purification and in vitro characterization of adult canine olfactory ensheathing cells. Cell Tissue Res 326:687-696. – reference: Sherman BT, Huang da W, Tan Q, Guo Y, Bour S, Liu D, Stephens R, Baseler MW, Lane HC, Lempicki RA. 2007. DAVID Knowledgebase: A gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics 8:426. – reference: Daga A, Podesta M, Capra MC, Piaggio G, Frassoni F, Corte G. 2000. The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors. Exp Hematol 28:569-574. – reference: Techangamsuwan S, Haas L, Rohn K, Baumgärtner W, Wewetzer K. 2009a. Distinct cell tropism of canine distemper virus strains to adult olfactory ensheathing cells and Schwann cells in vitro. Virus Res 144:195-201. – reference: Baron D, Bihouee A, Teusan R, Dubois E, Savagner F, Steenman M, Houlgatte R, Ramstein G. 2011. MADGene: Retrieval and processing of gene identifier lists for the analysis of heterogeneous microarray datasets. Bioinformatics 27:725-726. – reference: Wewetzer K, Verdu E, Angelov DN, Navarro X. 2002. Olfactory ensheathing glia and Schwann cells: two of a kind? Cell Tissue Res 309:337-345. – reference: Orlando EA, Imbschweiler I, Gerhauser I, Baumgärtner W, Wewetzer K. 2008. In vitro characterization and preferential infection by canine distemper virus of glial precursors with Schwann cell characteristics from adult canine brain. Neuropathol Appl Neurobiol 34:621-637. – reference: Wewetzer K, Kern N, Ebel C, Radtke C, Brandes G. 2005. Phagocytosis of O4+ axonal fragments in vitro by p75- neonatal rat olfactory ensheathing cells. Glia 49:577-587. – reference: Allison DB, Page GP, Beasley TM, Edwards JW. 2006. DNA microarrays and related genomics techniques: design, analysis, and interpretation of experiments. Boca Raton, FL: Chapman&Hall/CRC. – reference: Ramón-Cueto A, Nieto-Sampedro M. 1992. Glial cells from adult rat olfactory bulb: Immunocytochemical properties of pure cultures of ensheathing cells. Neuroscience 47:213-220. – reference: Roet KC, Bossers K, Franssen EH, Ruitenberg MJ, Verhaagen J. 2011. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 229:10-45. – reference: Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J, Garcia F, Marba M, Montaner D, Dopazo J. 2010. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38:W210-W213. – reference: Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676. – reference: Vickaryous MK, Hall BK. 2006. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc 81:425-455. – reference: Razavi S, Ahmadi N, Kazemi M, Mardani M, Esfandiari E. 2012. Efficient transdifferentiation of human adipose-derived stem cells into Schwann-like cells: A promise for treatment of demyelinating diseases. Adv Biomed Res 1:12. – reference: Gudiño-Cabrera G, Nieto-Sampedro M. 2000. Schwann-like macroglia in adult rat brain. Glia 30:49-63. – reference: Traka M, Goutebroze L, Denisenko N, Bessa M, Nifli A, Havaki S, Iwakura Y, Fukamauchi F, Watanabe K, Soliven B, Girault JA, Karagogeos D. 2003. Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J Cell Biol 162:1161-1172. – reference: Bock P, Spitzbarth I, Haist V, Stein VM, Tipold A, Puff C, Beineke A, Baumgärtner W. 2013. Spatio-temporal development of axonopathy in canine intervertebral disc disease as a translational large animal model for nonexperimental spinal cord injury. Brain Pathol 23:82-99. – reference: Hornshoj H, Conley LN, Hedegaard J, Sorensen P, Panitz F, Bendixen C. 2007. Microarray expression profiles of 20.000 genes across 23 healthy porcine tissues. PLoS One 2:e1203. – reference: Sul JY, Wu CW, Zeng F, Jochems J, Lee MT, Kim TK, Peritz T, Buckley P, Cappelleri DJ, Maronski M, Kim M, Kumar V, Meaney D, Kim J, Eberwine J. 2009. Transcriptome transfer produces a predictable cellular phenotype. Proc Natl Acad Sci USA 106:7624-7629. – reference: Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109-D114. – reference: Brandt LE, Bohn AA, Charles JB, Ehrhart EJ. 2011. Localization of canine, feline, and mouse renal membrane proteins. Vet Pathol 49:693-703. – reference: Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 4:44-57. – reference: Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC. 2000. Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. J Neurosci Res 61:172-185. – reference: Murdoch B, DelConte C, Garcia-Castro MI. 2010. Embryonic Pax7-expressing progenitors contribute multiple cell types to the postnatal olfactory epithelium. J Neurosci 30:9523-9532. – reference: Wewetzer K, Radtke C, Kocsis J, Baumgärtner W. 2011. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol 229:80-87. – reference: Hansmann F, Pringproa K, Ulrich R, Sun Y, Herder V, Kreutzer M, Baumgärtner W, Wewetzer K. 2012. Highly malignant behavior of a murine oligodendrocyte precursor cell line following transplantation into the demyelinated and nondemyelinated central nervous system. Cell Transplant 21:1161-1175. – reference: Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S. 2011. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J Neurosci 31:6915-6927. – reference: Santos-Benito FF, Ramón-Cueto A. 2003. Olfactory ensheathing glia transplantation: A therapy to promote repair in the mammalian central nervous system. Anat Rec B New Anat 271:77-85. – reference: Seehusen F, Orlando EA, Wewetzer K, Baumgärtner W. 2007. Vimentin-positive astrocytes in canine distemper: a target for canine distemper virus especially in chronic demyelinating lesions? Acta Neuropathol 114:597-608. – reference: Manohar CF, Salwen HR, Furtado MR, Cohn SL. 1996. Up-regulation of HOXC6, HOXD1, and HOXD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation. Tumour Biol 17:34-47. – reference: Kummerfeld M, Meens J, Haas L, Baumgärtner W, Beineke A. 2009. Generation and characterization of a polyclonal antibody for the detection of Theiler's murine encephalomyelitis virus by light and electron microscopy. J Virol Methods 160:185-188. – reference: Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV. 2010. Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci USA 107:21040-21045. – reference: Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Harrow J, Herrero J, Hubbard TJ, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle SM. 2012. Ensembl 2012. Nucleic Acids Res 40:D84-90. – reference: Ebel C, Brandes G, Radtke C, Rohn K, Wewetzer K. 2013. Clonal in vitro analysis of neurotrophin receptor p75-immunofluorescent cells reveals phenotypic plasticity of primary rat olfactory ensheathing cells. Neurochem Res 38:1078-1087. – reference: Leek JT, Monsen E, Dabney AR, Storey JD. 2006. EDGE: Extraction and analysis of differential gene expression. Bioinformatics 22:507-508. – reference: Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, Valmeekam V, Sun S, Kulp D, Siani-Rose MA. 2003. NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 31:82-86. – reference: Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29. – reference: Doucette R. 1990. Glial influences on axonal growth in the primary olfactory system. Glia 3:433-449. – reference: Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274-288. – reference: Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, Lee KF, Meijer D, Anderson DJ, Morrison SJ. 2004. Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131:5599-5612. – reference: Shields SD, Moore KD, Phelps PE, Basbaum AI. 2010. Olfactory ensheathing glia express aquaporin 1. J Comp Neurol 518:4329-4341. – reference: Hoffmann R, Valencia A. 2004. A gene network for navigating the literature. Nat Genet 36:664. – reference: Barnett SC, Alexander CL, Iwashita Y, Gilson JM, Crowther J, Clark L, Dunn LT, Papanastassiou V, Kennedy PG, Franklin RJ. 2000. Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 123:1581-1588. – reference: Nakamura T, Fidler IJ, Coombes KR. 2007. Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment. Cancer Res 67:139-148. – reference: Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie XH, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, deJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SMJ, Sutter NB, Thomas R, Webber C, Lander ES, Plat BIGS. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803-819. – reference: Medina I, Montaner D, Tarraga J, Dopazo J. 2007. Prophet, a web-based tool for class prediction using microarray data. Bioinformatics 23:390-391. – reference: Lankford KL, Sasaki M, Radtke C, Kocsis JD. 2008. Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X-irradiated spinal cord not shared by Schwann cells. Glia 56:1664-1678. – reference: Kueh JL, Raisman G, Li Y, Stevens R, Li D. 2011. Comparison of bulbar and mucosal olfactory ensheathing cells using FACS and simultaneous antigenic bivariate cell cycle analysis. Glia 59:1658-1671. – reference: Ulrich R, Seeliger F, Kreutzer M, Germann PG, Baumgärtner W. 2008. Limited remyelination in Theiler's murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)-positive putative oligodendroglial progenitor cells. Neuropathol Appl Neurobiol 34:603-620. – reference: Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW. 2005. Significance analysis of time course microarray experiments. Proc Natl Acad Sci USA 102:12837-12842. – reference: Niwa H. 2007. How is pluripotency determined and maintained? Development 134:635-646. – reference: Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315-317. – reference: Field P, Li Y, Raisman G. 2003. Ensheathment of the olfactory nerves in the adult rat. J Neurocytol 32:317-324. – reference: Radtke C, Wewetzer K, Reimers K, Vogt PM. 2011. Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury. Cell Transplant 20:145-152. – reference: Matsuzaki T, Ablimit A, Tajika Y, Suzuki T, Aoki T, Hagiwara H, Takata K. 2005. Water channel aquaporin 1 (AQP1) is present in the perineurium and perichondrium. Acta Histochem Cytochem 38:37-42. – reference: Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W. 2010. Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. J Cell Mol Med 14:434-448. – reference: Forni PE, Wray S. 2012. Neural crest and olfactory system: new prospective. Mol Neurobiol 46:349-360. – reference: Dron M, Bailly Y, Beringue V, Haeberle AM, Griffond B, Risold PY, Tovey MG, Laude H, Dandoy-Dron F. 2006. SCRG1, a potential marker of autophagy in transmissible spongiform encephalopathies. Autophagy 2:58-60. – reference: Baumgärtner W, Krakowka S, Blakeslee JR. 1987. Persistent infection of Vero cells by paramyxoviruses. A morphological and immunoelectron microscopic investigation. Intervirology 27:218-223. – reference: Kuegler PB, Zimmer B, Waldmann T, Baudis B, Ilmjarv S, Hescheler J, Gaughwin P, Brundin P, Mundy W, Bal-Price AK, Schrattenholz A, Krause KH, van Thriel C, Rao MS, Kadereit S, Leist M. 2010. Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX 27:17-42. – reference: Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJM. 2010. CNS-resident glial progenitor/stem cells produce schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578-590. – reference: Baumann N, Pham-Dinh D. 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871-927. – reference: Liu Q, Spusta SC, Mi R, Lassiter RN, Stark MR, Hoke A, Rao MS, Zeng X. 2012. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: Induction, maintenance, and differentiation into functional Schwann cells. Stem Cells Transl Med 1:266-278. – reference: Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP. 2012. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717-727. – reference: Dupuy A, Simon RM. 2007. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147-157. – reference: Barnett SC, Riddell JS. 2007. Olfactory ensheathing cell transplantation as a strategy for spinal cord repair What can it achieve? Nat Clin Pract Neurol 3:152-161. – reference: Valverde F, Santacana M, Heredia M. 1992. Formation of an olfactory glomerulus - Morphological aspects of development and organization. Neuroscience 49:255-275. – reference: Briggs J, Paoloni M, Chen QR, Wen X, Khan J, Khanna C. 2011. A compendium of canine normal tissue gene expression. PLoS One 6:e17107. – reference: Butte A. 2002. The use and analysis of microarray data. Nat Rev Drug Discov 1:951-960. – reference: Jessen KR, Mirsky R. 2005. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671-682. – reference: Vincent AJ, Taylor JM, Choi-Lundberg DL, West AK, Chuah MI. 2005. Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia 51:132-147. – reference: Bartenhagen C, Klein HU, Ruckert C, Jiang X, Dugas M. 2010. Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data. BMC Bioinformatics 11:567. – reference: Toft A, Tome M, Barnett SC, Riddell JS. 2013. A comparative study of glial and non-neural cell properties for transplant-mediated repair of the injured spinal cord. Glia 61:513-528. – reference: Imbschweiler I, Seehusen F, Peck CT, Omar M, Baumgärtner W, Wewetzer K. 2012. Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage. Glia 60:358-371. – volume: 11 start-page: 567 year: 2010 article-title: Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data publication-title: BMC Bioinformatics – volume: 2 start-page: 58 year: 2006 end-page: 60 article-title: SCRG1, a potential marker of autophagy in transmissible spongiform encephalopathies publication-title: Autophagy – volume: 34 start-page: 603 year: 2008 end-page: 620 article-title: Limited remyelination in Theiler's murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)‐positive putative oligodendroglial progenitor cells publication-title: Neuropathol Appl Neurobiol – volume: 102 start-page: 12837 year: 2005 end-page: 12842 article-title: Significance analysis of time course microarray experiments publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 839 year: 1957 end-page: 850 article-title: Electron microscopic observations of the olfactory mucosa and olfactory nerve publication-title: J Biophys Biochem Cytol – volume: 27 start-page: 17 year: 2010 end-page: 42 article-title: Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing publication-title: ALTEX – volume: 106 start-page: 7624 year: 2009 end-page: 7629 article-title: Transcriptome transfer produces a predictable cellular phenotype publication-title: Proc Natl Acad Sci USA – volume: 51 start-page: 132 year: 2005 end-page: 147 article-title: Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes publication-title: Glia – volume: 49 start-page: 255 year: 1992 end-page: 275 article-title: Formation of an olfactory glomerulus ‐ Morphological aspects of development and organization publication-title: Neuroscience – volume: 38 start-page: W210 year: 2010 end-page: W213 article-title: Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling publication-title: Nucleic Acids Res – volume: 57 start-page: 424 year: 2009b end-page: 443 article-title: The glycoprotein fibulin‐3 regulates morphology and motility of olfactory ensheathing cells in vitro publication-title: Glia – volume: 123 start-page: 1581 year: 2000 end-page: 1588 article-title: Identification of a human olfactory ensheathing cell that can effect transplant‐mediated remyelination of demyelinated CNS axons publication-title: Brain – volume: 81 start-page: 425 year: 2006 end-page: 455 article-title: Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest publication-title: Biol Rev Camb Philos Soc – volume: 177 start-page: 7303 year: 2006 end-page: 7311 article-title: Transcriptional profiling of the human monocyte‐to‐macrophage differentiation and polarization: new molecules and patterns of gene expression publication-title: J Immunol – volume: 22 start-page: 1282 year: 2005 end-page: 1293 article-title: Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury publication-title: J Neurotrauma – volume: 61 start-page: 172 year: 2000 end-page: 185 article-title: Comparison of neuregulin‐1 expression in olfactory ensheathing cells, Schwann cells and astrocytes publication-title: J Neurosci Res – volume: 31 start-page: 82 year: 2003 end-page: 86 article-title: NetAffx: Affymetrix probesets and annotations publication-title: Nucleic Acids Res – volume: 3 start-page: 152 year: 2007 end-page: 161 article-title: Olfactory ensheathing cell transplantation as a strategy for spinal cord repair What can it achieve? publication-title: Nat Clin Pract Neurol – volume: 28 start-page: 406 year: 2009a end-page: 415 article-title: Lack of fibulin‐3 alters regenerative tissue responses in the primary olfactory pathway publication-title: Matrix Biol – volume: 338 start-page: 1759 year: 2005 end-page: 1765 article-title: Murine mesenchymal and embryonic stem cells express a similar Hox gene profile publication-title: Biochem Biophys Res Commun – volume: 49 start-page: 693 year: 2011 end-page: 703 article-title: Localization of canine, feline, and mouse renal membrane proteins publication-title: Vet Pathol – volume: 1240 start-page: 31 year: 2008 end-page: 38 article-title: Similar behaviour and primate‐like properties of adult canine Schwann cells and olfactory ensheathing cells in long‐term culture publication-title: Brain Res – volume: 14 start-page: 434 year: 2010 end-page: 448 article-title: Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis publication-title: J Cell Mol Med – volume: 6 start-page: R22 year: 2005 article-title: A DNA microarray survey of gene expression in normal human tissues publication-title: Genome Biol – volume: 438 start-page: 803 year: 2005 end-page: 819 article-title: Genome sequence, comparative analysis and haplotype structure of the domestic dog publication-title: Nature – volume: 326 start-page: 687 year: 2006 end-page: 696 article-title: Purification and in vitro characterization of adult canine olfactory ensheathing cells publication-title: Cell Tissue Res – volume: 30 start-page: 2480 year: 2010 end-page: 2489 article-title: Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B publication-title: J Neurosci – volume: 126 start-page: 663 year: 2006 end-page: 676 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors publication-title: Cell – volume: 67 start-page: 1050 year: 2006 end-page: 1056 article-title: Comparison of cell populations derived from canine olfactory bulb and olfactory mucosal cultures publication-title: Am J Vet Res – volume: 60 start-page: 717 year: 2012 end-page: 727 article-title: Comparison of polarization properties of human adult microglia and blood‐derived macrophages publication-title: Glia – volume: 49 start-page: 577 year: 2005 end-page: 587 article-title: Phagocytosis of O4+ axonal fragments in vitro by p75‐ neonatal rat olfactory ensheathing cells publication-title: Glia – volume: 2 start-page: e1203 year: 2007 article-title: Microarray expression profiles of 20.000 genes across 23 healthy porcine tissues publication-title: PLoS One – volume: 23 start-page: 390 year: 2007 end-page: 391 article-title: Prophet, a web‐based tool for class prediction using microarray data publication-title: Bioinformatics – year: 1839 – volume: 28 start-page: 264 year: 2008 end-page: 278 article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function publication-title: J Neurosci – volume: 114 start-page: 597 year: 2007 end-page: 608 article-title: Vimentin‐positive astrocytes in canine distemper: a target for canine distemper virus especially in chronic demyelinating lesions? publication-title: Acta Neuropathol – volume: 144 start-page: 195 year: 2009a end-page: 201 article-title: Distinct cell tropism of canine distemper virus strains to adult olfactory ensheathing cells and Schwann cells in vitro publication-title: Virus Res – volume: 17 start-page: 217 year: 1996 end-page: 224 article-title: Schwann cell‐like myelination following transplantation of an olfactory bulb‐ensheathing cell line into areas of demyelination in the adult CNS publication-title: Glia – volume: 184 start-page: 237 year: 2003 end-page: 246 article-title: Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter publication-title: Exp Neurol – volume: 23 start-page: 82 year: 2013 end-page: 99 article-title: Spatio‐temporal development of axonopathy in canine intervertebral disc disease as a translational large animal model for nonexperimental spinal cord injury publication-title: Brain Pathol – volume: 1 start-page: 12 year: 2012 article-title: Efficient transdifferentiation of human adipose‐derived stem cells into Schwann‐like cells: A promise for treatment of demyelinating diseases publication-title: Adv Biomed Res – volume: 3 start-page: 433 year: 1990 end-page: 449 article-title: Glial influences on axonal growth in the primary olfactory system publication-title: Glia – volume: 6 start-page: e17107 year: 2011 article-title: A compendium of canine normal tissue gene expression publication-title: PLoS One – volume: 8 start-page: 426 year: 2007 article-title: DAVID Knowledgebase: A gene‐centered database integrating heterogeneous gene annotation resources to facilitate high‐throughput gene functional analysis publication-title: BMC Bioinformatics – volume: 131 start-page: 5599 year: 2004 end-page: 5612 article-title: Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells publication-title: Development – volume: 17 start-page: 34 year: 1996 end-page: 47 article-title: Up‐regulation of HOXC6, HOXD1, and HOXD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation publication-title: Tumour Biol – volume: 33 start-page: 1402 year: 2005 end-page: 1416 article-title: Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood publication-title: Exp Hematol – volume: 25 start-page: 25 year: 2000 end-page: 29 article-title: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat Genet – volume: 99 start-page: 147 year: 2007 end-page: 157 article-title: Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting publication-title: J Natl Cancer Inst – volume: 1 start-page: 266 year: 2012 end-page: 278 article-title: Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: Induction, maintenance, and differentiation into functional Schwann cells publication-title: Stem Cells Transl Med – volume: 9 start-page: 58 year: 2008 article-title: Signature Evaluation Tool (SET): a Java‐based tool to evaluate and visualize the sample discrimination abilities of gene expression signatures publication-title: BMC Bioinformatics – volume: 56 start-page: 1285 year: 2008 end-page: 1298 article-title: Comparative gene expression profiling of olfactory ensheathing glia and Schwann cells indicates distinct tissue repair characteristics of olfactory ensheathing glia publication-title: Glia – volume: 34 start-page: 374 year: 2003 end-page: 378 article-title: TM4: A free, open‐source system for microarray data management and analysis publication-title: Biotechniques – volume: 6 start-page: 671 year: 2005 end-page: 682 article-title: The origin and development of glial cells in peripheral nerves publication-title: Nat Rev Neurosci – volume: 20 start-page: 145 year: 2011 end-page: 152 article-title: Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury publication-title: Cell Transplant – volume: 36 start-page: 664 year: 2004 article-title: A gene network for navigating the literature publication-title: Nat Genet – volume: 135 start-page: 3227 year: 2012 end-page: 3237 article-title: Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double‐blinded trial in a canine translational model publication-title: Brain – volume: 30 start-page: 49 year: 2000 end-page: 63 article-title: Schwann‐like macroglia in adult rat brain publication-title: Glia – volume: 229 start-page: 80 year: 2011 end-page: 87 article-title: Species‐specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair publication-title: Exp Neurol – volume: 52 start-page: 2127 year: 2010 end-page: 2136 article-title: Transcription factors ETF, E2F, and SP‐1 are involved in cytokine‐independent proliferation of murine hepatocytes publication-title: Hepatology – volume: 40 start-page: D109 year: 2012 end-page: D114 article-title: KEGG for integration and interpretation of large‐scale molecular data sets publication-title: Nucleic Acids Res – volume: 28 start-page: 569 year: 2000 end-page: 574 article-title: The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors publication-title: Exp Hematol – volume: 27 start-page: 218 year: 1987 end-page: 223 article-title: Persistent infection of Vero cells by paramyxoviruses. A morphological and immunoelectron microscopic investigation publication-title: Intervirology – volume: 1 start-page: 951 year: 2002 end-page: 960 article-title: The use and analysis of microarray data publication-title: Nat Rev Drug Discov – volume: 4 start-page: P3 year: 2003 article-title: DAVID: Database for annotation, visualization, and integrated discovery publication-title: Genome Biol – volume: 134 start-page: 635 year: 2007 end-page: 646 article-title: How is pluripotency determined and maintained? publication-title: Development – volume: 22 start-page: 507 year: 2006 end-page: 508 article-title: EDGE: Extraction and analysis of differential gene expression publication-title: Bioinformatics – volume: 107 start-page: 21040 year: 2010 end-page: 21045 article-title: Neural crest origin of olfactory ensheathing glia publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 6915 year: 2011 end-page: 6927 article-title: Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH‐1 neurons, sensory neurons, and olfactory ensheathing cells publication-title: J Neurosci – volume: 173 start-page: 327 year: 1996 end-page: 343 article-title: Low‐affinity NGF‐receptor and E‐N‐CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage publication-title: Dev Biol – volume: 56 start-page: 1664 year: 2008 end-page: 1678 article-title: Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X‐irradiated spinal cord not shared by Schwann cells publication-title: Glia – volume: 40 start-page: 274 year: 2014 end-page: 288 article-title: Transcriptome‐based network analysis reveals a spectrum model of human macrophage activation publication-title: Immunity – volume: 67 start-page: 139 year: 2007 end-page: 148 article-title: Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment publication-title: Cancer Res – volume: 11 start-page: 305 year: 2010 article-title: Comparison and consolidation of microarray data sets of human tissue expression publication-title: BMC Genomics – volume: 271 start-page: 77 year: 2003 end-page: 85 article-title: Olfactory ensheathing glia transplantation: A therapy to promote repair in the mammalian central nervous system publication-title: Anat Rec B New Anat – volume: 59 start-page: 1658 year: 2011 end-page: 1671 article-title: Comparison of bulbar and mucosal olfactory ensheathing cells using FACS and simultaneous antigenic bivariate cell cycle analysis publication-title: Glia – volume: 6 start-page: 568 year: 2000 end-page: 572 article-title: Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin‐induced hyperglycemia publication-title: Nat Med – volume: 40 start-page: D84 year: 2012 end-page: 90 article-title: Ensembl 2012 publication-title: Nucleic Acids Res – volume: 34 start-page: 621 year: 2008 end-page: 637 article-title: In vitro characterization and preferential infection by canine distemper virus of glial precursors with Schwann cell characteristics from adult canine brain publication-title: Neuropathol Appl Neurobiol – volume: 47 start-page: 213 year: 1992 end-page: 220 article-title: Glial cells from adult rat olfactory bulb: Immunocytochemical properties of pure cultures of ensheathing cells publication-title: Neuroscience – volume: 30 start-page: 9523 year: 2010 end-page: 9532 article-title: Embryonic Pax7‐expressing progenitors contribute multiple cell types to the postnatal olfactory epithelium publication-title: J Neurosci – volume: 81 start-page: 871 year: 2001 end-page: 927 article-title: Biology of oligodendrocyte and myelin in the mammalian central nervous system publication-title: Physiol Rev – volume: 38 start-page: 1078 year: 2013 end-page: 1087 article-title: Clonal in vitro analysis of neurotrophin receptor p75‐immunofluorescent cells reveals phenotypic plasticity of primary rat olfactory ensheathing cells publication-title: Neurochem Res – volume: 46 start-page: 349 year: 2012 end-page: 360 article-title: Neural crest and olfactory system: new prospective publication-title: Mol Neurobiol – volume: 160 start-page: 185 year: 2009 end-page: 188 article-title: Generation and characterization of a polyclonal antibody for the detection of Theiler's murine encephalomyelitis virus by light and electron microscopy publication-title: J Virol Methods – volume: 309 start-page: 337 year: 2002 end-page: 345 article-title: Olfactory ensheathing glia and Schwann cells: two of a kind? publication-title: Cell Tissue Res – volume: 8 start-page: 315 year: 2006 end-page: 317 article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement publication-title: Cytotherapy – volume: 41 start-page: 213 year: 2011 end-page: 225 article-title: Cell‐cell interaction appears to represent a pivotal factor for susceptibility of adult canine Schwann cell‐like brain glia to canine distemper virus infection in vitro publication-title: Thai J Vet Med – volume: 4 start-page: 44 year: 2009 end-page: 57 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat Protocols – volume: 229 start-page: 10 year: 2011 end-page: 45 article-title: A meta‐analysis of microarray‐based gene expression studies of olfactory bulb‐derived olfactory ensheathing cells publication-title: Exp Neurol – volume: 87 start-page: 858 year: 2007 end-page: 870 article-title: The role of the fibrocyte, a bone marrow‐derived mesenchymal progenitor, in reactive and reparative fibroses publication-title: Lab Invest – volume: 518 start-page: 4329 year: 2010 end-page: 4341 article-title: Olfactory ensheathing glia express aquaporin 1 publication-title: J Comp Neurol – volume: 155 start-page: 337 year: 1993 end-page: 350 article-title: Purification of olfactory nerve ensheathing cells from the olfactory bulb publication-title: Dev Biol – volume: 176 start-page: 112 year: 2009b end-page: 120 article-title: Transfection of adult canine Schwann cells and olfactory ensheathing cells at early and late passage with human TERT differentially affects growth factor responsiveness and in vitro growth publication-title: J Neurosci Methods – volume: 84 start-page: 1234 year: 1999 end-page: 1235 article-title: The definition of cell type publication-title: Circ Res – volume: 32 start-page: 317 year: 2003 end-page: 324 article-title: Ensheathment of the olfactory nerves in the adult rat publication-title: J Neurocytol – volume: 6 start-page: 578 year: 2010 end-page: 590 article-title: CNS‐resident glial progenitor/stem cells produce schwann cells as well as oligodendrocytes during repair of CNS demyelination publication-title: Cell Stem Cell – volume: 162 start-page: 1161 year: 2003 end-page: 1172 article-title: Association of TAG‐1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers publication-title: J Cell Biol – volume: 27 start-page: 725 year: 2011 end-page: 726 article-title: MADGene: Retrieval and processing of gene identifier lists for the analysis of heterogeneous microarray datasets publication-title: Bioinformatics – volume: 60 start-page: 358 year: 2012 end-page: 371 article-title: Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage publication-title: Glia – volume: 505 start-page: 572 year: 2007 end-page: 585 article-title: Differential expression of HNK‐1 and p75(NTR) in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro publication-title: J Comp Neurol – volume: 21 start-page: 1161 year: 2012 end-page: 1175 article-title: Highly malignant behavior of a murine oligodendrocyte precursor cell line following transplantation into the demyelinated and nondemyelinated central nervous system publication-title: Cell Transplant – volume: 4 start-page: 34 year: 2011 article-title: The dual origin of the peripheral olfactory system: placode and neural crest publication-title: Mol Brain – volume: 53 start-page: 783 year: 2006 end-page: 787 article-title: Localization of aquaporin‐1 water channel in glial cells of the human peripheral nervous system publication-title: Glia – year: 2006 – volume: 61 start-page: 513 year: 2013 end-page: 528 article-title: A comparative study of glial and non‐neural cell properties for transplant‐mediated repair of the injured spinal cord publication-title: Glia – volume: 38 start-page: 37 year: 2005 end-page: 42 article-title: Water channel aquaporin 1 (AQP1) is present in the perineurium and perichondrium publication-title: Acta Histochem Cytochem – ident: e_1_2_6_72_1 doi: 10.3727/096368910X522081 – ident: e_1_2_6_65_1 doi: 10.1093/nar/gkq388 – ident: e_1_2_6_12_1 doi: 10.1038/labinvest.3700654 – volume-title: Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen year: 1839 ident: e_1_2_6_79_1 – ident: e_1_2_6_31_1 doi: 10.1523/JNEUROSCI.6087-10.2011 – ident: e_1_2_6_97_1 doi: 10.1016/0306-4522(92)90094-I – ident: e_1_2_6_61_1 doi: 10.5966/sctm.2011-0042 – ident: e_1_2_6_30_1 doi: 10.1093/nar/gkr991 – ident: e_1_2_6_15_1 doi: 10.1177/0300985811410720 – ident: e_1_2_6_3_1 doi: 10.1038/75556 – ident: e_1_2_6_106_1 doi: 10.1016/j.immuni.2014.01.006 – ident: e_1_2_6_66_1 doi: 10.1093/bioinformatics/btl602 – ident: e_1_2_6_23_1 doi: 10.1002/glia.440030602 – ident: e_1_2_6_75_1 doi: 10.1016/j.expneurol.2011.03.001 – ident: e_1_2_6_62_1 doi: 10.1159/000217965 – ident: e_1_2_6_84_1 doi: 10.1186/gb-2005-6-3-r22 – ident: e_1_2_6_5_1 doi: 10.1006/dbio.1993.1033 – ident: e_1_2_6_42_1 doi: 10.1523/JNEUROSCI.5225-09.2010 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.1012248107 – ident: e_1_2_6_47_1 doi: 10.1186/1471-2105-9-58 – ident: e_1_2_6_101_1 doi: 10.1002/glia.20771 – ident: e_1_2_6_39_1 doi: 10.3727/096368911X627444 – ident: e_1_2_6_7_1 doi: 10.1093/bioinformatics/btq710 – ident: e_1_2_6_94_1 doi: 10.1083/jcb.200305078 – ident: e_1_2_6_105_1 doi: 10.1007/s00441-002-0607-y – ident: e_1_2_6_71_1 doi: 10.1016/j.bbrc.2005.10.140 – ident: e_1_2_6_93_1 doi: 10.1002/glia.22452 – ident: e_1_2_6_20_1 doi: 10.1083/jcb.3.6.839 – ident: e_1_2_6_70_1 doi: 10.1111/j.1365-2990.2008.00958.x – ident: e_1_2_6_51_1 doi: 10.1186/1756-6606-4-34 – ident: e_1_2_6_28_1 doi: 10.1038/75050 – ident: e_1_2_6_83_1 doi: 10.1002/cne.22459 – ident: e_1_2_6_14_1 doi: 10.1111/j.1750-3639.2012.00617.x – ident: e_1_2_6_103_1 doi: 10.1002/glia.20149 – ident: e_1_2_6_43_1 doi: 10.1038/nprot.2008.211 – ident: e_1_2_6_52_1 doi: 10.1007/s00441-006-0238-9 – ident: e_1_2_6_26_1 doi: 10.1002/glia.22298 – ident: e_1_2_6_24_1 doi: 10.4161/auto.2228 – ident: e_1_2_6_17_1 doi: 10.1038/nrd961 – ident: e_1_2_6_22_1 doi: 10.1080/14653240600855905 – ident: e_1_2_6_36_1 doi: 10.1002/glia.20336 – ident: e_1_2_6_98_1 doi: 10.1017/S1464793106007068 – ident: e_1_2_6_104_1 doi: 10.1016/j.expneurol.2010.08.029 – ident: e_1_2_6_81_1 doi: 10.1007/s00401-007-0307-5 – ident: e_1_2_6_80_1 doi: 10.1161/01.RES.84.10.1234 – ident: e_1_2_6_96_1 doi: 10.1111/j.1365-2990.2008.00956.x – ident: e_1_2_6_27_1 doi: 10.1007/s11064-013-1023-2 – ident: e_1_2_6_38_1 doi: 10.1002/(SICI)1098-1136(200003)30:1<49::AID-GLIA6>3.0.CO;2-M – ident: e_1_2_6_68_1 doi: 10.1158/0008-5472.CAN-06-2563 – ident: e_1_2_6_49_1 doi: 10.1242/dev.01429 – ident: e_1_2_6_29_1 doi: 10.1023/B:NEUR.0000010089.37032.48 – ident: e_1_2_6_34_1 doi: 10.1002/(SICI)1098-1136(199607)17:3<217::AID-GLIA4>3.0.CO;2-Y – ident: e_1_2_6_50_1 doi: 10.1093/nar/gkr988 – ident: e_1_2_6_78_1 doi: 10.1002/ar.b.10015 – ident: e_1_2_6_102_1 doi: 10.1016/j.exphem.2005.07.003 – ident: e_1_2_6_41_1 doi: 10.1371/journal.pone.0001203 – ident: e_1_2_6_85_1 doi: 10.1073/pnas.0504609102 – volume-title: DNA microarrays and related genomics techniques: design, analysis, and interpretation of experiments year: 2006 ident: e_1_2_6_2_1 – ident: e_1_2_6_90_1 doi: 10.1016/j.brainres.2008.08.092 – ident: e_1_2_6_44_1 doi: 10.1002/glia.22270 – ident: e_1_2_6_59_1 doi: 10.1046/j.0962-1083.2001.01452.x – volume: 41 start-page: 213 year: 2011 ident: e_1_2_6_88_1 article-title: Cell‐cell interaction appears to represent a pivotal factor for susceptibility of adult canine Schwann cell‐like brain glia to canine distemper virus infection in vitro publication-title: Thai J Vet Med doi: 10.56808/2985-1130.2299 – ident: e_1_2_6_19_1 doi: 10.1016/S0301-472X(00)00135-1 – ident: e_1_2_6_69_1 doi: 10.1242/dev.02787 – ident: e_1_2_6_35_1 doi: 10.1002/glia.20697 – ident: e_1_2_6_63_1 doi: 10.4049/jimmunol.177.10.7303 – ident: e_1_2_6_86_1 doi: 10.1073/pnas.0902161106 – ident: e_1_2_6_100_1 doi: 10.1016/j.matbio.2009.06.001 – ident: e_1_2_6_67_1 doi: 10.1523/JNEUROSCI.0867-10.2010 – ident: e_1_2_6_4_1 doi: 10.1093/brain/123.8.1581 – ident: e_1_2_6_9_1 doi: 10.1186/1471-2105-11-567 – ident: e_1_2_6_45_1 doi: 10.2460/ajvr.67.6.1050 – ident: e_1_2_6_60_1 doi: 10.1093/nar/gkg121 – ident: e_1_2_6_82_1 doi: 10.1186/1471-2105-8-426 – ident: e_1_2_6_32_1 doi: 10.1007/s12035-012-8286-5 – ident: e_1_2_6_64_1 doi: 10.1267/ahc.38.37 – ident: e_1_2_6_95_1 doi: 10.1111/j.1582-4934.2008.00646.x – ident: e_1_2_6_91_1 doi: 10.1016/j.jneumeth.2008.08.030 – ident: e_1_2_6_77_1 doi: 10.2144/03342mt01 – ident: e_1_2_6_37_1 doi: 10.1093/brain/aws268 – ident: e_1_2_6_92_1 doi: 10.1002/1097-4547(20000715)61:2<172::AID-JNR8>3.0.CO;2-C – ident: e_1_2_6_58_1 doi: 10.1093/bioinformatics/btk005 – ident: e_1_2_6_99_1 doi: 10.1002/glia.20195 – ident: e_1_2_6_6_1 doi: 10.1038/ncpneuro0447 – ident: e_1_2_6_87_1 doi: 10.1016/j.cell.2006.07.024 – ident: e_1_2_6_11_1 doi: 10.1159/000149987 – ident: e_1_2_6_40_1 doi: 10.1038/ng0704-664 – ident: e_1_2_6_18_1 doi: 10.1523/JNEUROSCI.4178-07.2008 – ident: e_1_2_6_46_1 doi: 10.1089/neu.2005.22.1282 – ident: e_1_2_6_73_1 doi: 10.1016/0306-4522(92)90134-N – ident: e_1_2_6_57_1 doi: 10.1002/glia.20718 – ident: e_1_2_6_74_1 doi: 10.4103/2277-9175.96067 – ident: e_1_2_6_21_1 doi: 10.1186/gb-2003-4-5-p3 – ident: e_1_2_6_33_1 doi: 10.1006/dbio.1996.0027 – ident: e_1_2_6_76_1 doi: 10.1186/1471-2164-11-305 – ident: e_1_2_6_13_1 doi: 10.1002/cne.21519 – ident: e_1_2_6_56_1 doi: 10.1016/S0014-4886(03)00270-X – ident: e_1_2_6_48_1 doi: 10.1038/nrn1746 – ident: e_1_2_6_107_1 doi: 10.1016/j.stem.2010.04.002 – ident: e_1_2_6_25_1 doi: 10.1093/jnci/djk018 – ident: e_1_2_6_89_1 doi: 10.1016/j.virusres.2009.04.027 – ident: e_1_2_6_16_1 doi: 10.1371/journal.pone.0017107 – volume: 27 start-page: 17 year: 2010 ident: e_1_2_6_53_1 article-title: Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing publication-title: ALTEX – ident: e_1_2_6_55_1 doi: 10.1016/j.jviromet.2009.04.030 – ident: e_1_2_6_108_1 doi: 10.1002/hep.23930 – ident: e_1_2_6_10_1 doi: 10.1152/physrev.2001.81.2.871 – ident: e_1_2_6_54_1 doi: 10.1002/glia.21213 |
SSID | ssj0011497 |
Score | 2.283068 |
Snippet | Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor... Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1559 |
SubjectTerms | Animals aquaporin 1 Axons - metabolism Axons - ultrastructure Axons - virology biomarker Biomarkers Biomarkers - metabolism canine distemper virus Cells, Cultured Distemper - metabolism Distemper Virus, Canine Dogs Fibroblasts - metabolism Fibroblasts - ultrastructure Fibroblasts - virology Gene expression Gene Expression Profiling Immunohistochemistry Medical research Mice microarray Microarray Analysis Microscopy, Electron nerve growth factor receptor p75 Nervous system Neuroglia - metabolism Neuroglia - ultrastructure Neuroglia - virology Olfactory Nerve - metabolism Olfactory Nerve - ultrastructure Olfactory Nerve - virology Schwann Cells - metabolism Schwann Cells - ultrastructure Schwann Cells - virology Sciatic Nerve - metabolism Sciatic Nerve - ultrastructure stimulator of chondrogenesis 1 Transcription, Genetic |
Title | Transcriptional profiling predicts overwhelming homology of schwann cells, olfactory ensheathing cells, and schwann cell-like glia |
URI | https://api.istex.fr/ark:/67375/WNG-30BFFLZP-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.22700 https://www.ncbi.nlm.nih.gov/pubmed/24889922 https://www.proquest.com/docview/1554529976 https://www.proquest.com/docview/1555620727 https://www.proquest.com/docview/1560140916 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9K--KL2taPaC0rSkEx13zs5hLoyyleq5QiYrEIsuxX2nK5RHp31PrkQ_8A_0b_Emd2LyknpaBvy2UWJnuzM7_ZnfyGkOcRlxmXrB8WhrOQ6ZyHhY2iUBUqNlyXePeG1RYH2d4he3_Ej5bITvstjOeH6A7ccGc4f40bXKrJ9hVp6HF1KnsJ3puCA8ZiLUREHzvuKMD5haf5LFgI47jjJk22r6YuRKMVXNjv10HNReTqQs_wDvnaKu0rTka92VT19I-_-Bz_963ukttzTEoH3ohWyZKt18j6oIZ8fHxBt6irEnXH7-vk0gW31tXALN_0GwIgjPDSZzqhWBV6fmKrMf560ozdVNqUFDLpc1nXFG8LJq9oU_luPxcUcmkMCnga1j6UtVmQ__3zV3U6shRVv0cOh28_vdkL550cQo38Y2HOtFI2lSZTulQ2wT4zKi10acE9QAKkbZKXtoRs2XBlZFoyFTNpZaJZLmFeep8s101tHxKqTFyaOM-ljA1jaSJVZDNlDIt0VGqZBeRF-48KPac5x24blfAEzYlAPYVb4oA862S_eXKPa6W2nGF0IvJshOVwfS4-H-yKNHo9HO5_-SDigGy0liPmnmAiEK9xiPl90Oxp9xj2MC6drG0zczIAQyOAkjfJZJgMA5oPyANvlZ1CCXhh5BcOyEtnWze8jNjdfzdwo0f_IvyY3AKkyHwV4wZZnp7N7BNAY1O16XbdH7YdNEs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcCFV3kEWjACVQKRbR5ONjkuiO0WlhVCrai4WH6FVptNUHdXpT310B_Ab-SXMGNnUy2qKsHNSsaS7YxnvrEn3xDyMkhEmgjW9XOdMJ-pLPFzEwS-zGWoE1Xg3RtmW4zSwR77sJ_sN7k5-C-M44doD9xwZ1h7jRscD6S3LlhDv5eHohPhxel1soolvW1E9aVljwKknzuiz5z50A5bdtJo66Lvkj9axaX9eRnYXMau1vn0b7sKq1PLWYg5J-POfCY76vQvRsf_ntcdcquBpbTn9OguuWaqe2StV0FIPjmhm9QmitoT-DVybv3bwtpAL1f3G3wgtPDeZzalmBh6fGDKCT49qCe2K60LCsH0sagqihcG0ze0Ll3BnxMK4TT6BTwQW7wUlV6S_332qzwcG4pDv0_2-u933w38ppiDr5CCzM-YktLEQqdSFdJEWGpGxrkqDFgIiIGUibLCFBAw60RqERdMhkwYESmWCegXPyArVV2ZR4RKHRY6zDIhQs1YHAkZmFRqzQIVFEqkHnm1-KRcNUznWHCj5I6jOeI4Tm6X2CMvWtkfjt_jUqlNqxmtiDgaY0ZcN-FfR9s8Dt72-8Nvn3nokfWF6vDGGEw5QrYE3H4XRva8fQ3bGJdOVKaeWxlAogGgyatkUoyHAdB75KFTy3ZAERhipBj2yGurXFdMhm8Pd3q29fhfhJ-RG4PdT0M-3Bl9fEJuAnBkLqlxnazMjuZmA8DZTD61W_APx_k4Zg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF5qC-IX3-pLtOqKUlDMNS-bXAJ-Oa3XVo-jiKVFkGVfbblcUnp31PrJD_4Af6O_xJnNJeWkFPTbcpmFyd7szDO7k2cIeR4kIk0E6_q5TpjPVJb4uQkCX-Yy1ImyePeG1RbDdHuPvT9IDpbI6-ZbmJofoj1ww53h_DVu8GNtN85JQ78WR6IT4b3pFbLC0iBDm9782JJHAdDPa57PnPkwDlty0mjjfO5COFrBlf12EdZchK4u9vRvkC-N1nXJyagzm8qO-v4XoeP_vtZNcn0OSmmvtqJbZMmUt8lqr4SEfHxG16krE3Xn76vkp4tuja-BWXXXb4iAMMJbn-mEYlno6aEpxvjrYTV2U2llKaTSp6IsKV4XTF7Rqqjb_ZxRSKYxKuBxWPNQlHpB_vePX8XRyFBU_Q7Z67_79Hbbn7dy8BUSkPkZU1KaWOhUKitNhI1mZJwra8A_QAakTJRZYyFd1onUIrZMhkwYESmWCZgX3yXLZVWa-4RKHVodZpkQoWYsjoQMTCq1ZoEKrBKpR140_yhXc55zbLdR8JqhOeKoJ3dL7JFnrexxze5xodS6M4xWRJyMsB6um_D94RaPgzf9_uDzLg89stZYDp-7gglHwJZA0O-CZk_bx7CJcelEaaqZkwEcGgCWvEwmxWwY4LxH7tVW2SoUgRtGgmGPvHS2dcnL8K3BTs-NHvyL8BNydXezzwc7ww8PyTVAjayuaFwjy9OTmXkEyGwqH7sN-Achmjce |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+profiling+predicts+overwhelming+homology+of+Schwann+cells%2C+olfactory+ensheathing+cells%2C+and+Schwann+cell-like+glia&rft.jtitle=Glia&rft.au=Ulrich%2C+Reiner&rft.au=Imbschweiler%2C+Ilka&rft.au=Kalkuhl%2C+Arno&rft.au=Lehmbecker%2C+Annika&rft.date=2014-10-01&rft.issn=1098-1136&rft.eissn=1098-1136&rft.volume=62&rft.issue=10&rft.spage=1559&rft_id=info:doi/10.1002%2Fglia.22700&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon |