Transcriptional profiling predicts overwhelming homology of schwann cells, olfactory ensheathing cells, and schwann cell-like glia

Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)‐positive cells, originating from different tissues. Because of their pro‐regenerative capacities, these cells are subjects in e...

Full description

Saved in:
Bibliographic Details
Published inGlia Vol. 62; no. 10; pp. 1559 - 1581
Main Authors Ulrich, Reiner, Imbschweiler, Ilka, Kalkuhl, Arno, Lehmbecker, Annika, Ziege, Susanne, Kegler, Kristel, Becker, Kathrin, Deschl, Ulrich, Wewetzer, Konstantin, Baumgärtner, Wolfgang
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.10.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)‐positive cells, originating from different tissues. Because of their pro‐regenerative capacities, these cells are subjects in experimental transplantation‐based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus‐infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type‐specific identity included an up‐regulation of HOXD8 and HOXC4 in SCs, and an up‐regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type‐specific biomarkers employing supervised clustering with a K‐nearest‐neighbors algorithm and correlation‐based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1‐positive, AQP1‐negative OECs and/or axons, whereas sciatic nerves displayed multifocal non‐myelinated, AQP1‐positive, SCRG1‐negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014;62:1559–1581 Main Points Microarray‐based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell‐like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions. Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell‐like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo. Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell‐like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells.
AbstractList Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014;62:1559-1581 Main Points Microarray-based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell-like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions. Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell-like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo. Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell-like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells. [PUBLICATION ABSTRACT]
Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs.Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs.
Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs.
Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)‐positive cells, originating from different tissues. Because of their pro‐regenerative capacities, these cells are subjects in experimental transplantation‐based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus‐infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro , employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type‐specific identity included an up‐regulation of HOXD8 and HOXC4 in SCs, and an up‐regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type‐specific biomarkers employing supervised clustering with a K‐nearest‐neighbors algorithm and correlation‐based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro . Furthermore, canine and murine olfactory nerves showed SCRG1‐positive, AQP1‐negative OECs and/or axons, whereas sciatic nerves displayed multifocal non‐myelinated, AQP1‐positive, SCRG1‐negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014;62:1559–1581 Microarray‐based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell‐like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions. Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell‐like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo. Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell‐like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells.
Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014; 62:1559-1581 Main Points * Microarray-based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell-like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions. * Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell-like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo. * Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell-like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells.
Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)‐positive cells, originating from different tissues. Because of their pro‐regenerative capacities, these cells are subjects in experimental transplantation‐based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus‐infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type‐specific identity included an up‐regulation of HOXD8 and HOXC4 in SCs, and an up‐regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type‐specific biomarkers employing supervised clustering with a K‐nearest‐neighbors algorithm and correlation‐based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1‐positive, AQP1‐negative OECs and/or axons, whereas sciatic nerves displayed multifocal non‐myelinated, AQP1‐positive, SCRG1‐negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs. GLIA 2014;62:1559–1581 Main Points Microarray‐based gene expression profiling revealed a complete lack of differentially expressed genes between canine olfactory ensheathing cells and central nervous system Schwann cell‐like glia, and only minor transcriptional differences of both of these compared with peripheral Schwann cells cultured under identical conditions. Based on the trancriptomic data, AQP1 and SCRG1 were selected as biomarkers to distinguish peripheral Schwann cells from olfactory ensheating cells/central nervous system Schwann cell‐like glia, and this was verified using immunofluorescence in vitro, and immunohistology in canine and mouse olfactory mucosa and sciatic nerve specimens in vivo. Conclusively, findings suggest that olfactory ensheathing cells and central nervous system Schwann cell‐like glia are a uniform cell type differing only in the tissue of origin and highly related to peripheral Schwann cells.
Author Deschl, Ulrich
Baumgärtner, Wolfgang
Kalkuhl, Arno
Becker, Kathrin
Lehmbecker, Annika
Kegler, Kristel
Ulrich, Reiner
Ziege, Susanne
Imbschweiler, Ilka
Wewetzer, Konstantin
Author_xml – sequence: 1
  givenname: Reiner
  surname: Ulrich
  fullname: Ulrich, Reiner
  email: reiner.ulrich@tiho-hannover.de
  organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
– sequence: 2
  givenname: Ilka
  surname: Imbschweiler
  fullname: Imbschweiler, Ilka
  organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
– sequence: 3
  givenname: Arno
  surname: Kalkuhl
  fullname: Kalkuhl, Arno
  organization: Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany
– sequence: 4
  givenname: Annika
  surname: Lehmbecker
  fullname: Lehmbecker, Annika
  organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
– sequence: 5
  givenname: Susanne
  surname: Ziege
  fullname: Ziege, Susanne
  organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
– sequence: 6
  givenname: Kristel
  surname: Kegler
  fullname: Kegler, Kristel
  organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
– sequence: 7
  givenname: Kathrin
  surname: Becker
  fullname: Becker, Kathrin
  organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
– sequence: 8
  givenname: Ulrich
  surname: Deschl
  fullname: Deschl, Ulrich
  organization: Department of Non-Clinical Drug Safety, Boehringer Ingelheim Pharma GmbH&Co KG, Biberach (Riß), Germany
– sequence: 9
  givenname: Konstantin
  surname: Wewetzer
  fullname: Wewetzer, Konstantin
  organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
– sequence: 10
  givenname: Wolfgang
  surname: Baumgärtner
  fullname: Baumgärtner, Wolfgang
  organization: Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24889922$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEURi1URNPChh-ARmKDEFP8moeXpSKhUgQsipDYWB7Pdcatxw72hJAtv5yZJq1EhRArv865ur7fCTrywQNCzwk-IxjTtytn1RmlFcaP0IxgUeeEsPIIzXAteE64IMfoJKVrjMl4qJ6gY8rrWghKZ-jXVVQ-6WjXgw1euWwdg7HO-tW4g9bqIWXhB8RtB66fbrvQBxdWuyyYLOluq7zPNDiX3mTBGaWHEHcZ-NSBGrpJODwq3_7B587eQDa1_hQ9NsoleHZYT9GX-furiw_58tPi8uJ8meuiZDivuW4aYKotG20aoFiUpGFCG6gE47TWQGsDhtWsLZpWMcMbwhUoqnmtRo-dolf7uuMXv28gDbK3aWpFeQibJElRYsKxIOV_oEVRUlzRakRfPkCvwyaOk7yleEGFqKaCLw7UpumhletoexV38i6IEXi9B3QMKUUw9wjBckpZTqOStymPMH4AazuoKcAhKuv-rpC9srUOdv8oLhfLy_M7J987Ng3w895R8UaWFasK-fXjQjL8bj5ffvssCfsNH1HLMw
CODEN GLIAEJ
CitedBy_id crossref_primary_10_1002_term_2478
crossref_primary_10_1002_glia_23515
crossref_primary_10_3389_fcell_2021_660259
crossref_primary_10_1002_glia_23870
crossref_primary_10_1371_journal_pone_0133916
crossref_primary_10_3389_fcell_2022_999322
crossref_primary_10_1177_0300985817709887
crossref_primary_10_1177_0300985818781930
crossref_primary_10_5607_en_2019_28_1_74
crossref_primary_10_1038_s41598_017_14246_7
crossref_primary_10_1002_glia_22816
crossref_primary_10_1016_j_vetimm_2018_11_003
crossref_primary_10_3390_cells9081848
crossref_primary_10_1038_s41598_020_61852_z
crossref_primary_10_1371_journal_pone_0183572
crossref_primary_10_1186_s12974_015_0462_x
crossref_primary_10_3390_bioengineering7020037
crossref_primary_10_1002_glia_23027
crossref_primary_10_1371_journal_pone_0213252
crossref_primary_10_31083_j_jin2305107
crossref_primary_10_3389_fimmu_2023_1280186
crossref_primary_10_1016_j_ijdevneu_2015_02_005
crossref_primary_10_1111_neup_12357
crossref_primary_10_1111_joa_13484
crossref_primary_10_1016_j_expneurol_2021_113660
crossref_primary_10_1002_glia_23045
crossref_primary_10_1002_cne_24628
crossref_primary_10_1007_s12035_016_9709_5
crossref_primary_10_3390_v6072571
crossref_primary_10_1016_j_neuroscience_2024_09_037
Cites_doi 10.3727/096368910X522081
10.1093/nar/gkq388
10.1038/labinvest.3700654
10.1523/JNEUROSCI.6087-10.2011
10.1016/0306-4522(92)90094-I
10.5966/sctm.2011-0042
10.1093/nar/gkr991
10.1177/0300985811410720
10.1038/75556
10.1016/j.immuni.2014.01.006
10.1093/bioinformatics/btl602
10.1002/glia.440030602
10.1016/j.expneurol.2011.03.001
10.1159/000217965
10.1186/gb-2005-6-3-r22
10.1006/dbio.1993.1033
10.1523/JNEUROSCI.5225-09.2010
10.1073/pnas.1012248107
10.1186/1471-2105-9-58
10.1002/glia.20771
10.3727/096368911X627444
10.1093/bioinformatics/btq710
10.1083/jcb.200305078
10.1007/s00441-002-0607-y
10.1016/j.bbrc.2005.10.140
10.1002/glia.22452
10.1083/jcb.3.6.839
10.1111/j.1365-2990.2008.00958.x
10.1186/1756-6606-4-34
10.1038/75050
10.1002/cne.22459
10.1111/j.1750-3639.2012.00617.x
10.1002/glia.20149
10.1038/nprot.2008.211
10.1007/s00441-006-0238-9
10.1002/glia.22298
10.4161/auto.2228
10.1038/nrd961
10.1080/14653240600855905
10.1002/glia.20336
10.1017/S1464793106007068
10.1016/j.expneurol.2010.08.029
10.1007/s00401-007-0307-5
10.1161/01.RES.84.10.1234
10.1111/j.1365-2990.2008.00956.x
10.1007/s11064-013-1023-2
10.1002/(SICI)1098-1136(200003)30:1<49::AID-GLIA6>3.0.CO;2-M
10.1158/0008-5472.CAN-06-2563
10.1242/dev.01429
10.1023/B:NEUR.0000010089.37032.48
10.1002/(SICI)1098-1136(199607)17:3<217::AID-GLIA4>3.0.CO;2-Y
10.1093/nar/gkr988
10.1002/ar.b.10015
10.1016/j.exphem.2005.07.003
10.1371/journal.pone.0001203
10.1073/pnas.0504609102
10.1016/j.brainres.2008.08.092
10.1002/glia.22270
10.1046/j.0962-1083.2001.01452.x
10.56808/2985-1130.2299
10.1016/S0301-472X(00)00135-1
10.1242/dev.02787
10.1002/glia.20697
10.4049/jimmunol.177.10.7303
10.1073/pnas.0902161106
10.1016/j.matbio.2009.06.001
10.1523/JNEUROSCI.0867-10.2010
10.1093/brain/123.8.1581
10.1186/1471-2105-11-567
10.2460/ajvr.67.6.1050
10.1093/nar/gkg121
10.1186/1471-2105-8-426
10.1007/s12035-012-8286-5
10.1267/ahc.38.37
10.1111/j.1582-4934.2008.00646.x
10.1016/j.jneumeth.2008.08.030
10.2144/03342mt01
10.1093/brain/aws268
10.1002/1097-4547(20000715)61:2<172::AID-JNR8>3.0.CO;2-C
10.1093/bioinformatics/btk005
10.1002/glia.20195
10.1038/ncpneuro0447
10.1016/j.cell.2006.07.024
10.1159/000149987
10.1038/ng0704-664
10.1523/JNEUROSCI.4178-07.2008
10.1089/neu.2005.22.1282
10.1016/0306-4522(92)90134-N
10.1002/glia.20718
10.4103/2277-9175.96067
10.1186/gb-2003-4-5-p3
10.1006/dbio.1996.0027
10.1186/1471-2164-11-305
10.1002/cne.21519
10.1016/S0014-4886(03)00270-X
10.1038/nrn1746
10.1016/j.stem.2010.04.002
10.1093/jnci/djk018
10.1016/j.virusres.2009.04.027
10.1371/journal.pone.0017107
10.1016/j.jviromet.2009.04.030
10.1002/hep.23930
10.1152/physrev.2001.81.2.871
10.1002/glia.21213
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
DOI 10.1002/glia.22700
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic
MEDLINE
CrossRef
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 1581
ExternalDocumentID 3407890701
24889922
10_1002_glia_22700
GLIA22700
ark_67375_WNG_30BFFLZP_1
Genre article
Journal Article
Comparative Study
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TK
7U9
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
H94
K9.
M7N
P64
7X8
ID FETCH-LOGICAL-c5630-84cbbe3ad6bcfbe20961b39cfe793428ce28fef383d5bda3f4b14aea2c48ae3a3
IEDL.DBID DR2
ISSN 0894-1491
1098-1136
IngestDate Fri Jul 11 04:23:14 EDT 2025
Fri Jul 11 09:17:34 EDT 2025
Fri Jul 25 12:20:24 EDT 2025
Thu Apr 03 06:53:32 EDT 2025
Tue Jul 01 02:15:01 EDT 2025
Thu Apr 24 22:55:47 EDT 2025
Wed Jan 22 16:19:35 EST 2025
Wed Oct 30 09:53:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords microarray
aquaporin 1
stimulator of chondrogenesis 1
canine distemper virus
biomarker
nerve growth factor receptor p75
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5630-84cbbe3ad6bcfbe20961b39cfe793428ce28fef383d5bda3f4b14aea2c48ae3a3
Notes ArticleID:GLIA22700
ark:/67375/WNG-30BFFLZP-1
istex:484254172B2697DED438596099A0D830AD2D7AD3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/glia.22700
PMID 24889922
PQID 1554529976
PQPubID 996331
PageCount 23
ParticipantIDs proquest_miscellaneous_1560140916
proquest_miscellaneous_1555620727
proquest_journals_1554529976
pubmed_primary_24889922
crossref_primary_10_1002_glia_22700
crossref_citationtrail_10_1002_glia_22700
wiley_primary_10_1002_glia_22700_GLIA22700
istex_primary_ark_67375_WNG_30BFFLZP_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2014
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: October 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J, Garcia F, Marba M, Montaner D, Dopazo J. 2010. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38:W210-W213.
Nakamura T, Fidler IJ, Coombes KR. 2007. Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment. Cancer Res 67:139-148.
Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274-288.
Ito D, Ibanez C, Ogawa H, Franklin RJ, Jeffery ND. 2006. Comparison of cell populations derived from canine olfactory bulb and olfactory mucosal cultures. Am J Vet Res 67:1050-1056.
Matsuzaki T, Ablimit A, Tajika Y, Suzuki T, Aoki T, Hagiwara H, Takata K. 2005. Water channel aquaporin 1 (AQP1) is present in the perineurium and perichondrium. Acta Histochem Cytochem 38:37-42.
Katoh H, Shibata S, Fukuda K, Sato M, Satoh E, Nagoshi N, Minematsu T, Matsuzaki Y, Akazawa C, Toyama Y, Nakamura M, Okano H. 2011. The dual origin of the peripheral olfactory system: placode and neural crest. Mol Brain 4:34.
Wewetzer K, Radtke C, Kocsis J, Baumgärtner W. 2011. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol 229:80-87.
Daga A, Podesta M, Capra MC, Piaggio G, Frassoni F, Corte G. 2000. The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors. Exp Hematol 28:569-574.
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. 2003. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34:374-378.
Allison DB, Page GP, Beasley TM, Edwards JW. 2006. DNA microarrays and related genomics techniques: design, analysis, and interpretation of experiments. Boca Raton, FL: Chapman&Hall/CRC.
Phinney DG, Gray AJ, Hill K, Pandey A. 2005. Murine mesenchymal and embryonic stem cells express a similar Hox gene profile. Biochem Biophys Res Commun 338:1759-1765.
Zellmer S, Schmidt-Heck W, Godoy P, Weng H, Meyer C, Lehmann T, Sparna T, Schormann W, Hammad S, Kreutz C, Timmer J, von Weizsacker F, Thurmann PA, Merfort I, Guthke R, Dooley S, Hengstler JG, Gebhardt R. 2010. Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52:2127-2136.
Baumann N, Pham-Dinh D. 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871-927.
Jeffery ND, Lakatos A, Franklin RJ. 2005. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma 22:1282-1293.
Sul JY, Wu CW, Zeng F, Jochems J, Lee MT, Kim TK, Peritz T, Buckley P, Cappelleri DJ, Maronski M, Kim M, Kumar V, Meaney D, Kim J, Eberwine J. 2009. Transcriptome transfer produces a predictable cellular phenotype. Proc Natl Acad Sci USA 106:7624-7629.
Field P, Li Y, Raisman G. 2003. Ensheathment of the olfactory nerves in the adult rat. J Neurocytol 32:317-324.
Imbschweiler I, Seehusen F, Peck CT, Omar M, Baumgärtner W, Wewetzer K. 2012. Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage. Glia 60:358-371.
Lankford KL, Sasaki M, Radtke C, Kocsis JD. 2008. Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X-irradiated spinal cord not shared by Schwann cells. Glia 56:1664-1678.
Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Harrow J, Herrero J, Hubbard TJ, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle SM. 2012. Ensembl 2012. Nucleic Acids Res 40:D84-90.
Techangamsuwan S, Imbschweiler I, Kreutzer R, Kreutzer M, Baumgärtner W, Wewetzer K. 2008. Similar behaviour and primate-like properties of adult canine Schwann cells and olfactory ensheathing cells in long-term culture. Brain Res 1240:31-38.
Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJM. 2010. CNS-resident glial progenitor/stem cells produce schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578-590.
Vickaryous MK, Hall BK. 2006. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc 81:425-455.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29.
Russ J, Futschik ME. 2010. Comparison and consolidation of microarray data sets of human tissue expression. BMC Genomics 11:305.
Shields SD, Moore KD, Phelps PE, Basbaum AI. 2010. Olfactory ensheathing glia express aquaporin 1. J Comp Neurol 518:4329-4341.
Kueh JL, Raisman G, Li Y, Stevens R, Li D. 2011. Comparison of bulbar and mucosal olfactory ensheathing cells using FACS and simultaneous antigenic bivariate cell cycle analysis. Glia 59:1658-1671.
Dupuy A, Simon RM. 2007. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147-157.
Razavi S, Ahmadi N, Kazemi M, Mardani M, Esfandiari E. 2012. Efficient transdifferentiation of human adipose-derived stem cells into Schwann-like cells: A promise for treatment of demyelinating diseases. Adv Biomed Res 1:12.
Kuegler PB, Zimmer B, Waldmann T, Baudis B, Ilmjarv S, Hescheler J, Gaughwin P, Brundin P, Mundy W, Bal-Price AK, Schrattenholz A, Krause KH, van Thriel C, Rao MS, Kadereit S, Leist M. 2010. Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX 27:17-42.
Bellini A, Mattoli S. 2007. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858-870.
Bock P, Beineke A, Techangamsuwan S, Baumgärtner W, Wewetzer K. 2007. Differential expression of HNK-1 and p75(NTR) in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro. J Comp Neurol 505:572-585.
Vukovic J, Marmorstein LY, McLaughlin PJ, Sasaki T, Plant GW, Harvey AR, Ruitenberg MJ. 2009a. Lack of fibulin-3 alters regenerative tissue responses in the primary olfactory pathway. Matrix Biol 28:406-415.
Ulrich R, Seeliger F, Kreutzer M, Germann PG, Baumgärtner W. 2008. Limited remyelination in Theiler's murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)-positive putative oligodendroglial progenitor cells. Neuropathol Appl Neurobiol 34:603-620.
Gudiño-Cabrera G, Nieto-Sampedro M. 2000. Schwann-like macroglia in adult rat brain. Glia 30:49-63.
Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W. 2010. Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. J Cell Mol Med 14:434-448.
Jessen KR, Mirsky R. 2005. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671-682.
Vincent AJ, Taylor JM, Choi-Lundberg DL, West AK, Chuah MI. 2005. Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia 51:132-147.
Schwartz SM. 1999. The definition of cell type. Circ Res 84:1234-1235.
Techangamsuwan S, D'cundi EAO, Imbschweiler I, Gerhauser I, Wewetzer K, Baumgärtner W. 2011. Cell-cell interaction appears to represent a pivotal factor for susceptibility of adult canine Schwann cell-like brain glia to canine distemper virus infection in vitro. Thai J Vet Med 41:213-225.
Butte A. 2002. The use and analysis of microarray data. Nat Rev Drug Discov 1:951-960.
Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC. 2000. Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. J Neurosci Res 61:172-185.
Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 4:44-57.
Horresh I, Bar V, Kissil JL, Peles E. 2010. Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J Neurosci 30:2480-2489.
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J Neurosci 28:264-278.
Bartenhagen C, Klein HU, Ruckert C, Jiang X, Dugas M. 2010. Comparative study of unsupervised dimensio
2010; 11
2010; 14
2010; 107
2013; 61
2005; 338
2003; 271
2008; 34
2011; 59
2007; 505
2006; 177
2008; 1240
2010; 27
2010; 518
2012; 135
2009b; 57
2006; 22
2005; 102
2004; 36
2008; 28
2007; 8
2003; 162
1992; 47
2002; 309
2007; 2
2000; 123
2007; 3
1992; 49
2006; 326
2007; 67
2012; 21
2010; 30
2010; 6
2010; 38
1996; 17
2006; 53
2002; 1
2008; 56
2011; 4
2014; 40
2011; 6
2007; 99
2003; 31
2003; 32
2003; 34
1990; 3
2003; 184
2005; 6
2007; 87
2012; 46
2010; 52
2012; 40
2009; 106
2012; 60
2000; 6
2013; 23
2009; 160
2008; 9
1999; 84
2005; 22
2007; 134
2004; 131
2006; 67
2009a; 144
1996; 173
2011; 20
2000; 61
2003; 4
2009a; 28
2011; 27
2005; 38
2006; 126
2007; 23
2005; 33
2000; 28
2000; 25
2011; 31
2006; 8
2005; 438
2006
2006; 2
2005; 49
1839
1957; 3
2007; 114
2006; 81
2001; 81
2009b; 176
2011; 229
2013; 38
2012; 1
2000; 30
2005; 51
2011; 41
2009; 4
2011; 49
1993; 155
1987; 27
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
Techangamsuwan S (e_1_2_6_88_1) 2011; 41
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
Allison DB (e_1_2_6_2_1) 2006
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
Schwann T (e_1_2_6_79_1) 1839
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_61_1
e_1_2_6_101_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_103_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
Kuegler PB (e_1_2_6_53_1) 2010; 27
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – reference: Martinez FO, Gordon S, Locati M, Mantovani A. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303-7311.
– reference: Schwartz SM. 1999. The definition of cell type. Circ Res 84:1234-1235.
– reference: Jeffery ND, Lakatos A, Franklin RJ. 2005. Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma 22:1282-1293.
– reference: Russ J, Futschik ME. 2010. Comparison and consolidation of microarray data sets of human tissue expression. BMC Genomics 11:305.
– reference: Jen CH, Yang TP, Tung CY, Su SH, Lin CH, Hsu MT, Wang HW. 2008. Signature Evaluation Tool (SET): a Java-based tool to evaluate and visualize the sample discrimination abilities of gene expression signatures. BMC Bioinformatics 9:58.
– reference: Techangamsuwan S, Imbschweiler I, Kreutzer R, Kreutzer M, Baumgärtner W, Wewetzer K. 2008. Similar behaviour and primate-like properties of adult canine Schwann cells and olfactory ensheathing cells in long-term culture. Brain Res 1240:31-38.
– reference: Gao HW, He CY, Fang XD, Hou X, Feng XC, Yang H, Zhao XJ, Ma TH. 2006. Localization of aquaporin-1 water channel in glial cells of the human peripheral nervous system. Glia 53:783-787.
– reference: De Lorenzo AJ. 1957. Electron microscopic observations of the olfactory mucosa and olfactory nerve. J Biophys Biochem Cytol 3:839-850.
– reference: Vukovic J, Ruitenberg MJ, Roet K, Franssen E, Arulpragasam A, Sasaki T, Verhaagen J, Harvey AR, Busfield SJ, Plant GW. 2009b. The glycoprotein fibulin-3 regulates morphology and motility of olfactory ensheathing cells in vitro. Glia 57:424-443.
– reference: Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A. 2000. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6:568-572.
– reference: Franssen EH, De Bree FM, Essing AH, Ramón-Cueto A, Verhaagen J. 2008. Comparative gene expression profiling of olfactory ensheathing glia and Schwann cells indicates distinct tissue repair characteristics of olfactory ensheathing glia. Glia 56:1285-1298.
– reference: Horresh I, Bar V, Kissil JL, Peles E. 2010. Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J Neurosci 30:2480-2489.
– reference: Techangamsuwan S, D'cundi EAO, Imbschweiler I, Gerhauser I, Wewetzer K, Baumgärtner W. 2011. Cell-cell interaction appears to represent a pivotal factor for susceptibility of adult canine Schwann cell-like brain glia to canine distemper virus infection in vitro. Thai J Vet Med 41:213-225.
– reference: Ito D, Ibanez C, Ogawa H, Franklin RJ, Jeffery ND. 2006. Comparison of cell populations derived from canine olfactory bulb and olfactory mucosal cultures. Am J Vet Res 67:1050-1056.
– reference: Franceschini IA, Barnett SC. 1996. Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Dev Biol 173:327-343.
– reference: Bock P, Beineke A, Techangamsuwan S, Baumgärtner W, Wewetzer K. 2007. Differential expression of HNK-1 and p75(NTR) in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro. J Comp Neurol 505:572-585.
– reference: Lakatos A, Barnett SC, Franklin RJ. 2003. Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp Neurol 184:237-246.
– reference: Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, van de Rijn M, Botstein D, Brown PO, Pollack JR. 2005. A DNA microarray survey of gene expression in normal human tissues. Genome Biol 6:R22.
– reference: Schwann T. 1839. Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen. Berlin, Germany: Verlag der Sanderschen Buchhandlung.
– reference: Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J. 2003. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 34:374-378.
– reference: Phinney DG, Gray AJ, Hill K, Pandey A. 2005. Murine mesenchymal and embryonic stem cells express a similar Hox gene profile. Biochem Biophys Res Commun 338:1759-1765.
– reference: Zellmer S, Schmidt-Heck W, Godoy P, Weng H, Meyer C, Lehmann T, Sparna T, Schormann W, Hammad S, Kreutz C, Timmer J, von Weizsacker F, Thurmann PA, Merfort I, Guthke R, Dooley S, Hengstler JG, Gebhardt R. 2010. Transcription factors ETF, E2F, and SP-1 are involved in cytokine-independent proliferation of murine hepatocytes. Hepatology 52:2127-2136.
– reference: Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. J Neurosci 28:264-278.
– reference: Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. 2003. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol 4:P3.
– reference: Barnett SC, Hutchins AM, Noble M. 1993. Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev Biol 155:337-350.
– reference: Vukovic J, Marmorstein LY, McLaughlin PJ, Sasaki T, Plant GW, Harvey AR, Ruitenberg MJ. 2009a. Lack of fibulin-3 alters regenerative tissue responses in the primary olfactory pathway. Matrix Biol 28:406-415.
– reference: Techangamsuwan S, Kreutzer R, Kreutzer M, Imbschweiler I, Rohn K, Wewetzer K, Baumgärtner W. 2009b. Transfection of adult canine Schwann cells and olfactory ensheathing cells at early and late passage with human TERT differentially affects growth factor responsiveness and in vitro growth. J Neurosci Methods 176:112-120.
– reference: Katoh H, Shibata S, Fukuda K, Sato M, Satoh E, Nagoshi N, Minematsu T, Matsuzaki Y, Akazawa C, Toyama Y, Nakamura M, Okano H. 2011. The dual origin of the peripheral olfactory system: placode and neural crest. Mol Brain 4:34.
– reference: Franklin RJ, Gilson JM, Franceschini IA, Barnett SC. 1996. Schwann cell-like myelination following transplantation of an olfactory bulb-ensheathing cell line into areas of demyelination in the adult CNS. Glia 17:217-224.
– reference: Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD. 2005. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402-1416.
– reference: Bellini A, Mattoli S. 2007. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858-870.
– reference: Granger N, Blamires H, Franklin RJ, Jeffery ND. 2012. Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain 135:3227-3237.
– reference: Krudewig C, Deschl U, Wewetzer K. 2006. Purification and in vitro characterization of adult canine olfactory ensheathing cells. Cell Tissue Res 326:687-696.
– reference: Sherman BT, Huang da W, Tan Q, Guo Y, Bour S, Liu D, Stephens R, Baseler MW, Lane HC, Lempicki RA. 2007. DAVID Knowledgebase: A gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics 8:426.
– reference: Daga A, Podesta M, Capra MC, Piaggio G, Frassoni F, Corte G. 2000. The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors. Exp Hematol 28:569-574.
– reference: Techangamsuwan S, Haas L, Rohn K, Baumgärtner W, Wewetzer K. 2009a. Distinct cell tropism of canine distemper virus strains to adult olfactory ensheathing cells and Schwann cells in vitro. Virus Res 144:195-201.
– reference: Baron D, Bihouee A, Teusan R, Dubois E, Savagner F, Steenman M, Houlgatte R, Ramstein G. 2011. MADGene: Retrieval and processing of gene identifier lists for the analysis of heterogeneous microarray datasets. Bioinformatics 27:725-726.
– reference: Wewetzer K, Verdu E, Angelov DN, Navarro X. 2002. Olfactory ensheathing glia and Schwann cells: two of a kind? Cell Tissue Res 309:337-345.
– reference: Orlando EA, Imbschweiler I, Gerhauser I, Baumgärtner W, Wewetzer K. 2008. In vitro characterization and preferential infection by canine distemper virus of glial precursors with Schwann cell characteristics from adult canine brain. Neuropathol Appl Neurobiol 34:621-637.
– reference: Wewetzer K, Kern N, Ebel C, Radtke C, Brandes G. 2005. Phagocytosis of O4+ axonal fragments in vitro by p75- neonatal rat olfactory ensheathing cells. Glia 49:577-587.
– reference: Allison DB, Page GP, Beasley TM, Edwards JW. 2006. DNA microarrays and related genomics techniques: design, analysis, and interpretation of experiments. Boca Raton, FL: Chapman&Hall/CRC.
– reference: Ramón-Cueto A, Nieto-Sampedro M. 1992. Glial cells from adult rat olfactory bulb: Immunocytochemical properties of pure cultures of ensheathing cells. Neuroscience 47:213-220.
– reference: Roet KC, Bossers K, Franssen EH, Ruitenberg MJ, Verhaagen J. 2011. A meta-analysis of microarray-based gene expression studies of olfactory bulb-derived olfactory ensheathing cells. Exp Neurol 229:10-45.
– reference: Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J, Garcia F, Marba M, Montaner D, Dopazo J. 2010. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res 38:W210-W213.
– reference: Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676.
– reference: Vickaryous MK, Hall BK. 2006. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc 81:425-455.
– reference: Razavi S, Ahmadi N, Kazemi M, Mardani M, Esfandiari E. 2012. Efficient transdifferentiation of human adipose-derived stem cells into Schwann-like cells: A promise for treatment of demyelinating diseases. Adv Biomed Res 1:12.
– reference: Gudiño-Cabrera G, Nieto-Sampedro M. 2000. Schwann-like macroglia in adult rat brain. Glia 30:49-63.
– reference: Traka M, Goutebroze L, Denisenko N, Bessa M, Nifli A, Havaki S, Iwakura Y, Fukamauchi F, Watanabe K, Soliven B, Girault JA, Karagogeos D. 2003. Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J Cell Biol 162:1161-1172.
– reference: Bock P, Spitzbarth I, Haist V, Stein VM, Tipold A, Puff C, Beineke A, Baumgärtner W. 2013. Spatio-temporal development of axonopathy in canine intervertebral disc disease as a translational large animal model for nonexperimental spinal cord injury. Brain Pathol 23:82-99.
– reference: Hornshoj H, Conley LN, Hedegaard J, Sorensen P, Panitz F, Bendixen C. 2007. Microarray expression profiles of 20.000 genes across 23 healthy porcine tissues. PLoS One 2:e1203.
– reference: Sul JY, Wu CW, Zeng F, Jochems J, Lee MT, Kim TK, Peritz T, Buckley P, Cappelleri DJ, Maronski M, Kim M, Kumar V, Meaney D, Kim J, Eberwine J. 2009. Transcriptome transfer produces a predictable cellular phenotype. Proc Natl Acad Sci USA 106:7624-7629.
– reference: Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109-D114.
– reference: Brandt LE, Bohn AA, Charles JB, Ehrhart EJ. 2011. Localization of canine, feline, and mouse renal membrane proteins. Vet Pathol 49:693-703.
– reference: Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 4:44-57.
– reference: Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC. 2000. Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. J Neurosci Res 61:172-185.
– reference: Murdoch B, DelConte C, Garcia-Castro MI. 2010. Embryonic Pax7-expressing progenitors contribute multiple cell types to the postnatal olfactory epithelium. J Neurosci 30:9523-9532.
– reference: Wewetzer K, Radtke C, Kocsis J, Baumgärtner W. 2011. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol 229:80-87.
– reference: Hansmann F, Pringproa K, Ulrich R, Sun Y, Herder V, Kreutzer M, Baumgärtner W, Wewetzer K. 2012. Highly malignant behavior of a murine oligodendrocyte precursor cell line following transplantation into the demyelinated and nondemyelinated central nervous system. Cell Transplant 21:1161-1175.
– reference: Forni PE, Taylor-Burds C, Melvin VS, Williams T, Wray S. 2011. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J Neurosci 31:6915-6927.
– reference: Santos-Benito FF, Ramón-Cueto A. 2003. Olfactory ensheathing glia transplantation: A therapy to promote repair in the mammalian central nervous system. Anat Rec B New Anat 271:77-85.
– reference: Seehusen F, Orlando EA, Wewetzer K, Baumgärtner W. 2007. Vimentin-positive astrocytes in canine distemper: a target for canine distemper virus especially in chronic demyelinating lesions? Acta Neuropathol 114:597-608.
– reference: Manohar CF, Salwen HR, Furtado MR, Cohn SL. 1996. Up-regulation of HOXC6, HOXD1, and HOXD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation. Tumour Biol 17:34-47.
– reference: Kummerfeld M, Meens J, Haas L, Baumgärtner W, Beineke A. 2009. Generation and characterization of a polyclonal antibody for the detection of Theiler's murine encephalomyelitis virus by light and electron microscopy. J Virol Methods 160:185-188.
– reference: Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV. 2010. Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci USA 107:21040-21045.
– reference: Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari AK, Keefe D, Keenan S, Kinsella R, Komorowska M, Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M, Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovcova J, White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Durbin R, Fernandez-Suarez XM, Harrow J, Herrero J, Hubbard TJ, Parker A, Proctor G, Spudich G, Vogel J, Yates A, Zadissa A, Searle SM. 2012. Ensembl 2012. Nucleic Acids Res 40:D84-90.
– reference: Ebel C, Brandes G, Radtke C, Rohn K, Wewetzer K. 2013. Clonal in vitro analysis of neurotrophin receptor p75-immunofluorescent cells reveals phenotypic plasticity of primary rat olfactory ensheathing cells. Neurochem Res 38:1078-1087.
– reference: Leek JT, Monsen E, Dabney AR, Storey JD. 2006. EDGE: Extraction and analysis of differential gene expression. Bioinformatics 22:507-508.
– reference: Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, Valmeekam V, Sun S, Kulp D, Siani-Rose MA. 2003. NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 31:82-86.
– reference: Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29.
– reference: Doucette R. 1990. Glial influences on axonal growth in the primary olfactory system. Glia 3:433-449.
– reference: Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274-288.
– reference: Joseph NM, Mukouyama YS, Mosher JT, Jaegle M, Crone SA, Dormand EL, Lee KF, Meijer D, Anderson DJ, Morrison SJ. 2004. Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells. Development 131:5599-5612.
– reference: Shields SD, Moore KD, Phelps PE, Basbaum AI. 2010. Olfactory ensheathing glia express aquaporin 1. J Comp Neurol 518:4329-4341.
– reference: Hoffmann R, Valencia A. 2004. A gene network for navigating the literature. Nat Genet 36:664.
– reference: Barnett SC, Alexander CL, Iwashita Y, Gilson JM, Crowther J, Clark L, Dunn LT, Papanastassiou V, Kennedy PG, Franklin RJ. 2000. Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 123:1581-1588.
– reference: Nakamura T, Fidler IJ, Coombes KR. 2007. Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment. Cancer Res 67:139-148.
– reference: Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie XH, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, deJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SMJ, Sutter NB, Thomas R, Webber C, Lander ES, Plat BIGS. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803-819.
– reference: Medina I, Montaner D, Tarraga J, Dopazo J. 2007. Prophet, a web-based tool for class prediction using microarray data. Bioinformatics 23:390-391.
– reference: Lankford KL, Sasaki M, Radtke C, Kocsis JD. 2008. Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X-irradiated spinal cord not shared by Schwann cells. Glia 56:1664-1678.
– reference: Kueh JL, Raisman G, Li Y, Stevens R, Li D. 2011. Comparison of bulbar and mucosal olfactory ensheathing cells using FACS and simultaneous antigenic bivariate cell cycle analysis. Glia 59:1658-1671.
– reference: Ulrich R, Seeliger F, Kreutzer M, Germann PG, Baumgärtner W. 2008. Limited remyelination in Theiler's murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)-positive putative oligodendroglial progenitor cells. Neuropathol Appl Neurobiol 34:603-620.
– reference: Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW. 2005. Significance analysis of time course microarray experiments. Proc Natl Acad Sci USA 102:12837-12842.
– reference: Niwa H. 2007. How is pluripotency determined and maintained? Development 134:635-646.
– reference: Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315-317.
– reference: Field P, Li Y, Raisman G. 2003. Ensheathment of the olfactory nerves in the adult rat. J Neurocytol 32:317-324.
– reference: Radtke C, Wewetzer K, Reimers K, Vogt PM. 2011. Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury. Cell Transplant 20:145-152.
– reference: Matsuzaki T, Ablimit A, Tajika Y, Suzuki T, Aoki T, Hagiwara H, Takata K. 2005. Water channel aquaporin 1 (AQP1) is present in the perineurium and perichondrium. Acta Histochem Cytochem 38:37-42.
– reference: Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W. 2010. Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. J Cell Mol Med 14:434-448.
– reference: Forni PE, Wray S. 2012. Neural crest and olfactory system: new prospective. Mol Neurobiol 46:349-360.
– reference: Dron M, Bailly Y, Beringue V, Haeberle AM, Griffond B, Risold PY, Tovey MG, Laude H, Dandoy-Dron F. 2006. SCRG1, a potential marker of autophagy in transmissible spongiform encephalopathies. Autophagy 2:58-60.
– reference: Baumgärtner W, Krakowka S, Blakeslee JR. 1987. Persistent infection of Vero cells by paramyxoviruses. A morphological and immunoelectron microscopic investigation. Intervirology 27:218-223.
– reference: Kuegler PB, Zimmer B, Waldmann T, Baudis B, Ilmjarv S, Hescheler J, Gaughwin P, Brundin P, Mundy W, Bal-Price AK, Schrattenholz A, Krause KH, van Thriel C, Rao MS, Kadereit S, Leist M. 2010. Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX 27:17-42.
– reference: Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M, Rowitch DH, Kessaris N, Suter U, Richardson WD, Franklin RJM. 2010. CNS-resident glial progenitor/stem cells produce schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578-590.
– reference: Baumann N, Pham-Dinh D. 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871-927.
– reference: Liu Q, Spusta SC, Mi R, Lassiter RN, Stark MR, Hoke A, Rao MS, Zeng X. 2012. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: Induction, maintenance, and differentiation into functional Schwann cells. Stem Cells Transl Med 1:266-278.
– reference: Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP. 2012. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717-727.
– reference: Dupuy A, Simon RM. 2007. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99:147-157.
– reference: Barnett SC, Riddell JS. 2007. Olfactory ensheathing cell transplantation as a strategy for spinal cord repair What can it achieve? Nat Clin Pract Neurol 3:152-161.
– reference: Valverde F, Santacana M, Heredia M. 1992. Formation of an olfactory glomerulus - Morphological aspects of development and organization. Neuroscience 49:255-275.
– reference: Briggs J, Paoloni M, Chen QR, Wen X, Khan J, Khanna C. 2011. A compendium of canine normal tissue gene expression. PLoS One 6:e17107.
– reference: Butte A. 2002. The use and analysis of microarray data. Nat Rev Drug Discov 1:951-960.
– reference: Jessen KR, Mirsky R. 2005. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671-682.
– reference: Vincent AJ, Taylor JM, Choi-Lundberg DL, West AK, Chuah MI. 2005. Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia 51:132-147.
– reference: Bartenhagen C, Klein HU, Ruckert C, Jiang X, Dugas M. 2010. Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data. BMC Bioinformatics 11:567.
– reference: Toft A, Tome M, Barnett SC, Riddell JS. 2013. A comparative study of glial and non-neural cell properties for transplant-mediated repair of the injured spinal cord. Glia 61:513-528.
– reference: Imbschweiler I, Seehusen F, Peck CT, Omar M, Baumgärtner W, Wewetzer K. 2012. Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage. Glia 60:358-371.
– volume: 11
  start-page: 567
  year: 2010
  article-title: Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data
  publication-title: BMC Bioinformatics
– volume: 2
  start-page: 58
  year: 2006
  end-page: 60
  article-title: SCRG1, a potential marker of autophagy in transmissible spongiform encephalopathies
  publication-title: Autophagy
– volume: 34
  start-page: 603
  year: 2008
  end-page: 620
  article-title: Limited remyelination in Theiler's murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)‐positive putative oligodendroglial progenitor cells
  publication-title: Neuropathol Appl Neurobiol
– volume: 102
  start-page: 12837
  year: 2005
  end-page: 12842
  article-title: Significance analysis of time course microarray experiments
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 839
  year: 1957
  end-page: 850
  article-title: Electron microscopic observations of the olfactory mucosa and olfactory nerve
  publication-title: J Biophys Biochem Cytol
– volume: 27
  start-page: 17
  year: 2010
  end-page: 42
  article-title: Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing
  publication-title: ALTEX
– volume: 106
  start-page: 7624
  year: 2009
  end-page: 7629
  article-title: Transcriptome transfer produces a predictable cellular phenotype
  publication-title: Proc Natl Acad Sci USA
– volume: 51
  start-page: 132
  year: 2005
  end-page: 147
  article-title: Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes
  publication-title: Glia
– volume: 49
  start-page: 255
  year: 1992
  end-page: 275
  article-title: Formation of an olfactory glomerulus ‐ Morphological aspects of development and organization
  publication-title: Neuroscience
– volume: 38
  start-page: W210
  year: 2010
  end-page: W213
  article-title: Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling
  publication-title: Nucleic Acids Res
– volume: 57
  start-page: 424
  year: 2009b
  end-page: 443
  article-title: The glycoprotein fibulin‐3 regulates morphology and motility of olfactory ensheathing cells in vitro
  publication-title: Glia
– volume: 123
  start-page: 1581
  year: 2000
  end-page: 1588
  article-title: Identification of a human olfactory ensheathing cell that can effect transplant‐mediated remyelination of demyelinated CNS axons
  publication-title: Brain
– volume: 81
  start-page: 425
  year: 2006
  end-page: 455
  article-title: Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest
  publication-title: Biol Rev Camb Philos Soc
– volume: 177
  start-page: 7303
  year: 2006
  end-page: 7311
  article-title: Transcriptional profiling of the human monocyte‐to‐macrophage differentiation and polarization: new molecules and patterns of gene expression
  publication-title: J Immunol
– volume: 22
  start-page: 1282
  year: 2005
  end-page: 1293
  article-title: Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury
  publication-title: J Neurotrauma
– volume: 61
  start-page: 172
  year: 2000
  end-page: 185
  article-title: Comparison of neuregulin‐1 expression in olfactory ensheathing cells, Schwann cells and astrocytes
  publication-title: J Neurosci Res
– volume: 31
  start-page: 82
  year: 2003
  end-page: 86
  article-title: NetAffx: Affymetrix probesets and annotations
  publication-title: Nucleic Acids Res
– volume: 3
  start-page: 152
  year: 2007
  end-page: 161
  article-title: Olfactory ensheathing cell transplantation as a strategy for spinal cord repair What can it achieve?
  publication-title: Nat Clin Pract Neurol
– volume: 28
  start-page: 406
  year: 2009a
  end-page: 415
  article-title: Lack of fibulin‐3 alters regenerative tissue responses in the primary olfactory pathway
  publication-title: Matrix Biol
– volume: 338
  start-page: 1759
  year: 2005
  end-page: 1765
  article-title: Murine mesenchymal and embryonic stem cells express a similar Hox gene profile
  publication-title: Biochem Biophys Res Commun
– volume: 49
  start-page: 693
  year: 2011
  end-page: 703
  article-title: Localization of canine, feline, and mouse renal membrane proteins
  publication-title: Vet Pathol
– volume: 1240
  start-page: 31
  year: 2008
  end-page: 38
  article-title: Similar behaviour and primate‐like properties of adult canine Schwann cells and olfactory ensheathing cells in long‐term culture
  publication-title: Brain Res
– volume: 14
  start-page: 434
  year: 2010
  end-page: 448
  article-title: Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis
  publication-title: J Cell Mol Med
– volume: 6
  start-page: R22
  year: 2005
  article-title: A DNA microarray survey of gene expression in normal human tissues
  publication-title: Genome Biol
– volume: 438
  start-page: 803
  year: 2005
  end-page: 819
  article-title: Genome sequence, comparative analysis and haplotype structure of the domestic dog
  publication-title: Nature
– volume: 326
  start-page: 687
  year: 2006
  end-page: 696
  article-title: Purification and in vitro characterization of adult canine olfactory ensheathing cells
  publication-title: Cell Tissue Res
– volume: 30
  start-page: 2480
  year: 2010
  end-page: 2489
  article-title: Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B
  publication-title: J Neurosci
– volume: 126
  start-page: 663
  year: 2006
  end-page: 676
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
  publication-title: Cell
– volume: 67
  start-page: 1050
  year: 2006
  end-page: 1056
  article-title: Comparison of cell populations derived from canine olfactory bulb and olfactory mucosal cultures
  publication-title: Am J Vet Res
– volume: 60
  start-page: 717
  year: 2012
  end-page: 727
  article-title: Comparison of polarization properties of human adult microglia and blood‐derived macrophages
  publication-title: Glia
– volume: 49
  start-page: 577
  year: 2005
  end-page: 587
  article-title: Phagocytosis of O4+ axonal fragments in vitro by p75‐ neonatal rat olfactory ensheathing cells
  publication-title: Glia
– volume: 2
  start-page: e1203
  year: 2007
  article-title: Microarray expression profiles of 20.000 genes across 23 healthy porcine tissues
  publication-title: PLoS One
– volume: 23
  start-page: 390
  year: 2007
  end-page: 391
  article-title: Prophet, a web‐based tool for class prediction using microarray data
  publication-title: Bioinformatics
– year: 1839
– volume: 28
  start-page: 264
  year: 2008
  end-page: 278
  article-title: A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function
  publication-title: J Neurosci
– volume: 114
  start-page: 597
  year: 2007
  end-page: 608
  article-title: Vimentin‐positive astrocytes in canine distemper: a target for canine distemper virus especially in chronic demyelinating lesions?
  publication-title: Acta Neuropathol
– volume: 144
  start-page: 195
  year: 2009a
  end-page: 201
  article-title: Distinct cell tropism of canine distemper virus strains to adult olfactory ensheathing cells and Schwann cells in vitro
  publication-title: Virus Res
– volume: 17
  start-page: 217
  year: 1996
  end-page: 224
  article-title: Schwann cell‐like myelination following transplantation of an olfactory bulb‐ensheathing cell line into areas of demyelination in the adult CNS
  publication-title: Glia
– volume: 184
  start-page: 237
  year: 2003
  end-page: 246
  article-title: Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter
  publication-title: Exp Neurol
– volume: 23
  start-page: 82
  year: 2013
  end-page: 99
  article-title: Spatio‐temporal development of axonopathy in canine intervertebral disc disease as a translational large animal model for nonexperimental spinal cord injury
  publication-title: Brain Pathol
– volume: 1
  start-page: 12
  year: 2012
  article-title: Efficient transdifferentiation of human adipose‐derived stem cells into Schwann‐like cells: A promise for treatment of demyelinating diseases
  publication-title: Adv Biomed Res
– volume: 3
  start-page: 433
  year: 1990
  end-page: 449
  article-title: Glial influences on axonal growth in the primary olfactory system
  publication-title: Glia
– volume: 6
  start-page: e17107
  year: 2011
  article-title: A compendium of canine normal tissue gene expression
  publication-title: PLoS One
– volume: 8
  start-page: 426
  year: 2007
  article-title: DAVID Knowledgebase: A gene‐centered database integrating heterogeneous gene annotation resources to facilitate high‐throughput gene functional analysis
  publication-title: BMC Bioinformatics
– volume: 131
  start-page: 5599
  year: 2004
  end-page: 5612
  article-title: Neural crest stem cells undergo multilineage differentiation in developing peripheral nerves to generate endoneurial fibroblasts in addition to Schwann cells
  publication-title: Development
– volume: 17
  start-page: 34
  year: 1996
  end-page: 47
  article-title: Up‐regulation of HOXC6, HOXD1, and HOXD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation
  publication-title: Tumour Biol
– volume: 33
  start-page: 1402
  year: 2005
  end-page: 1416
  article-title: Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood
  publication-title: Exp Hematol
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  article-title: Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium
  publication-title: Nat Genet
– volume: 99
  start-page: 147
  year: 2007
  end-page: 157
  article-title: Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
  publication-title: J Natl Cancer Inst
– volume: 1
  start-page: 266
  year: 2012
  end-page: 278
  article-title: Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: Induction, maintenance, and differentiation into functional Schwann cells
  publication-title: Stem Cells Transl Med
– volume: 9
  start-page: 58
  year: 2008
  article-title: Signature Evaluation Tool (SET): a Java‐based tool to evaluate and visualize the sample discrimination abilities of gene expression signatures
  publication-title: BMC Bioinformatics
– volume: 56
  start-page: 1285
  year: 2008
  end-page: 1298
  article-title: Comparative gene expression profiling of olfactory ensheathing glia and Schwann cells indicates distinct tissue repair characteristics of olfactory ensheathing glia
  publication-title: Glia
– volume: 34
  start-page: 374
  year: 2003
  end-page: 378
  article-title: TM4: A free, open‐source system for microarray data management and analysis
  publication-title: Biotechniques
– volume: 6
  start-page: 671
  year: 2005
  end-page: 682
  article-title: The origin and development of glial cells in peripheral nerves
  publication-title: Nat Rev Neurosci
– volume: 20
  start-page: 145
  year: 2011
  end-page: 152
  article-title: Transplantation of olfactory ensheathing cells as adjunct cell therapy for peripheral nerve injury
  publication-title: Cell Transplant
– volume: 36
  start-page: 664
  year: 2004
  article-title: A gene network for navigating the literature
  publication-title: Nat Genet
– volume: 135
  start-page: 3227
  year: 2012
  end-page: 3237
  article-title: Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double‐blinded trial in a canine translational model
  publication-title: Brain
– volume: 30
  start-page: 49
  year: 2000
  end-page: 63
  article-title: Schwann‐like macroglia in adult rat brain
  publication-title: Glia
– volume: 229
  start-page: 80
  year: 2011
  end-page: 87
  article-title: Species‐specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair
  publication-title: Exp Neurol
– volume: 52
  start-page: 2127
  year: 2010
  end-page: 2136
  article-title: Transcription factors ETF, E2F, and SP‐1 are involved in cytokine‐independent proliferation of murine hepatocytes
  publication-title: Hepatology
– volume: 40
  start-page: D109
  year: 2012
  end-page: D114
  article-title: KEGG for integration and interpretation of large‐scale molecular data sets
  publication-title: Nucleic Acids Res
– volume: 28
  start-page: 569
  year: 2000
  end-page: 574
  article-title: The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors
  publication-title: Exp Hematol
– volume: 27
  start-page: 218
  year: 1987
  end-page: 223
  article-title: Persistent infection of Vero cells by paramyxoviruses. A morphological and immunoelectron microscopic investigation
  publication-title: Intervirology
– volume: 1
  start-page: 951
  year: 2002
  end-page: 960
  article-title: The use and analysis of microarray data
  publication-title: Nat Rev Drug Discov
– volume: 4
  start-page: P3
  year: 2003
  article-title: DAVID: Database for annotation, visualization, and integrated discovery
  publication-title: Genome Biol
– volume: 134
  start-page: 635
  year: 2007
  end-page: 646
  article-title: How is pluripotency determined and maintained?
  publication-title: Development
– volume: 22
  start-page: 507
  year: 2006
  end-page: 508
  article-title: EDGE: Extraction and analysis of differential gene expression
  publication-title: Bioinformatics
– volume: 107
  start-page: 21040
  year: 2010
  end-page: 21045
  article-title: Neural crest origin of olfactory ensheathing glia
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 6915
  year: 2011
  end-page: 6927
  article-title: Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH‐1 neurons, sensory neurons, and olfactory ensheathing cells
  publication-title: J Neurosci
– volume: 173
  start-page: 327
  year: 1996
  end-page: 343
  article-title: Low‐affinity NGF‐receptor and E‐N‐CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage
  publication-title: Dev Biol
– volume: 56
  start-page: 1664
  year: 2008
  end-page: 1678
  article-title: Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X‐irradiated spinal cord not shared by Schwann cells
  publication-title: Glia
– volume: 40
  start-page: 274
  year: 2014
  end-page: 288
  article-title: Transcriptome‐based network analysis reveals a spectrum model of human macrophage activation
  publication-title: Immunity
– volume: 67
  start-page: 139
  year: 2007
  end-page: 148
  article-title: Gene expression profile of metastatic human pancreatic cancer cells depends on the organ microenvironment
  publication-title: Cancer Res
– volume: 11
  start-page: 305
  year: 2010
  article-title: Comparison and consolidation of microarray data sets of human tissue expression
  publication-title: BMC Genomics
– volume: 271
  start-page: 77
  year: 2003
  end-page: 85
  article-title: Olfactory ensheathing glia transplantation: A therapy to promote repair in the mammalian central nervous system
  publication-title: Anat Rec B New Anat
– volume: 59
  start-page: 1658
  year: 2011
  end-page: 1671
  article-title: Comparison of bulbar and mucosal olfactory ensheathing cells using FACS and simultaneous antigenic bivariate cell cycle analysis
  publication-title: Glia
– volume: 6
  start-page: 568
  year: 2000
  end-page: 572
  article-title: Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin‐induced hyperglycemia
  publication-title: Nat Med
– volume: 40
  start-page: D84
  year: 2012
  end-page: 90
  article-title: Ensembl 2012
  publication-title: Nucleic Acids Res
– volume: 34
  start-page: 621
  year: 2008
  end-page: 637
  article-title: In vitro characterization and preferential infection by canine distemper virus of glial precursors with Schwann cell characteristics from adult canine brain
  publication-title: Neuropathol Appl Neurobiol
– volume: 47
  start-page: 213
  year: 1992
  end-page: 220
  article-title: Glial cells from adult rat olfactory bulb: Immunocytochemical properties of pure cultures of ensheathing cells
  publication-title: Neuroscience
– volume: 30
  start-page: 9523
  year: 2010
  end-page: 9532
  article-title: Embryonic Pax7‐expressing progenitors contribute multiple cell types to the postnatal olfactory epithelium
  publication-title: J Neurosci
– volume: 81
  start-page: 871
  year: 2001
  end-page: 927
  article-title: Biology of oligodendrocyte and myelin in the mammalian central nervous system
  publication-title: Physiol Rev
– volume: 38
  start-page: 1078
  year: 2013
  end-page: 1087
  article-title: Clonal in vitro analysis of neurotrophin receptor p75‐immunofluorescent cells reveals phenotypic plasticity of primary rat olfactory ensheathing cells
  publication-title: Neurochem Res
– volume: 46
  start-page: 349
  year: 2012
  end-page: 360
  article-title: Neural crest and olfactory system: new prospective
  publication-title: Mol Neurobiol
– volume: 160
  start-page: 185
  year: 2009
  end-page: 188
  article-title: Generation and characterization of a polyclonal antibody for the detection of Theiler's murine encephalomyelitis virus by light and electron microscopy
  publication-title: J Virol Methods
– volume: 309
  start-page: 337
  year: 2002
  end-page: 345
  article-title: Olfactory ensheathing glia and Schwann cells: two of a kind?
  publication-title: Cell Tissue Res
– volume: 8
  start-page: 315
  year: 2006
  end-page: 317
  article-title: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement
  publication-title: Cytotherapy
– volume: 41
  start-page: 213
  year: 2011
  end-page: 225
  article-title: Cell‐cell interaction appears to represent a pivotal factor for susceptibility of adult canine Schwann cell‐like brain glia to canine distemper virus infection in vitro
  publication-title: Thai J Vet Med
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat Protocols
– volume: 229
  start-page: 10
  year: 2011
  end-page: 45
  article-title: A meta‐analysis of microarray‐based gene expression studies of olfactory bulb‐derived olfactory ensheathing cells
  publication-title: Exp Neurol
– volume: 87
  start-page: 858
  year: 2007
  end-page: 870
  article-title: The role of the fibrocyte, a bone marrow‐derived mesenchymal progenitor, in reactive and reparative fibroses
  publication-title: Lab Invest
– volume: 518
  start-page: 4329
  year: 2010
  end-page: 4341
  article-title: Olfactory ensheathing glia express aquaporin 1
  publication-title: J Comp Neurol
– volume: 155
  start-page: 337
  year: 1993
  end-page: 350
  article-title: Purification of olfactory nerve ensheathing cells from the olfactory bulb
  publication-title: Dev Biol
– volume: 176
  start-page: 112
  year: 2009b
  end-page: 120
  article-title: Transfection of adult canine Schwann cells and olfactory ensheathing cells at early and late passage with human TERT differentially affects growth factor responsiveness and in vitro growth
  publication-title: J Neurosci Methods
– volume: 84
  start-page: 1234
  year: 1999
  end-page: 1235
  article-title: The definition of cell type
  publication-title: Circ Res
– volume: 32
  start-page: 317
  year: 2003
  end-page: 324
  article-title: Ensheathment of the olfactory nerves in the adult rat
  publication-title: J Neurocytol
– volume: 6
  start-page: 578
  year: 2010
  end-page: 590
  article-title: CNS‐resident glial progenitor/stem cells produce schwann cells as well as oligodendrocytes during repair of CNS demyelination
  publication-title: Cell Stem Cell
– volume: 162
  start-page: 1161
  year: 2003
  end-page: 1172
  article-title: Association of TAG‐1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers
  publication-title: J Cell Biol
– volume: 27
  start-page: 725
  year: 2011
  end-page: 726
  article-title: MADGene: Retrieval and processing of gene identifier lists for the analysis of heterogeneous microarray datasets
  publication-title: Bioinformatics
– volume: 60
  start-page: 358
  year: 2012
  end-page: 371
  article-title: Increased p75 neurotrophin receptor expression in the canine distemper virus model of multiple sclerosis identifies aldynoglial Schwann cells that emerge in response to axonal damage
  publication-title: Glia
– volume: 505
  start-page: 572
  year: 2007
  end-page: 585
  article-title: Differential expression of HNK‐1 and p75(NTR) in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro
  publication-title: J Comp Neurol
– volume: 21
  start-page: 1161
  year: 2012
  end-page: 1175
  article-title: Highly malignant behavior of a murine oligodendrocyte precursor cell line following transplantation into the demyelinated and nondemyelinated central nervous system
  publication-title: Cell Transplant
– volume: 4
  start-page: 34
  year: 2011
  article-title: The dual origin of the peripheral olfactory system: placode and neural crest
  publication-title: Mol Brain
– volume: 53
  start-page: 783
  year: 2006
  end-page: 787
  article-title: Localization of aquaporin‐1 water channel in glial cells of the human peripheral nervous system
  publication-title: Glia
– year: 2006
– volume: 61
  start-page: 513
  year: 2013
  end-page: 528
  article-title: A comparative study of glial and non‐neural cell properties for transplant‐mediated repair of the injured spinal cord
  publication-title: Glia
– volume: 38
  start-page: 37
  year: 2005
  end-page: 42
  article-title: Water channel aquaporin 1 (AQP1) is present in the perineurium and perichondrium
  publication-title: Acta Histochem Cytochem
– ident: e_1_2_6_72_1
  doi: 10.3727/096368910X522081
– ident: e_1_2_6_65_1
  doi: 10.1093/nar/gkq388
– ident: e_1_2_6_12_1
  doi: 10.1038/labinvest.3700654
– volume-title: Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen
  year: 1839
  ident: e_1_2_6_79_1
– ident: e_1_2_6_31_1
  doi: 10.1523/JNEUROSCI.6087-10.2011
– ident: e_1_2_6_97_1
  doi: 10.1016/0306-4522(92)90094-I
– ident: e_1_2_6_61_1
  doi: 10.5966/sctm.2011-0042
– ident: e_1_2_6_30_1
  doi: 10.1093/nar/gkr991
– ident: e_1_2_6_15_1
  doi: 10.1177/0300985811410720
– ident: e_1_2_6_3_1
  doi: 10.1038/75556
– ident: e_1_2_6_106_1
  doi: 10.1016/j.immuni.2014.01.006
– ident: e_1_2_6_66_1
  doi: 10.1093/bioinformatics/btl602
– ident: e_1_2_6_23_1
  doi: 10.1002/glia.440030602
– ident: e_1_2_6_75_1
  doi: 10.1016/j.expneurol.2011.03.001
– ident: e_1_2_6_62_1
  doi: 10.1159/000217965
– ident: e_1_2_6_84_1
  doi: 10.1186/gb-2005-6-3-r22
– ident: e_1_2_6_5_1
  doi: 10.1006/dbio.1993.1033
– ident: e_1_2_6_42_1
  doi: 10.1523/JNEUROSCI.5225-09.2010
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.1012248107
– ident: e_1_2_6_47_1
  doi: 10.1186/1471-2105-9-58
– ident: e_1_2_6_101_1
  doi: 10.1002/glia.20771
– ident: e_1_2_6_39_1
  doi: 10.3727/096368911X627444
– ident: e_1_2_6_7_1
  doi: 10.1093/bioinformatics/btq710
– ident: e_1_2_6_94_1
  doi: 10.1083/jcb.200305078
– ident: e_1_2_6_105_1
  doi: 10.1007/s00441-002-0607-y
– ident: e_1_2_6_71_1
  doi: 10.1016/j.bbrc.2005.10.140
– ident: e_1_2_6_93_1
  doi: 10.1002/glia.22452
– ident: e_1_2_6_20_1
  doi: 10.1083/jcb.3.6.839
– ident: e_1_2_6_70_1
  doi: 10.1111/j.1365-2990.2008.00958.x
– ident: e_1_2_6_51_1
  doi: 10.1186/1756-6606-4-34
– ident: e_1_2_6_28_1
  doi: 10.1038/75050
– ident: e_1_2_6_83_1
  doi: 10.1002/cne.22459
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1750-3639.2012.00617.x
– ident: e_1_2_6_103_1
  doi: 10.1002/glia.20149
– ident: e_1_2_6_43_1
  doi: 10.1038/nprot.2008.211
– ident: e_1_2_6_52_1
  doi: 10.1007/s00441-006-0238-9
– ident: e_1_2_6_26_1
  doi: 10.1002/glia.22298
– ident: e_1_2_6_24_1
  doi: 10.4161/auto.2228
– ident: e_1_2_6_17_1
  doi: 10.1038/nrd961
– ident: e_1_2_6_22_1
  doi: 10.1080/14653240600855905
– ident: e_1_2_6_36_1
  doi: 10.1002/glia.20336
– ident: e_1_2_6_98_1
  doi: 10.1017/S1464793106007068
– ident: e_1_2_6_104_1
  doi: 10.1016/j.expneurol.2010.08.029
– ident: e_1_2_6_81_1
  doi: 10.1007/s00401-007-0307-5
– ident: e_1_2_6_80_1
  doi: 10.1161/01.RES.84.10.1234
– ident: e_1_2_6_96_1
  doi: 10.1111/j.1365-2990.2008.00956.x
– ident: e_1_2_6_27_1
  doi: 10.1007/s11064-013-1023-2
– ident: e_1_2_6_38_1
  doi: 10.1002/(SICI)1098-1136(200003)30:1<49::AID-GLIA6>3.0.CO;2-M
– ident: e_1_2_6_68_1
  doi: 10.1158/0008-5472.CAN-06-2563
– ident: e_1_2_6_49_1
  doi: 10.1242/dev.01429
– ident: e_1_2_6_29_1
  doi: 10.1023/B:NEUR.0000010089.37032.48
– ident: e_1_2_6_34_1
  doi: 10.1002/(SICI)1098-1136(199607)17:3<217::AID-GLIA4>3.0.CO;2-Y
– ident: e_1_2_6_50_1
  doi: 10.1093/nar/gkr988
– ident: e_1_2_6_78_1
  doi: 10.1002/ar.b.10015
– ident: e_1_2_6_102_1
  doi: 10.1016/j.exphem.2005.07.003
– ident: e_1_2_6_41_1
  doi: 10.1371/journal.pone.0001203
– ident: e_1_2_6_85_1
  doi: 10.1073/pnas.0504609102
– volume-title: DNA microarrays and related genomics techniques: design, analysis, and interpretation of experiments
  year: 2006
  ident: e_1_2_6_2_1
– ident: e_1_2_6_90_1
  doi: 10.1016/j.brainres.2008.08.092
– ident: e_1_2_6_44_1
  doi: 10.1002/glia.22270
– ident: e_1_2_6_59_1
  doi: 10.1046/j.0962-1083.2001.01452.x
– volume: 41
  start-page: 213
  year: 2011
  ident: e_1_2_6_88_1
  article-title: Cell‐cell interaction appears to represent a pivotal factor for susceptibility of adult canine Schwann cell‐like brain glia to canine distemper virus infection in vitro
  publication-title: Thai J Vet Med
  doi: 10.56808/2985-1130.2299
– ident: e_1_2_6_19_1
  doi: 10.1016/S0301-472X(00)00135-1
– ident: e_1_2_6_69_1
  doi: 10.1242/dev.02787
– ident: e_1_2_6_35_1
  doi: 10.1002/glia.20697
– ident: e_1_2_6_63_1
  doi: 10.4049/jimmunol.177.10.7303
– ident: e_1_2_6_86_1
  doi: 10.1073/pnas.0902161106
– ident: e_1_2_6_100_1
  doi: 10.1016/j.matbio.2009.06.001
– ident: e_1_2_6_67_1
  doi: 10.1523/JNEUROSCI.0867-10.2010
– ident: e_1_2_6_4_1
  doi: 10.1093/brain/123.8.1581
– ident: e_1_2_6_9_1
  doi: 10.1186/1471-2105-11-567
– ident: e_1_2_6_45_1
  doi: 10.2460/ajvr.67.6.1050
– ident: e_1_2_6_60_1
  doi: 10.1093/nar/gkg121
– ident: e_1_2_6_82_1
  doi: 10.1186/1471-2105-8-426
– ident: e_1_2_6_32_1
  doi: 10.1007/s12035-012-8286-5
– ident: e_1_2_6_64_1
  doi: 10.1267/ahc.38.37
– ident: e_1_2_6_95_1
  doi: 10.1111/j.1582-4934.2008.00646.x
– ident: e_1_2_6_91_1
  doi: 10.1016/j.jneumeth.2008.08.030
– ident: e_1_2_6_77_1
  doi: 10.2144/03342mt01
– ident: e_1_2_6_37_1
  doi: 10.1093/brain/aws268
– ident: e_1_2_6_92_1
  doi: 10.1002/1097-4547(20000715)61:2<172::AID-JNR8>3.0.CO;2-C
– ident: e_1_2_6_58_1
  doi: 10.1093/bioinformatics/btk005
– ident: e_1_2_6_99_1
  doi: 10.1002/glia.20195
– ident: e_1_2_6_6_1
  doi: 10.1038/ncpneuro0447
– ident: e_1_2_6_87_1
  doi: 10.1016/j.cell.2006.07.024
– ident: e_1_2_6_11_1
  doi: 10.1159/000149987
– ident: e_1_2_6_40_1
  doi: 10.1038/ng0704-664
– ident: e_1_2_6_18_1
  doi: 10.1523/JNEUROSCI.4178-07.2008
– ident: e_1_2_6_46_1
  doi: 10.1089/neu.2005.22.1282
– ident: e_1_2_6_73_1
  doi: 10.1016/0306-4522(92)90134-N
– ident: e_1_2_6_57_1
  doi: 10.1002/glia.20718
– ident: e_1_2_6_74_1
  doi: 10.4103/2277-9175.96067
– ident: e_1_2_6_21_1
  doi: 10.1186/gb-2003-4-5-p3
– ident: e_1_2_6_33_1
  doi: 10.1006/dbio.1996.0027
– ident: e_1_2_6_76_1
  doi: 10.1186/1471-2164-11-305
– ident: e_1_2_6_13_1
  doi: 10.1002/cne.21519
– ident: e_1_2_6_56_1
  doi: 10.1016/S0014-4886(03)00270-X
– ident: e_1_2_6_48_1
  doi: 10.1038/nrn1746
– ident: e_1_2_6_107_1
  doi: 10.1016/j.stem.2010.04.002
– ident: e_1_2_6_25_1
  doi: 10.1093/jnci/djk018
– ident: e_1_2_6_89_1
  doi: 10.1016/j.virusres.2009.04.027
– ident: e_1_2_6_16_1
  doi: 10.1371/journal.pone.0017107
– volume: 27
  start-page: 17
  year: 2010
  ident: e_1_2_6_53_1
  article-title: Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing
  publication-title: ALTEX
– ident: e_1_2_6_55_1
  doi: 10.1016/j.jviromet.2009.04.030
– ident: e_1_2_6_108_1
  doi: 10.1002/hep.23930
– ident: e_1_2_6_10_1
  doi: 10.1152/physrev.2001.81.2.871
– ident: e_1_2_6_54_1
  doi: 10.1002/glia.21213
SSID ssj0011497
Score 2.283068
Snippet Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell‐like glia (SG) represent a group of nerve growth factor...
Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1559
SubjectTerms Animals
aquaporin 1
Axons - metabolism
Axons - ultrastructure
Axons - virology
biomarker
Biomarkers
Biomarkers - metabolism
canine distemper virus
Cells, Cultured
Distemper - metabolism
Distemper Virus, Canine
Dogs
Fibroblasts - metabolism
Fibroblasts - ultrastructure
Fibroblasts - virology
Gene expression
Gene Expression Profiling
Immunohistochemistry
Medical research
Mice
microarray
Microarray Analysis
Microscopy, Electron
nerve growth factor receptor p75
Nervous system
Neuroglia - metabolism
Neuroglia - ultrastructure
Neuroglia - virology
Olfactory Nerve - metabolism
Olfactory Nerve - ultrastructure
Olfactory Nerve - virology
Schwann Cells - metabolism
Schwann Cells - ultrastructure
Schwann Cells - virology
Sciatic Nerve - metabolism
Sciatic Nerve - ultrastructure
stimulator of chondrogenesis 1
Transcription, Genetic
Title Transcriptional profiling predicts overwhelming homology of schwann cells, olfactory ensheathing cells, and schwann cell-like glia
URI https://api.istex.fr/ark:/67375/WNG-30BFFLZP-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.22700
https://www.ncbi.nlm.nih.gov/pubmed/24889922
https://www.proquest.com/docview/1554529976
https://www.proquest.com/docview/1555620727
https://www.proquest.com/docview/1560140916
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9K--KL2taPaC0rSkEx13zs5hLoyyleq5QiYrEIsuxX2nK5RHp31PrkQ_8A_0b_Emd2LyknpaBvy2UWJnuzM7_ZnfyGkOcRlxmXrB8WhrOQ6ZyHhY2iUBUqNlyXePeG1RYH2d4he3_Ej5bITvstjOeH6A7ccGc4f40bXKrJ9hVp6HF1KnsJ3puCA8ZiLUREHzvuKMD5haf5LFgI47jjJk22r6YuRKMVXNjv10HNReTqQs_wDvnaKu0rTka92VT19I-_-Bz_963ukttzTEoH3ohWyZKt18j6oIZ8fHxBt6irEnXH7-vk0gW31tXALN_0GwIgjPDSZzqhWBV6fmKrMf560ozdVNqUFDLpc1nXFG8LJq9oU_luPxcUcmkMCnga1j6UtVmQ__3zV3U6shRVv0cOh28_vdkL550cQo38Y2HOtFI2lSZTulQ2wT4zKi10acE9QAKkbZKXtoRs2XBlZFoyFTNpZaJZLmFeep8s101tHxKqTFyaOM-ljA1jaSJVZDNlDIt0VGqZBeRF-48KPac5x24blfAEzYlAPYVb4oA862S_eXKPa6W2nGF0IvJshOVwfS4-H-yKNHo9HO5_-SDigGy0liPmnmAiEK9xiPl90Oxp9xj2MC6drG0zczIAQyOAkjfJZJgMA5oPyANvlZ1CCXhh5BcOyEtnWze8jNjdfzdwo0f_IvyY3AKkyHwV4wZZnp7N7BNAY1O16XbdH7YdNEs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcCFV3kEWjACVQKRbR5ONjkuiO0WlhVCrai4WH6FVptNUHdXpT310B_Ab-SXMGNnUy2qKsHNSsaS7YxnvrEn3xDyMkhEmgjW9XOdMJ-pLPFzEwS-zGWoE1Xg3RtmW4zSwR77sJ_sN7k5-C-M44doD9xwZ1h7jRscD6S3LlhDv5eHohPhxel1soolvW1E9aVljwKknzuiz5z50A5bdtJo66Lvkj9axaX9eRnYXMau1vn0b7sKq1PLWYg5J-POfCY76vQvRsf_ntcdcquBpbTn9OguuWaqe2StV0FIPjmhm9QmitoT-DVybv3bwtpAL1f3G3wgtPDeZzalmBh6fGDKCT49qCe2K60LCsH0sagqihcG0ze0Ll3BnxMK4TT6BTwQW7wUlV6S_332qzwcG4pDv0_2-u933w38ppiDr5CCzM-YktLEQqdSFdJEWGpGxrkqDFgIiIGUibLCFBAw60RqERdMhkwYESmWCegXPyArVV2ZR4RKHRY6zDIhQs1YHAkZmFRqzQIVFEqkHnm1-KRcNUznWHCj5I6jOeI4Tm6X2CMvWtkfjt_jUqlNqxmtiDgaY0ZcN-FfR9s8Dt72-8Nvn3nokfWF6vDGGEw5QrYE3H4XRva8fQ3bGJdOVKaeWxlAogGgyatkUoyHAdB75KFTy3ZAERhipBj2yGurXFdMhm8Pd3q29fhfhJ-RG4PdT0M-3Bl9fEJuAnBkLqlxnazMjuZmA8DZTD61W_APx_k4Zg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEF5qC-IX3-pLtOqKUlDMNS-bXAJ-Oa3XVo-jiKVFkGVfbblcUnp31PrJD_4Af6O_xJnNJeWkFPTbcpmFyd7szDO7k2cIeR4kIk0E6_q5TpjPVJb4uQkCX-Yy1ImyePeG1RbDdHuPvT9IDpbI6-ZbmJofoj1ww53h_DVu8GNtN85JQ78WR6IT4b3pFbLC0iBDm9782JJHAdDPa57PnPkwDlty0mjjfO5COFrBlf12EdZchK4u9vRvkC-N1nXJyagzm8qO-v4XoeP_vtZNcn0OSmmvtqJbZMmUt8lqr4SEfHxG16krE3Xn76vkp4tuja-BWXXXb4iAMMJbn-mEYlno6aEpxvjrYTV2U2llKaTSp6IsKV4XTF7Rqqjb_ZxRSKYxKuBxWPNQlHpB_vePX8XRyFBU_Q7Z67_79Hbbn7dy8BUSkPkZU1KaWOhUKitNhI1mZJwra8A_QAakTJRZYyFd1onUIrZMhkwYESmWCZgX3yXLZVWa-4RKHVodZpkQoWYsjoQMTCq1ZoEKrBKpR140_yhXc55zbLdR8JqhOeKoJ3dL7JFnrexxze5xodS6M4xWRJyMsB6um_D94RaPgzf9_uDzLg89stZYDp-7gglHwJZA0O-CZk_bx7CJcelEaaqZkwEcGgCWvEwmxWwY4LxH7tVW2SoUgRtGgmGPvHS2dcnL8K3BTs-NHvyL8BNydXezzwc7ww8PyTVAjayuaFwjy9OTmXkEyGwqH7sN-Achmjce
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+profiling+predicts+overwhelming+homology+of+Schwann+cells%2C+olfactory+ensheathing+cells%2C+and+Schwann+cell-like+glia&rft.jtitle=Glia&rft.au=Ulrich%2C+Reiner&rft.au=Imbschweiler%2C+Ilka&rft.au=Kalkuhl%2C+Arno&rft.au=Lehmbecker%2C+Annika&rft.date=2014-10-01&rft.issn=1098-1136&rft.eissn=1098-1136&rft.volume=62&rft.issue=10&rft.spage=1559&rft_id=info:doi/10.1002%2Fglia.22700&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon