Effects of clamping end‐tidal CO 2 on neurofluidic low‐frequency oscillations
In recent years, low‐frequency oscillations (LFOs) (0.01–0.1 Hz) have been a subject of interest in resting‐state functional magnetic resonance imaging research. They are believed to have many possible driving mechanisms, from both regional and global sources. Internal fluctuations in the partial pr...
Saved in:
Published in | NMR in biomedicine Vol. 37; no. 7; p. e5084 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.07.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, low‐frequency oscillations (LFOs) (0.01–0.1 Hz) have been a subject of interest in resting‐state functional magnetic resonance imaging research. They are believed to have many possible driving mechanisms, from both regional and global sources. Internal fluctuations in the partial pressure of CO
2
(PCO
2
) has long been thought of as one of these major driving forces, but its exact contributions compared with other mechanisms have yet to be fully understood. This study examined the effects of end‐tidal PCO
2
(P
et
CO
2
) oscillations on LF cerebral hemodynamics and cerebrospinal fluid (CSF) dynamics under “clamped P
et
CO
2
” and “free‐breathing” conditions. Under clamped P
et
CO
2
, a participant's P
et
CO
2
levels were fixed to their baseline average, whereas P
et
CO
2
was not controlled in free breathing. Under clamped P
et
CO
2
, the fractional amplitude of hemodynamic LFOs in the occipital and sensorimotor cortex and temporal lobes were found to be significantly reduced. Additionally, the fractional amplitude of CSF LFOs, measured at the fourth ventricle, was found to be reduced by almost one‐half. However, the spatiotemporal distributions of blood and CSF delay times, as measured by cross‐correlation in the LF domain, were not significantly altered between conditions. This study demonstrates that, while PCO
2
oscillations significantly mediate LFOs, especially those observed in the CSF, other mechanisms are able to maintain LFOs, with high correlation, even in their absence. |
---|---|
AbstractList | In recent years, low-frequency oscillations (LFOs) (0.01-0.1 Hz) have been a subject of interest in resting-state functional magnetic resonance imaging research. They are believed to have many possible driving mechanisms, from both regional and global sources. Internal fluctuations in the partial pressure of CO
(PCO
) has long been thought of as one of these major driving forces, but its exact contributions compared with other mechanisms have yet to be fully understood. This study examined the effects of end-tidal PCO
(P
CO
) oscillations on LF cerebral hemodynamics and cerebrospinal fluid (CSF) dynamics under "clamped P
CO
" and "free-breathing" conditions. Under clamped P
CO
, a participant's P
CO
levels were fixed to their baseline average, whereas P
CO
was not controlled in free breathing. Under clamped P
CO
, the fractional amplitude of hemodynamic LFOs in the occipital and sensorimotor cortex and temporal lobes were found to be significantly reduced. Additionally, the fractional amplitude of CSF LFOs, measured at the fourth ventricle, was found to be reduced by almost one-half. However, the spatiotemporal distributions of blood and CSF delay times, as measured by cross-correlation in the LF domain, were not significantly altered between conditions. This study demonstrates that, while PCO
oscillations significantly mediate LFOs, especially those observed in the CSF, other mechanisms are able to maintain LFOs, with high correlation, even in their absence. In recent years, low‐frequency oscillations (LFOs) (0.01–0.1 Hz) have been a subject of interest in resting‐state functional magnetic resonance imaging research. They are believed to have many possible driving mechanisms, from both regional and global sources. Internal fluctuations in the partial pressure of CO 2 (PCO 2 ) has long been thought of as one of these major driving forces, but its exact contributions compared with other mechanisms have yet to be fully understood. This study examined the effects of end‐tidal PCO 2 (P et CO 2 ) oscillations on LF cerebral hemodynamics and cerebrospinal fluid (CSF) dynamics under “clamped P et CO 2 ” and “free‐breathing” conditions. Under clamped P et CO 2 , a participant's P et CO 2 levels were fixed to their baseline average, whereas P et CO 2 was not controlled in free breathing. Under clamped P et CO 2 , the fractional amplitude of hemodynamic LFOs in the occipital and sensorimotor cortex and temporal lobes were found to be significantly reduced. Additionally, the fractional amplitude of CSF LFOs, measured at the fourth ventricle, was found to be reduced by almost one‐half. However, the spatiotemporal distributions of blood and CSF delay times, as measured by cross‐correlation in the LF domain, were not significantly altered between conditions. This study demonstrates that, while PCO 2 oscillations significantly mediate LFOs, especially those observed in the CSF, other mechanisms are able to maintain LFOs, with high correlation, even in their absence. |
Author | Kish, Brianna Tong, Yunjie Chen, J. Jean |
Author_xml | – sequence: 1 givenname: Brianna orcidid: 0000-0001-5906-1295 surname: Kish fullname: Kish, Brianna organization: Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana USA – sequence: 2 givenname: J. Jean surname: Chen fullname: Chen, J. Jean organization: Rotman Research Institute Baycrest Health Sciences Toronto Canada, Department of Medical Biophysics University of Toronto Toronto Canada, Institute of Biomedical Engineering University of Toronto Toronto Canada – sequence: 3 givenname: Yunjie surname: Tong fullname: Tong, Yunjie organization: Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38104563$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kM1KAzEUhYNUbK2CTyBZupl681eTpZT6A4UidD_M3CQSmUnqpIN05yP4jD6JU6qu7uJ8nMP9zskopugIuWIwYwD8NtbtTIGWJ2TCwJiCScNHZAJG8UJIDWNynvMbwIAIfkbGQjOQai4m5GXpvcNdpslTbKp2G-IrddF-f37tgq0aulhTTlOk0fVd8k0fbEDapI8B8J17713EPU0ZQ9NUu5BiviCnvmqyu_y9U7J5WG4WT8Vq_fi8uF8VOAwXXHvLmAXplTGcKWvmoGqpEL28w3pIjNWoPfOIjPFK18aDq9FB5bAWTkzJ9bF229ets-W2C23V7cu_1wbg5ghgl3LunP9HGJQHa-VgrTxYEz8nsmGs |
Cites_doi | 10.1111/EJN.12702 10.1161/01.CIR.0000031798.07790.FE 10.1172/JCI101995 10.1117/1.JBO.17.10.106004 10.1006/MVRE.1998.2139 10.1038/s41467‐022‐29622‐9 10.3389/FNINS.2019.00787 10.1172/JCI67677 10.1006/NIMG.2001.0931 10.1097/01.WCB.0000067721.64998.F5 10.1152/ajpheart.00826.2000 10.1016/S0196‐9781(01)00408‐9 10.1016/J.NEUROIMAGE.2003.11.025 10.1016/J.NEUROIMAGE.2020.116874 10.1126/science.aax5440 10.1152/japplphysiol.91292.2008 10.1002/MRM.1910340409 10.1007/BF00588270 10.1113/JP282605 10.1177/0271678X17753329 10.1016/J.NEUROIMAGE.2011.09.015 10.1016/j.neuroimage.2016.11.054 10.1038/jcbfm.2010.153 10.1007/S11064‐015‐1581‐6 10.1016/J.NEUROIMAGE.2014.10.031 10.1002/mrm.1910390602 10.1016/j.neuron.2018.01.025 10.1177/0271678X221074639 10.1016/j.neuroimage.2018.03.047 10.3389/fnins.2016.00313 10.3389/fphys.2022.940140 10.1007/BF00705029 10.1016/J.NEUROIMAGE.2012.02.080 10.1016/j.neuroimage.2017.11.044 10.1177/0271678X19886240 10.1111/j.1748‐1716 10.1126/scitranslmed.3003748 10.1016/J.NEUROIMAGE.2014.01.060 10.1117/1.JBO.23.5.057001 10.1212/WNL.56.12.1746 10.1177/0271678X20978582 10.1109/IEMBS.2006.259557 10.1002/MRM.24898 10.1002/hbm.24826 10.3174/ajnr.A7721 10.1038/s41598‐021‐86402‐z 10.1007/s00421‐012‐2433‐6 10.3389/fnins.2017.00546 |
ContentType | Journal Article |
Copyright | 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM |
DOI | 10.1002/nbm.5084 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Physics |
EISSN | 1099-1492 |
ExternalDocumentID | 38104563 10_1002_nbm_5084 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R21 AG068962 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM |
ID | FETCH-LOGICAL-c563-28fd11d04f599215d9605b45ccf47cb1d09d8c8f1fcc112a8b9f0ebce0aecb3e3 |
ISSN | 0952-3480 |
IngestDate | Mon Jul 21 06:07:05 EDT 2025 Tue Jul 01 02:45:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c563-28fd11d04f599215d9605b45ccf47cb1d09d8c8f1fcc112a8b9f0ebce0aecb3e3 |
ORCID | 0000-0001-5906-1295 |
PMID | 38104563 |
ParticipantIDs | pubmed_primary_38104563 crossref_primary_10_1002_nbm_5084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-00 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | NMR in biomedicine |
PublicationTitleAlternate | NMR Biomed |
PublicationYear | 2024 |
References | e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_29_1 doi: 10.1111/EJN.12702 – ident: e_1_2_9_44_1 doi: 10.1161/01.CIR.0000031798.07790.FE – ident: e_1_2_9_3_1 doi: 10.1172/JCI101995 – ident: e_1_2_9_13_1 doi: 10.1117/1.JBO.17.10.106004 – ident: e_1_2_9_42_1 doi: 10.1006/MVRE.1998.2139 – ident: e_1_2_9_47_1 doi: 10.1038/s41467‐022‐29622‐9 – ident: e_1_2_9_7_1 doi: 10.3389/FNINS.2019.00787 – ident: e_1_2_9_18_1 doi: 10.1172/JCI67677 – ident: e_1_2_9_26_1 doi: 10.1006/NIMG.2001.0931 – ident: e_1_2_9_36_1 doi: 10.1097/01.WCB.0000067721.64998.F5 – ident: e_1_2_9_45_1 doi: 10.1152/ajpheart.00826.2000 – ident: e_1_2_9_46_1 doi: 10.1016/S0196‐9781(01)00408‐9 – ident: e_1_2_9_5_1 doi: 10.1016/J.NEUROIMAGE.2003.11.025 – ident: e_1_2_9_23_1 doi: 10.1016/J.NEUROIMAGE.2020.116874 – ident: e_1_2_9_49_1 doi: 10.1126/science.aax5440 – ident: e_1_2_9_4_1 doi: 10.1152/japplphysiol.91292.2008 – ident: e_1_2_9_6_1 doi: 10.1002/MRM.1910340409 – ident: e_1_2_9_48_1 doi: 10.1007/BF00588270 – ident: e_1_2_9_10_1 doi: 10.1113/JP282605 – ident: e_1_2_9_31_1 doi: 10.1177/0271678X17753329 – ident: e_1_2_9_25_1 doi: 10.1016/J.NEUROIMAGE.2011.09.015 – ident: e_1_2_9_35_1 doi: 10.1016/j.neuroimage.2016.11.054 – ident: e_1_2_9_2_1 doi: 10.1038/jcbfm.2010.153 – ident: e_1_2_9_17_1 doi: 10.1007/S11064‐015‐1581‐6 – ident: e_1_2_9_28_1 doi: 10.1016/J.NEUROIMAGE.2014.10.031 – ident: e_1_2_9_12_1 doi: 10.1002/mrm.1910390602 – ident: e_1_2_9_9_1 doi: 10.1016/j.neuron.2018.01.025 – ident: e_1_2_9_14_1 doi: 10.1177/0271678X221074639 – ident: e_1_2_9_34_1 doi: 10.1016/j.neuroimage.2018.03.047 – ident: e_1_2_9_11_1 doi: 10.3389/fnins.2016.00313 – ident: e_1_2_9_27_1 doi: 10.3389/fphys.2022.940140 – ident: e_1_2_9_20_1 doi: 10.1007/BF00705029 – ident: e_1_2_9_22_1 doi: 10.1016/J.NEUROIMAGE.2012.02.080 – ident: e_1_2_9_37_1 doi: 10.1016/j.neuroimage.2017.11.044 – ident: e_1_2_9_41_1 doi: 10.1177/0271678X19886240 – ident: e_1_2_9_8_1 doi: 10.1111/j.1748‐1716 – ident: e_1_2_9_19_1 doi: 10.1126/scitranslmed.3003748 – ident: e_1_2_9_32_1 doi: 10.1016/J.NEUROIMAGE.2014.01.060 – ident: e_1_2_9_39_1 doi: 10.1117/1.JBO.23.5.057001 – ident: e_1_2_9_15_1 doi: 10.1212/WNL.56.12.1746 – ident: e_1_2_9_38_1 doi: 10.1177/0271678X20978582 – ident: e_1_2_9_43_1 doi: 10.1109/IEMBS.2006.259557 – ident: e_1_2_9_24_1 doi: 10.1002/MRM.24898 – ident: e_1_2_9_30_1 doi: 10.1002/hbm.24826 – ident: e_1_2_9_16_1 doi: 10.3174/ajnr.A7721 – ident: e_1_2_9_40_1 doi: 10.1038/s41598‐021‐86402‐z – ident: e_1_2_9_21_1 doi: 10.1007/s00421‐012‐2433‐6 – ident: e_1_2_9_33_1 doi: 10.3389/fnins.2017.00546 |
SSID | ssj0008432 |
Score | 2.4161496 |
Snippet | In recent years, low‐frequency oscillations (LFOs) (0.01–0.1 Hz) have been a subject of interest in resting‐state functional magnetic resonance imaging... In recent years, low-frequency oscillations (LFOs) (0.01-0.1 Hz) have been a subject of interest in resting-state functional magnetic resonance imaging... |
SourceID | pubmed crossref |
SourceType | Index Database |
StartPage | e5084 |
Title | Effects of clamping end‐tidal CO 2 on neurofluidic low‐frequency oscillations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38104563 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5T8fIiOu83Ivg2OrsktembMhVRpigT9GmsuWBldqIbok_-BH-jv8STpreJD-pLGV2Sjnxn6Tkn3_mC0A6RQlJFAkdpKhzmU-1wIbkjmeECdFWXJtyc1vneyTU7vfFuKpX9cnXJIKyLtx_rSv6DKtwDXE2V7B-QzQeFG_AZ8IUrIAzXX2F8VJAxBCCblD6ZTHFGYBhE0uQGLmrE7Akk0pW6N4xkJGq9_kveTD9ZPvVrzShb9nqlJF7qtp63rkxixNbqj-zFn0XPd9ZGwM7igvaTFX3Ua6eqMMB2SgC-Hcb3kSpnHAjL2alF6pA4lNkTmOrKLpxG6ROirZGV1cq5pBbk_7hgpwKw4UMdPEVWvJSyjfhv76qcQWjVlkkHenZMzzE0QSBQMGdYHF4VAmKcJUfU5b84kx92yW72zBGHZCS0SFyM9hyaTWMDfGCBnkcVFVfRdDM7kq-Kplrp7FfRZELdFc8L6DK1AtzXOLMCDFbw-f6R4I-bF5jgfozL-GPAHxrkyOMy8ouofXzUbp446UEZjvD2qEO4lo2GdJn2ggBcOAlRqRcyTwjNfBHCN4HkguuGFgLc6y4PA-2qUCj4L4qQKrqExuN-rFYQ9nzmsq7HXQp9lesHMEjAGETZXGkYZxVtZ5PVebRyKJ3vUKyiZTuLeQujIgeOOl37Re91NFPY3AYaHzwN1Sb4fYNwK4H2C12oWI8 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+clamping+end%E2%80%90tidal+CO+2+on+neurofluidic+low%E2%80%90frequency+oscillations&rft.jtitle=NMR+in+biomedicine&rft.au=Kish%2C+Brianna&rft.au=Chen%2C+J.+Jean&rft.au=Tong%2C+Yunjie&rft.date=2024-07-01&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=37&rft.issue=7&rft_id=info:doi/10.1002%2Fnbm.5084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nbm_5084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |