Effects of clamping end‐tidal CO 2 on neurofluidic low‐frequency oscillations

In recent years, low‐frequency oscillations (LFOs) (0.01–0.1 Hz) have been a subject of interest in resting‐state functional magnetic resonance imaging research. They are believed to have many possible driving mechanisms, from both regional and global sources. Internal fluctuations in the partial pr...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 37; no. 7; p. e5084
Main Authors Kish, Brianna, Chen, J. Jean, Tong, Yunjie
Format Journal Article
LanguageEnglish
Published England 01.07.2024
Online AccessGet full text

Cover

Loading…
Abstract In recent years, low‐frequency oscillations (LFOs) (0.01–0.1 Hz) have been a subject of interest in resting‐state functional magnetic resonance imaging research. They are believed to have many possible driving mechanisms, from both regional and global sources. Internal fluctuations in the partial pressure of CO 2 (PCO 2 ) has long been thought of as one of these major driving forces, but its exact contributions compared with other mechanisms have yet to be fully understood. This study examined the effects of end‐tidal PCO 2 (P et CO 2 ) oscillations on LF cerebral hemodynamics and cerebrospinal fluid (CSF) dynamics under “clamped P et CO 2 ” and “free‐breathing” conditions. Under clamped P et CO 2 , a participant's P et CO 2 levels were fixed to their baseline average, whereas P et CO 2 was not controlled in free breathing. Under clamped P et CO 2 , the fractional amplitude of hemodynamic LFOs in the occipital and sensorimotor cortex and temporal lobes were found to be significantly reduced. Additionally, the fractional amplitude of CSF LFOs, measured at the fourth ventricle, was found to be reduced by almost one‐half. However, the spatiotemporal distributions of blood and CSF delay times, as measured by cross‐correlation in the LF domain, were not significantly altered between conditions. This study demonstrates that, while PCO 2 oscillations significantly mediate LFOs, especially those observed in the CSF, other mechanisms are able to maintain LFOs, with high correlation, even in their absence.
AbstractList In recent years, low-frequency oscillations (LFOs) (0.01-0.1 Hz) have been a subject of interest in resting-state functional magnetic resonance imaging research. They are believed to have many possible driving mechanisms, from both regional and global sources. Internal fluctuations in the partial pressure of CO (PCO ) has long been thought of as one of these major driving forces, but its exact contributions compared with other mechanisms have yet to be fully understood. This study examined the effects of end-tidal PCO (P CO ) oscillations on LF cerebral hemodynamics and cerebrospinal fluid (CSF) dynamics under "clamped P CO " and "free-breathing" conditions. Under clamped P CO , a participant's P CO levels were fixed to their baseline average, whereas P CO was not controlled in free breathing. Under clamped P CO , the fractional amplitude of hemodynamic LFOs in the occipital and sensorimotor cortex and temporal lobes were found to be significantly reduced. Additionally, the fractional amplitude of CSF LFOs, measured at the fourth ventricle, was found to be reduced by almost one-half. However, the spatiotemporal distributions of blood and CSF delay times, as measured by cross-correlation in the LF domain, were not significantly altered between conditions. This study demonstrates that, while PCO oscillations significantly mediate LFOs, especially those observed in the CSF, other mechanisms are able to maintain LFOs, with high correlation, even in their absence.
In recent years, low‐frequency oscillations (LFOs) (0.01–0.1 Hz) have been a subject of interest in resting‐state functional magnetic resonance imaging research. They are believed to have many possible driving mechanisms, from both regional and global sources. Internal fluctuations in the partial pressure of CO 2 (PCO 2 ) has long been thought of as one of these major driving forces, but its exact contributions compared with other mechanisms have yet to be fully understood. This study examined the effects of end‐tidal PCO 2 (P et CO 2 ) oscillations on LF cerebral hemodynamics and cerebrospinal fluid (CSF) dynamics under “clamped P et CO 2 ” and “free‐breathing” conditions. Under clamped P et CO 2 , a participant's P et CO 2 levels were fixed to their baseline average, whereas P et CO 2 was not controlled in free breathing. Under clamped P et CO 2 , the fractional amplitude of hemodynamic LFOs in the occipital and sensorimotor cortex and temporal lobes were found to be significantly reduced. Additionally, the fractional amplitude of CSF LFOs, measured at the fourth ventricle, was found to be reduced by almost one‐half. However, the spatiotemporal distributions of blood and CSF delay times, as measured by cross‐correlation in the LF domain, were not significantly altered between conditions. This study demonstrates that, while PCO 2 oscillations significantly mediate LFOs, especially those observed in the CSF, other mechanisms are able to maintain LFOs, with high correlation, even in their absence.
Author Kish, Brianna
Tong, Yunjie
Chen, J. Jean
Author_xml – sequence: 1
  givenname: Brianna
  orcidid: 0000-0001-5906-1295
  surname: Kish
  fullname: Kish, Brianna
  organization: Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana USA
– sequence: 2
  givenname: J. Jean
  surname: Chen
  fullname: Chen, J. Jean
  organization: Rotman Research Institute Baycrest Health Sciences Toronto Canada, Department of Medical Biophysics University of Toronto Toronto Canada, Institute of Biomedical Engineering University of Toronto Toronto Canada
– sequence: 3
  givenname: Yunjie
  surname: Tong
  fullname: Tong, Yunjie
  organization: Weldon School of Biomedical Engineering Purdue University West Lafayette Indiana USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38104563$$D View this record in MEDLINE/PubMed
BookMark eNo9kM1KAzEUhYNUbK2CTyBZupl681eTpZT6A4UidD_M3CQSmUnqpIN05yP4jD6JU6qu7uJ8nMP9zskopugIuWIwYwD8NtbtTIGWJ2TCwJiCScNHZAJG8UJIDWNynvMbwIAIfkbGQjOQai4m5GXpvcNdpslTbKp2G-IrddF-f37tgq0aulhTTlOk0fVd8k0fbEDapI8B8J17713EPU0ZQ9NUu5BiviCnvmqyu_y9U7J5WG4WT8Vq_fi8uF8VOAwXXHvLmAXplTGcKWvmoGqpEL28w3pIjNWoPfOIjPFK18aDq9FB5bAWTkzJ9bF229ets-W2C23V7cu_1wbg5ghgl3LunP9HGJQHa-VgrTxYEz8nsmGs
Cites_doi 10.1111/EJN.12702
10.1161/01.CIR.0000031798.07790.FE
10.1172/JCI101995
10.1117/1.JBO.17.10.106004
10.1006/MVRE.1998.2139
10.1038/s41467‐022‐29622‐9
10.3389/FNINS.2019.00787
10.1172/JCI67677
10.1006/NIMG.2001.0931
10.1097/01.WCB.0000067721.64998.F5
10.1152/ajpheart.00826.2000
10.1016/S0196‐9781(01)00408‐9
10.1016/J.NEUROIMAGE.2003.11.025
10.1016/J.NEUROIMAGE.2020.116874
10.1126/science.aax5440
10.1152/japplphysiol.91292.2008
10.1002/MRM.1910340409
10.1007/BF00588270
10.1113/JP282605
10.1177/0271678X17753329
10.1016/J.NEUROIMAGE.2011.09.015
10.1016/j.neuroimage.2016.11.054
10.1038/jcbfm.2010.153
10.1007/S11064‐015‐1581‐6
10.1016/J.NEUROIMAGE.2014.10.031
10.1002/mrm.1910390602
10.1016/j.neuron.2018.01.025
10.1177/0271678X221074639
10.1016/j.neuroimage.2018.03.047
10.3389/fnins.2016.00313
10.3389/fphys.2022.940140
10.1007/BF00705029
10.1016/J.NEUROIMAGE.2012.02.080
10.1016/j.neuroimage.2017.11.044
10.1177/0271678X19886240
10.1111/j.1748‐1716
10.1126/scitranslmed.3003748
10.1016/J.NEUROIMAGE.2014.01.060
10.1117/1.JBO.23.5.057001
10.1212/WNL.56.12.1746
10.1177/0271678X20978582
10.1109/IEMBS.2006.259557
10.1002/MRM.24898
10.1002/hbm.24826
10.3174/ajnr.A7721
10.1038/s41598‐021‐86402‐z
10.1007/s00421‐012‐2433‐6
10.3389/fnins.2017.00546
ContentType Journal Article
Copyright 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
DBID AAYXX
CITATION
NPM
DOI 10.1002/nbm.5084
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
ExternalDocumentID 38104563
10_1002_nbm_5084
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R21 AG068962
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
ID FETCH-LOGICAL-c563-28fd11d04f599215d9605b45ccf47cb1d09d8c8f1fcc112a8b9f0ebce0aecb3e3
ISSN 0952-3480
IngestDate Mon Jul 21 06:07:05 EDT 2025
Tue Jul 01 02:45:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c563-28fd11d04f599215d9605b45ccf47cb1d09d8c8f1fcc112a8b9f0ebce0aecb3e3
ORCID 0000-0001-5906-1295
PMID 38104563
ParticipantIDs pubmed_primary_38104563
crossref_primary_10_1002_nbm_5084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2024
References e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_29_1
  doi: 10.1111/EJN.12702
– ident: e_1_2_9_44_1
  doi: 10.1161/01.CIR.0000031798.07790.FE
– ident: e_1_2_9_3_1
  doi: 10.1172/JCI101995
– ident: e_1_2_9_13_1
  doi: 10.1117/1.JBO.17.10.106004
– ident: e_1_2_9_42_1
  doi: 10.1006/MVRE.1998.2139
– ident: e_1_2_9_47_1
  doi: 10.1038/s41467‐022‐29622‐9
– ident: e_1_2_9_7_1
  doi: 10.3389/FNINS.2019.00787
– ident: e_1_2_9_18_1
  doi: 10.1172/JCI67677
– ident: e_1_2_9_26_1
  doi: 10.1006/NIMG.2001.0931
– ident: e_1_2_9_36_1
  doi: 10.1097/01.WCB.0000067721.64998.F5
– ident: e_1_2_9_45_1
  doi: 10.1152/ajpheart.00826.2000
– ident: e_1_2_9_46_1
  doi: 10.1016/S0196‐9781(01)00408‐9
– ident: e_1_2_9_5_1
  doi: 10.1016/J.NEUROIMAGE.2003.11.025
– ident: e_1_2_9_23_1
  doi: 10.1016/J.NEUROIMAGE.2020.116874
– ident: e_1_2_9_49_1
  doi: 10.1126/science.aax5440
– ident: e_1_2_9_4_1
  doi: 10.1152/japplphysiol.91292.2008
– ident: e_1_2_9_6_1
  doi: 10.1002/MRM.1910340409
– ident: e_1_2_9_48_1
  doi: 10.1007/BF00588270
– ident: e_1_2_9_10_1
  doi: 10.1113/JP282605
– ident: e_1_2_9_31_1
  doi: 10.1177/0271678X17753329
– ident: e_1_2_9_25_1
  doi: 10.1016/J.NEUROIMAGE.2011.09.015
– ident: e_1_2_9_35_1
  doi: 10.1016/j.neuroimage.2016.11.054
– ident: e_1_2_9_2_1
  doi: 10.1038/jcbfm.2010.153
– ident: e_1_2_9_17_1
  doi: 10.1007/S11064‐015‐1581‐6
– ident: e_1_2_9_28_1
  doi: 10.1016/J.NEUROIMAGE.2014.10.031
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.1910390602
– ident: e_1_2_9_9_1
  doi: 10.1016/j.neuron.2018.01.025
– ident: e_1_2_9_14_1
  doi: 10.1177/0271678X221074639
– ident: e_1_2_9_34_1
  doi: 10.1016/j.neuroimage.2018.03.047
– ident: e_1_2_9_11_1
  doi: 10.3389/fnins.2016.00313
– ident: e_1_2_9_27_1
  doi: 10.3389/fphys.2022.940140
– ident: e_1_2_9_20_1
  doi: 10.1007/BF00705029
– ident: e_1_2_9_22_1
  doi: 10.1016/J.NEUROIMAGE.2012.02.080
– ident: e_1_2_9_37_1
  doi: 10.1016/j.neuroimage.2017.11.044
– ident: e_1_2_9_41_1
  doi: 10.1177/0271678X19886240
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1748‐1716
– ident: e_1_2_9_19_1
  doi: 10.1126/scitranslmed.3003748
– ident: e_1_2_9_32_1
  doi: 10.1016/J.NEUROIMAGE.2014.01.060
– ident: e_1_2_9_39_1
  doi: 10.1117/1.JBO.23.5.057001
– ident: e_1_2_9_15_1
  doi: 10.1212/WNL.56.12.1746
– ident: e_1_2_9_38_1
  doi: 10.1177/0271678X20978582
– ident: e_1_2_9_43_1
  doi: 10.1109/IEMBS.2006.259557
– ident: e_1_2_9_24_1
  doi: 10.1002/MRM.24898
– ident: e_1_2_9_30_1
  doi: 10.1002/hbm.24826
– ident: e_1_2_9_16_1
  doi: 10.3174/ajnr.A7721
– ident: e_1_2_9_40_1
  doi: 10.1038/s41598‐021‐86402‐z
– ident: e_1_2_9_21_1
  doi: 10.1007/s00421‐012‐2433‐6
– ident: e_1_2_9_33_1
  doi: 10.3389/fnins.2017.00546
SSID ssj0008432
Score 2.4161496
Snippet In recent years, low‐frequency oscillations (LFOs) (0.01–0.1 Hz) have been a subject of interest in resting‐state functional magnetic resonance imaging...
In recent years, low-frequency oscillations (LFOs) (0.01-0.1 Hz) have been a subject of interest in resting-state functional magnetic resonance imaging...
SourceID pubmed
crossref
SourceType Index Database
StartPage e5084
Title Effects of clamping end‐tidal CO 2 on neurofluidic low‐frequency oscillations
URI https://www.ncbi.nlm.nih.gov/pubmed/38104563
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5T8fIiOu83Ivg2OrsktembMhVRpigT9GmsuWBldqIbok_-BH-jv8STpreJD-pLGV2Sjnxn6Tkn3_mC0A6RQlJFAkdpKhzmU-1wIbkjmeECdFWXJtyc1vneyTU7vfFuKpX9cnXJIKyLtx_rSv6DKtwDXE2V7B-QzQeFG_AZ8IUrIAzXX2F8VJAxBCCblD6ZTHFGYBhE0uQGLmrE7Akk0pW6N4xkJGq9_kveTD9ZPvVrzShb9nqlJF7qtp63rkxixNbqj-zFn0XPd9ZGwM7igvaTFX3Ua6eqMMB2SgC-Hcb3kSpnHAjL2alF6pA4lNkTmOrKLpxG6ROirZGV1cq5pBbk_7hgpwKw4UMdPEVWvJSyjfhv76qcQWjVlkkHenZMzzE0QSBQMGdYHF4VAmKcJUfU5b84kx92yW72zBGHZCS0SFyM9hyaTWMDfGCBnkcVFVfRdDM7kq-Kplrp7FfRZELdFc8L6DK1AtzXOLMCDFbw-f6R4I-bF5jgfozL-GPAHxrkyOMy8ouofXzUbp446UEZjvD2qEO4lo2GdJn2ggBcOAlRqRcyTwjNfBHCN4HkguuGFgLc6y4PA-2qUCj4L4qQKrqExuN-rFYQ9nzmsq7HXQp9lesHMEjAGETZXGkYZxVtZ5PVebRyKJ3vUKyiZTuLeQujIgeOOl37Re91NFPY3AYaHzwN1Sb4fYNwK4H2C12oWI8
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+clamping+end%E2%80%90tidal+CO+2+on+neurofluidic+low%E2%80%90frequency+oscillations&rft.jtitle=NMR+in+biomedicine&rft.au=Kish%2C+Brianna&rft.au=Chen%2C+J.+Jean&rft.au=Tong%2C+Yunjie&rft.date=2024-07-01&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=37&rft.issue=7&rft_id=info:doi/10.1002%2Fnbm.5084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nbm_5084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon