A stochastic model for EEG microstate sequence analysis

The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequenc...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 104; pp. 199 - 208
Main Authors Gärtner, Matthias, Brodbeck, Verena, Laufs, Helmut, Schneider, Gaby
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2015
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences. •Proposal of simple Markov chain for the transitions between EEG microstates (Lehmann)•Shows high agreement with observed transitions, requiring only 2% of mass transport.•Stochastic model (SMI) relates microstate sequence to process of background intervals•The SMI can estimate temporal properties of the unobservable background process.
AbstractList The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences.
The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences.
The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences. •Proposal of simple Markov chain for the transitions between EEG microstates (Lehmann)•Shows high agreement with observed transitions, requiring only 2% of mass transport.•Stochastic model (SMI) relates microstate sequence to process of background intervals•The SMI can estimate temporal properties of the unobservable background process.
The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences.The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences.
Author Gärtner, Matthias
Laufs, Helmut
Schneider, Gaby
Brodbeck, Verena
Author_xml – sequence: 1
  givenname: Matthias
  surname: Gärtner
  fullname: Gärtner, Matthias
  email: gaertner@math.uni-frankfurt.de
  organization: Institute for Mathematics, Goethe University Frankfurt am Main, Germany
– sequence: 2
  givenname: Verena
  surname: Brodbeck
  fullname: Brodbeck, Verena
  email: verena.brodbeck@kgu.de
  organization: Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Germany
– sequence: 3
  givenname: Helmut
  surname: Laufs
  fullname: Laufs, Helmut
  email: h.laufs@em.uni-frankfurt.de
  organization: Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Germany
– sequence: 4
  givenname: Gaby
  surname: Schneider
  fullname: Schneider, Gaby
  email: schneider@math.uni-frankfurt.de
  organization: Institute for Mathematics, Goethe University Frankfurt am Main, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25451473$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtr3DAUhUVJaV79C8WQTTee6OphWZvSNEySQiCbZC1k-brV1LYSyQ7Mv6_MJARmNasjpO8eSeeckqMxjEhIAXQFFKrLzWrEOQY_2D-4YhRE3l5l-UROgGpZaqnY0bKWvKwB9DE5TWlDKdUg6i_kmEkhQSh-QtRVkabg_to0eVcMocW-6EIs1uvbYvAuhjTZCYuELzOODgs72n6bfDonnzvbJ_z6pmfk6Wb9eH1X3j_c_r6-ui-drNhUdoiN4k60DQe0UHW11Y3omG5kC8wJpVnntNSKdlaAlKpWUiCteYvUgW75Gfm-832OIT8hTWbwyWHf2xHDnAxUXFLQXFWHoIJVmmmR0Ys9dBPmmL-2UILWitNKZerbGzU3A7bmOebA49a8p5eBHztgySlF7IzzOS4fxila3xugZqnLbMxHXWapaznJkg3qPYP3Ow4Y_bUbxZz-q8dokvNLRa2P6CbTBn-Iyc89E9f70Tvb_8PtYRb_Afa9yXY
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_11_062
crossref_primary_10_1016_j_neuroimage_2015_06_035
crossref_primary_10_1038_s41598_021_81655_0
crossref_primary_10_1016_j_jpsychires_2023_07_020
crossref_primary_10_1142_S2424922X18400016
crossref_primary_10_1109_TNSRE_2022_3182705
crossref_primary_10_1002_hbm_25035
crossref_primary_10_1007_s10548_023_00971_y
crossref_primary_10_1016_j_neuroimage_2022_119006
crossref_primary_10_1109_TAFFC_2021_3139104
crossref_primary_10_3389_fnins_2019_00542
crossref_primary_10_1016_j_jneumeth_2015_09_004
crossref_primary_10_1186_s13408_020_00100_0
crossref_primary_10_1109_TCSS_2021_3135425
crossref_primary_10_1007_s10548_023_00958_9
crossref_primary_10_1016_j_ynirp_2022_100089
crossref_primary_10_1155_2018_9270685
crossref_primary_10_1016_j_bandc_2025_106269
crossref_primary_10_1016_j_physa_2015_03_087
crossref_primary_10_1002_hbm_26474
crossref_primary_10_1007_s10548_018_0689_9
crossref_primary_10_1016_j_ijpsycho_2024_112440
crossref_primary_10_1016_j_neuroimage_2016_07_050
crossref_primary_10_1016_j_neuroimage_2018_09_082
crossref_primary_10_1007_s12311_024_01770_2
crossref_primary_10_1162_neco_a_01229
crossref_primary_10_1016_j_neuroimage_2015_05_062
crossref_primary_10_1142_S0129065716500179
crossref_primary_10_1103_PhysRevE_99_012421
crossref_primary_10_1016_j_scog_2015_04_005
crossref_primary_10_1038_s41386_020_0749_1
crossref_primary_10_3389_fnins_2018_00460
crossref_primary_10_1016_j_neuroimage_2020_117372
crossref_primary_10_1016_j_neuroimage_2016_10_002
crossref_primary_10_1016_j_neuroimage_2017_06_062
Cites_doi 10.1073/pnas.1007841107
10.1214/14-AOAS782
10.1038/nrn3578
10.3389/fnhum.2013.00484
10.1016/j.neuroimage.2012.01.032
10.1016/j.neuroimage.2010.02.052
10.1371/journal.pone.0028630
10.4249/scholarpedia.7632
10.1016/j.clinph.2013.01.005
10.1016/j.clinph.2010.11.003
10.1016/0167-8760(93)90041-M
10.1016/j.neuroimage.2010.01.093
10.1016/0013-4694(87)90025-3
10.1016/0013-4694(80)90419-8
10.1007/s11065-011-9156-z
10.1016/j.pscychresns.2004.05.007
10.1016/S1388-2457(03)00211-6
10.1016/S0167-8655(01)00075-7
10.1006/nimg.2002.1070
10.1016/j.neuroimage.2010.05.034
10.1109/10.391164
10.1016/S0924-9338(99)80236-3
10.1016/j.neuroimage.2012.01.044
10.1016/j.neuroimage.2012.01.090
10.1016/j.neuroimage.2012.05.060
10.1007/s10548-011-0189-7
10.1016/0013-4694(93)90016-O
10.1016/j.clinph.2010.10.042
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Jan 1, 2015
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Jan 1, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2014.10.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database
ProQuest One Psychology

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 208
ExternalDocumentID 3539699591
25451473
10_1016_j_neuroimage_2014_10_014
S1053811914008386
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c562t-feeb73c4db31ea16f8a9b4f29b5d12c4792fc95970fa415578754e083de0c19d3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Mon Jul 21 10:53:36 EDT 2025
Mon Jul 21 10:04:07 EDT 2025
Sat Aug 23 12:27:27 EDT 2025
Thu Apr 03 07:00:40 EDT 2025
Tue Jul 01 02:14:55 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Fri Feb 23 02:24:27 EST 2024
Tue Aug 26 16:31:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Markov chain
Stochastic model
EEG microstates
Resting state
Sleep
Point process
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-feeb73c4db31ea16f8a9b4f29b5d12c4792fc95970fa415578754e083de0c19d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25451473
PQID 1640873067
PQPubID 2031077
PageCount 10
ParticipantIDs proquest_miscellaneous_1635019376
proquest_miscellaneous_1634269294
proquest_journals_1640873067
pubmed_primary_25451473
crossref_citationtrail_10_1016_j_neuroimage_2014_10_014
crossref_primary_10_1016_j_neuroimage_2014_10_014
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_10_014
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_10_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
2015-01-00
2015-Jan-01
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Musso, Brinkmeyer, Mobascher, Warbrick, Winterer (bb0110) 2010; 52
Pascual-Marqui, Michel, Lehmann (bb0130) 1995; 42
Snyder, Raichle (bb0140) 2012; 62
Obermaier, Guger, Neuper, Pfurtscheller (bb0125) 2001; 22
Wulsin, Fox, Litt (bb0170) 2013; (1)’13
Brodbeck, Kuhn, von Wegner, Morzelewski, Tagliazucchi, Borisov, Michel, Laufs (bb0020) 2012; 62
Lehmann, Skrandies (bb0095) 1980; 48
Lehmann, Ozaki, Pal (bb0085) 1987; 67
(bb0105) 2009
Van De Ville, Britz, Michel (bb0155) 2010; 107
Koenig, Prichep, Lehmann, Valdes Sosa, Braeker, Kleinlogel, Isenhart, John (bb0060) 2002; 16
Laufs (bb0065) 2010; 52
Van Essen, Ugurbil (bb0160) 2012; 62
Kandel, Markram, Matthews, Yuste, Koch (bb0050) 2013; 14
Lehmann (bb0070) 1998; 13
Kindler, Hubl, Strik, Dierks, Koenig (bb0055) 2010; 122
Lehmann, Michel (bb0080) 2011; 122
Messer, Kirchner, Schiemann, Roeper, Neininger, Schneider (bb0100) 2014
AASM (bb0005) 2007
Biswal (bb0010) 2012; 62
Nishida, Morishima, Yoshimura, Isotani, Irisawa, Jann, Dierks, Strik, Kinoshita, Koenig (bb0115) 2013; 124
Daley, Vere-Jones (bb0030) 2003; vol. 1
Norris (bb0120) 1997
Kaiser (bb0045) 2013; 7
Lehmann, Faber, Galderisi, Herrmann, Kinoshita, Koukkou, Mucci, Pascual-Marqui, Saito, Wackermann, Winterer, Koenig (bb0075) 2005; 138
Wackermann, Lehmann, Michel, Strik (bb0165) 1993; 14
Britz, Van De Ville, Michel (bb0015) 2010; 52
Lehmann, Pascual-Marqui, Michel (bb0090) 2009; 4
Strik, Lehmann (bb0150) 1993; 87
Strelets, Faber, Golikova, Novototsky-Vlasov, Koenig, Gianotti, Gruzelier, Lehmann (bb0145) 2003; 114
Schlegel, Lehmann, Faber, Milz, Gianotti (bb0135) 2012; 25
De Lucia, Constantinescu, Sterpenich, Pourtois, Seeck, Schwartz (bb0035) 2011; 6
Durrett (bb0040) 1993
Colrain (bb0025) 2011; 21
AASM (10.1016/j.neuroimage.2014.10.014_bb0005) 2007
Lehmann (10.1016/j.neuroimage.2014.10.014_bb0095) 1980; 48
Lehmann (10.1016/j.neuroimage.2014.10.014_bb0090) 2009; 4
Norris (10.1016/j.neuroimage.2014.10.014_bb0120) 1997
Biswal (10.1016/j.neuroimage.2014.10.014_bb0010) 2012; 62
Wackermann (10.1016/j.neuroimage.2014.10.014_bb0165) 1993; 14
Lehmann (10.1016/j.neuroimage.2014.10.014_bb0085) 1987; 67
Musso (10.1016/j.neuroimage.2014.10.014_bb0110) 2010; 52
Obermaier (10.1016/j.neuroimage.2014.10.014_bb0125) 2001; 22
Laufs (10.1016/j.neuroimage.2014.10.014_bb0065) 2010; 52
Snyder (10.1016/j.neuroimage.2014.10.014_bb0140) 2012; 62
Pascual-Marqui (10.1016/j.neuroimage.2014.10.014_bb0130) 1995; 42
Kandel (10.1016/j.neuroimage.2014.10.014_bb0050) 2013; 14
Lehmann (10.1016/j.neuroimage.2014.10.014_bb0080) 2011; 122
Lehmann (10.1016/j.neuroimage.2014.10.014_bb0070) 1998; 13
Van Essen (10.1016/j.neuroimage.2014.10.014_bb0160) 2012; 62
De Lucia (10.1016/j.neuroimage.2014.10.014_bb0035) 2011; 6
(10.1016/j.neuroimage.2014.10.014_bb0105) 2009
Kindler (10.1016/j.neuroimage.2014.10.014_bb0055) 2010; 122
Daley (10.1016/j.neuroimage.2014.10.014_bb0030) 2003; vol. 1
Strik (10.1016/j.neuroimage.2014.10.014_bb0150) 1993; 87
Koenig (10.1016/j.neuroimage.2014.10.014_bb0060) 2002; 16
Britz (10.1016/j.neuroimage.2014.10.014_bb0015) 2010; 52
Wulsin (10.1016/j.neuroimage.2014.10.014_bb0170) 2013; (1)’13
Strelets (10.1016/j.neuroimage.2014.10.014_bb0145) 2003; 114
Nishida (10.1016/j.neuroimage.2014.10.014_bb0115) 2013; 124
Brodbeck (10.1016/j.neuroimage.2014.10.014_bb0020) 2012; 62
Lehmann (10.1016/j.neuroimage.2014.10.014_bb0075) 2005; 138
Messer (10.1016/j.neuroimage.2014.10.014_bb0100) 2014
Schlegel (10.1016/j.neuroimage.2014.10.014_bb0135) 2012; 25
Van De Ville (10.1016/j.neuroimage.2014.10.014_bb0155) 2010; 107
Colrain (10.1016/j.neuroimage.2014.10.014_bb0025) 2011; 21
Durrett (10.1016/j.neuroimage.2014.10.014_bb0040) 1993
Kaiser (10.1016/j.neuroimage.2014.10.014_bb0045) 2013; 7
26091853 - Neuroimage. 2016 Jan 15;125:1104-6
26032884 - Neuroimage. 2015 Aug 15;117:449-55
References_xml – volume: 67
  start-page: 271
  year: 1987
  end-page: 288
  ident: bb0085
  article-title: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 52
  start-page: 1171
  year: 2010
  end-page: 1172
  ident: bb0065
  article-title: Multimodal analysis of resting state cortical activity: what does EEG add to our knowledge of resting state BOLD networks?
  publication-title: Neuroimage
– volume: 52
  start-page: 1149
  year: 2010
  end-page: 1161
  ident: bb0110
  article-title: Spontaneous brain activity and EEG microstates. a novel EEG/fMRI analysis approach to explore resting-state networks
  publication-title: Neuroimage
– volume: 114
  start-page: 2043
  year: 2003
  end-page: 2051
  ident: bb0145
  article-title: Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations
  publication-title: Clin. Neurophysiol.
– volume: 25
  start-page: 20
  year: 2012
  end-page: 26
  ident: bb0135
  article-title: EEG microstates during resting represent personality differences
  publication-title: Brain Topogr.
– volume: (1)’13
  start-page: 356
  year: 2013
  end-page: 364
  ident: bb0170
  article-title: Parsing epileptic events using a Markov switching process model for correlated time series
  publication-title: ICML
– volume: 124
  start-page: 1106
  year: 2013
  end-page: 1114
  ident: bb0115
  article-title: EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease
  publication-title: Clin. Neurophysiol.
– volume: 13
  start-page: 197s
  year: 1998
  end-page: 198s
  ident: bb0070
  article-title: Deviant microstates (‘atoms of thought’) in brain electric field sequences of acute schizophrenics
  publication-title: Eur. Psychiatry
– volume: 62
  start-page: 902
  year: 2012
  end-page: 910
  ident: bb0140
  article-title: A brief history of the resting state: the Washington University perspective
  publication-title: Neuroimage
– volume: 62
  start-page: 938
  year: 2012
  end-page: 944
  ident: bb0010
  article-title: Resting state fMRI: a personal history
  publication-title: Neuroimage
– year: 2009
  ident: bb0105
  publication-title: Electrical Neuroimaging
– volume: 42
  start-page: 658
  year: 1995
  end-page: 665
  ident: bb0130
  article-title: Segmentation of brain electrical activity into microstates: model estimation and validation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 122
  start-page: 1179
  year: 2010
  end-page: 1182
  ident: bb0055
  article-title: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates
  publication-title: Clin. Neurophysiol.
– volume: 107
  start-page: 18179
  year: 2010
  end-page: 18184
  ident: bb0155
  article-title: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 52
  start-page: 1162
  year: 2010
  end-page: 1170
  ident: bb0015
  article-title: BOLD correlates of EEG topography reveal rapid resting-state network dynamics
  publication-title: Neuroimage
– volume: 4
  start-page: 7632
  year: 2009
  ident: bb0090
  article-title: EEG microstates
  publication-title: Scholarpedia
– volume: 22
  start-page: 1299
  year: 2001
  end-page: 1309
  ident: bb0125
  article-title: Hidden Markov models for online classification of single trial eeg data
  publication-title: Pattern Recogn. Lett.
– year: 1997
  ident: bb0120
  article-title: Markov chains
– volume: 6
  start-page: e28630
  year: 2011
  ident: bb0035
  article-title: Decoding sequence learning from single-trial intracranial eeg in humans
  publication-title: PLoS ONE
– volume: 62
  start-page: 1299
  year: 2012
  end-page: 1310
  ident: bb0160
  article-title: The future of the human connectome
  publication-title: Neuroimage
– volume: 62
  start-page: 2129
  year: 2012
  end-page: 2139
  ident: bb0020
  article-title: EEG microstates of wakefulness and NREM sleep
  publication-title: Neuroimage
– volume: 21
  start-page: 1
  year: 2011
  end-page: 4
  ident: bb0025
  article-title: Sleep and the brain
  publication-title: Neuropsychol. Rev.
– year: 2014
  ident: bb0100
  article-title: A multiple filter test for the detection of rate changes in renewal processes with varying variance
  publication-title: Ann. Appl. Stat.
– volume: 16
  start-page: 41
  year: 2002
  end-page: 48
  ident: bb0060
  article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages
  publication-title: Neuroimage
– volume: 14
  start-page: 659
  year: 2013
  end-page: 664
  ident: bb0050
  article-title: Neuroscience thinks big (and collaboratively)
  publication-title: Nat. Rev. Neurosci.
– volume: 138
  start-page: 141
  year: 2005
  end-page: 156
  ident: bb0075
  article-title: EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study
  publication-title: Psychiatry Res. Neuroimaging
– volume: 48
  start-page: 609
  year: 1980
  end-page: 621
  ident: bb0095
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 122
  start-page: 1073
  year: 2011
  end-page: 1074
  ident: bb0080
  article-title: EEG-defined functional microstates as basic building blocks of mental processes
  publication-title: Clin. Neurophysiol.
– year: 1993
  ident: bb0040
  article-title: The essentials of probability
– volume: 14
  start-page: 269
  year: 1993
  end-page: 283
  ident: bb0165
  article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates
  publication-title: Int. J. Psychophysiol.
– year: 2007
  ident: bb0005
  article-title: The AASM Manual for the Scoring of Sleep and Associated Events: rules, terminology and technical specifications
– volume: vol. 1
  year: 2003
  ident: bb0030
  article-title: An introduction to the theory of point processes
  publication-title: Elementary Theory and Methods
– volume: 87
  start-page: 169
  year: 1993
  end-page: 174
  ident: bb0150
  article-title: Data-determined window size and space-oriented segmentation of spontaneous EEG map series
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 7
  start-page: 484
  year: 2013
  ident: bb0045
  article-title: The potential of the human connectome as a biomarker of brain disease
  publication-title: Front. Hum. Neurosci.
– volume: vol. 1
  year: 2003
  ident: 10.1016/j.neuroimage.2014.10.014_bb0030
  article-title: An introduction to the theory of point processes
– volume: 107
  start-page: 18179
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.014_bb0155
  article-title: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1007841107
– year: 2014
  ident: 10.1016/j.neuroimage.2014.10.014_bb0100
  article-title: A multiple filter test for the detection of rate changes in renewal processes with varying variance
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/14-AOAS782
– year: 2007
  ident: 10.1016/j.neuroimage.2014.10.014_bb0005
– volume: 14
  start-page: 659
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.014_bb0050
  article-title: Neuroscience thinks big (and collaboratively)
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3578
– volume: 7
  start-page: 484
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.014_bb0045
  article-title: The potential of the human connectome as a biomarker of brain disease
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00484
– year: 1993
  ident: 10.1016/j.neuroimage.2014.10.014_bb0040
– volume: 62
  start-page: 1299
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.014_bb0160
  article-title: The future of the human connectome
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.032
– volume: 52
  start-page: 1162
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.014_bb0015
  article-title: BOLD correlates of EEG topography reveal rapid resting-state network dynamics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.052
– volume: 6
  start-page: e28630
  year: 2011
  ident: 10.1016/j.neuroimage.2014.10.014_bb0035
  article-title: Decoding sequence learning from single-trial intracranial eeg in humans
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028630
– volume: 4
  start-page: 7632
  year: 2009
  ident: 10.1016/j.neuroimage.2014.10.014_bb0090
  article-title: EEG microstates
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.7632
– volume: 124
  start-page: 1106
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.014_bb0115
  article-title: EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.01.005
– volume: 122
  start-page: 1073
  year: 2011
  ident: 10.1016/j.neuroimage.2014.10.014_bb0080
  article-title: EEG-defined functional microstates as basic building blocks of mental processes
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.11.003
– volume: 14
  start-page: 269
  year: 1993
  ident: 10.1016/j.neuroimage.2014.10.014_bb0165
  article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(93)90041-M
– year: 2009
  ident: 10.1016/j.neuroimage.2014.10.014_bb0105
– volume: 52
  start-page: 1149
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.014_bb0110
  article-title: Spontaneous brain activity and EEG microstates. a novel EEG/fMRI analysis approach to explore resting-state networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.093
– volume: 67
  start-page: 271
  year: 1987
  ident: 10.1016/j.neuroimage.2014.10.014_bb0085
  article-title: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90025-3
– volume: 48
  start-page: 609
  year: 1980
  ident: 10.1016/j.neuroimage.2014.10.014_bb0095
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(80)90419-8
– volume: 21
  start-page: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2014.10.014_bb0025
  article-title: Sleep and the brain
  publication-title: Neuropsychol. Rev.
  doi: 10.1007/s11065-011-9156-z
– volume: (1)’13
  start-page: 356
  year: 2013
  ident: 10.1016/j.neuroimage.2014.10.014_bb0170
  article-title: Parsing epileptic events using a Markov switching process model for correlated time series
– volume: 138
  start-page: 141
  year: 2005
  ident: 10.1016/j.neuroimage.2014.10.014_bb0075
  article-title: EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study
  publication-title: Psychiatry Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2004.05.007
– year: 1997
  ident: 10.1016/j.neuroimage.2014.10.014_bb0120
– volume: 114
  start-page: 2043
  year: 2003
  ident: 10.1016/j.neuroimage.2014.10.014_bb0145
  article-title: Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(03)00211-6
– volume: 22
  start-page: 1299
  year: 2001
  ident: 10.1016/j.neuroimage.2014.10.014_bb0125
  article-title: Hidden Markov models for online classification of single trial eeg data
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/S0167-8655(01)00075-7
– volume: 16
  start-page: 41
  year: 2002
  ident: 10.1016/j.neuroimage.2014.10.014_bb0060
  article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1070
– volume: 52
  start-page: 1171
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.014_bb0065
  article-title: Multimodal analysis of resting state cortical activity: what does EEG add to our knowledge of resting state BOLD networks?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.034
– volume: 42
  start-page: 658
  year: 1995
  ident: 10.1016/j.neuroimage.2014.10.014_bb0130
  article-title: Segmentation of brain electrical activity into microstates: model estimation and validation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.391164
– volume: 13
  start-page: 197s
  year: 1998
  ident: 10.1016/j.neuroimage.2014.10.014_bb0070
  article-title: Deviant microstates (‘atoms of thought’) in brain electric field sequences of acute schizophrenics
  publication-title: Eur. Psychiatry
  doi: 10.1016/S0924-9338(99)80236-3
– volume: 62
  start-page: 902
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.014_bb0140
  article-title: A brief history of the resting state: the Washington University perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.044
– volume: 62
  start-page: 938
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.014_bb0010
  article-title: Resting state fMRI: a personal history
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.090
– volume: 62
  start-page: 2129
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.014_bb0020
  article-title: EEG microstates of wakefulness and NREM sleep
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.05.060
– volume: 25
  start-page: 20
  year: 2012
  ident: 10.1016/j.neuroimage.2014.10.014_bb0135
  article-title: EEG microstates during resting represent personality differences
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-011-0189-7
– volume: 87
  start-page: 169
  year: 1993
  ident: 10.1016/j.neuroimage.2014.10.014_bb0150
  article-title: Data-determined window size and space-oriented segmentation of spontaneous EEG map series
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(93)90016-O
– volume: 122
  start-page: 1179
  year: 2010
  ident: 10.1016/j.neuroimage.2014.10.014_bb0055
  article-title: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.10.042
– reference: 26091853 - Neuroimage. 2016 Jan 15;125:1104-6
– reference: 26032884 - Neuroimage. 2015 Aug 15;117:449-55
SSID ssj0009148
Score 2.3661478
Snippet The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 199
SubjectTerms Adult
Algorithms
Brain - physiology
Brain Mapping
Brain research
EEG microstates
Electroencephalography - statistics & numerical data
Female
Humans
Male
Markov analysis
Markov chain
Markov Chains
Models, Statistical
Point process
Rest - physiology
Resting state
Sleep
Sleep Stages - physiology
Standard deviation
Stochastic model
Stochastic Processes
Studies
Wakefulness - physiology
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gSIgL4s1goCBxLTRN2rTigCa0MSGNE5N2q9I8BIg9YNv_x27T7bRppx4SV5VjO1-TzzYh92GiIuXiNLAsc4FIHMRBE-uAcW14EkrDy85z_fekNxBvw3joD9xmnlZZx8QyUJuJxjPyR4D1YSoR4D5PfwPsGoW3q76Fxi7Zw9JlaNVyKFdFd5moUuFiHqQwwTN5Kn5XWS_yawReiwQv8YAcLybWbU_r4Ge5DXWPyKHHj7RdLfgx2bHjE7Lf9zfkp0S2KcA5_amw_jIt-9xQwKW003mlIyTflRlEtGZQU-WLkpyRQbfz8dILfHOEQANkmQfO2kJyLUzBmVUscanKCuGirIgNi7SQWeQ0qESGTiFoAMeMhQXAZWyoWWb4OWmMJ2N7SagyDnCY4qGwmCzC0wRfx5QqCsADkjeJrHWSa185HBtY_OQ1Rew7X2kzR23iCDyahC0lp1X1jC1kslrteZ0dCvEshxC_hezTUtYjiAoZbCndqlc59548y1d21yR3y2HwQbxYUWM7WeAcjhnBUSY2zokBTkM8b5KLyoKWKoGfdMCtkl9t_oBrcgBfG1cHQC3SmP8t7A1AonlxW9r9P5f3CQU
  priority: 102
  providerName: ProQuest
Title A stochastic model for EEG microstate sequence analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914008386
https://dx.doi.org/10.1016/j.neuroimage.2014.10.014
https://www.ncbi.nlm.nih.gov/pubmed/25451473
https://www.proquest.com/docview/1640873067
https://www.proquest.com/docview/1634269294
https://www.proquest.com/docview/1635019376
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9EQXwRv51OieBrXdOkzYpPc0yn4hA_YG8lTROc6BSdr_7t3rXpxAdl4EtDm1wJ19zll-Z3F4DDMNGRdnE7sDx1gUwc-sEiNgEXphBJqApRnjx3NUj69_JiGA_noFvHwhCt0vv-yqeX3to_aXlttl5Ho9YtIgOcbig_GeGINqXdllLRKD_6_KZ5YHUVDheLgFp7Nk_F8SpzRo6e0XKJ5CWPiOfF5W9T1G8QtJyKTldg2WNI1qm6uQpzdrwGi1d-l3wdVIchpDMPmnIws_KsG4bYlPV6Z-yZCHhlFBGrWdRM-8QkG3B_2rvr9gN_QEJgELZMAmdtroSRRS641TxxbZ3m0kVpHhc8MlKlkTMpLhlCpwk4oHHG0qKyChsanhZiE-bHL2O7DUwXDrGYFqG0FDCC6qTXca3zHDGBEg1QtU4y47OH0yEWT1lNE3vMvrWZkTapBosG8Knka5VBYwaZtFZ7VkeIok_L0M3PIHs8lf0xkmaUbtZfOfPW_J7hkjJsK1pcNeBgWo12SJsremxfPqiNoKjgKJV_tokRUqNPb8BWNYKmKsGFOmJXJXb-1f1dWMK7uPpH1IT5yduH3UPUNMn3S7PAqxqqfVjonF_2B1ie9AbXN18LSxhu
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviHcXWjASHANx7MSxqgpVZcuWdntqpb0Zxw8BoruFboX4U_xGZpJ499RqLz3l4IxljcczX-JvZgDe5pUtbCzrLHAdM1lF9IO-dBkXzosqV160nefGJ9XoTH6ZlJM1-JdyYYhWmXxi66j9zNE_8g8I6_NaEcD9ePEro65RdLuaWmh0ZnEU_v7BT7bL3cNPuL_viuJgeLo_yvquApnDWD_PYgiNEk76RvBgeRVrqxsZC92UnhdOKl1EpxFn59FStEWLLmVApOJD7rj2Aue9A3cx8Ob0sacmalnkl8su9a4UWc257plDHZ-srU_5_Ry9BBHK5HvilHF5XTi8Du62Ye_gITzo8Srb6wzsEayF6WO4N-5v5J-A2mMIH903S_WeWdtXhyEOZsPhZ3ZOZL82Y4klxjazfRGUp3B2K2p7BuvT2TRsArM-Iu6zIpeBklNEXdF03NqmQfyhxABU0olxfaVyapjx0yRK2g-z1KYhbdIIPgbAF5IXXbWOFWR0UrtJ2ajoPw2GlBVkdxayPWLpkMiK0ltpl03vOS7N0s4H8GYxjGeeLnLsNMyu6B1BGciFlje-UyJ8x_gxgOedBS1UUiBs5lKJFzcv4DXcH52Oj83x4cnRS9jAlZfdz6ctWJ__vgrbCMfmzav2DDD4etuH7j_4LEYo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbxZKGAkOIbGsRPHQggVuktL6apCVOrNdfwQILpb6FaIv8avYyZxdk-t9tJTDs5Y1ng88yX-ZgbgZV7ZwsayzgLXMZNVRD_oS5dx4byocuVF23nuYFLtHslPx-XxGvzrc2GIVtn7xNZR-5mjf-RbCOvzWhHA3YqJFnG4M3539iujDlJ009q30-hMZD_8_YOfb-dv93Zwr18VxXj09cNuljoMZA7j_jyLITRKOOkbwYPlVaytbmQsdFN6XjipdBGdRsydR0uRF627lAFRiw-549oLnPcGrCv6KhrA-vvR5PDLsuQvl10iXimymnOdeEQdu6ytVvn9FH0G0cvka2KYcXlZcLwM_LZBcHwbbiX0yrY7c7sDa2F6FzYO0v38PVDbDMGk-2ap-jNru-wwRMVsNPrITon61-YvsZ6_zWwqiXIfjq5FcQ9gMJ1NwyNg1kdEgVbkMlCqiqgrmo5b2zSIRpQYgup1YlyqW07tM36anqD2wyy1aUibNIKPIfCF5FlXu2MFGd2r3fS5qehNDQaYFWTfLGQTfulwyYrSm_0um-RHzs3S6ofwYjGMHoCudew0zC7oHUH5yIWWV75TIpjHaDKEh50FLVRSIIjmUonHVy_gOWzggTOf9yb7T-AmLrzs_kRtwmD--yI8RWw2b56lQ8Dg5LrP3X_FtUvD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+model+for+EEG+microstate+sequence+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=G%C3%A4rtner%2C+Matthias&rft.au=Brodbeck%2C+Verena&rft.au=Laufs%2C+Helmut&rft.au=Schneider%2C+Gaby&rft.date=2015-01-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=104&rft.spage=199&rft.epage=208&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.10.014&rft.externalDocID=S1053811914008386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon