A stochastic model for EEG microstate sequence analysis
The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequenc...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 104; pp. 199 - 208 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal.
In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences.
•Proposal of simple Markov chain for the transitions between EEG microstates (Lehmann)•Shows high agreement with observed transitions, requiring only 2% of mass transport.•Stochastic model (SMI) relates microstate sequence to process of background intervals•The SMI can estimate temporal properties of the unobservable background process. |
---|---|
AbstractList | The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences. The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences. The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences. •Proposal of simple Markov chain for the transitions between EEG microstates (Lehmann)•Shows high agreement with observed transitions, requiring only 2% of mass transport.•Stochastic model (SMI) relates microstate sequence to process of background intervals•The SMI can estimate temporal properties of the unobservable background process. The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences.The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences. |
Author | Gärtner, Matthias Laufs, Helmut Schneider, Gaby Brodbeck, Verena |
Author_xml | – sequence: 1 givenname: Matthias surname: Gärtner fullname: Gärtner, Matthias email: gaertner@math.uni-frankfurt.de organization: Institute for Mathematics, Goethe University Frankfurt am Main, Germany – sequence: 2 givenname: Verena surname: Brodbeck fullname: Brodbeck, Verena email: verena.brodbeck@kgu.de organization: Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Germany – sequence: 3 givenname: Helmut surname: Laufs fullname: Laufs, Helmut email: h.laufs@em.uni-frankfurt.de organization: Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Germany – sequence: 4 givenname: Gaby surname: Schneider fullname: Schneider, Gaby email: schneider@math.uni-frankfurt.de organization: Institute for Mathematics, Goethe University Frankfurt am Main, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25451473$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtr3DAUhUVJaV79C8WQTTee6OphWZvSNEySQiCbZC1k-brV1LYSyQ7Mv6_MJARmNasjpO8eSeeckqMxjEhIAXQFFKrLzWrEOQY_2D-4YhRE3l5l-UROgGpZaqnY0bKWvKwB9DE5TWlDKdUg6i_kmEkhQSh-QtRVkabg_to0eVcMocW-6EIs1uvbYvAuhjTZCYuELzOODgs72n6bfDonnzvbJ_z6pmfk6Wb9eH1X3j_c_r6-ui-drNhUdoiN4k60DQe0UHW11Y3omG5kC8wJpVnntNSKdlaAlKpWUiCteYvUgW75Gfm-832OIT8hTWbwyWHf2xHDnAxUXFLQXFWHoIJVmmmR0Ys9dBPmmL-2UILWitNKZerbGzU3A7bmOebA49a8p5eBHztgySlF7IzzOS4fxila3xugZqnLbMxHXWapaznJkg3qPYP3Ow4Y_bUbxZz-q8dokvNLRa2P6CbTBn-Iyc89E9f70Tvb_8PtYRb_Afa9yXY |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2017_11_062 crossref_primary_10_1016_j_neuroimage_2015_06_035 crossref_primary_10_1038_s41598_021_81655_0 crossref_primary_10_1016_j_jpsychires_2023_07_020 crossref_primary_10_1142_S2424922X18400016 crossref_primary_10_1109_TNSRE_2022_3182705 crossref_primary_10_1002_hbm_25035 crossref_primary_10_1007_s10548_023_00971_y crossref_primary_10_1016_j_neuroimage_2022_119006 crossref_primary_10_1109_TAFFC_2021_3139104 crossref_primary_10_3389_fnins_2019_00542 crossref_primary_10_1016_j_jneumeth_2015_09_004 crossref_primary_10_1186_s13408_020_00100_0 crossref_primary_10_1109_TCSS_2021_3135425 crossref_primary_10_1007_s10548_023_00958_9 crossref_primary_10_1016_j_ynirp_2022_100089 crossref_primary_10_1155_2018_9270685 crossref_primary_10_1016_j_bandc_2025_106269 crossref_primary_10_1016_j_physa_2015_03_087 crossref_primary_10_1002_hbm_26474 crossref_primary_10_1007_s10548_018_0689_9 crossref_primary_10_1016_j_ijpsycho_2024_112440 crossref_primary_10_1016_j_neuroimage_2016_07_050 crossref_primary_10_1016_j_neuroimage_2018_09_082 crossref_primary_10_1007_s12311_024_01770_2 crossref_primary_10_1162_neco_a_01229 crossref_primary_10_1016_j_neuroimage_2015_05_062 crossref_primary_10_1142_S0129065716500179 crossref_primary_10_1103_PhysRevE_99_012421 crossref_primary_10_1016_j_scog_2015_04_005 crossref_primary_10_1038_s41386_020_0749_1 crossref_primary_10_3389_fnins_2018_00460 crossref_primary_10_1016_j_neuroimage_2020_117372 crossref_primary_10_1016_j_neuroimage_2016_10_002 crossref_primary_10_1016_j_neuroimage_2017_06_062 |
Cites_doi | 10.1073/pnas.1007841107 10.1214/14-AOAS782 10.1038/nrn3578 10.3389/fnhum.2013.00484 10.1016/j.neuroimage.2012.01.032 10.1016/j.neuroimage.2010.02.052 10.1371/journal.pone.0028630 10.4249/scholarpedia.7632 10.1016/j.clinph.2013.01.005 10.1016/j.clinph.2010.11.003 10.1016/0167-8760(93)90041-M 10.1016/j.neuroimage.2010.01.093 10.1016/0013-4694(87)90025-3 10.1016/0013-4694(80)90419-8 10.1007/s11065-011-9156-z 10.1016/j.pscychresns.2004.05.007 10.1016/S1388-2457(03)00211-6 10.1016/S0167-8655(01)00075-7 10.1006/nimg.2002.1070 10.1016/j.neuroimage.2010.05.034 10.1109/10.391164 10.1016/S0924-9338(99)80236-3 10.1016/j.neuroimage.2012.01.044 10.1016/j.neuroimage.2012.01.090 10.1016/j.neuroimage.2012.05.060 10.1007/s10548-011-0189-7 10.1016/0013-4694(93)90016-O 10.1016/j.clinph.2010.10.042 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. Copyright © 2014 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Jan 1, 2015 |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: Copyright © 2014 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Jan 1, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2014.10.014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 208 |
ExternalDocumentID | 3539699591 25451473 10_1016_j_neuroimage_2014_10_014 S1053811914008386 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c562t-feeb73c4db31ea16f8a9b4f29b5d12c4792fc95970fa415578754e083de0c19d3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Mon Jul 21 10:53:36 EDT 2025 Mon Jul 21 10:04:07 EDT 2025 Sat Aug 23 12:27:27 EDT 2025 Thu Apr 03 07:00:40 EDT 2025 Tue Jul 01 02:14:55 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Fri Feb 23 02:24:27 EST 2024 Tue Aug 26 16:31:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Markov chain Stochastic model EEG microstates Resting state Sleep Point process |
Language | English |
License | Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-feeb73c4db31ea16f8a9b4f29b5d12c4792fc95970fa415578754e083de0c19d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25451473 |
PQID | 1640873067 |
PQPubID | 2031077 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1635019376 proquest_miscellaneous_1634269294 proquest_journals_1640873067 pubmed_primary_25451473 crossref_citationtrail_10_1016_j_neuroimage_2014_10_014 crossref_primary_10_1016_j_neuroimage_2014_10_014 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2014_10_014 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2014_10_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 2015-01-00 2015-Jan-01 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Musso, Brinkmeyer, Mobascher, Warbrick, Winterer (bb0110) 2010; 52 Pascual-Marqui, Michel, Lehmann (bb0130) 1995; 42 Snyder, Raichle (bb0140) 2012; 62 Obermaier, Guger, Neuper, Pfurtscheller (bb0125) 2001; 22 Wulsin, Fox, Litt (bb0170) 2013; (1)’13 Brodbeck, Kuhn, von Wegner, Morzelewski, Tagliazucchi, Borisov, Michel, Laufs (bb0020) 2012; 62 Lehmann, Skrandies (bb0095) 1980; 48 Lehmann, Ozaki, Pal (bb0085) 1987; 67 (bb0105) 2009 Van De Ville, Britz, Michel (bb0155) 2010; 107 Koenig, Prichep, Lehmann, Valdes Sosa, Braeker, Kleinlogel, Isenhart, John (bb0060) 2002; 16 Laufs (bb0065) 2010; 52 Van Essen, Ugurbil (bb0160) 2012; 62 Kandel, Markram, Matthews, Yuste, Koch (bb0050) 2013; 14 Lehmann (bb0070) 1998; 13 Kindler, Hubl, Strik, Dierks, Koenig (bb0055) 2010; 122 Lehmann, Michel (bb0080) 2011; 122 Messer, Kirchner, Schiemann, Roeper, Neininger, Schneider (bb0100) 2014 AASM (bb0005) 2007 Biswal (bb0010) 2012; 62 Nishida, Morishima, Yoshimura, Isotani, Irisawa, Jann, Dierks, Strik, Kinoshita, Koenig (bb0115) 2013; 124 Daley, Vere-Jones (bb0030) 2003; vol. 1 Norris (bb0120) 1997 Kaiser (bb0045) 2013; 7 Lehmann, Faber, Galderisi, Herrmann, Kinoshita, Koukkou, Mucci, Pascual-Marqui, Saito, Wackermann, Winterer, Koenig (bb0075) 2005; 138 Wackermann, Lehmann, Michel, Strik (bb0165) 1993; 14 Britz, Van De Ville, Michel (bb0015) 2010; 52 Lehmann, Pascual-Marqui, Michel (bb0090) 2009; 4 Strik, Lehmann (bb0150) 1993; 87 Strelets, Faber, Golikova, Novototsky-Vlasov, Koenig, Gianotti, Gruzelier, Lehmann (bb0145) 2003; 114 Schlegel, Lehmann, Faber, Milz, Gianotti (bb0135) 2012; 25 De Lucia, Constantinescu, Sterpenich, Pourtois, Seeck, Schwartz (bb0035) 2011; 6 Durrett (bb0040) 1993 Colrain (bb0025) 2011; 21 AASM (10.1016/j.neuroimage.2014.10.014_bb0005) 2007 Lehmann (10.1016/j.neuroimage.2014.10.014_bb0095) 1980; 48 Lehmann (10.1016/j.neuroimage.2014.10.014_bb0090) 2009; 4 Norris (10.1016/j.neuroimage.2014.10.014_bb0120) 1997 Biswal (10.1016/j.neuroimage.2014.10.014_bb0010) 2012; 62 Wackermann (10.1016/j.neuroimage.2014.10.014_bb0165) 1993; 14 Lehmann (10.1016/j.neuroimage.2014.10.014_bb0085) 1987; 67 Musso (10.1016/j.neuroimage.2014.10.014_bb0110) 2010; 52 Obermaier (10.1016/j.neuroimage.2014.10.014_bb0125) 2001; 22 Laufs (10.1016/j.neuroimage.2014.10.014_bb0065) 2010; 52 Snyder (10.1016/j.neuroimage.2014.10.014_bb0140) 2012; 62 Pascual-Marqui (10.1016/j.neuroimage.2014.10.014_bb0130) 1995; 42 Kandel (10.1016/j.neuroimage.2014.10.014_bb0050) 2013; 14 Lehmann (10.1016/j.neuroimage.2014.10.014_bb0080) 2011; 122 Lehmann (10.1016/j.neuroimage.2014.10.014_bb0070) 1998; 13 Van Essen (10.1016/j.neuroimage.2014.10.014_bb0160) 2012; 62 De Lucia (10.1016/j.neuroimage.2014.10.014_bb0035) 2011; 6 (10.1016/j.neuroimage.2014.10.014_bb0105) 2009 Kindler (10.1016/j.neuroimage.2014.10.014_bb0055) 2010; 122 Daley (10.1016/j.neuroimage.2014.10.014_bb0030) 2003; vol. 1 Strik (10.1016/j.neuroimage.2014.10.014_bb0150) 1993; 87 Koenig (10.1016/j.neuroimage.2014.10.014_bb0060) 2002; 16 Britz (10.1016/j.neuroimage.2014.10.014_bb0015) 2010; 52 Wulsin (10.1016/j.neuroimage.2014.10.014_bb0170) 2013; (1)’13 Strelets (10.1016/j.neuroimage.2014.10.014_bb0145) 2003; 114 Nishida (10.1016/j.neuroimage.2014.10.014_bb0115) 2013; 124 Brodbeck (10.1016/j.neuroimage.2014.10.014_bb0020) 2012; 62 Lehmann (10.1016/j.neuroimage.2014.10.014_bb0075) 2005; 138 Messer (10.1016/j.neuroimage.2014.10.014_bb0100) 2014 Schlegel (10.1016/j.neuroimage.2014.10.014_bb0135) 2012; 25 Van De Ville (10.1016/j.neuroimage.2014.10.014_bb0155) 2010; 107 Colrain (10.1016/j.neuroimage.2014.10.014_bb0025) 2011; 21 Durrett (10.1016/j.neuroimage.2014.10.014_bb0040) 1993 Kaiser (10.1016/j.neuroimage.2014.10.014_bb0045) 2013; 7 26091853 - Neuroimage. 2016 Jan 15;125:1104-6 26032884 - Neuroimage. 2015 Aug 15;117:449-55 |
References_xml | – volume: 67 start-page: 271 year: 1987 end-page: 288 ident: bb0085 article-title: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 52 start-page: 1171 year: 2010 end-page: 1172 ident: bb0065 article-title: Multimodal analysis of resting state cortical activity: what does EEG add to our knowledge of resting state BOLD networks? publication-title: Neuroimage – volume: 52 start-page: 1149 year: 2010 end-page: 1161 ident: bb0110 article-title: Spontaneous brain activity and EEG microstates. a novel EEG/fMRI analysis approach to explore resting-state networks publication-title: Neuroimage – volume: 114 start-page: 2043 year: 2003 end-page: 2051 ident: bb0145 article-title: Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations publication-title: Clin. Neurophysiol. – volume: 25 start-page: 20 year: 2012 end-page: 26 ident: bb0135 article-title: EEG microstates during resting represent personality differences publication-title: Brain Topogr. – volume: (1)’13 start-page: 356 year: 2013 end-page: 364 ident: bb0170 article-title: Parsing epileptic events using a Markov switching process model for correlated time series publication-title: ICML – volume: 124 start-page: 1106 year: 2013 end-page: 1114 ident: bb0115 article-title: EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease publication-title: Clin. Neurophysiol. – volume: 13 start-page: 197s year: 1998 end-page: 198s ident: bb0070 article-title: Deviant microstates (‘atoms of thought’) in brain electric field sequences of acute schizophrenics publication-title: Eur. Psychiatry – volume: 62 start-page: 902 year: 2012 end-page: 910 ident: bb0140 article-title: A brief history of the resting state: the Washington University perspective publication-title: Neuroimage – volume: 62 start-page: 938 year: 2012 end-page: 944 ident: bb0010 article-title: Resting state fMRI: a personal history publication-title: Neuroimage – year: 2009 ident: bb0105 publication-title: Electrical Neuroimaging – volume: 42 start-page: 658 year: 1995 end-page: 665 ident: bb0130 article-title: Segmentation of brain electrical activity into microstates: model estimation and validation publication-title: IEEE Trans. Biomed. Eng. – volume: 122 start-page: 1179 year: 2010 end-page: 1182 ident: bb0055 article-title: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates publication-title: Clin. Neurophysiol. – volume: 107 start-page: 18179 year: 2010 end-page: 18184 ident: bb0155 article-title: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 52 start-page: 1162 year: 2010 end-page: 1170 ident: bb0015 article-title: BOLD correlates of EEG topography reveal rapid resting-state network dynamics publication-title: Neuroimage – volume: 4 start-page: 7632 year: 2009 ident: bb0090 article-title: EEG microstates publication-title: Scholarpedia – volume: 22 start-page: 1299 year: 2001 end-page: 1309 ident: bb0125 article-title: Hidden Markov models for online classification of single trial eeg data publication-title: Pattern Recogn. Lett. – year: 1997 ident: bb0120 article-title: Markov chains – volume: 6 start-page: e28630 year: 2011 ident: bb0035 article-title: Decoding sequence learning from single-trial intracranial eeg in humans publication-title: PLoS ONE – volume: 62 start-page: 1299 year: 2012 end-page: 1310 ident: bb0160 article-title: The future of the human connectome publication-title: Neuroimage – volume: 62 start-page: 2129 year: 2012 end-page: 2139 ident: bb0020 article-title: EEG microstates of wakefulness and NREM sleep publication-title: Neuroimage – volume: 21 start-page: 1 year: 2011 end-page: 4 ident: bb0025 article-title: Sleep and the brain publication-title: Neuropsychol. Rev. – year: 2014 ident: bb0100 article-title: A multiple filter test for the detection of rate changes in renewal processes with varying variance publication-title: Ann. Appl. Stat. – volume: 16 start-page: 41 year: 2002 end-page: 48 ident: bb0060 article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages publication-title: Neuroimage – volume: 14 start-page: 659 year: 2013 end-page: 664 ident: bb0050 article-title: Neuroscience thinks big (and collaboratively) publication-title: Nat. Rev. Neurosci. – volume: 138 start-page: 141 year: 2005 end-page: 156 ident: bb0075 article-title: EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study publication-title: Psychiatry Res. Neuroimaging – volume: 48 start-page: 609 year: 1980 end-page: 621 ident: bb0095 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 122 start-page: 1073 year: 2011 end-page: 1074 ident: bb0080 article-title: EEG-defined functional microstates as basic building blocks of mental processes publication-title: Clin. Neurophysiol. – year: 1993 ident: bb0040 article-title: The essentials of probability – volume: 14 start-page: 269 year: 1993 end-page: 283 ident: bb0165 article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates publication-title: Int. J. Psychophysiol. – year: 2007 ident: bb0005 article-title: The AASM Manual for the Scoring of Sleep and Associated Events: rules, terminology and technical specifications – volume: vol. 1 year: 2003 ident: bb0030 article-title: An introduction to the theory of point processes publication-title: Elementary Theory and Methods – volume: 87 start-page: 169 year: 1993 end-page: 174 ident: bb0150 article-title: Data-determined window size and space-oriented segmentation of spontaneous EEG map series publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 7 start-page: 484 year: 2013 ident: bb0045 article-title: The potential of the human connectome as a biomarker of brain disease publication-title: Front. Hum. Neurosci. – volume: vol. 1 year: 2003 ident: 10.1016/j.neuroimage.2014.10.014_bb0030 article-title: An introduction to the theory of point processes – volume: 107 start-page: 18179 year: 2010 ident: 10.1016/j.neuroimage.2014.10.014_bb0155 article-title: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1007841107 – year: 2014 ident: 10.1016/j.neuroimage.2014.10.014_bb0100 article-title: A multiple filter test for the detection of rate changes in renewal processes with varying variance publication-title: Ann. Appl. Stat. doi: 10.1214/14-AOAS782 – year: 2007 ident: 10.1016/j.neuroimage.2014.10.014_bb0005 – volume: 14 start-page: 659 year: 2013 ident: 10.1016/j.neuroimage.2014.10.014_bb0050 article-title: Neuroscience thinks big (and collaboratively) publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3578 – volume: 7 start-page: 484 year: 2013 ident: 10.1016/j.neuroimage.2014.10.014_bb0045 article-title: The potential of the human connectome as a biomarker of brain disease publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00484 – year: 1993 ident: 10.1016/j.neuroimage.2014.10.014_bb0040 – volume: 62 start-page: 1299 year: 2012 ident: 10.1016/j.neuroimage.2014.10.014_bb0160 article-title: The future of the human connectome publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.032 – volume: 52 start-page: 1162 year: 2010 ident: 10.1016/j.neuroimage.2014.10.014_bb0015 article-title: BOLD correlates of EEG topography reveal rapid resting-state network dynamics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.02.052 – volume: 6 start-page: e28630 year: 2011 ident: 10.1016/j.neuroimage.2014.10.014_bb0035 article-title: Decoding sequence learning from single-trial intracranial eeg in humans publication-title: PLoS ONE doi: 10.1371/journal.pone.0028630 – volume: 4 start-page: 7632 year: 2009 ident: 10.1016/j.neuroimage.2014.10.014_bb0090 article-title: EEG microstates publication-title: Scholarpedia doi: 10.4249/scholarpedia.7632 – volume: 124 start-page: 1106 year: 2013 ident: 10.1016/j.neuroimage.2014.10.014_bb0115 article-title: EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's disease publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2013.01.005 – volume: 122 start-page: 1073 year: 2011 ident: 10.1016/j.neuroimage.2014.10.014_bb0080 article-title: EEG-defined functional microstates as basic building blocks of mental processes publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.11.003 – volume: 14 start-page: 269 year: 1993 ident: 10.1016/j.neuroimage.2014.10.014_bb0165 article-title: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(93)90041-M – year: 2009 ident: 10.1016/j.neuroimage.2014.10.014_bb0105 – volume: 52 start-page: 1149 year: 2010 ident: 10.1016/j.neuroimage.2014.10.014_bb0110 article-title: Spontaneous brain activity and EEG microstates. a novel EEG/fMRI analysis approach to explore resting-state networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.093 – volume: 67 start-page: 271 year: 1987 ident: 10.1016/j.neuroimage.2014.10.014_bb0085 article-title: EEG alpha map series: brain micro-states by space-oriented adaptive segmentation publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(87)90025-3 – volume: 48 start-page: 609 year: 1980 ident: 10.1016/j.neuroimage.2014.10.014_bb0095 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(80)90419-8 – volume: 21 start-page: 1 year: 2011 ident: 10.1016/j.neuroimage.2014.10.014_bb0025 article-title: Sleep and the brain publication-title: Neuropsychol. Rev. doi: 10.1007/s11065-011-9156-z – volume: (1)’13 start-page: 356 year: 2013 ident: 10.1016/j.neuroimage.2014.10.014_bb0170 article-title: Parsing epileptic events using a Markov switching process model for correlated time series – volume: 138 start-page: 141 year: 2005 ident: 10.1016/j.neuroimage.2014.10.014_bb0075 article-title: EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2004.05.007 – year: 1997 ident: 10.1016/j.neuroimage.2014.10.014_bb0120 – volume: 114 start-page: 2043 year: 2003 ident: 10.1016/j.neuroimage.2014.10.014_bb0145 article-title: Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(03)00211-6 – volume: 22 start-page: 1299 year: 2001 ident: 10.1016/j.neuroimage.2014.10.014_bb0125 article-title: Hidden Markov models for online classification of single trial eeg data publication-title: Pattern Recogn. Lett. doi: 10.1016/S0167-8655(01)00075-7 – volume: 16 start-page: 41 year: 2002 ident: 10.1016/j.neuroimage.2014.10.014_bb0060 article-title: Millisecond by millisecond, year by year: normative EEG microstates and developmental stages publication-title: Neuroimage doi: 10.1006/nimg.2002.1070 – volume: 52 start-page: 1171 year: 2010 ident: 10.1016/j.neuroimage.2014.10.014_bb0065 article-title: Multimodal analysis of resting state cortical activity: what does EEG add to our knowledge of resting state BOLD networks? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.034 – volume: 42 start-page: 658 year: 1995 ident: 10.1016/j.neuroimage.2014.10.014_bb0130 article-title: Segmentation of brain electrical activity into microstates: model estimation and validation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.391164 – volume: 13 start-page: 197s year: 1998 ident: 10.1016/j.neuroimage.2014.10.014_bb0070 article-title: Deviant microstates (‘atoms of thought’) in brain electric field sequences of acute schizophrenics publication-title: Eur. Psychiatry doi: 10.1016/S0924-9338(99)80236-3 – volume: 62 start-page: 902 year: 2012 ident: 10.1016/j.neuroimage.2014.10.014_bb0140 article-title: A brief history of the resting state: the Washington University perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.044 – volume: 62 start-page: 938 year: 2012 ident: 10.1016/j.neuroimage.2014.10.014_bb0010 article-title: Resting state fMRI: a personal history publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.090 – volume: 62 start-page: 2129 year: 2012 ident: 10.1016/j.neuroimage.2014.10.014_bb0020 article-title: EEG microstates of wakefulness and NREM sleep publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.05.060 – volume: 25 start-page: 20 year: 2012 ident: 10.1016/j.neuroimage.2014.10.014_bb0135 article-title: EEG microstates during resting represent personality differences publication-title: Brain Topogr. doi: 10.1007/s10548-011-0189-7 – volume: 87 start-page: 169 year: 1993 ident: 10.1016/j.neuroimage.2014.10.014_bb0150 article-title: Data-determined window size and space-oriented segmentation of spontaneous EEG map series publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(93)90016-O – volume: 122 start-page: 1179 year: 2010 ident: 10.1016/j.neuroimage.2014.10.014_bb0055 article-title: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.10.042 – reference: 26091853 - Neuroimage. 2016 Jan 15;125:1104-6 – reference: 26032884 - Neuroimage. 2015 Aug 15;117:449-55 |
SSID | ssj0009148 |
Score | 2.3661478 |
Snippet | The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 199 |
SubjectTerms | Adult Algorithms Brain - physiology Brain Mapping Brain research EEG microstates Electroencephalography - statistics & numerical data Female Humans Male Markov analysis Markov chain Markov Chains Models, Statistical Point process Rest - physiology Resting state Sleep Sleep Stages - physiology Standard deviation Stochastic model Stochastic Processes Studies Wakefulness - physiology Young Adult |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gSIgL4s1goCBxLTRN2rTigCa0MSGNE5N2q9I8BIg9YNv_x27T7bRppx4SV5VjO1-TzzYh92GiIuXiNLAsc4FIHMRBE-uAcW14EkrDy85z_fekNxBvw3joD9xmnlZZx8QyUJuJxjPyR4D1YSoR4D5PfwPsGoW3q76Fxi7Zw9JlaNVyKFdFd5moUuFiHqQwwTN5Kn5XWS_yawReiwQv8YAcLybWbU_r4Ge5DXWPyKHHj7RdLfgx2bHjE7Lf9zfkp0S2KcA5_amw_jIt-9xQwKW003mlIyTflRlEtGZQU-WLkpyRQbfz8dILfHOEQANkmQfO2kJyLUzBmVUscanKCuGirIgNi7SQWeQ0qESGTiFoAMeMhQXAZWyoWWb4OWmMJ2N7SagyDnCY4qGwmCzC0wRfx5QqCsADkjeJrHWSa185HBtY_OQ1Rew7X2kzR23iCDyahC0lp1X1jC1kslrteZ0dCvEshxC_hezTUtYjiAoZbCndqlc59548y1d21yR3y2HwQbxYUWM7WeAcjhnBUSY2zokBTkM8b5KLyoKWKoGfdMCtkl9t_oBrcgBfG1cHQC3SmP8t7A1AonlxW9r9P5f3CQU priority: 102 providerName: ProQuest |
Title | A stochastic model for EEG microstate sequence analysis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811914008386 https://dx.doi.org/10.1016/j.neuroimage.2014.10.014 https://www.ncbi.nlm.nih.gov/pubmed/25451473 https://www.proquest.com/docview/1640873067 https://www.proquest.com/docview/1634269294 https://www.proquest.com/docview/1635019376 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9EQXwRv51OieBrXdOkzYpPc0yn4hA_YG8lTROc6BSdr_7t3rXpxAdl4EtDm1wJ19zll-Z3F4DDMNGRdnE7sDx1gUwc-sEiNgEXphBJqApRnjx3NUj69_JiGA_noFvHwhCt0vv-yqeX3to_aXlttl5Ho9YtIgOcbig_GeGINqXdllLRKD_6_KZ5YHUVDheLgFp7Nk_F8SpzRo6e0XKJ5CWPiOfF5W9T1G8QtJyKTldg2WNI1qm6uQpzdrwGi1d-l3wdVIchpDMPmnIws_KsG4bYlPV6Z-yZCHhlFBGrWdRM-8QkG3B_2rvr9gN_QEJgELZMAmdtroSRRS641TxxbZ3m0kVpHhc8MlKlkTMpLhlCpwk4oHHG0qKyChsanhZiE-bHL2O7DUwXDrGYFqG0FDCC6qTXca3zHDGBEg1QtU4y47OH0yEWT1lNE3vMvrWZkTapBosG8Knka5VBYwaZtFZ7VkeIok_L0M3PIHs8lf0xkmaUbtZfOfPW_J7hkjJsK1pcNeBgWo12SJsremxfPqiNoKjgKJV_tokRUqNPb8BWNYKmKsGFOmJXJXb-1f1dWMK7uPpH1IT5yduH3UPUNMn3S7PAqxqqfVjonF_2B1ie9AbXN18LSxhu |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkEviHcXWjASHANx7MSxqgpVZcuWdntqpb0Zxw8BoruFboX4U_xGZpJ499RqLz3l4IxljcczX-JvZgDe5pUtbCzrLHAdM1lF9IO-dBkXzosqV160nefGJ9XoTH6ZlJM1-JdyYYhWmXxi66j9zNE_8g8I6_NaEcD9ePEro65RdLuaWmh0ZnEU_v7BT7bL3cNPuL_viuJgeLo_yvquApnDWD_PYgiNEk76RvBgeRVrqxsZC92UnhdOKl1EpxFn59FStEWLLmVApOJD7rj2Aue9A3cx8Ob0sacmalnkl8su9a4UWc257plDHZ-srU_5_Ry9BBHK5HvilHF5XTi8Du62Ye_gITzo8Srb6wzsEayF6WO4N-5v5J-A2mMIH903S_WeWdtXhyEOZsPhZ3ZOZL82Y4klxjazfRGUp3B2K2p7BuvT2TRsArM-Iu6zIpeBklNEXdF03NqmQfyhxABU0olxfaVyapjx0yRK2g-z1KYhbdIIPgbAF5IXXbWOFWR0UrtJ2ajoPw2GlBVkdxayPWLpkMiK0ltpl03vOS7N0s4H8GYxjGeeLnLsNMyu6B1BGciFlje-UyJ8x_gxgOedBS1UUiBs5lKJFzcv4DXcH52Oj83x4cnRS9jAlZfdz6ctWJ__vgrbCMfmzav2DDD4etuH7j_4LEYo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbxZKGAkOIbGsRPHQggVuktL6apCVOrNdfwQILpb6FaIv8avYyZxdk-t9tJTDs5Y1ng88yX-ZgbgZV7ZwsayzgLXMZNVRD_oS5dx4byocuVF23nuYFLtHslPx-XxGvzrc2GIVtn7xNZR-5mjf-RbCOvzWhHA3YqJFnG4M3539iujDlJ009q30-hMZD_8_YOfb-dv93Zwr18VxXj09cNuljoMZA7j_jyLITRKOOkbwYPlVaytbmQsdFN6XjipdBGdRsydR0uRF627lAFRiw-549oLnPcGrCv6KhrA-vvR5PDLsuQvl10iXimymnOdeEQdu6ytVvn9FH0G0cvka2KYcXlZcLwM_LZBcHwbbiX0yrY7c7sDa2F6FzYO0v38PVDbDMGk-2ap-jNru-wwRMVsNPrITon61-YvsZ6_zWwqiXIfjq5FcQ9gMJ1NwyNg1kdEgVbkMlCqiqgrmo5b2zSIRpQYgup1YlyqW07tM36anqD2wyy1aUibNIKPIfCF5FlXu2MFGd2r3fS5qehNDQaYFWTfLGQTfulwyYrSm_0um-RHzs3S6ofwYjGMHoCudew0zC7oHUH5yIWWV75TIpjHaDKEh50FLVRSIIjmUonHVy_gOWzggTOf9yb7T-AmLrzs_kRtwmD--yI8RWw2b56lQ8Dg5LrP3X_FtUvD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+model+for+EEG+microstate+sequence+analysis&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=G%C3%A4rtner%2C+Matthias&rft.au=Brodbeck%2C+Verena&rft.au=Laufs%2C+Helmut&rft.au=Schneider%2C+Gaby&rft.date=2015-01-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=104&rft.spage=199&rft.epage=208&rft_id=info:doi/10.1016%2Fj.neuroimage.2014.10.014&rft.externalDocID=S1053811914008386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |