Erk2 Phosphorylation of Drp1 Promotes Mitochondrial Fission and MAPK-Driven Tumor Growth
Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to unde...
Saved in:
Published in | Molecular cell Vol. 57; no. 3; pp. 537 - 551 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
05.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies.
[Display omitted]
•Drp1 is required for xenograft growth•MAPK promotes mitochondrial fragmentation through Drp1•Erk2 phosphorylates Drp1 to promote mitochondrial fission•Drp1 S616 phosphorylation is required for mitochondrial fission and tumor growth
Mitochondrial function is important for the growth of tumors driven by oncogenic Ras or the MAPK pathway. Kashatus et al. demonstrate that activation of these pathways leads to Mek-dependent phosphorylation of the GTPase Drp1 and subsequent mitochondrial fragmentation. They further demonstrate that inhibition of Drp1 or its phosphorylation blocks tumor growth. |
---|---|
AbstractList | Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies.Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies. Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies. Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its pro-tumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616 and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies. Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies. [Display omitted] •Drp1 is required for xenograft growth•MAPK promotes mitochondrial fragmentation through Drp1•Erk2 phosphorylates Drp1 to promote mitochondrial fission•Drp1 S616 phosphorylation is required for mitochondrial fission and tumor growth Mitochondrial function is important for the growth of tumors driven by oncogenic Ras or the MAPK pathway. Kashatus et al. demonstrate that activation of these pathways leads to Mek-dependent phosphorylation of the GTPase Drp1 and subsequent mitochondrial fragmentation. They further demonstrate that inhibition of Drp1 or its phosphorylation blocks tumor growth. |
Author | Kashatus, Jennifer A. Myers, Lindsey J. Sher, Annie Byrne, Frances L. Kashatus, David F. Counter, Christopher M. Hoehn, Kyle L. Nascimento, Aldo |
AuthorAffiliation | 2 Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 3 Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908 1 Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908 |
AuthorAffiliation_xml | – name: 1 Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908 – name: 2 Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 – name: 3 Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908 |
Author_xml | – sequence: 1 givenname: Jennifer A. surname: Kashatus fullname: Kashatus, Jennifer A. organization: Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA – sequence: 2 givenname: Aldo surname: Nascimento fullname: Nascimento, Aldo organization: Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA – sequence: 3 givenname: Lindsey J. surname: Myers fullname: Myers, Lindsey J. organization: Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA – sequence: 4 givenname: Annie surname: Sher fullname: Sher, Annie organization: Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA – sequence: 5 givenname: Frances L. surname: Byrne fullname: Byrne, Frances L. organization: Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908, USA – sequence: 6 givenname: Kyle L. surname: Hoehn fullname: Hoehn, Kyle L. organization: Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908, USA – sequence: 7 givenname: Christopher M. surname: Counter fullname: Counter, Christopher M. organization: Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA – sequence: 8 givenname: David F. surname: Kashatus fullname: Kashatus, David F. email: kashatus@virginia.edu organization: Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25658205$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB_wDxDKkk1SXztxbBZIVV9UtGIWRWJnOc4N8ZDYg50Z1H9PhpkiYEFXvpK_c3R0zjE58MEjIa-BFkBBnC6LMQwWh4JRqAoKBaXsGTkCquq8BFEe7G9Wi-qQHKe0pBTKSqoX5JBVopKMVkfky2X8xrJFH9KqD_FhMJMLPgtddhFXkC1iGMOEKbtzU7B98G10ZsiuXEpbzPg2uztbfMwvotugz-7XY4jZdQw_pv4led6ZIeGr_XtCPl9d3p9_yG8_Xd-cn93mthJsyruqs5xzkFZy2bWMc8VQYavQMFAMZNPwmtdWcdlQbNFC00FdY10KqZgx_IS83_mu1s2IrUU_RTPoVXSjiQ86GKf__vGu11_DRpdccQp8Nni7N4jh-xrTpEeX5l4H4zGsk2Z07k0KEOpJFETFgUkq6hl982es33kem5-BdzvAxpBSxE5bN_1qf07pBg1Ub2fWS72bWW9n1hT0PPMsLv8RP_o_Idt3hfMgG4dRJ-vQW2xdRDvpNrj_G_wEuVLDvQ |
CitedBy_id | crossref_primary_10_1089_ars_2023_0379 crossref_primary_10_1212_WNL_0000000000200233 crossref_primary_10_1038_s41419_017_0044_1 crossref_primary_10_26508_lsa_202402870 crossref_primary_10_1038_s12276_021_00723_7 crossref_primary_10_1002_adfm_202008022 crossref_primary_10_1172_JCI122035 crossref_primary_10_1016_j_phrs_2015_08_022 crossref_primary_10_18632_oncotarget_11047 crossref_primary_10_1038_s41586_019_1296_y crossref_primary_10_1172_jci_insight_126915 crossref_primary_10_1016_j_cellsig_2024_111329 crossref_primary_10_1371_journal_pgen_1006748 crossref_primary_10_3390_biom13050869 crossref_primary_10_1126_scisignal_abn2694 crossref_primary_10_1089_ars_2023_0268 crossref_primary_10_1186_s12929_023_00956_w crossref_primary_10_1016_j_it_2017_08_006 crossref_primary_10_1016_j_isci_2024_110880 crossref_primary_10_1016_j_jdermsci_2020_03_009 crossref_primary_10_3389_fendo_2021_660095 crossref_primary_10_3724_abbs_2024006 crossref_primary_10_1016_j_bbrc_2018_01_114 crossref_primary_10_1016_j_ymthe_2024_03_003 crossref_primary_10_3389_fcell_2018_00177 crossref_primary_10_1016_j_molcel_2017_08_013 crossref_primary_10_1016_j_cellsig_2017_07_020 crossref_primary_10_1007_s00018_021_03818_6 crossref_primary_10_1016_j_mito_2019_06_002 crossref_primary_10_1016_j_yjmcc_2018_08_006 crossref_primary_10_1016_j_cub_2016_10_009 crossref_primary_10_3390_biology12111426 crossref_primary_10_3390_cancers14235924 crossref_primary_10_1016_j_ceb_2016_02_001 crossref_primary_10_1038_cr_2017_155 crossref_primary_10_1007_s00018_018_2963_0 crossref_primary_10_1016_j_bbamcr_2019_01_009 crossref_primary_10_1016_j_tcb_2016_07_002 crossref_primary_10_1158_0008_5472_CAN_18_0340 crossref_primary_10_1158_0008_5472_CAN_22_0959 crossref_primary_10_1016_j_jphotobiol_2024_112966 crossref_primary_10_1038_s41374_021_00724_0 crossref_primary_10_1016_j_devcel_2022_04_020 crossref_primary_10_1016_j_jsbmb_2019_105413 crossref_primary_10_1016_j_virusres_2021_198549 crossref_primary_10_1128_EC_00277_14 crossref_primary_10_1016_j_tem_2015_12_001 crossref_primary_10_1016_j_bbcan_2018_07_004 crossref_primary_10_1021_acs_jproteome_4c00502 crossref_primary_10_1016_j_bbcan_2025_189288 crossref_primary_10_4196_kjpp_2018_22_2_203 crossref_primary_10_1016_j_ijbiomac_2024_131925 crossref_primary_10_1038_s41418_024_01310_9 crossref_primary_10_3389_fonc_2021_769036 crossref_primary_10_1002_advs_202404033 crossref_primary_10_1016_j_envpol_2024_123875 crossref_primary_10_1038_s41392_020_00376_4 crossref_primary_10_1146_annurev_cancerbio_030419_033405 crossref_primary_10_1038_s41392_021_00866_z crossref_primary_10_1111_febs_16343 crossref_primary_10_1038_s41401_022_00967_7 crossref_primary_10_1038_s41586_021_03214_x crossref_primary_10_1016_j_bbrc_2017_07_047 crossref_primary_10_1038_s41467_024_47514_y crossref_primary_10_1016_j_canlet_2022_215912 crossref_primary_10_3390_jmp4040023 crossref_primary_10_3389_fcell_2020_580070 crossref_primary_10_3390_genes9020115 crossref_primary_10_1016_j_prp_2022_153931 crossref_primary_10_1016_j_bbabio_2017_01_004 crossref_primary_10_1038_s41598_021_01512_y crossref_primary_10_3389_fonc_2020_592130 crossref_primary_10_1155_2022_5812105 crossref_primary_10_1016_j_exger_2020_110919 crossref_primary_10_3390_ijms241612780 crossref_primary_10_1007_s00018_021_03774_1 crossref_primary_10_1038_s44320_024_00064_3 crossref_primary_10_1016_j_lfs_2021_119942 crossref_primary_10_1080_15548627_2021_1964224 crossref_primary_10_3390_cells9071691 crossref_primary_10_1038_s42255_023_00924_6 crossref_primary_10_2139_ssrn_3943493 crossref_primary_10_1089_gtmb_2022_0032 crossref_primary_10_3390_biom11081144 crossref_primary_10_3390_ijms25168647 crossref_primary_10_1038_s41419_020_03002_x crossref_primary_10_26508_lsa_202301968 crossref_primary_10_1038_s41467_024_47623_8 crossref_primary_10_1016_j_tranon_2025_102340 crossref_primary_10_1016_j_bbiosy_2024_100093 crossref_primary_10_1038_s41598_021_97006_y crossref_primary_10_1074_jbc_RA118_004415 crossref_primary_10_3389_fcell_2022_1010232 crossref_primary_10_1113_JP279411 crossref_primary_10_1016_j_phymed_2024_155555 crossref_primary_10_1016_j_ejphar_2021_174603 crossref_primary_10_3389_fonc_2017_00102 crossref_primary_10_1007_s12192_023_01321_4 crossref_primary_10_1523_JNEUROSCI_1926_19_2020 crossref_primary_10_1021_acs_analchem_6b04666 crossref_primary_10_2174_1570180820666230818092456 crossref_primary_10_1038_s41598_021_81075_0 crossref_primary_10_1089_ars_2019_7898 crossref_primary_10_1186_s13046_018_1008_8 crossref_primary_10_1016_j_stem_2025_01_013 crossref_primary_10_1007_s00018_021_03773_2 crossref_primary_10_1007_s00018_021_03807_9 crossref_primary_10_3390_cancers14092155 crossref_primary_10_1007_s00109_021_02150_7 crossref_primary_10_3390_biom13081225 crossref_primary_10_1080_15384101_2018_1467679 crossref_primary_10_3390_ijms25136939 crossref_primary_10_1016_j_bcp_2020_114104 crossref_primary_10_1016_j_devcel_2022_03_019 crossref_primary_10_3390_cancers14030821 crossref_primary_10_1186_s12943_019_1030_2 crossref_primary_10_1158_1535_7163_MCT_17_0384 crossref_primary_10_1158_1535_7163_MCT_20_0962 crossref_primary_10_1016_j_semcancer_2021_05_010 crossref_primary_10_1016_j_ceb_2017_03_007 crossref_primary_10_1111_febs_16263 crossref_primary_10_1002_1878_0261_12866 crossref_primary_10_7554_eLife_68394 crossref_primary_10_1002_ijc_31548 crossref_primary_10_3389_fmicb_2020_01992 crossref_primary_10_1126_scisignal_abj3490 crossref_primary_10_18632_oncotarget_8319 crossref_primary_10_3389_fonc_2022_739631 crossref_primary_10_1016_j_neuint_2017_04_009 crossref_primary_10_3389_fendo_2019_00570 crossref_primary_10_1073_pnas_2121946119 crossref_primary_10_1038_onc_2017_358 crossref_primary_10_1002_cyto_a_22891 crossref_primary_10_1016_j_cellsig_2024_111284 crossref_primary_10_1016_j_molcel_2020_10_018 crossref_primary_10_1080_15548627_2024_2307224 crossref_primary_10_1155_2016_4085727 crossref_primary_10_3390_ijms20102409 crossref_primary_10_1007_s11064_019_02779_4 crossref_primary_10_1080_14786419_2024_2343920 crossref_primary_10_1016_j_apsb_2021_01_011 crossref_primary_10_1128_MCB_00109_19 crossref_primary_10_3390_ijms22073628 crossref_primary_10_3389_fcell_2021_781933 crossref_primary_10_1083_jcb_202304076 crossref_primary_10_3389_fcell_2020_584800 crossref_primary_10_1038_s41419_018_0552_7 crossref_primary_10_1155_2017_8073721 crossref_primary_10_3390_ijms231911304 crossref_primary_10_3389_fbioe_2021_755727 crossref_primary_10_1038_onc_2016_425 crossref_primary_10_3390_ijms24119572 crossref_primary_10_1096_fj_201701095R crossref_primary_10_1038_s41598_021_97162_1 crossref_primary_10_1002_1878_0261_12843 crossref_primary_10_1016_j_yexcr_2021_112493 crossref_primary_10_1016_j_bioorg_2023_106526 crossref_primary_10_1007_s12020_024_04008_7 crossref_primary_10_1016_j_celrep_2022_111198 crossref_primary_10_1016_j_freeradbiomed_2020_12_452 crossref_primary_10_1002_cbf_3920 crossref_primary_10_1111_nph_19106 crossref_primary_10_1111_cpr_13048 crossref_primary_10_3390_metabo11090627 crossref_primary_10_3390_cells13040316 crossref_primary_10_1016_j_devcel_2024_09_004 crossref_primary_10_1242_jcs_260612 crossref_primary_10_3390_biomedicines6020066 crossref_primary_10_1002_rmv_2447 crossref_primary_10_1038_s41392_023_01547_9 crossref_primary_10_1002_cmdc_202400536 crossref_primary_10_1089_cbr_2020_3791 crossref_primary_10_3389_fendo_2018_00211 crossref_primary_10_1016_j_devcel_2021_03_033 crossref_primary_10_1016_j_bbamcr_2016_09_003 crossref_primary_10_1038_s41419_020_2584_z crossref_primary_10_1038_s41419_019_2218_5 crossref_primary_10_1038_s41419_023_06202_3 crossref_primary_10_1038_s41419_018_0708_5 crossref_primary_10_1002_cpcy_26 crossref_primary_10_1111_jcmm_14772 crossref_primary_10_3892_mmr_2018_9712 crossref_primary_10_1038_s41388_020_1176_9 crossref_primary_10_1016_j_jbc_2021_101196 crossref_primary_10_1016_j_jdermsci_2017_08_004 crossref_primary_10_1016_j_lfs_2021_119876 crossref_primary_10_1016_j_mce_2024_112199 crossref_primary_10_1016_j_bmc_2023_117458 crossref_primary_10_3390_cells10030497 crossref_primary_10_1091_mbc_E23_11_0427 crossref_primary_10_1042_CS20160610 crossref_primary_10_18632_oncotarget_27264 crossref_primary_10_1016_j_ekir_2020_03_020 crossref_primary_10_3390_biomedicines11020596 crossref_primary_10_1016_j_drudis_2021_11_006 crossref_primary_10_1038_s41388_020_1168_9 crossref_primary_10_1016_j_bbagen_2018_01_018 crossref_primary_10_1038_s41580_020_0255_7 crossref_primary_10_1016_j_cryobiol_2021_07_013 crossref_primary_10_3390_cancers15041070 crossref_primary_10_1038_s41401_024_01335_3 crossref_primary_10_1016_j_phrs_2019_104317 crossref_primary_10_1155_2022_2504798 crossref_primary_10_1016_j_molmed_2024_03_008 crossref_primary_10_1242_jcs_258956 crossref_primary_10_3390_life11121351 crossref_primary_10_1016_j_trecan_2022_10_004 crossref_primary_10_3389_fphys_2022_1079989 crossref_primary_10_1016_j_phymed_2025_156435 crossref_primary_10_1007_s00018_017_2603_0 crossref_primary_10_1016_j_bcp_2020_114282 crossref_primary_10_3389_fcell_2022_849962 crossref_primary_10_3389_fmolb_2024_1354682 crossref_primary_10_1016_j_clnu_2024_06_036 crossref_primary_10_1016_j_cell_2016_07_002 crossref_primary_10_1158_1541_7786_MCR_18_0836 crossref_primary_10_1016_j_semcancer_2017_06_007 crossref_primary_10_1016_j_devcel_2021_04_019 crossref_primary_10_1016_j_mrrev_2024_108490 crossref_primary_10_3389_fphar_2019_00203 crossref_primary_10_1016_j_tcb_2017_08_011 crossref_primary_10_1111_febs_13603 crossref_primary_10_1186_s12967_022_03657_4 crossref_primary_10_1016_j_phrs_2018_11_029 crossref_primary_10_3389_fonc_2022_987026 crossref_primary_10_1016_j_molmet_2024_102089 crossref_primary_10_1016_j_jphs_2021_03_012 crossref_primary_10_1016_j_cellsig_2017_06_019 crossref_primary_10_1038_s41467_018_04033_x crossref_primary_10_1038_cddis_2016_184 crossref_primary_10_1016_j_biopha_2023_116052 crossref_primary_10_3389_fonc_2022_893396 crossref_primary_10_1038_s41419_018_0533_x crossref_primary_10_1016_j_isci_2024_109874 crossref_primary_10_1177_1010428317698391 crossref_primary_10_1016_j_phymed_2024_156353 crossref_primary_10_1016_j_cmet_2019_05_004 crossref_primary_10_1016_j_phrs_2018_11_020 crossref_primary_10_1016_j_phrs_2020_104846 crossref_primary_10_1113_EP090518 crossref_primary_10_1242_dev_201732 crossref_primary_10_1016_j_tibs_2020_03_009 crossref_primary_10_3390_cancers12010065 crossref_primary_10_26508_lsa_202402608 crossref_primary_10_3390_ijms24076128 crossref_primary_10_1038_s44319_024_00232_4 crossref_primary_10_1038_s41467_022_31417_x crossref_primary_10_1096_fj_201902958R crossref_primary_10_1002_cac2_12428 crossref_primary_10_1016_j_bbrc_2018_04_214 crossref_primary_10_1016_j_ydbio_2017_11_009 crossref_primary_10_1096_fj_202100361R crossref_primary_10_3390_antiox7010013 crossref_primary_10_1038_s41467_022_31548_1 crossref_primary_10_1016_j_freeradbiomed_2021_09_019 crossref_primary_10_1016_j_canlet_2019_12_017 crossref_primary_10_1016_j_bbrc_2016_01_120 crossref_primary_10_1038_s41388_022_02302_0 crossref_primary_10_3390_ijms26052217 crossref_primary_10_1016_j_joca_2021_11_003 crossref_primary_10_2147_JIR_S302944 crossref_primary_10_1038_s41598_017_05232_0 crossref_primary_10_1093_cvr_cvae102 crossref_primary_10_1016_j_isci_2023_107537 crossref_primary_10_1002_art_39791 crossref_primary_10_1016_j_mito_2020_05_005 crossref_primary_10_1007_s00294_015_0542_6 crossref_primary_10_1126_sciadv_aaz0361 crossref_primary_10_1016_j_jep_2021_113853 crossref_primary_10_3389_fonc_2022_993437 crossref_primary_10_1016_j_celrep_2018_10_080 crossref_primary_10_3389_fcell_2021_760705 crossref_primary_10_1534_genetics_115_186445 crossref_primary_10_1016_j_biocel_2022_106158 crossref_primary_10_1038_s41577_019_0154_3 crossref_primary_10_1016_j_phrs_2022_106603 crossref_primary_10_1152_ajpcell_00523_2018 crossref_primary_10_1016_j_critrevonc_2020_102995 crossref_primary_10_1074_jbc_RA117_001469 crossref_primary_10_1042_BST20220014 crossref_primary_10_1016_j_jdermsci_2020_06_009 crossref_primary_10_1038_s41389_019_0130_6 crossref_primary_10_3390_ijms22094750 crossref_primary_10_15252_embr_201948686 crossref_primary_10_1038_s41401_024_01262_3 crossref_primary_10_1083_jcb_201511036 crossref_primary_10_1113_JP276863 crossref_primary_10_1002_jcp_27866 crossref_primary_10_3390_ijms23052753 crossref_primary_10_1016_j_semcdb_2016_11_003 crossref_primary_10_1016_j_freeradbiomed_2021_09_027 crossref_primary_10_1038_s41591_019_0368_8 crossref_primary_10_3390_ijms24087374 crossref_primary_10_1111_cas_13830 crossref_primary_10_1038_s41419_018_1083_y crossref_primary_10_1016_j_jsbmb_2024_106558 crossref_primary_10_1016_j_vph_2023_107194 crossref_primary_10_1016_j_neo_2024_100999 crossref_primary_10_1096_fj_202000767R crossref_primary_10_1111_cmi_12831 crossref_primary_10_1038_onc_2015_370 crossref_primary_10_1016_j_cellsig_2022_110487 crossref_primary_10_1016_j_pharmthera_2020_107594 crossref_primary_10_1002_2211_5463_13273 crossref_primary_10_1002_mc_23524 crossref_primary_10_3390_antiox7020030 crossref_primary_10_1074_jbc_M117_786442 crossref_primary_10_1158_0008_5472_CAN_15_2921 crossref_primary_10_26508_lsa_202302147 crossref_primary_10_3389_fendo_2022_928591 crossref_primary_10_1158_0008_5472_CAN_19_1982 crossref_primary_10_1186_s12964_024_01844_y crossref_primary_10_7554_eLife_51071 crossref_primary_10_3390_cancers12102845 crossref_primary_10_1126_sciadv_adp3481 crossref_primary_10_1158_0008_5472_CAN_18_2383 crossref_primary_10_1016_j_cej_2024_153130 crossref_primary_10_1038_onc_2016_237 crossref_primary_10_1016_j_bcp_2022_115132 crossref_primary_10_3389_fonc_2020_00281 crossref_primary_10_1016_j_mcpro_2021_100050 crossref_primary_10_1038_s41418_022_01027_7 crossref_primary_10_1158_0008_5472_CAN_21_3910 crossref_primary_10_7554_eLife_43561 crossref_primary_10_1002_ctm2_529 crossref_primary_10_1016_j_bbcan_2021_188534 crossref_primary_10_1038_s41419_023_05721_3 crossref_primary_10_1021_acs_jafc_4c09215 crossref_primary_10_3390_antiox7100126 crossref_primary_10_3390_v10080419 crossref_primary_10_1038_s41467_023_44233_8 crossref_primary_10_1007_s00262_023_03582_5 crossref_primary_10_1039_D0RA02023K crossref_primary_10_18632_oncotarget_12838 crossref_primary_10_1038_s41598_022_13463_z crossref_primary_10_1016_j_metabol_2021_154803 crossref_primary_10_1080_15384101_2023_2289753 crossref_primary_10_15252_emmm_202114887 crossref_primary_10_3389_fnins_2021_654785 crossref_primary_10_1111_febs_13570 crossref_primary_10_1186_s12935_024_03281_w crossref_primary_10_1038_cddis_2016_370 crossref_primary_10_1021_acs_jnatprod_2c00524 crossref_primary_10_1128_mbio_02822_23 crossref_primary_10_1002_mc_23552 crossref_primary_10_1182_bloodadvances_2020002847 crossref_primary_10_1242_jcs_172429 crossref_primary_10_2174_0113894501304751240819111831 crossref_primary_10_1016_j_joim_2021_08_003 crossref_primary_10_1111_febs_15624 crossref_primary_10_3390_molecules26051307 crossref_primary_10_1002_ijc_32177 crossref_primary_10_1016_j_ebiom_2019_09_017 crossref_primary_10_1177_1535370220920558 crossref_primary_10_3390_ijms26062675 crossref_primary_10_1002_EXP_20230063 crossref_primary_10_3390_ijms24043270 crossref_primary_10_1016_j_yjmcc_2020_04_015 crossref_primary_10_2139_ssrn_4156702 crossref_primary_10_1042_EBC20170104 crossref_primary_10_1111_cas_14603 crossref_primary_10_3390_ijms25010244 crossref_primary_10_1016_j_freeradbiomed_2023_07_033 crossref_primary_10_1016_j_molcel_2016_08_013 crossref_primary_10_1111_dom_13497 crossref_primary_10_1161_CIRCULATIONAHA_117_031258 crossref_primary_10_1177_0271678X16671528 crossref_primary_10_1096_fj_202100067R crossref_primary_10_1152_ajpcell_00042_2018 crossref_primary_10_1158_0008_5472_CAN_21_0436 crossref_primary_10_1186_s13578_023_01068_6 crossref_primary_10_1080_15548627_2020_1850008 crossref_primary_10_3390_ijms24054394 crossref_primary_10_2147_JEP_S510578 crossref_primary_10_1016_j_tiv_2023_105552 crossref_primary_10_1007_s00018_015_1950_y crossref_primary_10_1002_cbin_11853 crossref_primary_10_1016_j_crcbio_2021_100008 crossref_primary_10_1016_j_canlet_2025_217586 crossref_primary_10_1124_jpet_119_258897 crossref_primary_10_1016_j_arr_2018_03_006 crossref_primary_10_1038_s41598_017_01659_7 crossref_primary_10_1016_j_bbrc_2023_07_038 crossref_primary_10_1152_ajprenal_00409_2023 crossref_primary_10_1016_j_mito_2019_04_008 crossref_primary_10_1016_j_ebiom_2018_07_026 crossref_primary_10_1113_JP272885 crossref_primary_10_1007_s00018_016_2451_3 crossref_primary_10_3390_antiox7120195 crossref_primary_10_3390_ijms24054724 crossref_primary_10_3390_cancers12051119 crossref_primary_10_1016_j_bbrc_2017_06_192 crossref_primary_10_1080_15548627_2018_1450708 crossref_primary_10_3390_ijms241311003 crossref_primary_10_1038_s41418_022_00974_5 crossref_primary_10_3389_fimmu_2022_873834 crossref_primary_10_1530_ERC_22_0229 crossref_primary_10_2139_ssrn_3188491 crossref_primary_10_1515_oncologie_2024_0596 crossref_primary_10_1016_j_ajpath_2018_03_013 crossref_primary_10_1371_journal_pone_0197266 crossref_primary_10_1371_journal_pone_0283118 crossref_primary_10_3389_fonc_2017_00171 crossref_primary_10_1016_j_molcel_2021_01_034 crossref_primary_10_1038_s41392_021_00790_2 crossref_primary_10_1002_2211_5463_13452 crossref_primary_10_3389_fcimb_2022_835181 crossref_primary_10_1038_s41392_020_0151_9 crossref_primary_10_1016_j_bbrc_2017_05_039 crossref_primary_10_1016_j_ijbiomac_2024_131417 crossref_primary_10_1038_s41419_020_2556_3 crossref_primary_10_1167_iovs_63_4_2 crossref_primary_10_1155_2019_9757201 crossref_primary_10_1016_j_mito_2020_03_003 crossref_primary_10_1038_s41419_021_03502_4 crossref_primary_10_1007_s00018_021_03775_0 crossref_primary_10_1007_s12013_024_01245_5 crossref_primary_10_3389_fonc_2018_00126 crossref_primary_10_1016_j_mito_2024_101847 crossref_primary_10_1002_1878_0261_13103 crossref_primary_10_1016_j_cmet_2017_05_016 crossref_primary_10_1093_brain_awv237 crossref_primary_10_1126_sciadv_abo2510 crossref_primary_10_1101_gad_297077_117 crossref_primary_10_1016_j_molcel_2021_08_025 crossref_primary_10_1016_j_bioorg_2024_107574 crossref_primary_10_3389_fonc_2019_00480 crossref_primary_10_1139_apnm_2015_0184 crossref_primary_10_1016_j_bioorg_2024_107218 crossref_primary_10_3390_ijms23105418 crossref_primary_10_18632_oncotarget_11339 crossref_primary_10_1091_mbc_E21_06_0286 crossref_primary_10_1161_CIRCRESAHA_117_311307 crossref_primary_10_1007_s12020_020_02546_4 crossref_primary_10_1007_s00395_023_01009_x crossref_primary_10_1038_s41416_020_0778_x crossref_primary_10_1186_s13058_020_01301_x crossref_primary_10_1002_1878_0261_13212 crossref_primary_10_1021_acsomega_3c06547 crossref_primary_10_3390_antiox9111057 crossref_primary_10_1146_annurev_pathmechdis_012419_032711 crossref_primary_10_1016_j_canlet_2022_215871 crossref_primary_10_1038_s41419_018_1019_6 crossref_primary_10_1016_j_canlet_2018_11_019 crossref_primary_10_1016_j_celrep_2022_111818 crossref_primary_10_3389_fonc_2017_00081 crossref_primary_10_3390_ncrna9010016 crossref_primary_10_1016_j_ijbiomac_2023_127381 crossref_primary_10_1016_j_mito_2024_101904 crossref_primary_10_3390_ijms231911908 crossref_primary_10_1111_cas_16064 crossref_primary_10_3390_ijms242015276 crossref_primary_10_3390_life11020082 crossref_primary_10_1016_j_freeradbiomed_2022_08_019 crossref_primary_10_1016_j_exger_2020_110870 crossref_primary_10_1016_j_bbcan_2018_04_004 crossref_primary_10_1016_j_devcel_2020_06_029 crossref_primary_10_3390_antiox6020033 crossref_primary_10_1016_j_canlet_2021_09_043 crossref_primary_10_1016_j_ccell_2015_10_013 crossref_primary_10_1096_fj_201903117R crossref_primary_10_1016_j_pupt_2020_101918 crossref_primary_10_1126_sciadv_adm8212 crossref_primary_10_1016_j_celrep_2021_109565 crossref_primary_10_1038_cddis_2016_415 crossref_primary_10_1039_c9mt00187e crossref_primary_10_1074_jbc_RA117_001253 crossref_primary_10_1111_imcb_12363 crossref_primary_10_1002_ctm2_132 crossref_primary_10_1038_s41419_020_03383_z crossref_primary_10_1080_15548627_2019_1580095 crossref_primary_10_1038_cddis_2017_448 crossref_primary_10_1038_s41388_017_0103_1 crossref_primary_10_1165_rcmb_2020_0008OC crossref_primary_10_1155_2021_8832863 crossref_primary_10_7554_eLife_49494 crossref_primary_10_1038_s41467_020_18753_6 crossref_primary_10_3390_ijms22031498 crossref_primary_10_1007_s00018_018_2961_2 crossref_primary_10_1093_cvr_cvaa133 crossref_primary_10_1038_cddis_2017_559 crossref_primary_10_1073_pnas_2120157119 crossref_primary_10_1139_bcb_2021_0175 crossref_primary_10_1242_jcs_263640 crossref_primary_10_1038_onc_2017_98 crossref_primary_10_1016_j_semcdb_2019_05_021 crossref_primary_10_1038_s41568_021_00375_9 crossref_primary_10_1016_j_freeradbiomed_2021_12_264 crossref_primary_10_17650_2313_805X_2020_7_2_8_19 crossref_primary_10_1002_prp2_235 crossref_primary_10_1007_s00430_022_00742_9 crossref_primary_10_1002_bies_202100116 crossref_primary_10_1016_j_bbrc_2021_04_082 crossref_primary_10_1038_s41420_023_01536_5 crossref_primary_10_1016_j_semcdb_2024_03_002 crossref_primary_10_1096_fj_201901366R crossref_primary_10_18632_oncotarget_22264 crossref_primary_10_1038_s41418_023_01240_y crossref_primary_10_1242_dev_202024 crossref_primary_10_2217_fon_2020_0362 crossref_primary_10_1186_s40779_024_00536_5 crossref_primary_10_3390_ijms19020564 crossref_primary_10_1111_cns_13141 crossref_primary_10_1016_j_celrep_2018_11_018 crossref_primary_10_3803_EnM_2022_1530 crossref_primary_10_1016_j_celrep_2019_07_031 crossref_primary_10_1016_j_freeradbiomed_2015_11_015 crossref_primary_10_1111_febs_14122 crossref_primary_10_1038_ncomms11124 |
Cites_doi | 10.1128/MCB.9.2.639 10.1016/j.bbrc.2012.03.118 10.1038/nrm3013 10.1158/2159-8290.CD-13-0397 10.1038/ncomms4056 10.1158/1078-0432.CCR-10-2214 10.1016/j.canlet.2008.02.044 10.1007/s11605-007-0406-6 10.1038/22780 10.1074/jbc.M806443200 10.1038/sj.neo.7900005 10.1038/ncb2930 10.1016/j.cell.2011.02.013 10.1517/14728222.2013.823160 10.1101/gad.993902 10.1074/jbc.C700083200 10.1016/j.ccr.2005.04.030 10.1016/j.biocel.2009.02.002 10.1242/jcs.109769 10.1016/j.canlet.2009.01.022 10.1016/j.bbadis.2013.11.009 10.1016/j.yexmp.2010.08.006 10.1091/mbc.E10-06-0500 10.1096/fj.13-230037 10.1016/j.semcdb.2012.01.005 10.1073/pnas.0904875106 10.1038/nrc1503 10.1016/j.cmet.2013.03.002 10.1158/1535-7163.MCT-11-0261 10.1089/ars.2010.3284 10.1016/S1535-6108(03)00248-4 10.4161/auto.7.10.16643 10.1038/nature12865 10.1089/ars.2011.4105 10.3390/ijms140713005 10.1158/0008-5472.CAN-07-0783 10.1101/gad.2016311 10.1038/nrm1697 10.1007/s12035-009-8095-7 10.1126/scisignal.2002010 10.1038/nrc969 10.1126/science.123.3191.309 10.1089/ars.2010.3286 10.1038/nature12040 10.1126/science.1160809 10.1074/jbc.M607279200 10.1016/j.mito.2010.08.005 10.1096/fj.11-196543 10.1093/carcin/bgr031 10.1038/nrd2926 10.1038/onc.2012.500 10.1083/jcb.200309082 10.1074/jbc.M405531200 10.1038/onc.2012.494 10.1002/bies.201300011 10.1038/ncb2310 10.1016/S0962-8924(00)01740-2 10.1097/MPA.0b013e3181c15963 10.1007/s004280100474 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. 2015 Published by Elsevier Inc. 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: 2015 Published by Elsevier Inc. 2015 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2015.01.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 551 |
ExternalDocumentID | PMC4393013 25658205 10_1016_j_molcel_2015_01_002 S1097276515000039 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM008136 – fundername: NCI NIH HHS grantid: P30 CA044579 – fundername: NCI NIH HHS grantid: T32 CA009109 – fundername: NIDDK NIH HHS grantid: R01 DK101803 – fundername: NCI NIH HHS grantid: R01 CA094184 – fundername: NIAAA NIH HHS grantid: R21 AA022154 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c562t-f5fc33318c838fd23392e9ed9ea219218bb3737c938b0edec1bf177e746892aa3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 18:04:09 EDT 2025 Fri Jul 11 01:11:00 EDT 2025 Sun Aug 24 04:10:22 EDT 2025 Mon Jul 21 05:52:17 EDT 2025 Tue Jul 01 03:40:44 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Fri Feb 23 02:30:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-f5fc33318c838fd23392e9ed9ea219218bb3737c938b0edec1bf177e746892aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first author |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276515000039 |
PMID | 25658205 |
PQID | 1653128067 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4393013 proquest_miscellaneous_2000186169 proquest_miscellaneous_1653128067 pubmed_primary_25658205 crossref_citationtrail_10_1016_j_molcel_2015_01_002 crossref_primary_10_1016_j_molcel_2015_01_002 elsevier_sciencedirect_doi_10_1016_j_molcel_2015_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-05 |
PublicationDateYYYYMMDD | 2015-02-05 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Bos (bib2) 1989; 49 Rao, Tortola, Perlot, Wirnsberger, Novatchkova, Nitsch, Sykacek, Frank, Schramek, Komnenovic (bib39) 2014; 5 Hagenbuchner, Kuznetsov, Obexer, Ausserlechner (bib15) 2013; 32 Inoue-Yamauchi, Oda (bib20) 2012; 421 Chen, Dasgupta, Ding, Indig, Ghosh, Longo (bib7) 2014; 28 Deer, González-Hernández, Coursen, Shea, Ngatia, Scaife, Firpo, Mulvihill (bib8) 2010; 39 Youle, Karbowski (bib58) 2005; 6 Diaz-Ruiz, Uribe-Carvajal, Devin, Rigoulet (bib9) 2009; 1796 Pitts, McNiven, Yoon (bib36) 2004; 279 Holcomb, Yip-Schneider, Matos, Dixon, Kennard, Mahomed, Shanmugam, Sebolt-Leopold, Schmidt (bib19) 2008; 12 Guo, Chen, Mathew, Fan, Strohecker, Karsli-Uzunbas, Kamphorst, Chen, Lemons, Karantza (bib14) 2011; 25 Luo, Manning, Cantley (bib31) 2003; 4 Mitra, Wunder, Roysam, Lin, Lippincott-Schwartz (bib33) 2009; 106 Montagut, Settleman (bib34) 2009; 283 Moore, Sipos, Orlandini, Sorio, Real, Lemoine, Gress, Bassi, Klöppel, Kalthoff (bib35) 2001; 439 Hanahan, Weinberg (bib18) 2011; 144 Levin-Salomon, Kogan, Ahn, Livnah, Engelberg (bib24) 2008; 283 Downward (bib11) 2003; 3 Kashatus, Lim, Brady, Pershing, Cox, Counter (bib22) 2011; 13 Xia, Meng, Liu, Rojanasakul, Wang, Jiang (bib56) 2007; 67 Arismendi-Morillo (bib1) 2009; 41 Ferreira (bib12) 2010; 89 Qian, Choi, Gibson, Watkins, Bakkenist, Van Houten (bib37) 2012; 125 Wang, Bajikar, Jamal, Atkins, Janes (bib62) 2014; 16 Rehman, Zhang, Toth, Zhang, Marsboom, Hong, Salgia, Husain, Wietholt, Archer (bib40) 2012; 26 Sebolt-Leopold, Herrera (bib43) 2004; 4 Brunet, Pagès, Pouysségur (bib3) 1994; 9 Su, Wang, Bonda, Perry, Smith, Zhu (bib50) 2010; 41 Liesa, Shirihai (bib25) 2013; 17 Vander Heiden, Cantley, Thompson (bib53) 2009; 324 Taguchi, Ishihara, Jofuku, Oka, Mihara (bib51) 2007; 282 Chang, Blackstone (bib6) 2007; 282 Diep, Munoz, Choudhary, Von Hoff, Han (bib10) 2011; 17 Gan, Huang, Wu, Wang, Hu, Li, Zhang, Yu, Swerdlow, Chen, Yan (bib13) 2014; 1842 Lim, Ng, Grace, Yao (bib27) 2012; 16 Yu, Jhun, Yoon (bib59) 2011; 14 Stanton, Nichols, Laudano, Cooper (bib47) 1989; 9 Mitra (bib32) 2013; 35 Rosenfeldt, Ryan (bib41) 2011; 32 Zhang, Jin, Lin, Chen, Liu, Zhang, Yu (bib60) 2013; 14 Lim, Baines, Fiordalisi, Shipitsin, Feig, Cox, Der, Counter (bib26) 2005; 7 Qian, Wang, Van Houten (bib38) 2013; 17 Karbowski, Arnoult, Chen, Chan, Smith, Youle (bib21) 2004; 164 Rosenfeldt, O’Prey, Morton, Nixon, MacKay, Mrowinska, Au, Rai, Zheng, Ridgway (bib42) 2013; 504 Warburg (bib54) 1956; 123 Sheridan, Martin (bib44) 2010; 10 Shields, Pruitt, McFall, Shaub, Der (bib45) 2000; 10 Ushio-Fukai, Nakamura (bib52) 2008; 266 Westermann (bib55) 2010; 11 Lock, Roy, Kenific, Su, Salas, Ronen, Debnath (bib29) 2011; 22 Stokes, Adair, Slack-Davis, Walters, Tilghman, Hershey, Lowrey, Thomas, Bouton, Hwang (bib48) 2011; 10 Lozy, Karantza (bib30) 2012; 23 Liu, Cheng, Roberts, Zhao (bib28) 2009; 8 Kim, Kim, Lee, Yoon, Xu, Yoon, Choi, Ko, Kim, Lee (bib23) 2011; 7 Bruns, Harbison, Kuniyasu, Eue, Fidler (bib4) 1999; 1 Strohecker, Guo, Karsli-Uzunbas, Price, Chen, Mathew, McMahon, White (bib49) 2013; 3 Yoon, Galloway, Jhun, Yu (bib57) 2011; 14 Hamad, Elconin, Karnoub, Bai, Rich, Abraham, Der, Counter (bib17) 2002; 16 Carlson, Chouinard, Labadorf, Lam, Schmelzle, Fraenkel, White (bib5) 2011; 4 Hahn, Counter, Lundberg, Beijersbergen, Brooks, Weinberg (bib16) 1999; 400 Son, Lyssiotis, Ying, Wang, Hua, Ligorio, Perera, Ferrone, Mullarky, Shyh-Chang (bib46) 2013; 496 Zhao, Zhang, Yu, Xie, Huang, Wolff, Abel, Tu (bib61) 2013; 32 Taguchi (10.1016/j.molcel.2015.01.002_bib51) 2007; 282 Liesa (10.1016/j.molcel.2015.01.002_bib25) 2013; 17 Lock (10.1016/j.molcel.2015.01.002_bib29) 2011; 22 Westermann (10.1016/j.molcel.2015.01.002_bib55) 2010; 11 Sheridan (10.1016/j.molcel.2015.01.002_bib44) 2010; 10 Mitra (10.1016/j.molcel.2015.01.002_bib32) 2013; 35 Karbowski (10.1016/j.molcel.2015.01.002_bib21) 2004; 164 Holcomb (10.1016/j.molcel.2015.01.002_bib19) 2008; 12 Rehman (10.1016/j.molcel.2015.01.002_bib40) 2012; 26 Youle (10.1016/j.molcel.2015.01.002_bib58) 2005; 6 Rosenfeldt (10.1016/j.molcel.2015.01.002_bib42) 2013; 504 Diep (10.1016/j.molcel.2015.01.002_bib10) 2011; 17 Luo (10.1016/j.molcel.2015.01.002_bib31) 2003; 4 Son (10.1016/j.molcel.2015.01.002_bib46) 2013; 496 Pitts (10.1016/j.molcel.2015.01.002_bib36) 2004; 279 Levin-Salomon (10.1016/j.molcel.2015.01.002_bib24) 2008; 283 Bruns (10.1016/j.molcel.2015.01.002_bib4) 1999; 1 Lim (10.1016/j.molcel.2015.01.002_bib26) 2005; 7 Hagenbuchner (10.1016/j.molcel.2015.01.002_bib15) 2013; 32 Rao (10.1016/j.molcel.2015.01.002_bib39) 2014; 5 Zhao (10.1016/j.molcel.2015.01.002_bib61) 2013; 32 Chang (10.1016/j.molcel.2015.01.002_bib6) 2007; 282 Yoon (10.1016/j.molcel.2015.01.002_bib57) 2011; 14 Montagut (10.1016/j.molcel.2015.01.002_bib34) 2009; 283 Qian (10.1016/j.molcel.2015.01.002_bib37) 2012; 125 Yu (10.1016/j.molcel.2015.01.002_bib59) 2011; 14 Hamad (10.1016/j.molcel.2015.01.002_bib17) 2002; 16 Lim (10.1016/j.molcel.2015.01.002_bib27) 2012; 16 Su (10.1016/j.molcel.2015.01.002_bib50) 2010; 41 Warburg (10.1016/j.molcel.2015.01.002_bib54) 1956; 123 Shields (10.1016/j.molcel.2015.01.002_bib45) 2000; 10 Inoue-Yamauchi (10.1016/j.molcel.2015.01.002_bib20) 2012; 421 Zhang (10.1016/j.molcel.2015.01.002_bib60) 2013; 14 Carlson (10.1016/j.molcel.2015.01.002_bib5) 2011; 4 Ferreira (10.1016/j.molcel.2015.01.002_bib12) 2010; 89 Arismendi-Morillo (10.1016/j.molcel.2015.01.002_bib1) 2009; 41 Deer (10.1016/j.molcel.2015.01.002_bib8) 2010; 39 Gan (10.1016/j.molcel.2015.01.002_bib13) 2014; 1842 Moore (10.1016/j.molcel.2015.01.002_bib35) 2001; 439 Bos (10.1016/j.molcel.2015.01.002_bib2) 1989; 49 Liu (10.1016/j.molcel.2015.01.002_bib28) 2009; 8 Ushio-Fukai (10.1016/j.molcel.2015.01.002_bib52) 2008; 266 Chen (10.1016/j.molcel.2015.01.002_bib7) 2014; 28 Hanahan (10.1016/j.molcel.2015.01.002_bib18) 2011; 144 Sebolt-Leopold (10.1016/j.molcel.2015.01.002_bib43) 2004; 4 Stanton (10.1016/j.molcel.2015.01.002_bib47) 1989; 9 Qian (10.1016/j.molcel.2015.01.002_bib38) 2013; 17 Wang (10.1016/j.molcel.2015.01.002_bib62) 2014; 16 Xia (10.1016/j.molcel.2015.01.002_bib56) 2007; 67 Kashatus (10.1016/j.molcel.2015.01.002_bib22) 2011; 13 Stokes (10.1016/j.molcel.2015.01.002_bib48) 2011; 10 Vander Heiden (10.1016/j.molcel.2015.01.002_bib53) 2009; 324 Brunet (10.1016/j.molcel.2015.01.002_bib3) 1994; 9 Mitra (10.1016/j.molcel.2015.01.002_bib33) 2009; 106 Rosenfeldt (10.1016/j.molcel.2015.01.002_bib41) 2011; 32 Downward (10.1016/j.molcel.2015.01.002_bib11) 2003; 3 Lozy (10.1016/j.molcel.2015.01.002_bib30) 2012; 23 Hahn (10.1016/j.molcel.2015.01.002_bib16) 1999; 400 Diaz-Ruiz (10.1016/j.molcel.2015.01.002_bib9) 2009; 1796 Strohecker (10.1016/j.molcel.2015.01.002_bib49) 2013; 3 Kim (10.1016/j.molcel.2015.01.002_bib23) 2011; 7 Guo (10.1016/j.molcel.2015.01.002_bib14) 2011; 25 24305049 - Nature. 2013 Dec 12;504(7479):296-300 23797661 - Int J Mol Sci. 2013;14(7):13005-21 15573115 - Nat Rev Cancer. 2004 Dec;4(12):937-47 24445999 - Nat Commun. 2014;5:3056 23943303 - Bioessays. 2013 Nov;35(11):955-64 10740269 - Trends Cell Biol. 2000 Apr;10(4):147-54 18049840 - J Gastrointest Surg. 2008 Feb;12(2):288-96 21385921 - Clin Cancer Res. 2011 May 1;17(9):2744-56 23562075 - Cell Metab. 2013 Apr 2;17(4):491-506 20727425 - Mitochondrion. 2010 Nov;10(6):640-8 21738012 - Autophagy. 2011 Oct;7(10):1187-98 24252614 - Biochim Biophys Acta. 2014 Feb;1842(2):220-31 14585353 - Cancer Cell. 2003 Oct;4(4):257-62 21317241 - Genes Dev. 2011 Mar 1;25(5):460-70 21102612 - Nat Rev Mol Cell Biol. 2010 Dec;11(12):872-84 20518702 - Antioxid Redox Signal. 2011 Feb 1;14(3):425-37 15364948 - J Biol Chem. 2004 Nov 26;279(48):50286-94 23535601 - Nature. 2013 Apr 4;496(7443):101-5 20101529 - Mol Neurobiol. 2010 Jun;41(2-3):87-96 21119005 - Mol Biol Cell. 2011 Jan 15;22(2):165-78 17301055 - J Biol Chem. 2007 Apr 13;282(15):11521-9 20418756 - Pancreas. 2010 May;39(4):425-35 7936666 - Oncogene. 1994 Nov;9(11):3379-87 21903606 - Mol Cancer Ther. 2011 Nov;10(11):2135-45 21668405 - Antioxid Redox Signal. 2012 May 1;16(9):935-49 22487795 - Biochem Biophys Res Commun. 2012 Apr 27;421(1):81-5 19617534 - Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11960-5 10440377 - Nature. 1999 Jul 29;400(6743):464-8 18006827 - Cancer Res. 2007 Nov 15;67(22):10823-30 18829462 - J Biol Chem. 2008 Dec 12;283(50):34500-10 19682552 - Biochim Biophys Acta. 2009 Dec;1796(2):252-65 19644473 - Nat Rev Drug Discov. 2009 Aug;8(8):627-44 21822277 - Nat Cell Biol. 2011 Sep;13(9):1108-15 22281437 - Semin Cell Dev Biol. 2012 Jun;23(4):395-401 23146905 - Oncogene. 2013 Oct;32(40):4748-57 21376230 - Cell. 2011 Mar 4;144(5):646-74 17553808 - J Biol Chem. 2007 Jul 27;282(30):21583-7 12509763 - Nat Rev Cancer. 2003 Jan;3(1):11-22 24081906 - FASEB J. 2014 Jan;28(1):382-94 20804748 - Exp Mol Pathol. 2010 Dec;89(3):372-80 15950903 - Cancer Cell. 2005 Jun;7(6):533-45 18406051 - Cancer Lett. 2008 Jul 18;266(1):37-52 23888838 - Expert Opin Ther Targets. 2013 Sep;17(9):997-1001 2710120 - Mol Cell Biol. 1989 Feb;9(2):639-47 13298683 - Science. 1956 Feb 24;123(3191):309-14 19703662 - Int J Biochem Cell Biol. 2009 Oct;41(10):2062-8 23965987 - Cancer Discov. 2013 Nov;3(11):1272-85 21317301 - Carcinogenesis. 2011 Jul;32(7):955-63 11787853 - Virchows Arch. 2001 Dec;439(6):798-802 20518704 - Antioxid Redox Signal. 2011 Feb 1;14(3):439-57 19217204 - Cancer Lett. 2009 Oct 8;283(2):125-34 19460998 - Science. 2009 May 22;324(5930):1029-33 16025099 - Nat Rev Mol Cell Biol. 2005 Aug;6(8):657-63 22321727 - FASEB J. 2012 May;26(5):2175-86 14769861 - J Cell Biol. 2004 Feb 16;164(4):493-9 23128392 - Oncogene. 2013 Oct;32(40):4814-24 22028470 - Sci Signal. 2011;4(196):rs11 12183360 - Genes Dev. 2002 Aug 15;16(16):2045-57 23015593 - J Cell Sci. 2012 Dec 1;125(Pt 23):5745-57 2547513 - Cancer Res. 1989 Sep 1;49(17):4682-9 10935470 - Neoplasia. 1999 Apr;1(1):50-62 |
References_xml | – volume: 282 start-page: 21583 year: 2007 end-page: 21587 ident: bib6 article-title: Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology publication-title: J. Biol. Chem. – volume: 1842 start-page: 220 year: 2014 end-page: 231 ident: bib13 article-title: Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell publication-title: Biochim. Biophys. Acta – volume: 49 start-page: 4682 year: 1989 end-page: 4689 ident: bib2 article-title: ras oncogenes in human cancer: a review publication-title: Cancer Res. – volume: 9 start-page: 3379 year: 1994 end-page: 3387 ident: bib3 article-title: Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts publication-title: Oncogene – volume: 16 start-page: 345 year: 2014 end-page: 356 ident: bib62 article-title: A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies publication-title: Nat. Cell Biol. – volume: 41 start-page: 2062 year: 2009 end-page: 2068 ident: bib1 article-title: Electron microscopy morphology of the mitochondrial network in human cancer publication-title: Int. J. Biochem. Cell Biol. – volume: 17 start-page: 2744 year: 2011 end-page: 2756 ident: bib10 article-title: Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells publication-title: Clin. Cancer Res. – volume: 125 start-page: 5745 year: 2012 end-page: 5757 ident: bib37 article-title: Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress publication-title: J. Cell Sci. – volume: 14 start-page: 425 year: 2011 end-page: 437 ident: bib59 article-title: High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission publication-title: Antioxid. Redox Signal. – volume: 496 start-page: 101 year: 2013 end-page: 105 ident: bib46 article-title: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway publication-title: Nature – volume: 17 start-page: 997 year: 2013 end-page: 1001 ident: bib38 article-title: The role of dynamin-related protein 1 in cancer growth: a promising therapeutic target? publication-title: Expert Opin. Ther. Targets – volume: 12 start-page: 288 year: 2008 end-page: 296 ident: bib19 article-title: Pancreatic cancer cell genetics and signaling response to treatment correlate with efficacy of gemcitabine-based molecular targeting strategies publication-title: J. Gastrointest. Surg. – volume: 164 start-page: 493 year: 2004 end-page: 499 ident: bib21 article-title: Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis publication-title: J. Cell Biol. – volume: 5 start-page: 3056 year: 2014 ident: bib39 article-title: A dual role for autophagy in a murine model of lung cancer publication-title: Nat. Commun. – volume: 400 start-page: 464 year: 1999 end-page: 468 ident: bib16 article-title: Creation of human tumour cells with defined genetic elements publication-title: Nature – volume: 8 start-page: 627 year: 2009 end-page: 644 ident: bib28 article-title: Targeting the phosphoinositide 3-kinase pathway in cancer publication-title: Nat. Rev. Drug Discov. – volume: 10 start-page: 640 year: 2010 end-page: 648 ident: bib44 article-title: Mitochondrial fission/fusion dynamics and apoptosis publication-title: Mitochondrion – volume: 439 start-page: 798 year: 2001 end-page: 802 ident: bib35 article-title: Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4 publication-title: Virchows Arch. – volume: 32 start-page: 4748 year: 2013 end-page: 4757 ident: bib15 article-title: BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery publication-title: Oncogene – volume: 283 start-page: 34500 year: 2008 end-page: 34510 ident: bib24 article-title: Isolation of intrinsically active (MEK-independent) variants of the ERK family of mitogen-activated protein (MAP) kinases publication-title: J. Biol. Chem. – volume: 16 start-page: 935 year: 2012 end-page: 949 ident: bib27 article-title: Mitochondrial dynamics and Parkinson’s disease: focus on parkin publication-title: Antioxid. Redox Signal. – volume: 123 start-page: 309 year: 1956 end-page: 314 ident: bib54 article-title: On the origin of cancer cells publication-title: Science – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib18 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 6 start-page: 657 year: 2005 end-page: 663 ident: bib58 article-title: Mitochondrial fission in apoptosis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 4 start-page: rs11 year: 2011 ident: bib5 article-title: Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3 publication-title: Sci. Signal. – volume: 23 start-page: 395 year: 2012 end-page: 401 ident: bib30 article-title: Autophagy and cancer cell metabolism publication-title: Semin. Cell Dev. Biol. – volume: 504 start-page: 296 year: 2013 end-page: 300 ident: bib42 article-title: p53 status determines the role of autophagy in pancreatic tumour development publication-title: Nature – volume: 9 start-page: 639 year: 1989 end-page: 647 ident: bib47 article-title: Definition of the human raf amino-terminal regulatory region by deletion mutagenesis publication-title: Mol. Cell. Biol. – volume: 283 start-page: 125 year: 2009 end-page: 134 ident: bib34 article-title: Targeting the RAF-MEK-ERK pathway in cancer therapy publication-title: Cancer Lett. – volume: 22 start-page: 165 year: 2011 end-page: 178 ident: bib29 article-title: Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation publication-title: Mol. Biol. Cell – volume: 1 start-page: 50 year: 1999 end-page: 62 ident: bib4 article-title: In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice publication-title: Neoplasia – volume: 10 start-page: 2135 year: 2011 end-page: 2145 ident: bib48 article-title: Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment publication-title: Mol. Cancer Ther. – volume: 25 start-page: 460 year: 2011 end-page: 470 ident: bib14 article-title: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis publication-title: Genes Dev. – volume: 4 start-page: 937 year: 2004 end-page: 947 ident: bib43 article-title: Targeting the mitogen-activated protein kinase cascade to treat cancer publication-title: Nat. Rev. Cancer – volume: 4 start-page: 257 year: 2003 end-page: 262 ident: bib31 article-title: Targeting the PI3K-Akt pathway in human cancer: rationale and promise publication-title: Cancer Cell – volume: 3 start-page: 11 year: 2003 end-page: 22 ident: bib11 article-title: Targeting RAS signalling pathways in cancer therapy publication-title: Nat. Rev. Cancer – volume: 10 start-page: 147 year: 2000 end-page: 154 ident: bib45 article-title: Understanding Ras: ‘it ain’t over ‘til it’s over’ publication-title: Trends Cell Biol. – volume: 106 start-page: 11960 year: 2009 end-page: 11965 ident: bib33 article-title: A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 1187 year: 2011 end-page: 1198 ident: bib23 article-title: Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency publication-title: Autophagy – volume: 32 start-page: 955 year: 2011 end-page: 963 ident: bib41 article-title: The multiple roles of autophagy in cancer publication-title: Carcinogenesis – volume: 89 start-page: 372 year: 2010 end-page: 380 ident: bib12 article-title: Cancer metabolism: the Warburg effect today publication-title: Exp. Mol. Pathol. – volume: 421 start-page: 81 year: 2012 end-page: 85 ident: bib20 article-title: Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells publication-title: Biochem. Biophys. Res. Commun. – volume: 3 start-page: 1272 year: 2013 end-page: 1285 ident: bib49 article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors publication-title: Cancer Discov. – volume: 35 start-page: 955 year: 2013 end-page: 964 ident: bib32 article-title: Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation publication-title: Bioessays – volume: 28 start-page: 382 year: 2014 end-page: 394 ident: bib7 article-title: Role of mitofusin 2 (Mfn2) in controlling cellular proliferation publication-title: FASEB J. – volume: 41 start-page: 87 year: 2010 end-page: 96 ident: bib50 article-title: Abnormal mitochondrial dynamics—a novel therapeutic target for Alzheimer’s disease? publication-title: Mol. Neurobiol. – volume: 266 start-page: 37 year: 2008 end-page: 52 ident: bib52 article-title: Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy publication-title: Cancer Lett. – volume: 11 start-page: 872 year: 2010 end-page: 884 ident: bib55 article-title: Mitochondrial fusion and fission in cell life and death publication-title: Nat. Rev. Mol. Cell Biol. – volume: 13 start-page: 1108 year: 2011 end-page: 1115 ident: bib22 article-title: RALA and RALBP1 regulate mitochondrial fission at mitosis publication-title: Nat. Cell Biol. – volume: 7 start-page: 533 year: 2005 end-page: 545 ident: bib26 article-title: Activation of RalA is critical for Ras-induced tumorigenesis of human cells publication-title: Cancer Cell – volume: 14 start-page: 439 year: 2011 end-page: 457 ident: bib57 article-title: Mitochondrial dynamics in diabetes publication-title: Antioxid. Redox Signal. – volume: 39 start-page: 425 year: 2010 end-page: 435 ident: bib8 article-title: Phenotype and genotype of pancreatic cancer cell lines publication-title: Pancreas – volume: 17 start-page: 491 year: 2013 end-page: 506 ident: bib25 article-title: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure publication-title: Cell Metab. – volume: 16 start-page: 2045 year: 2002 end-page: 2057 ident: bib17 article-title: Distinct requirements for Ras oncogenesis in human versus mouse cells publication-title: Genes Dev. – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: bib53 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 32 start-page: 4814 year: 2013 end-page: 4824 ident: bib61 article-title: Mitochondrial dynamics regulates migration and invasion of breast cancer cells publication-title: Oncogene – volume: 279 start-page: 50286 year: 2004 end-page: 50294 ident: bib36 article-title: Mitochondria-specific function of the dynamin family protein DLP1 is mediated by its C-terminal domains publication-title: J. Biol. Chem. – volume: 26 start-page: 2175 year: 2012 end-page: 2186 ident: bib40 article-title: Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer publication-title: FASEB J. – volume: 1796 start-page: 252 year: 2009 end-page: 265 ident: bib9 article-title: Tumor cell energy metabolism and its common features with yeast metabolism publication-title: Biochim. Biophys. Acta – volume: 282 start-page: 11521 year: 2007 end-page: 11529 ident: bib51 article-title: Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission publication-title: J. Biol. Chem. – volume: 67 start-page: 10823 year: 2007 end-page: 10830 ident: bib56 article-title: Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor publication-title: Cancer Res. – volume: 14 start-page: 13005 year: 2013 end-page: 13021 ident: bib60 article-title: Anti-tumor effects of mfn2 in gastric cancer publication-title: Int. J. Mol. Sci. – volume: 9 start-page: 639 year: 1989 ident: 10.1016/j.molcel.2015.01.002_bib47 article-title: Definition of the human raf amino-terminal regulatory region by deletion mutagenesis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.9.2.639 – volume: 421 start-page: 81 year: 2012 ident: 10.1016/j.molcel.2015.01.002_bib20 article-title: Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.03.118 – volume: 11 start-page: 872 year: 2010 ident: 10.1016/j.molcel.2015.01.002_bib55 article-title: Mitochondrial fusion and fission in cell life and death publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3013 – volume: 3 start-page: 1272 year: 2013 ident: 10.1016/j.molcel.2015.01.002_bib49 article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0397 – volume: 5 start-page: 3056 year: 2014 ident: 10.1016/j.molcel.2015.01.002_bib39 article-title: A dual role for autophagy in a murine model of lung cancer publication-title: Nat. Commun. doi: 10.1038/ncomms4056 – volume: 17 start-page: 2744 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib10 article-title: Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-2214 – volume: 266 start-page: 37 year: 2008 ident: 10.1016/j.molcel.2015.01.002_bib52 article-title: Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy publication-title: Cancer Lett. doi: 10.1016/j.canlet.2008.02.044 – volume: 12 start-page: 288 year: 2008 ident: 10.1016/j.molcel.2015.01.002_bib19 article-title: Pancreatic cancer cell genetics and signaling response to treatment correlate with efficacy of gemcitabine-based molecular targeting strategies publication-title: J. Gastrointest. Surg. doi: 10.1007/s11605-007-0406-6 – volume: 400 start-page: 464 year: 1999 ident: 10.1016/j.molcel.2015.01.002_bib16 article-title: Creation of human tumour cells with defined genetic elements publication-title: Nature doi: 10.1038/22780 – volume: 283 start-page: 34500 year: 2008 ident: 10.1016/j.molcel.2015.01.002_bib24 article-title: Isolation of intrinsically active (MEK-independent) variants of the ERK family of mitogen-activated protein (MAP) kinases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806443200 – volume: 1 start-page: 50 year: 1999 ident: 10.1016/j.molcel.2015.01.002_bib4 article-title: In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice publication-title: Neoplasia doi: 10.1038/sj.neo.7900005 – volume: 16 start-page: 345 year: 2014 ident: 10.1016/j.molcel.2015.01.002_bib62 article-title: A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies publication-title: Nat. Cell Biol. doi: 10.1038/ncb2930 – volume: 144 start-page: 646 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib18 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 17 start-page: 997 year: 2013 ident: 10.1016/j.molcel.2015.01.002_bib38 article-title: The role of dynamin-related protein 1 in cancer growth: a promising therapeutic target? publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.2013.823160 – volume: 16 start-page: 2045 year: 2002 ident: 10.1016/j.molcel.2015.01.002_bib17 article-title: Distinct requirements for Ras oncogenesis in human versus mouse cells publication-title: Genes Dev. doi: 10.1101/gad.993902 – volume: 282 start-page: 21583 year: 2007 ident: 10.1016/j.molcel.2015.01.002_bib6 article-title: Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology publication-title: J. Biol. Chem. doi: 10.1074/jbc.C700083200 – volume: 7 start-page: 533 year: 2005 ident: 10.1016/j.molcel.2015.01.002_bib26 article-title: Activation of RalA is critical for Ras-induced tumorigenesis of human cells publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.04.030 – volume: 41 start-page: 2062 year: 2009 ident: 10.1016/j.molcel.2015.01.002_bib1 article-title: Electron microscopy morphology of the mitochondrial network in human cancer publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2009.02.002 – volume: 125 start-page: 5745 year: 2012 ident: 10.1016/j.molcel.2015.01.002_bib37 article-title: Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress publication-title: J. Cell Sci. doi: 10.1242/jcs.109769 – volume: 283 start-page: 125 year: 2009 ident: 10.1016/j.molcel.2015.01.002_bib34 article-title: Targeting the RAF-MEK-ERK pathway in cancer therapy publication-title: Cancer Lett. doi: 10.1016/j.canlet.2009.01.022 – volume: 1842 start-page: 220 year: 2014 ident: 10.1016/j.molcel.2015.01.002_bib13 article-title: Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2013.11.009 – volume: 89 start-page: 372 year: 2010 ident: 10.1016/j.molcel.2015.01.002_bib12 article-title: Cancer metabolism: the Warburg effect today publication-title: Exp. Mol. Pathol. doi: 10.1016/j.yexmp.2010.08.006 – volume: 22 start-page: 165 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib29 article-title: Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E10-06-0500 – volume: 28 start-page: 382 year: 2014 ident: 10.1016/j.molcel.2015.01.002_bib7 article-title: Role of mitofusin 2 (Mfn2) in controlling cellular proliferation publication-title: FASEB J. doi: 10.1096/fj.13-230037 – volume: 23 start-page: 395 year: 2012 ident: 10.1016/j.molcel.2015.01.002_bib30 article-title: Autophagy and cancer cell metabolism publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2012.01.005 – volume: 106 start-page: 11960 year: 2009 ident: 10.1016/j.molcel.2015.01.002_bib33 article-title: A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904875106 – volume: 4 start-page: 937 year: 2004 ident: 10.1016/j.molcel.2015.01.002_bib43 article-title: Targeting the mitogen-activated protein kinase cascade to treat cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1503 – volume: 17 start-page: 491 year: 2013 ident: 10.1016/j.molcel.2015.01.002_bib25 article-title: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.03.002 – volume: 10 start-page: 2135 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib48 article-title: Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-11-0261 – volume: 14 start-page: 425 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib59 article-title: High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3284 – volume: 4 start-page: 257 year: 2003 ident: 10.1016/j.molcel.2015.01.002_bib31 article-title: Targeting the PI3K-Akt pathway in human cancer: rationale and promise publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00248-4 – volume: 7 start-page: 1187 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib23 article-title: Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency publication-title: Autophagy doi: 10.4161/auto.7.10.16643 – volume: 504 start-page: 296 year: 2013 ident: 10.1016/j.molcel.2015.01.002_bib42 article-title: p53 status determines the role of autophagy in pancreatic tumour development publication-title: Nature doi: 10.1038/nature12865 – volume: 16 start-page: 935 year: 2012 ident: 10.1016/j.molcel.2015.01.002_bib27 article-title: Mitochondrial dynamics and Parkinson’s disease: focus on parkin publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.4105 – volume: 14 start-page: 13005 year: 2013 ident: 10.1016/j.molcel.2015.01.002_bib60 article-title: Anti-tumor effects of mfn2 in gastric cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140713005 – volume: 67 start-page: 10823 year: 2007 ident: 10.1016/j.molcel.2015.01.002_bib56 article-title: Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0783 – volume: 25 start-page: 460 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib14 article-title: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis publication-title: Genes Dev. doi: 10.1101/gad.2016311 – volume: 6 start-page: 657 year: 2005 ident: 10.1016/j.molcel.2015.01.002_bib58 article-title: Mitochondrial fission in apoptosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1697 – volume: 41 start-page: 87 year: 2010 ident: 10.1016/j.molcel.2015.01.002_bib50 article-title: Abnormal mitochondrial dynamics—a novel therapeutic target for Alzheimer’s disease? publication-title: Mol. Neurobiol. doi: 10.1007/s12035-009-8095-7 – volume: 49 start-page: 4682 year: 1989 ident: 10.1016/j.molcel.2015.01.002_bib2 article-title: ras oncogenes in human cancer: a review publication-title: Cancer Res. – volume: 1796 start-page: 252 year: 2009 ident: 10.1016/j.molcel.2015.01.002_bib9 article-title: Tumor cell energy metabolism and its common features with yeast metabolism publication-title: Biochim. Biophys. Acta – volume: 4 start-page: rs11 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib5 article-title: Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3 publication-title: Sci. Signal. doi: 10.1126/scisignal.2002010 – volume: 3 start-page: 11 year: 2003 ident: 10.1016/j.molcel.2015.01.002_bib11 article-title: Targeting RAS signalling pathways in cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc969 – volume: 123 start-page: 309 year: 1956 ident: 10.1016/j.molcel.2015.01.002_bib54 article-title: On the origin of cancer cells publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 14 start-page: 439 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib57 article-title: Mitochondrial dynamics in diabetes publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3286 – volume: 496 start-page: 101 year: 2013 ident: 10.1016/j.molcel.2015.01.002_bib46 article-title: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway publication-title: Nature doi: 10.1038/nature12040 – volume: 324 start-page: 1029 year: 2009 ident: 10.1016/j.molcel.2015.01.002_bib53 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 282 start-page: 11521 year: 2007 ident: 10.1016/j.molcel.2015.01.002_bib51 article-title: Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission publication-title: J. Biol. Chem. doi: 10.1074/jbc.M607279200 – volume: 9 start-page: 3379 year: 1994 ident: 10.1016/j.molcel.2015.01.002_bib3 article-title: Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts publication-title: Oncogene – volume: 10 start-page: 640 year: 2010 ident: 10.1016/j.molcel.2015.01.002_bib44 article-title: Mitochondrial fission/fusion dynamics and apoptosis publication-title: Mitochondrion doi: 10.1016/j.mito.2010.08.005 – volume: 26 start-page: 2175 year: 2012 ident: 10.1016/j.molcel.2015.01.002_bib40 article-title: Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer publication-title: FASEB J. doi: 10.1096/fj.11-196543 – volume: 32 start-page: 955 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib41 article-title: The multiple roles of autophagy in cancer publication-title: Carcinogenesis doi: 10.1093/carcin/bgr031 – volume: 8 start-page: 627 year: 2009 ident: 10.1016/j.molcel.2015.01.002_bib28 article-title: Targeting the phosphoinositide 3-kinase pathway in cancer publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2926 – volume: 32 start-page: 4748 year: 2013 ident: 10.1016/j.molcel.2015.01.002_bib15 article-title: BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery publication-title: Oncogene doi: 10.1038/onc.2012.500 – volume: 164 start-page: 493 year: 2004 ident: 10.1016/j.molcel.2015.01.002_bib21 article-title: Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis publication-title: J. Cell Biol. doi: 10.1083/jcb.200309082 – volume: 279 start-page: 50286 year: 2004 ident: 10.1016/j.molcel.2015.01.002_bib36 article-title: Mitochondria-specific function of the dynamin family protein DLP1 is mediated by its C-terminal domains publication-title: J. Biol. Chem. doi: 10.1074/jbc.M405531200 – volume: 32 start-page: 4814 year: 2013 ident: 10.1016/j.molcel.2015.01.002_bib61 article-title: Mitochondrial dynamics regulates migration and invasion of breast cancer cells publication-title: Oncogene doi: 10.1038/onc.2012.494 – volume: 35 start-page: 955 year: 2013 ident: 10.1016/j.molcel.2015.01.002_bib32 article-title: Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation publication-title: Bioessays doi: 10.1002/bies.201300011 – volume: 13 start-page: 1108 year: 2011 ident: 10.1016/j.molcel.2015.01.002_bib22 article-title: RALA and RALBP1 regulate mitochondrial fission at mitosis publication-title: Nat. Cell Biol. doi: 10.1038/ncb2310 – volume: 10 start-page: 147 year: 2000 ident: 10.1016/j.molcel.2015.01.002_bib45 article-title: Understanding Ras: ‘it ain’t over ‘til it’s over’ publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(00)01740-2 – volume: 39 start-page: 425 year: 2010 ident: 10.1016/j.molcel.2015.01.002_bib8 article-title: Phenotype and genotype of pancreatic cancer cell lines publication-title: Pancreas doi: 10.1097/MPA.0b013e3181c15963 – volume: 439 start-page: 798 year: 2001 ident: 10.1016/j.molcel.2015.01.002_bib35 article-title: Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4 publication-title: Virchows Arch. doi: 10.1007/s004280100474 – reference: 23888838 - Expert Opin Ther Targets. 2013 Sep;17(9):997-1001 – reference: 11787853 - Virchows Arch. 2001 Dec;439(6):798-802 – reference: 18829462 - J Biol Chem. 2008 Dec 12;283(50):34500-10 – reference: 23965987 - Cancer Discov. 2013 Nov;3(11):1272-85 – reference: 21385921 - Clin Cancer Res. 2011 May 1;17(9):2744-56 – reference: 21668405 - Antioxid Redox Signal. 2012 May 1;16(9):935-49 – reference: 12183360 - Genes Dev. 2002 Aug 15;16(16):2045-57 – reference: 21903606 - Mol Cancer Ther. 2011 Nov;10(11):2135-45 – reference: 21119005 - Mol Biol Cell. 2011 Jan 15;22(2):165-78 – reference: 20518702 - Antioxid Redox Signal. 2011 Feb 1;14(3):425-37 – reference: 10740269 - Trends Cell Biol. 2000 Apr;10(4):147-54 – reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74 – reference: 12509763 - Nat Rev Cancer. 2003 Jan;3(1):11-22 – reference: 15950903 - Cancer Cell. 2005 Jun;7(6):533-45 – reference: 20727425 - Mitochondrion. 2010 Nov;10(6):640-8 – reference: 24445999 - Nat Commun. 2014;5:3056 – reference: 17301055 - J Biol Chem. 2007 Apr 13;282(15):11521-9 – reference: 20518704 - Antioxid Redox Signal. 2011 Feb 1;14(3):439-57 – reference: 24081906 - FASEB J. 2014 Jan;28(1):382-94 – reference: 21822277 - Nat Cell Biol. 2011 Sep;13(9):1108-15 – reference: 23562075 - Cell Metab. 2013 Apr 2;17(4):491-506 – reference: 24252614 - Biochim Biophys Acta. 2014 Feb;1842(2):220-31 – reference: 18406051 - Cancer Lett. 2008 Jul 18;266(1):37-52 – reference: 20804748 - Exp Mol Pathol. 2010 Dec;89(3):372-80 – reference: 14769861 - J Cell Biol. 2004 Feb 16;164(4):493-9 – reference: 24305049 - Nature. 2013 Dec 12;504(7479):296-300 – reference: 21738012 - Autophagy. 2011 Oct;7(10):1187-98 – reference: 22028470 - Sci Signal. 2011;4(196):rs11 – reference: 17553808 - J Biol Chem. 2007 Jul 27;282(30):21583-7 – reference: 19460998 - Science. 2009 May 22;324(5930):1029-33 – reference: 21317301 - Carcinogenesis. 2011 Jul;32(7):955-63 – reference: 14585353 - Cancer Cell. 2003 Oct;4(4):257-62 – reference: 13298683 - Science. 1956 Feb 24;123(3191):309-14 – reference: 20418756 - Pancreas. 2010 May;39(4):425-35 – reference: 23535601 - Nature. 2013 Apr 4;496(7443):101-5 – reference: 19644473 - Nat Rev Drug Discov. 2009 Aug;8(8):627-44 – reference: 19682552 - Biochim Biophys Acta. 2009 Dec;1796(2):252-65 – reference: 10935470 - Neoplasia. 1999 Apr;1(1):50-62 – reference: 20101529 - Mol Neurobiol. 2010 Jun;41(2-3):87-96 – reference: 23146905 - Oncogene. 2013 Oct;32(40):4748-57 – reference: 2547513 - Cancer Res. 1989 Sep 1;49(17):4682-9 – reference: 22321727 - FASEB J. 2012 May;26(5):2175-86 – reference: 22487795 - Biochem Biophys Res Commun. 2012 Apr 27;421(1):81-5 – reference: 2710120 - Mol Cell Biol. 1989 Feb;9(2):639-47 – reference: 23015593 - J Cell Sci. 2012 Dec 1;125(Pt 23):5745-57 – reference: 19617534 - Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11960-5 – reference: 21102612 - Nat Rev Mol Cell Biol. 2010 Dec;11(12):872-84 – reference: 15573115 - Nat Rev Cancer. 2004 Dec;4(12):937-47 – reference: 7936666 - Oncogene. 1994 Nov;9(11):3379-87 – reference: 23128392 - Oncogene. 2013 Oct;32(40):4814-24 – reference: 23943303 - Bioessays. 2013 Nov;35(11):955-64 – reference: 18006827 - Cancer Res. 2007 Nov 15;67(22):10823-30 – reference: 23797661 - Int J Mol Sci. 2013;14(7):13005-21 – reference: 21317241 - Genes Dev. 2011 Mar 1;25(5):460-70 – reference: 10440377 - Nature. 1999 Jul 29;400(6743):464-8 – reference: 18049840 - J Gastrointest Surg. 2008 Feb;12(2):288-96 – reference: 16025099 - Nat Rev Mol Cell Biol. 2005 Aug;6(8):657-63 – reference: 19703662 - Int J Biochem Cell Biol. 2009 Oct;41(10):2062-8 – reference: 19217204 - Cancer Lett. 2009 Oct 8;283(2):125-34 – reference: 22281437 - Semin Cell Dev Biol. 2012 Jun;23(4):395-401 – reference: 15364948 - J Biol Chem. 2004 Nov 26;279(48):50286-94 |
SSID | ssj0014589 |
Score | 2.6311634 |
Snippet | Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 537 |
SubjectTerms | adenocarcinoma Animals Benzamides - pharmacology Cell Line, Tumor Diphenylamine - analogs & derivatives Diphenylamine - pharmacology Gene Knockdown Techniques GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism guanosinetriphosphatase HEK293 Cells HeLa Cells Humans Mice Mice, Nude Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism mitochondria Mitochondrial Dynamics - drug effects Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism mitogen-activated protein kinase Mitogen-Activated Protein Kinase 1 - metabolism Neoplasms, Experimental - metabolism pancreatic neoplasms Pancreatic Neoplasms - metabolism phenotype Phosphorylation ras Proteins - metabolism serine Serine - metabolism |
Title | Erk2 Phosphorylation of Drp1 Promotes Mitochondrial Fission and MAPK-Driven Tumor Growth |
URI | https://dx.doi.org/10.1016/j.molcel.2015.01.002 https://www.ncbi.nlm.nih.gov/pubmed/25658205 https://www.proquest.com/docview/1653128067 https://www.proquest.com/docview/2000186169 https://pubmed.ncbi.nlm.nih.gov/PMC4393013 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBalY7CXsfuyS9FgryKRZd0es7ZZWcgIW8vyJmRJJtlaOzjJQ__9jmQ7LLtQ2KPtI5CPzuWzzw2h90F4EWypieJeEvD4OVGWKyKc1Zn3Bdepz_bss7i4yj8t-OIInfa1MDGtsrP9rU1P1rq7M-y4OVyvVsOvMXaayTjKe5RKTMEOs1ylIr7Fh30kIedpDF4kJpG6L59LOV439bULMQBB2-ad3c-Vv7inP-Hn71mUv7ilySP0sMOTeNxu-TE6CtUTdL-dMHn7FC3Omx8Zni_rzXpZN7dt4huuS3zWrCmep1y8sMEz0Guwg5WP4ognq5gaW2FbeTwbz6fkrIk2EV_ubuoGf4QP9-3yGbqanF-eXpBumAJxAHG2pOSlYww02CmmSp8xAEZBB6-DzWJPNFUUTDLpNFPFKPjgaFFSKYPMhdKZtew5Oq7qKrxEOLZBCyXPWcZsrr1WIWhhARdYJxllYYBYz0Pjuk7jceDFtelTyr6blvMmct6MqAHODxDZr1q3nTbuoJf98ZgDiTHgDO5Y-a4_TQPKFCMktgr1bmOoAJMUY83y3zSxtokqQYUeoBetBOz3C_iRA6TisLcD2dgTxGbeh0-q1TI19QZgCLaWvfrvt3qNHsSrlFHO36DjbbMLbwEwbYsTdG88_fJtepI04yckfBX1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXNO6FDYwEj1YbO47tBx7GutLSdapEJ_XNOLGjFrakSltN_V38QY5zqSgXTULaa-NE7vHxd77kfD4HoXcuspEzqSKSW0Eg4odEGi5JlBhFrY25Kutsj86j_kX4ecqne-hHcxbGyypr7K8wvUTr-pd2bc32Yj5vf_G5Uyp8K-9OecS0VlYO3eYa3tuWHwZdWOT3lPZOJyd9UrcWIAkE_BVJeZowBv6cSCZTSxnQBKecVc5QXyFMxjETTCSKybjjrEuCOA2EcCKMpKLGMHjuHXQX2IfwaDCYftymLkJe9t3zsyN-es15vVJUdpVfJs5nPIKqWmj9Necv8fBPvvu7bPOXONg7QA9rAouPKxs9Qnsue4zuVS0tN0_Q9LT4TvF4li8Xs7zYVEo7nKe4WywCPC7Ff26JRwAkALyZ9f6Pe3Ovxc2wySweHY-HpFt4EMaT9VVe4E9Ffr2aPUUXt2LiZ2g_yzP3AmFfd82lPGSUmVBZJZ1TkQEiYhLBAuZaiDU21Eld2tx32LjUjYbtm64sr73ldSfQYPkWItu7FlVpjxvGi2Z59I6Laog-N9z5tllNDbvXp2RM5vL1UgcRYKBPbot_j_GHqQIZBZFqoeeVB2znC4SVA4fjMLcd39gO8NXDd69k81lZRRyYKIA7e_nf_-oNut-fjM702eB8-Ao98FdKOTs_RPurYu2OgK2t4tfl7sDo621vx5_MlVF4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Erk2+Phosphorylation+of+Drp1+Promotes+Mitochondrial+Fission+and+MAPK-Driven+Tumor+Growth&rft.jtitle=Molecular+cell&rft.au=Kashatus%2C+Jennifer%C2%A0A.&rft.au=Nascimento%2C+Aldo&rft.au=Myers%2C+Lindsey%C2%A0J.&rft.au=Sher%2C+Annie&rft.date=2015-02-05&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=57&rft.issue=3&rft.spage=537&rft.epage=551&rft_id=info:doi/10.1016%2Fj.molcel.2015.01.002&rft.externalDocID=S1097276515000039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |