Erk2 Phosphorylation of Drp1 Promotes Mitochondrial Fission and MAPK-Driven Tumor Growth

Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to unde...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 57; no. 3; pp. 537 - 551
Main Authors Kashatus, Jennifer A., Nascimento, Aldo, Myers, Lindsey J., Sher, Annie, Byrne, Frances L., Hoehn, Kyle L., Counter, Christopher M., Kashatus, David F.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies. [Display omitted] •Drp1 is required for xenograft growth•MAPK promotes mitochondrial fragmentation through Drp1•Erk2 phosphorylates Drp1 to promote mitochondrial fission•Drp1 S616 phosphorylation is required for mitochondrial fission and tumor growth Mitochondrial function is important for the growth of tumors driven by oncogenic Ras or the MAPK pathway. Kashatus et al. demonstrate that activation of these pathways leads to Mek-dependent phosphorylation of the GTPase Drp1 and subsequent mitochondrial fragmentation. They further demonstrate that inhibition of Drp1 or its phosphorylation blocks tumor growth.
AbstractList Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies.Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies.
Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies.
Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its pro-tumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616 and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies.
Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to activation of downstream effectors that promote a tumorigenic phenotype. As targeting Ras directly is difficult, there is a significant effort to understand the downstream biological processes that underlie its protumorigenic activity. Here, we show that expression of oncogenic Ras or direct activation of the MAPK pathway leads to increased mitochondrial fragmentation and that blocking this phenotype, through knockdown of the mitochondrial fission-mediating GTPase Drp1, inhibits tumor growth. This fission is driven by Erk2-mediated phosphorylation of Drp1 on Serine 616, and both this phosphorylation and mitochondrial fragmentation are increased in human pancreatic cancer. Finally, this phosphorylation is required for Ras-associated mitochondrial fission, and its inhibition is sufficient to block xenograft growth. Collectively, these data suggest mitochondrial fission may be a target for treating MAPK-driven malignancies. [Display omitted] •Drp1 is required for xenograft growth•MAPK promotes mitochondrial fragmentation through Drp1•Erk2 phosphorylates Drp1 to promote mitochondrial fission•Drp1 S616 phosphorylation is required for mitochondrial fission and tumor growth Mitochondrial function is important for the growth of tumors driven by oncogenic Ras or the MAPK pathway. Kashatus et al. demonstrate that activation of these pathways leads to Mek-dependent phosphorylation of the GTPase Drp1 and subsequent mitochondrial fragmentation. They further demonstrate that inhibition of Drp1 or its phosphorylation blocks tumor growth.
Author Kashatus, Jennifer A.
Myers, Lindsey J.
Sher, Annie
Byrne, Frances L.
Kashatus, David F.
Counter, Christopher M.
Hoehn, Kyle L.
Nascimento, Aldo
AuthorAffiliation 2 Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
3 Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908
1 Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908
AuthorAffiliation_xml – name: 1 Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908
– name: 2 Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
– name: 3 Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908
Author_xml – sequence: 1
  givenname: Jennifer A.
  surname: Kashatus
  fullname: Kashatus, Jennifer A.
  organization: Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
– sequence: 2
  givenname: Aldo
  surname: Nascimento
  fullname: Nascimento, Aldo
  organization: Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
– sequence: 3
  givenname: Lindsey J.
  surname: Myers
  fullname: Myers, Lindsey J.
  organization: Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
– sequence: 4
  givenname: Annie
  surname: Sher
  fullname: Sher, Annie
  organization: Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
– sequence: 5
  givenname: Frances L.
  surname: Byrne
  fullname: Byrne, Frances L.
  organization: Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908, USA
– sequence: 6
  givenname: Kyle L.
  surname: Hoehn
  fullname: Hoehn, Kyle L.
  organization: Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908, USA
– sequence: 7
  givenname: Christopher M.
  surname: Counter
  fullname: Counter, Christopher M.
  organization: Department of Pharmacology and Cancer Biology, Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
– sequence: 8
  givenname: David F.
  surname: Kashatus
  fullname: Kashatus, David F.
  email: kashatus@virginia.edu
  organization: Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25658205$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wDxDKkk1SXztxbBZIVV9UtGIWRWJnOc4N8ZDYg50Z1H9PhpkiYEFXvpK_c3R0zjE58MEjIa-BFkBBnC6LMQwWh4JRqAoKBaXsGTkCquq8BFEe7G9Wi-qQHKe0pBTKSqoX5JBVopKMVkfky2X8xrJFH9KqD_FhMJMLPgtddhFXkC1iGMOEKbtzU7B98G10ZsiuXEpbzPg2uztbfMwvotugz-7XY4jZdQw_pv4led6ZIeGr_XtCPl9d3p9_yG8_Xd-cn93mthJsyruqs5xzkFZy2bWMc8VQYavQMFAMZNPwmtdWcdlQbNFC00FdY10KqZgx_IS83_mu1s2IrUU_RTPoVXSjiQ86GKf__vGu11_DRpdccQp8Nni7N4jh-xrTpEeX5l4H4zGsk2Z07k0KEOpJFETFgUkq6hl982es33kem5-BdzvAxpBSxE5bN_1qf07pBg1Ub2fWS72bWW9n1hT0PPMsLv8RP_o_Idt3hfMgG4dRJ-vQW2xdRDvpNrj_G_wEuVLDvQ
CitedBy_id crossref_primary_10_1089_ars_2023_0379
crossref_primary_10_1212_WNL_0000000000200233
crossref_primary_10_1038_s41419_017_0044_1
crossref_primary_10_26508_lsa_202402870
crossref_primary_10_1038_s12276_021_00723_7
crossref_primary_10_1002_adfm_202008022
crossref_primary_10_1172_JCI122035
crossref_primary_10_1016_j_phrs_2015_08_022
crossref_primary_10_18632_oncotarget_11047
crossref_primary_10_1038_s41586_019_1296_y
crossref_primary_10_1172_jci_insight_126915
crossref_primary_10_1016_j_cellsig_2024_111329
crossref_primary_10_1371_journal_pgen_1006748
crossref_primary_10_3390_biom13050869
crossref_primary_10_1126_scisignal_abn2694
crossref_primary_10_1089_ars_2023_0268
crossref_primary_10_1186_s12929_023_00956_w
crossref_primary_10_1016_j_it_2017_08_006
crossref_primary_10_1016_j_isci_2024_110880
crossref_primary_10_1016_j_jdermsci_2020_03_009
crossref_primary_10_3389_fendo_2021_660095
crossref_primary_10_3724_abbs_2024006
crossref_primary_10_1016_j_bbrc_2018_01_114
crossref_primary_10_1016_j_ymthe_2024_03_003
crossref_primary_10_3389_fcell_2018_00177
crossref_primary_10_1016_j_molcel_2017_08_013
crossref_primary_10_1016_j_cellsig_2017_07_020
crossref_primary_10_1007_s00018_021_03818_6
crossref_primary_10_1016_j_mito_2019_06_002
crossref_primary_10_1016_j_yjmcc_2018_08_006
crossref_primary_10_1016_j_cub_2016_10_009
crossref_primary_10_3390_biology12111426
crossref_primary_10_3390_cancers14235924
crossref_primary_10_1016_j_ceb_2016_02_001
crossref_primary_10_1038_cr_2017_155
crossref_primary_10_1007_s00018_018_2963_0
crossref_primary_10_1016_j_bbamcr_2019_01_009
crossref_primary_10_1016_j_tcb_2016_07_002
crossref_primary_10_1158_0008_5472_CAN_18_0340
crossref_primary_10_1158_0008_5472_CAN_22_0959
crossref_primary_10_1016_j_jphotobiol_2024_112966
crossref_primary_10_1038_s41374_021_00724_0
crossref_primary_10_1016_j_devcel_2022_04_020
crossref_primary_10_1016_j_jsbmb_2019_105413
crossref_primary_10_1016_j_virusres_2021_198549
crossref_primary_10_1128_EC_00277_14
crossref_primary_10_1016_j_tem_2015_12_001
crossref_primary_10_1016_j_bbcan_2018_07_004
crossref_primary_10_1021_acs_jproteome_4c00502
crossref_primary_10_1016_j_bbcan_2025_189288
crossref_primary_10_4196_kjpp_2018_22_2_203
crossref_primary_10_1016_j_ijbiomac_2024_131925
crossref_primary_10_1038_s41418_024_01310_9
crossref_primary_10_3389_fonc_2021_769036
crossref_primary_10_1002_advs_202404033
crossref_primary_10_1016_j_envpol_2024_123875
crossref_primary_10_1038_s41392_020_00376_4
crossref_primary_10_1146_annurev_cancerbio_030419_033405
crossref_primary_10_1038_s41392_021_00866_z
crossref_primary_10_1111_febs_16343
crossref_primary_10_1038_s41401_022_00967_7
crossref_primary_10_1038_s41586_021_03214_x
crossref_primary_10_1016_j_bbrc_2017_07_047
crossref_primary_10_1038_s41467_024_47514_y
crossref_primary_10_1016_j_canlet_2022_215912
crossref_primary_10_3390_jmp4040023
crossref_primary_10_3389_fcell_2020_580070
crossref_primary_10_3390_genes9020115
crossref_primary_10_1016_j_prp_2022_153931
crossref_primary_10_1016_j_bbabio_2017_01_004
crossref_primary_10_1038_s41598_021_01512_y
crossref_primary_10_3389_fonc_2020_592130
crossref_primary_10_1155_2022_5812105
crossref_primary_10_1016_j_exger_2020_110919
crossref_primary_10_3390_ijms241612780
crossref_primary_10_1007_s00018_021_03774_1
crossref_primary_10_1038_s44320_024_00064_3
crossref_primary_10_1016_j_lfs_2021_119942
crossref_primary_10_1080_15548627_2021_1964224
crossref_primary_10_3390_cells9071691
crossref_primary_10_1038_s42255_023_00924_6
crossref_primary_10_2139_ssrn_3943493
crossref_primary_10_1089_gtmb_2022_0032
crossref_primary_10_3390_biom11081144
crossref_primary_10_3390_ijms25168647
crossref_primary_10_1038_s41419_020_03002_x
crossref_primary_10_26508_lsa_202301968
crossref_primary_10_1038_s41467_024_47623_8
crossref_primary_10_1016_j_tranon_2025_102340
crossref_primary_10_1016_j_bbiosy_2024_100093
crossref_primary_10_1038_s41598_021_97006_y
crossref_primary_10_1074_jbc_RA118_004415
crossref_primary_10_3389_fcell_2022_1010232
crossref_primary_10_1113_JP279411
crossref_primary_10_1016_j_phymed_2024_155555
crossref_primary_10_1016_j_ejphar_2021_174603
crossref_primary_10_3389_fonc_2017_00102
crossref_primary_10_1007_s12192_023_01321_4
crossref_primary_10_1523_JNEUROSCI_1926_19_2020
crossref_primary_10_1021_acs_analchem_6b04666
crossref_primary_10_2174_1570180820666230818092456
crossref_primary_10_1038_s41598_021_81075_0
crossref_primary_10_1089_ars_2019_7898
crossref_primary_10_1186_s13046_018_1008_8
crossref_primary_10_1016_j_stem_2025_01_013
crossref_primary_10_1007_s00018_021_03773_2
crossref_primary_10_1007_s00018_021_03807_9
crossref_primary_10_3390_cancers14092155
crossref_primary_10_1007_s00109_021_02150_7
crossref_primary_10_3390_biom13081225
crossref_primary_10_1080_15384101_2018_1467679
crossref_primary_10_3390_ijms25136939
crossref_primary_10_1016_j_bcp_2020_114104
crossref_primary_10_1016_j_devcel_2022_03_019
crossref_primary_10_3390_cancers14030821
crossref_primary_10_1186_s12943_019_1030_2
crossref_primary_10_1158_1535_7163_MCT_17_0384
crossref_primary_10_1158_1535_7163_MCT_20_0962
crossref_primary_10_1016_j_semcancer_2021_05_010
crossref_primary_10_1016_j_ceb_2017_03_007
crossref_primary_10_1111_febs_16263
crossref_primary_10_1002_1878_0261_12866
crossref_primary_10_7554_eLife_68394
crossref_primary_10_1002_ijc_31548
crossref_primary_10_3389_fmicb_2020_01992
crossref_primary_10_1126_scisignal_abj3490
crossref_primary_10_18632_oncotarget_8319
crossref_primary_10_3389_fonc_2022_739631
crossref_primary_10_1016_j_neuint_2017_04_009
crossref_primary_10_3389_fendo_2019_00570
crossref_primary_10_1073_pnas_2121946119
crossref_primary_10_1038_onc_2017_358
crossref_primary_10_1002_cyto_a_22891
crossref_primary_10_1016_j_cellsig_2024_111284
crossref_primary_10_1016_j_molcel_2020_10_018
crossref_primary_10_1080_15548627_2024_2307224
crossref_primary_10_1155_2016_4085727
crossref_primary_10_3390_ijms20102409
crossref_primary_10_1007_s11064_019_02779_4
crossref_primary_10_1080_14786419_2024_2343920
crossref_primary_10_1016_j_apsb_2021_01_011
crossref_primary_10_1128_MCB_00109_19
crossref_primary_10_3390_ijms22073628
crossref_primary_10_3389_fcell_2021_781933
crossref_primary_10_1083_jcb_202304076
crossref_primary_10_3389_fcell_2020_584800
crossref_primary_10_1038_s41419_018_0552_7
crossref_primary_10_1155_2017_8073721
crossref_primary_10_3390_ijms231911304
crossref_primary_10_3389_fbioe_2021_755727
crossref_primary_10_1038_onc_2016_425
crossref_primary_10_3390_ijms24119572
crossref_primary_10_1096_fj_201701095R
crossref_primary_10_1038_s41598_021_97162_1
crossref_primary_10_1002_1878_0261_12843
crossref_primary_10_1016_j_yexcr_2021_112493
crossref_primary_10_1016_j_bioorg_2023_106526
crossref_primary_10_1007_s12020_024_04008_7
crossref_primary_10_1016_j_celrep_2022_111198
crossref_primary_10_1016_j_freeradbiomed_2020_12_452
crossref_primary_10_1002_cbf_3920
crossref_primary_10_1111_nph_19106
crossref_primary_10_1111_cpr_13048
crossref_primary_10_3390_metabo11090627
crossref_primary_10_3390_cells13040316
crossref_primary_10_1016_j_devcel_2024_09_004
crossref_primary_10_1242_jcs_260612
crossref_primary_10_3390_biomedicines6020066
crossref_primary_10_1002_rmv_2447
crossref_primary_10_1038_s41392_023_01547_9
crossref_primary_10_1002_cmdc_202400536
crossref_primary_10_1089_cbr_2020_3791
crossref_primary_10_3389_fendo_2018_00211
crossref_primary_10_1016_j_devcel_2021_03_033
crossref_primary_10_1016_j_bbamcr_2016_09_003
crossref_primary_10_1038_s41419_020_2584_z
crossref_primary_10_1038_s41419_019_2218_5
crossref_primary_10_1038_s41419_023_06202_3
crossref_primary_10_1038_s41419_018_0708_5
crossref_primary_10_1002_cpcy_26
crossref_primary_10_1111_jcmm_14772
crossref_primary_10_3892_mmr_2018_9712
crossref_primary_10_1038_s41388_020_1176_9
crossref_primary_10_1016_j_jbc_2021_101196
crossref_primary_10_1016_j_jdermsci_2017_08_004
crossref_primary_10_1016_j_lfs_2021_119876
crossref_primary_10_1016_j_mce_2024_112199
crossref_primary_10_1016_j_bmc_2023_117458
crossref_primary_10_3390_cells10030497
crossref_primary_10_1091_mbc_E23_11_0427
crossref_primary_10_1042_CS20160610
crossref_primary_10_18632_oncotarget_27264
crossref_primary_10_1016_j_ekir_2020_03_020
crossref_primary_10_3390_biomedicines11020596
crossref_primary_10_1016_j_drudis_2021_11_006
crossref_primary_10_1038_s41388_020_1168_9
crossref_primary_10_1016_j_bbagen_2018_01_018
crossref_primary_10_1038_s41580_020_0255_7
crossref_primary_10_1016_j_cryobiol_2021_07_013
crossref_primary_10_3390_cancers15041070
crossref_primary_10_1038_s41401_024_01335_3
crossref_primary_10_1016_j_phrs_2019_104317
crossref_primary_10_1155_2022_2504798
crossref_primary_10_1016_j_molmed_2024_03_008
crossref_primary_10_1242_jcs_258956
crossref_primary_10_3390_life11121351
crossref_primary_10_1016_j_trecan_2022_10_004
crossref_primary_10_3389_fphys_2022_1079989
crossref_primary_10_1016_j_phymed_2025_156435
crossref_primary_10_1007_s00018_017_2603_0
crossref_primary_10_1016_j_bcp_2020_114282
crossref_primary_10_3389_fcell_2022_849962
crossref_primary_10_3389_fmolb_2024_1354682
crossref_primary_10_1016_j_clnu_2024_06_036
crossref_primary_10_1016_j_cell_2016_07_002
crossref_primary_10_1158_1541_7786_MCR_18_0836
crossref_primary_10_1016_j_semcancer_2017_06_007
crossref_primary_10_1016_j_devcel_2021_04_019
crossref_primary_10_1016_j_mrrev_2024_108490
crossref_primary_10_3389_fphar_2019_00203
crossref_primary_10_1016_j_tcb_2017_08_011
crossref_primary_10_1111_febs_13603
crossref_primary_10_1186_s12967_022_03657_4
crossref_primary_10_1016_j_phrs_2018_11_029
crossref_primary_10_3389_fonc_2022_987026
crossref_primary_10_1016_j_molmet_2024_102089
crossref_primary_10_1016_j_jphs_2021_03_012
crossref_primary_10_1016_j_cellsig_2017_06_019
crossref_primary_10_1038_s41467_018_04033_x
crossref_primary_10_1038_cddis_2016_184
crossref_primary_10_1016_j_biopha_2023_116052
crossref_primary_10_3389_fonc_2022_893396
crossref_primary_10_1038_s41419_018_0533_x
crossref_primary_10_1016_j_isci_2024_109874
crossref_primary_10_1177_1010428317698391
crossref_primary_10_1016_j_phymed_2024_156353
crossref_primary_10_1016_j_cmet_2019_05_004
crossref_primary_10_1016_j_phrs_2018_11_020
crossref_primary_10_1016_j_phrs_2020_104846
crossref_primary_10_1113_EP090518
crossref_primary_10_1242_dev_201732
crossref_primary_10_1016_j_tibs_2020_03_009
crossref_primary_10_3390_cancers12010065
crossref_primary_10_26508_lsa_202402608
crossref_primary_10_3390_ijms24076128
crossref_primary_10_1038_s44319_024_00232_4
crossref_primary_10_1038_s41467_022_31417_x
crossref_primary_10_1096_fj_201902958R
crossref_primary_10_1002_cac2_12428
crossref_primary_10_1016_j_bbrc_2018_04_214
crossref_primary_10_1016_j_ydbio_2017_11_009
crossref_primary_10_1096_fj_202100361R
crossref_primary_10_3390_antiox7010013
crossref_primary_10_1038_s41467_022_31548_1
crossref_primary_10_1016_j_freeradbiomed_2021_09_019
crossref_primary_10_1016_j_canlet_2019_12_017
crossref_primary_10_1016_j_bbrc_2016_01_120
crossref_primary_10_1038_s41388_022_02302_0
crossref_primary_10_3390_ijms26052217
crossref_primary_10_1016_j_joca_2021_11_003
crossref_primary_10_2147_JIR_S302944
crossref_primary_10_1038_s41598_017_05232_0
crossref_primary_10_1093_cvr_cvae102
crossref_primary_10_1016_j_isci_2023_107537
crossref_primary_10_1002_art_39791
crossref_primary_10_1016_j_mito_2020_05_005
crossref_primary_10_1007_s00294_015_0542_6
crossref_primary_10_1126_sciadv_aaz0361
crossref_primary_10_1016_j_jep_2021_113853
crossref_primary_10_3389_fonc_2022_993437
crossref_primary_10_1016_j_celrep_2018_10_080
crossref_primary_10_3389_fcell_2021_760705
crossref_primary_10_1534_genetics_115_186445
crossref_primary_10_1016_j_biocel_2022_106158
crossref_primary_10_1038_s41577_019_0154_3
crossref_primary_10_1016_j_phrs_2022_106603
crossref_primary_10_1152_ajpcell_00523_2018
crossref_primary_10_1016_j_critrevonc_2020_102995
crossref_primary_10_1074_jbc_RA117_001469
crossref_primary_10_1042_BST20220014
crossref_primary_10_1016_j_jdermsci_2020_06_009
crossref_primary_10_1038_s41389_019_0130_6
crossref_primary_10_3390_ijms22094750
crossref_primary_10_15252_embr_201948686
crossref_primary_10_1038_s41401_024_01262_3
crossref_primary_10_1083_jcb_201511036
crossref_primary_10_1113_JP276863
crossref_primary_10_1002_jcp_27866
crossref_primary_10_3390_ijms23052753
crossref_primary_10_1016_j_semcdb_2016_11_003
crossref_primary_10_1016_j_freeradbiomed_2021_09_027
crossref_primary_10_1038_s41591_019_0368_8
crossref_primary_10_3390_ijms24087374
crossref_primary_10_1111_cas_13830
crossref_primary_10_1038_s41419_018_1083_y
crossref_primary_10_1016_j_jsbmb_2024_106558
crossref_primary_10_1016_j_vph_2023_107194
crossref_primary_10_1016_j_neo_2024_100999
crossref_primary_10_1096_fj_202000767R
crossref_primary_10_1111_cmi_12831
crossref_primary_10_1038_onc_2015_370
crossref_primary_10_1016_j_cellsig_2022_110487
crossref_primary_10_1016_j_pharmthera_2020_107594
crossref_primary_10_1002_2211_5463_13273
crossref_primary_10_1002_mc_23524
crossref_primary_10_3390_antiox7020030
crossref_primary_10_1074_jbc_M117_786442
crossref_primary_10_1158_0008_5472_CAN_15_2921
crossref_primary_10_26508_lsa_202302147
crossref_primary_10_3389_fendo_2022_928591
crossref_primary_10_1158_0008_5472_CAN_19_1982
crossref_primary_10_1186_s12964_024_01844_y
crossref_primary_10_7554_eLife_51071
crossref_primary_10_3390_cancers12102845
crossref_primary_10_1126_sciadv_adp3481
crossref_primary_10_1158_0008_5472_CAN_18_2383
crossref_primary_10_1016_j_cej_2024_153130
crossref_primary_10_1038_onc_2016_237
crossref_primary_10_1016_j_bcp_2022_115132
crossref_primary_10_3389_fonc_2020_00281
crossref_primary_10_1016_j_mcpro_2021_100050
crossref_primary_10_1038_s41418_022_01027_7
crossref_primary_10_1158_0008_5472_CAN_21_3910
crossref_primary_10_7554_eLife_43561
crossref_primary_10_1002_ctm2_529
crossref_primary_10_1016_j_bbcan_2021_188534
crossref_primary_10_1038_s41419_023_05721_3
crossref_primary_10_1021_acs_jafc_4c09215
crossref_primary_10_3390_antiox7100126
crossref_primary_10_3390_v10080419
crossref_primary_10_1038_s41467_023_44233_8
crossref_primary_10_1007_s00262_023_03582_5
crossref_primary_10_1039_D0RA02023K
crossref_primary_10_18632_oncotarget_12838
crossref_primary_10_1038_s41598_022_13463_z
crossref_primary_10_1016_j_metabol_2021_154803
crossref_primary_10_1080_15384101_2023_2289753
crossref_primary_10_15252_emmm_202114887
crossref_primary_10_3389_fnins_2021_654785
crossref_primary_10_1111_febs_13570
crossref_primary_10_1186_s12935_024_03281_w
crossref_primary_10_1038_cddis_2016_370
crossref_primary_10_1021_acs_jnatprod_2c00524
crossref_primary_10_1128_mbio_02822_23
crossref_primary_10_1002_mc_23552
crossref_primary_10_1182_bloodadvances_2020002847
crossref_primary_10_1242_jcs_172429
crossref_primary_10_2174_0113894501304751240819111831
crossref_primary_10_1016_j_joim_2021_08_003
crossref_primary_10_1111_febs_15624
crossref_primary_10_3390_molecules26051307
crossref_primary_10_1002_ijc_32177
crossref_primary_10_1016_j_ebiom_2019_09_017
crossref_primary_10_1177_1535370220920558
crossref_primary_10_3390_ijms26062675
crossref_primary_10_1002_EXP_20230063
crossref_primary_10_3390_ijms24043270
crossref_primary_10_1016_j_yjmcc_2020_04_015
crossref_primary_10_2139_ssrn_4156702
crossref_primary_10_1042_EBC20170104
crossref_primary_10_1111_cas_14603
crossref_primary_10_3390_ijms25010244
crossref_primary_10_1016_j_freeradbiomed_2023_07_033
crossref_primary_10_1016_j_molcel_2016_08_013
crossref_primary_10_1111_dom_13497
crossref_primary_10_1161_CIRCULATIONAHA_117_031258
crossref_primary_10_1177_0271678X16671528
crossref_primary_10_1096_fj_202100067R
crossref_primary_10_1152_ajpcell_00042_2018
crossref_primary_10_1158_0008_5472_CAN_21_0436
crossref_primary_10_1186_s13578_023_01068_6
crossref_primary_10_1080_15548627_2020_1850008
crossref_primary_10_3390_ijms24054394
crossref_primary_10_2147_JEP_S510578
crossref_primary_10_1016_j_tiv_2023_105552
crossref_primary_10_1007_s00018_015_1950_y
crossref_primary_10_1002_cbin_11853
crossref_primary_10_1016_j_crcbio_2021_100008
crossref_primary_10_1016_j_canlet_2025_217586
crossref_primary_10_1124_jpet_119_258897
crossref_primary_10_1016_j_arr_2018_03_006
crossref_primary_10_1038_s41598_017_01659_7
crossref_primary_10_1016_j_bbrc_2023_07_038
crossref_primary_10_1152_ajprenal_00409_2023
crossref_primary_10_1016_j_mito_2019_04_008
crossref_primary_10_1016_j_ebiom_2018_07_026
crossref_primary_10_1113_JP272885
crossref_primary_10_1007_s00018_016_2451_3
crossref_primary_10_3390_antiox7120195
crossref_primary_10_3390_ijms24054724
crossref_primary_10_3390_cancers12051119
crossref_primary_10_1016_j_bbrc_2017_06_192
crossref_primary_10_1080_15548627_2018_1450708
crossref_primary_10_3390_ijms241311003
crossref_primary_10_1038_s41418_022_00974_5
crossref_primary_10_3389_fimmu_2022_873834
crossref_primary_10_1530_ERC_22_0229
crossref_primary_10_2139_ssrn_3188491
crossref_primary_10_1515_oncologie_2024_0596
crossref_primary_10_1016_j_ajpath_2018_03_013
crossref_primary_10_1371_journal_pone_0197266
crossref_primary_10_1371_journal_pone_0283118
crossref_primary_10_3389_fonc_2017_00171
crossref_primary_10_1016_j_molcel_2021_01_034
crossref_primary_10_1038_s41392_021_00790_2
crossref_primary_10_1002_2211_5463_13452
crossref_primary_10_3389_fcimb_2022_835181
crossref_primary_10_1038_s41392_020_0151_9
crossref_primary_10_1016_j_bbrc_2017_05_039
crossref_primary_10_1016_j_ijbiomac_2024_131417
crossref_primary_10_1038_s41419_020_2556_3
crossref_primary_10_1167_iovs_63_4_2
crossref_primary_10_1155_2019_9757201
crossref_primary_10_1016_j_mito_2020_03_003
crossref_primary_10_1038_s41419_021_03502_4
crossref_primary_10_1007_s00018_021_03775_0
crossref_primary_10_1007_s12013_024_01245_5
crossref_primary_10_3389_fonc_2018_00126
crossref_primary_10_1016_j_mito_2024_101847
crossref_primary_10_1002_1878_0261_13103
crossref_primary_10_1016_j_cmet_2017_05_016
crossref_primary_10_1093_brain_awv237
crossref_primary_10_1126_sciadv_abo2510
crossref_primary_10_1101_gad_297077_117
crossref_primary_10_1016_j_molcel_2021_08_025
crossref_primary_10_1016_j_bioorg_2024_107574
crossref_primary_10_3389_fonc_2019_00480
crossref_primary_10_1139_apnm_2015_0184
crossref_primary_10_1016_j_bioorg_2024_107218
crossref_primary_10_3390_ijms23105418
crossref_primary_10_18632_oncotarget_11339
crossref_primary_10_1091_mbc_E21_06_0286
crossref_primary_10_1161_CIRCRESAHA_117_311307
crossref_primary_10_1007_s12020_020_02546_4
crossref_primary_10_1007_s00395_023_01009_x
crossref_primary_10_1038_s41416_020_0778_x
crossref_primary_10_1186_s13058_020_01301_x
crossref_primary_10_1002_1878_0261_13212
crossref_primary_10_1021_acsomega_3c06547
crossref_primary_10_3390_antiox9111057
crossref_primary_10_1146_annurev_pathmechdis_012419_032711
crossref_primary_10_1016_j_canlet_2022_215871
crossref_primary_10_1038_s41419_018_1019_6
crossref_primary_10_1016_j_canlet_2018_11_019
crossref_primary_10_1016_j_celrep_2022_111818
crossref_primary_10_3389_fonc_2017_00081
crossref_primary_10_3390_ncrna9010016
crossref_primary_10_1016_j_ijbiomac_2023_127381
crossref_primary_10_1016_j_mito_2024_101904
crossref_primary_10_3390_ijms231911908
crossref_primary_10_1111_cas_16064
crossref_primary_10_3390_ijms242015276
crossref_primary_10_3390_life11020082
crossref_primary_10_1016_j_freeradbiomed_2022_08_019
crossref_primary_10_1016_j_exger_2020_110870
crossref_primary_10_1016_j_bbcan_2018_04_004
crossref_primary_10_1016_j_devcel_2020_06_029
crossref_primary_10_3390_antiox6020033
crossref_primary_10_1016_j_canlet_2021_09_043
crossref_primary_10_1016_j_ccell_2015_10_013
crossref_primary_10_1096_fj_201903117R
crossref_primary_10_1016_j_pupt_2020_101918
crossref_primary_10_1126_sciadv_adm8212
crossref_primary_10_1016_j_celrep_2021_109565
crossref_primary_10_1038_cddis_2016_415
crossref_primary_10_1039_c9mt00187e
crossref_primary_10_1074_jbc_RA117_001253
crossref_primary_10_1111_imcb_12363
crossref_primary_10_1002_ctm2_132
crossref_primary_10_1038_s41419_020_03383_z
crossref_primary_10_1080_15548627_2019_1580095
crossref_primary_10_1038_cddis_2017_448
crossref_primary_10_1038_s41388_017_0103_1
crossref_primary_10_1165_rcmb_2020_0008OC
crossref_primary_10_1155_2021_8832863
crossref_primary_10_7554_eLife_49494
crossref_primary_10_1038_s41467_020_18753_6
crossref_primary_10_3390_ijms22031498
crossref_primary_10_1007_s00018_018_2961_2
crossref_primary_10_1093_cvr_cvaa133
crossref_primary_10_1038_cddis_2017_559
crossref_primary_10_1073_pnas_2120157119
crossref_primary_10_1139_bcb_2021_0175
crossref_primary_10_1242_jcs_263640
crossref_primary_10_1038_onc_2017_98
crossref_primary_10_1016_j_semcdb_2019_05_021
crossref_primary_10_1038_s41568_021_00375_9
crossref_primary_10_1016_j_freeradbiomed_2021_12_264
crossref_primary_10_17650_2313_805X_2020_7_2_8_19
crossref_primary_10_1002_prp2_235
crossref_primary_10_1007_s00430_022_00742_9
crossref_primary_10_1002_bies_202100116
crossref_primary_10_1016_j_bbrc_2021_04_082
crossref_primary_10_1038_s41420_023_01536_5
crossref_primary_10_1016_j_semcdb_2024_03_002
crossref_primary_10_1096_fj_201901366R
crossref_primary_10_18632_oncotarget_22264
crossref_primary_10_1038_s41418_023_01240_y
crossref_primary_10_1242_dev_202024
crossref_primary_10_2217_fon_2020_0362
crossref_primary_10_1186_s40779_024_00536_5
crossref_primary_10_3390_ijms19020564
crossref_primary_10_1111_cns_13141
crossref_primary_10_1016_j_celrep_2018_11_018
crossref_primary_10_3803_EnM_2022_1530
crossref_primary_10_1016_j_celrep_2019_07_031
crossref_primary_10_1016_j_freeradbiomed_2015_11_015
crossref_primary_10_1111_febs_14122
crossref_primary_10_1038_ncomms11124
Cites_doi 10.1128/MCB.9.2.639
10.1016/j.bbrc.2012.03.118
10.1038/nrm3013
10.1158/2159-8290.CD-13-0397
10.1038/ncomms4056
10.1158/1078-0432.CCR-10-2214
10.1016/j.canlet.2008.02.044
10.1007/s11605-007-0406-6
10.1038/22780
10.1074/jbc.M806443200
10.1038/sj.neo.7900005
10.1038/ncb2930
10.1016/j.cell.2011.02.013
10.1517/14728222.2013.823160
10.1101/gad.993902
10.1074/jbc.C700083200
10.1016/j.ccr.2005.04.030
10.1016/j.biocel.2009.02.002
10.1242/jcs.109769
10.1016/j.canlet.2009.01.022
10.1016/j.bbadis.2013.11.009
10.1016/j.yexmp.2010.08.006
10.1091/mbc.E10-06-0500
10.1096/fj.13-230037
10.1016/j.semcdb.2012.01.005
10.1073/pnas.0904875106
10.1038/nrc1503
10.1016/j.cmet.2013.03.002
10.1158/1535-7163.MCT-11-0261
10.1089/ars.2010.3284
10.1016/S1535-6108(03)00248-4
10.4161/auto.7.10.16643
10.1038/nature12865
10.1089/ars.2011.4105
10.3390/ijms140713005
10.1158/0008-5472.CAN-07-0783
10.1101/gad.2016311
10.1038/nrm1697
10.1007/s12035-009-8095-7
10.1126/scisignal.2002010
10.1038/nrc969
10.1126/science.123.3191.309
10.1089/ars.2010.3286
10.1038/nature12040
10.1126/science.1160809
10.1074/jbc.M607279200
10.1016/j.mito.2010.08.005
10.1096/fj.11-196543
10.1093/carcin/bgr031
10.1038/nrd2926
10.1038/onc.2012.500
10.1083/jcb.200309082
10.1074/jbc.M405531200
10.1038/onc.2012.494
10.1002/bies.201300011
10.1038/ncb2310
10.1016/S0962-8924(00)01740-2
10.1097/MPA.0b013e3181c15963
10.1007/s004280100474
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
2015 Published by Elsevier Inc. 2015
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: 2015 Published by Elsevier Inc. 2015
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.molcel.2015.01.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 551
ExternalDocumentID PMC4393013
25658205
10_1016_j_molcel_2015_01_002
S1097276515000039
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM008136
– fundername: NCI NIH HHS
  grantid: P30 CA044579
– fundername: NCI NIH HHS
  grantid: T32 CA009109
– fundername: NIDDK NIH HHS
  grantid: R01 DK101803
– fundername: NCI NIH HHS
  grantid: R01 CA094184
– fundername: NIAAA NIH HHS
  grantid: R21 AA022154
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c562t-f5fc33318c838fd23392e9ed9ea219218bb3737c938b0edec1bf177e746892aa3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 18:04:09 EDT 2025
Fri Jul 11 01:11:00 EDT 2025
Sun Aug 24 04:10:22 EDT 2025
Mon Jul 21 05:52:17 EDT 2025
Tue Jul 01 03:40:44 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Fri Feb 23 02:30:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-f5fc33318c838fd23392e9ed9ea219218bb3737c938b0edec1bf177e746892aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-first author
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276515000039
PMID 25658205
PQID 1653128067
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4393013
proquest_miscellaneous_2000186169
proquest_miscellaneous_1653128067
pubmed_primary_25658205
crossref_citationtrail_10_1016_j_molcel_2015_01_002
crossref_primary_10_1016_j_molcel_2015_01_002
elsevier_sciencedirect_doi_10_1016_j_molcel_2015_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-05
PublicationDateYYYYMMDD 2015-02-05
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Bos (bib2) 1989; 49
Rao, Tortola, Perlot, Wirnsberger, Novatchkova, Nitsch, Sykacek, Frank, Schramek, Komnenovic (bib39) 2014; 5
Hagenbuchner, Kuznetsov, Obexer, Ausserlechner (bib15) 2013; 32
Inoue-Yamauchi, Oda (bib20) 2012; 421
Chen, Dasgupta, Ding, Indig, Ghosh, Longo (bib7) 2014; 28
Deer, González-Hernández, Coursen, Shea, Ngatia, Scaife, Firpo, Mulvihill (bib8) 2010; 39
Youle, Karbowski (bib58) 2005; 6
Diaz-Ruiz, Uribe-Carvajal, Devin, Rigoulet (bib9) 2009; 1796
Pitts, McNiven, Yoon (bib36) 2004; 279
Holcomb, Yip-Schneider, Matos, Dixon, Kennard, Mahomed, Shanmugam, Sebolt-Leopold, Schmidt (bib19) 2008; 12
Guo, Chen, Mathew, Fan, Strohecker, Karsli-Uzunbas, Kamphorst, Chen, Lemons, Karantza (bib14) 2011; 25
Luo, Manning, Cantley (bib31) 2003; 4
Mitra, Wunder, Roysam, Lin, Lippincott-Schwartz (bib33) 2009; 106
Montagut, Settleman (bib34) 2009; 283
Moore, Sipos, Orlandini, Sorio, Real, Lemoine, Gress, Bassi, Klöppel, Kalthoff (bib35) 2001; 439
Hanahan, Weinberg (bib18) 2011; 144
Levin-Salomon, Kogan, Ahn, Livnah, Engelberg (bib24) 2008; 283
Downward (bib11) 2003; 3
Kashatus, Lim, Brady, Pershing, Cox, Counter (bib22) 2011; 13
Xia, Meng, Liu, Rojanasakul, Wang, Jiang (bib56) 2007; 67
Arismendi-Morillo (bib1) 2009; 41
Ferreira (bib12) 2010; 89
Qian, Choi, Gibson, Watkins, Bakkenist, Van Houten (bib37) 2012; 125
Wang, Bajikar, Jamal, Atkins, Janes (bib62) 2014; 16
Rehman, Zhang, Toth, Zhang, Marsboom, Hong, Salgia, Husain, Wietholt, Archer (bib40) 2012; 26
Sebolt-Leopold, Herrera (bib43) 2004; 4
Brunet, Pagès, Pouysségur (bib3) 1994; 9
Su, Wang, Bonda, Perry, Smith, Zhu (bib50) 2010; 41
Liesa, Shirihai (bib25) 2013; 17
Vander Heiden, Cantley, Thompson (bib53) 2009; 324
Taguchi, Ishihara, Jofuku, Oka, Mihara (bib51) 2007; 282
Chang, Blackstone (bib6) 2007; 282
Diep, Munoz, Choudhary, Von Hoff, Han (bib10) 2011; 17
Gan, Huang, Wu, Wang, Hu, Li, Zhang, Yu, Swerdlow, Chen, Yan (bib13) 2014; 1842
Lim, Ng, Grace, Yao (bib27) 2012; 16
Yu, Jhun, Yoon (bib59) 2011; 14
Stanton, Nichols, Laudano, Cooper (bib47) 1989; 9
Mitra (bib32) 2013; 35
Rosenfeldt, Ryan (bib41) 2011; 32
Zhang, Jin, Lin, Chen, Liu, Zhang, Yu (bib60) 2013; 14
Lim, Baines, Fiordalisi, Shipitsin, Feig, Cox, Der, Counter (bib26) 2005; 7
Qian, Wang, Van Houten (bib38) 2013; 17
Karbowski, Arnoult, Chen, Chan, Smith, Youle (bib21) 2004; 164
Rosenfeldt, O’Prey, Morton, Nixon, MacKay, Mrowinska, Au, Rai, Zheng, Ridgway (bib42) 2013; 504
Warburg (bib54) 1956; 123
Sheridan, Martin (bib44) 2010; 10
Shields, Pruitt, McFall, Shaub, Der (bib45) 2000; 10
Ushio-Fukai, Nakamura (bib52) 2008; 266
Westermann (bib55) 2010; 11
Lock, Roy, Kenific, Su, Salas, Ronen, Debnath (bib29) 2011; 22
Stokes, Adair, Slack-Davis, Walters, Tilghman, Hershey, Lowrey, Thomas, Bouton, Hwang (bib48) 2011; 10
Lozy, Karantza (bib30) 2012; 23
Liu, Cheng, Roberts, Zhao (bib28) 2009; 8
Kim, Kim, Lee, Yoon, Xu, Yoon, Choi, Ko, Kim, Lee (bib23) 2011; 7
Bruns, Harbison, Kuniyasu, Eue, Fidler (bib4) 1999; 1
Strohecker, Guo, Karsli-Uzunbas, Price, Chen, Mathew, McMahon, White (bib49) 2013; 3
Yoon, Galloway, Jhun, Yu (bib57) 2011; 14
Hamad, Elconin, Karnoub, Bai, Rich, Abraham, Der, Counter (bib17) 2002; 16
Carlson, Chouinard, Labadorf, Lam, Schmelzle, Fraenkel, White (bib5) 2011; 4
Hahn, Counter, Lundberg, Beijersbergen, Brooks, Weinberg (bib16) 1999; 400
Son, Lyssiotis, Ying, Wang, Hua, Ligorio, Perera, Ferrone, Mullarky, Shyh-Chang (bib46) 2013; 496
Zhao, Zhang, Yu, Xie, Huang, Wolff, Abel, Tu (bib61) 2013; 32
Taguchi (10.1016/j.molcel.2015.01.002_bib51) 2007; 282
Liesa (10.1016/j.molcel.2015.01.002_bib25) 2013; 17
Lock (10.1016/j.molcel.2015.01.002_bib29) 2011; 22
Westermann (10.1016/j.molcel.2015.01.002_bib55) 2010; 11
Sheridan (10.1016/j.molcel.2015.01.002_bib44) 2010; 10
Mitra (10.1016/j.molcel.2015.01.002_bib32) 2013; 35
Karbowski (10.1016/j.molcel.2015.01.002_bib21) 2004; 164
Holcomb (10.1016/j.molcel.2015.01.002_bib19) 2008; 12
Rehman (10.1016/j.molcel.2015.01.002_bib40) 2012; 26
Youle (10.1016/j.molcel.2015.01.002_bib58) 2005; 6
Rosenfeldt (10.1016/j.molcel.2015.01.002_bib42) 2013; 504
Diep (10.1016/j.molcel.2015.01.002_bib10) 2011; 17
Luo (10.1016/j.molcel.2015.01.002_bib31) 2003; 4
Son (10.1016/j.molcel.2015.01.002_bib46) 2013; 496
Pitts (10.1016/j.molcel.2015.01.002_bib36) 2004; 279
Levin-Salomon (10.1016/j.molcel.2015.01.002_bib24) 2008; 283
Bruns (10.1016/j.molcel.2015.01.002_bib4) 1999; 1
Lim (10.1016/j.molcel.2015.01.002_bib26) 2005; 7
Hagenbuchner (10.1016/j.molcel.2015.01.002_bib15) 2013; 32
Rao (10.1016/j.molcel.2015.01.002_bib39) 2014; 5
Zhao (10.1016/j.molcel.2015.01.002_bib61) 2013; 32
Chang (10.1016/j.molcel.2015.01.002_bib6) 2007; 282
Yoon (10.1016/j.molcel.2015.01.002_bib57) 2011; 14
Montagut (10.1016/j.molcel.2015.01.002_bib34) 2009; 283
Qian (10.1016/j.molcel.2015.01.002_bib37) 2012; 125
Yu (10.1016/j.molcel.2015.01.002_bib59) 2011; 14
Hamad (10.1016/j.molcel.2015.01.002_bib17) 2002; 16
Lim (10.1016/j.molcel.2015.01.002_bib27) 2012; 16
Su (10.1016/j.molcel.2015.01.002_bib50) 2010; 41
Warburg (10.1016/j.molcel.2015.01.002_bib54) 1956; 123
Shields (10.1016/j.molcel.2015.01.002_bib45) 2000; 10
Inoue-Yamauchi (10.1016/j.molcel.2015.01.002_bib20) 2012; 421
Zhang (10.1016/j.molcel.2015.01.002_bib60) 2013; 14
Carlson (10.1016/j.molcel.2015.01.002_bib5) 2011; 4
Ferreira (10.1016/j.molcel.2015.01.002_bib12) 2010; 89
Arismendi-Morillo (10.1016/j.molcel.2015.01.002_bib1) 2009; 41
Deer (10.1016/j.molcel.2015.01.002_bib8) 2010; 39
Gan (10.1016/j.molcel.2015.01.002_bib13) 2014; 1842
Moore (10.1016/j.molcel.2015.01.002_bib35) 2001; 439
Bos (10.1016/j.molcel.2015.01.002_bib2) 1989; 49
Liu (10.1016/j.molcel.2015.01.002_bib28) 2009; 8
Ushio-Fukai (10.1016/j.molcel.2015.01.002_bib52) 2008; 266
Chen (10.1016/j.molcel.2015.01.002_bib7) 2014; 28
Hanahan (10.1016/j.molcel.2015.01.002_bib18) 2011; 144
Sebolt-Leopold (10.1016/j.molcel.2015.01.002_bib43) 2004; 4
Stanton (10.1016/j.molcel.2015.01.002_bib47) 1989; 9
Qian (10.1016/j.molcel.2015.01.002_bib38) 2013; 17
Wang (10.1016/j.molcel.2015.01.002_bib62) 2014; 16
Xia (10.1016/j.molcel.2015.01.002_bib56) 2007; 67
Kashatus (10.1016/j.molcel.2015.01.002_bib22) 2011; 13
Stokes (10.1016/j.molcel.2015.01.002_bib48) 2011; 10
Vander Heiden (10.1016/j.molcel.2015.01.002_bib53) 2009; 324
Brunet (10.1016/j.molcel.2015.01.002_bib3) 1994; 9
Mitra (10.1016/j.molcel.2015.01.002_bib33) 2009; 106
Rosenfeldt (10.1016/j.molcel.2015.01.002_bib41) 2011; 32
Downward (10.1016/j.molcel.2015.01.002_bib11) 2003; 3
Lozy (10.1016/j.molcel.2015.01.002_bib30) 2012; 23
Hahn (10.1016/j.molcel.2015.01.002_bib16) 1999; 400
Diaz-Ruiz (10.1016/j.molcel.2015.01.002_bib9) 2009; 1796
Strohecker (10.1016/j.molcel.2015.01.002_bib49) 2013; 3
Kim (10.1016/j.molcel.2015.01.002_bib23) 2011; 7
Guo (10.1016/j.molcel.2015.01.002_bib14) 2011; 25
24305049 - Nature. 2013 Dec 12;504(7479):296-300
23797661 - Int J Mol Sci. 2013;14(7):13005-21
15573115 - Nat Rev Cancer. 2004 Dec;4(12):937-47
24445999 - Nat Commun. 2014;5:3056
23943303 - Bioessays. 2013 Nov;35(11):955-64
10740269 - Trends Cell Biol. 2000 Apr;10(4):147-54
18049840 - J Gastrointest Surg. 2008 Feb;12(2):288-96
21385921 - Clin Cancer Res. 2011 May 1;17(9):2744-56
23562075 - Cell Metab. 2013 Apr 2;17(4):491-506
20727425 - Mitochondrion. 2010 Nov;10(6):640-8
21738012 - Autophagy. 2011 Oct;7(10):1187-98
24252614 - Biochim Biophys Acta. 2014 Feb;1842(2):220-31
14585353 - Cancer Cell. 2003 Oct;4(4):257-62
21317241 - Genes Dev. 2011 Mar 1;25(5):460-70
21102612 - Nat Rev Mol Cell Biol. 2010 Dec;11(12):872-84
20518702 - Antioxid Redox Signal. 2011 Feb 1;14(3):425-37
15364948 - J Biol Chem. 2004 Nov 26;279(48):50286-94
23535601 - Nature. 2013 Apr 4;496(7443):101-5
20101529 - Mol Neurobiol. 2010 Jun;41(2-3):87-96
21119005 - Mol Biol Cell. 2011 Jan 15;22(2):165-78
17301055 - J Biol Chem. 2007 Apr 13;282(15):11521-9
20418756 - Pancreas. 2010 May;39(4):425-35
7936666 - Oncogene. 1994 Nov;9(11):3379-87
21903606 - Mol Cancer Ther. 2011 Nov;10(11):2135-45
21668405 - Antioxid Redox Signal. 2012 May 1;16(9):935-49
22487795 - Biochem Biophys Res Commun. 2012 Apr 27;421(1):81-5
19617534 - Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11960-5
10440377 - Nature. 1999 Jul 29;400(6743):464-8
18006827 - Cancer Res. 2007 Nov 15;67(22):10823-30
18829462 - J Biol Chem. 2008 Dec 12;283(50):34500-10
19682552 - Biochim Biophys Acta. 2009 Dec;1796(2):252-65
19644473 - Nat Rev Drug Discov. 2009 Aug;8(8):627-44
21822277 - Nat Cell Biol. 2011 Sep;13(9):1108-15
22281437 - Semin Cell Dev Biol. 2012 Jun;23(4):395-401
23146905 - Oncogene. 2013 Oct;32(40):4748-57
21376230 - Cell. 2011 Mar 4;144(5):646-74
17553808 - J Biol Chem. 2007 Jul 27;282(30):21583-7
12509763 - Nat Rev Cancer. 2003 Jan;3(1):11-22
24081906 - FASEB J. 2014 Jan;28(1):382-94
20804748 - Exp Mol Pathol. 2010 Dec;89(3):372-80
15950903 - Cancer Cell. 2005 Jun;7(6):533-45
18406051 - Cancer Lett. 2008 Jul 18;266(1):37-52
23888838 - Expert Opin Ther Targets. 2013 Sep;17(9):997-1001
2710120 - Mol Cell Biol. 1989 Feb;9(2):639-47
13298683 - Science. 1956 Feb 24;123(3191):309-14
19703662 - Int J Biochem Cell Biol. 2009 Oct;41(10):2062-8
23965987 - Cancer Discov. 2013 Nov;3(11):1272-85
21317301 - Carcinogenesis. 2011 Jul;32(7):955-63
11787853 - Virchows Arch. 2001 Dec;439(6):798-802
20518704 - Antioxid Redox Signal. 2011 Feb 1;14(3):439-57
19217204 - Cancer Lett. 2009 Oct 8;283(2):125-34
19460998 - Science. 2009 May 22;324(5930):1029-33
16025099 - Nat Rev Mol Cell Biol. 2005 Aug;6(8):657-63
22321727 - FASEB J. 2012 May;26(5):2175-86
14769861 - J Cell Biol. 2004 Feb 16;164(4):493-9
23128392 - Oncogene. 2013 Oct;32(40):4814-24
22028470 - Sci Signal. 2011;4(196):rs11
12183360 - Genes Dev. 2002 Aug 15;16(16):2045-57
23015593 - J Cell Sci. 2012 Dec 1;125(Pt 23):5745-57
2547513 - Cancer Res. 1989 Sep 1;49(17):4682-9
10935470 - Neoplasia. 1999 Apr;1(1):50-62
References_xml – volume: 282
  start-page: 21583
  year: 2007
  end-page: 21587
  ident: bib6
  article-title: Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
  publication-title: J. Biol. Chem.
– volume: 1842
  start-page: 220
  year: 2014
  end-page: 231
  ident: bib13
  article-title: Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell
  publication-title: Biochim. Biophys. Acta
– volume: 49
  start-page: 4682
  year: 1989
  end-page: 4689
  ident: bib2
  article-title: ras oncogenes in human cancer: a review
  publication-title: Cancer Res.
– volume: 9
  start-page: 3379
  year: 1994
  end-page: 3387
  ident: bib3
  article-title: Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts
  publication-title: Oncogene
– volume: 16
  start-page: 345
  year: 2014
  end-page: 356
  ident: bib62
  article-title: A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies
  publication-title: Nat. Cell Biol.
– volume: 41
  start-page: 2062
  year: 2009
  end-page: 2068
  ident: bib1
  article-title: Electron microscopy morphology of the mitochondrial network in human cancer
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 17
  start-page: 2744
  year: 2011
  end-page: 2756
  ident: bib10
  article-title: Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells
  publication-title: Clin. Cancer Res.
– volume: 125
  start-page: 5745
  year: 2012
  end-page: 5757
  ident: bib37
  article-title: Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress
  publication-title: J. Cell Sci.
– volume: 14
  start-page: 425
  year: 2011
  end-page: 437
  ident: bib59
  article-title: High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission
  publication-title: Antioxid. Redox Signal.
– volume: 496
  start-page: 101
  year: 2013
  end-page: 105
  ident: bib46
  article-title: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
  publication-title: Nature
– volume: 17
  start-page: 997
  year: 2013
  end-page: 1001
  ident: bib38
  article-title: The role of dynamin-related protein 1 in cancer growth: a promising therapeutic target?
  publication-title: Expert Opin. Ther. Targets
– volume: 12
  start-page: 288
  year: 2008
  end-page: 296
  ident: bib19
  article-title: Pancreatic cancer cell genetics and signaling response to treatment correlate with efficacy of gemcitabine-based molecular targeting strategies
  publication-title: J. Gastrointest. Surg.
– volume: 164
  start-page: 493
  year: 2004
  end-page: 499
  ident: bib21
  article-title: Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis
  publication-title: J. Cell Biol.
– volume: 5
  start-page: 3056
  year: 2014
  ident: bib39
  article-title: A dual role for autophagy in a murine model of lung cancer
  publication-title: Nat. Commun.
– volume: 400
  start-page: 464
  year: 1999
  end-page: 468
  ident: bib16
  article-title: Creation of human tumour cells with defined genetic elements
  publication-title: Nature
– volume: 8
  start-page: 627
  year: 2009
  end-page: 644
  ident: bib28
  article-title: Targeting the phosphoinositide 3-kinase pathway in cancer
  publication-title: Nat. Rev. Drug Discov.
– volume: 10
  start-page: 640
  year: 2010
  end-page: 648
  ident: bib44
  article-title: Mitochondrial fission/fusion dynamics and apoptosis
  publication-title: Mitochondrion
– volume: 439
  start-page: 798
  year: 2001
  end-page: 802
  ident: bib35
  article-title: Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4
  publication-title: Virchows Arch.
– volume: 32
  start-page: 4748
  year: 2013
  end-page: 4757
  ident: bib15
  article-title: BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery
  publication-title: Oncogene
– volume: 283
  start-page: 34500
  year: 2008
  end-page: 34510
  ident: bib24
  article-title: Isolation of intrinsically active (MEK-independent) variants of the ERK family of mitogen-activated protein (MAP) kinases
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 935
  year: 2012
  end-page: 949
  ident: bib27
  article-title: Mitochondrial dynamics and Parkinson’s disease: focus on parkin
  publication-title: Antioxid. Redox Signal.
– volume: 123
  start-page: 309
  year: 1956
  end-page: 314
  ident: bib54
  article-title: On the origin of cancer cells
  publication-title: Science
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: bib18
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 6
  start-page: 657
  year: 2005
  end-page: 663
  ident: bib58
  article-title: Mitochondrial fission in apoptosis
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 4
  start-page: rs11
  year: 2011
  ident: bib5
  article-title: Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3
  publication-title: Sci. Signal.
– volume: 23
  start-page: 395
  year: 2012
  end-page: 401
  ident: bib30
  article-title: Autophagy and cancer cell metabolism
  publication-title: Semin. Cell Dev. Biol.
– volume: 504
  start-page: 296
  year: 2013
  end-page: 300
  ident: bib42
  article-title: p53 status determines the role of autophagy in pancreatic tumour development
  publication-title: Nature
– volume: 9
  start-page: 639
  year: 1989
  end-page: 647
  ident: bib47
  article-title: Definition of the human raf amino-terminal regulatory region by deletion mutagenesis
  publication-title: Mol. Cell. Biol.
– volume: 283
  start-page: 125
  year: 2009
  end-page: 134
  ident: bib34
  article-title: Targeting the RAF-MEK-ERK pathway in cancer therapy
  publication-title: Cancer Lett.
– volume: 22
  start-page: 165
  year: 2011
  end-page: 178
  ident: bib29
  article-title: Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
  publication-title: Mol. Biol. Cell
– volume: 1
  start-page: 50
  year: 1999
  end-page: 62
  ident: bib4
  article-title: In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice
  publication-title: Neoplasia
– volume: 10
  start-page: 2135
  year: 2011
  end-page: 2145
  ident: bib48
  article-title: Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment
  publication-title: Mol. Cancer Ther.
– volume: 25
  start-page: 460
  year: 2011
  end-page: 470
  ident: bib14
  article-title: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
  publication-title: Genes Dev.
– volume: 4
  start-page: 937
  year: 2004
  end-page: 947
  ident: bib43
  article-title: Targeting the mitogen-activated protein kinase cascade to treat cancer
  publication-title: Nat. Rev. Cancer
– volume: 4
  start-page: 257
  year: 2003
  end-page: 262
  ident: bib31
  article-title: Targeting the PI3K-Akt pathway in human cancer: rationale and promise
  publication-title: Cancer Cell
– volume: 3
  start-page: 11
  year: 2003
  end-page: 22
  ident: bib11
  article-title: Targeting RAS signalling pathways in cancer therapy
  publication-title: Nat. Rev. Cancer
– volume: 10
  start-page: 147
  year: 2000
  end-page: 154
  ident: bib45
  article-title: Understanding Ras: ‘it ain’t over ‘til it’s over’
  publication-title: Trends Cell Biol.
– volume: 106
  start-page: 11960
  year: 2009
  end-page: 11965
  ident: bib33
  article-title: A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 1187
  year: 2011
  end-page: 1198
  ident: bib23
  article-title: Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency
  publication-title: Autophagy
– volume: 32
  start-page: 955
  year: 2011
  end-page: 963
  ident: bib41
  article-title: The multiple roles of autophagy in cancer
  publication-title: Carcinogenesis
– volume: 89
  start-page: 372
  year: 2010
  end-page: 380
  ident: bib12
  article-title: Cancer metabolism: the Warburg effect today
  publication-title: Exp. Mol. Pathol.
– volume: 421
  start-page: 81
  year: 2012
  end-page: 85
  ident: bib20
  article-title: Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 3
  start-page: 1272
  year: 2013
  end-page: 1285
  ident: bib49
  article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors
  publication-title: Cancer Discov.
– volume: 35
  start-page: 955
  year: 2013
  end-page: 964
  ident: bib32
  article-title: Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation
  publication-title: Bioessays
– volume: 28
  start-page: 382
  year: 2014
  end-page: 394
  ident: bib7
  article-title: Role of mitofusin 2 (Mfn2) in controlling cellular proliferation
  publication-title: FASEB J.
– volume: 41
  start-page: 87
  year: 2010
  end-page: 96
  ident: bib50
  article-title: Abnormal mitochondrial dynamics—a novel therapeutic target for Alzheimer’s disease?
  publication-title: Mol. Neurobiol.
– volume: 266
  start-page: 37
  year: 2008
  end-page: 52
  ident: bib52
  article-title: Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy
  publication-title: Cancer Lett.
– volume: 11
  start-page: 872
  year: 2010
  end-page: 884
  ident: bib55
  article-title: Mitochondrial fusion and fission in cell life and death
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 13
  start-page: 1108
  year: 2011
  end-page: 1115
  ident: bib22
  article-title: RALA and RALBP1 regulate mitochondrial fission at mitosis
  publication-title: Nat. Cell Biol.
– volume: 7
  start-page: 533
  year: 2005
  end-page: 545
  ident: bib26
  article-title: Activation of RalA is critical for Ras-induced tumorigenesis of human cells
  publication-title: Cancer Cell
– volume: 14
  start-page: 439
  year: 2011
  end-page: 457
  ident: bib57
  article-title: Mitochondrial dynamics in diabetes
  publication-title: Antioxid. Redox Signal.
– volume: 39
  start-page: 425
  year: 2010
  end-page: 435
  ident: bib8
  article-title: Phenotype and genotype of pancreatic cancer cell lines
  publication-title: Pancreas
– volume: 17
  start-page: 491
  year: 2013
  end-page: 506
  ident: bib25
  article-title: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
  publication-title: Cell Metab.
– volume: 16
  start-page: 2045
  year: 2002
  end-page: 2057
  ident: bib17
  article-title: Distinct requirements for Ras oncogenesis in human versus mouse cells
  publication-title: Genes Dev.
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: bib53
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 32
  start-page: 4814
  year: 2013
  end-page: 4824
  ident: bib61
  article-title: Mitochondrial dynamics regulates migration and invasion of breast cancer cells
  publication-title: Oncogene
– volume: 279
  start-page: 50286
  year: 2004
  end-page: 50294
  ident: bib36
  article-title: Mitochondria-specific function of the dynamin family protein DLP1 is mediated by its C-terminal domains
  publication-title: J. Biol. Chem.
– volume: 26
  start-page: 2175
  year: 2012
  end-page: 2186
  ident: bib40
  article-title: Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer
  publication-title: FASEB J.
– volume: 1796
  start-page: 252
  year: 2009
  end-page: 265
  ident: bib9
  article-title: Tumor cell energy metabolism and its common features with yeast metabolism
  publication-title: Biochim. Biophys. Acta
– volume: 282
  start-page: 11521
  year: 2007
  end-page: 11529
  ident: bib51
  article-title: Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
  publication-title: J. Biol. Chem.
– volume: 67
  start-page: 10823
  year: 2007
  end-page: 10830
  ident: bib56
  article-title: Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor
  publication-title: Cancer Res.
– volume: 14
  start-page: 13005
  year: 2013
  end-page: 13021
  ident: bib60
  article-title: Anti-tumor effects of mfn2 in gastric cancer
  publication-title: Int. J. Mol. Sci.
– volume: 9
  start-page: 639
  year: 1989
  ident: 10.1016/j.molcel.2015.01.002_bib47
  article-title: Definition of the human raf amino-terminal regulatory region by deletion mutagenesis
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.9.2.639
– volume: 421
  start-page: 81
  year: 2012
  ident: 10.1016/j.molcel.2015.01.002_bib20
  article-title: Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.03.118
– volume: 11
  start-page: 872
  year: 2010
  ident: 10.1016/j.molcel.2015.01.002_bib55
  article-title: Mitochondrial fusion and fission in cell life and death
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3013
– volume: 3
  start-page: 1272
  year: 2013
  ident: 10.1016/j.molcel.2015.01.002_bib49
  article-title: Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0397
– volume: 5
  start-page: 3056
  year: 2014
  ident: 10.1016/j.molcel.2015.01.002_bib39
  article-title: A dual role for autophagy in a murine model of lung cancer
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4056
– volume: 17
  start-page: 2744
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib10
  article-title: Synergistic effect between erlotinib and MEK inhibitors in KRAS wild-type human pancreatic cancer cells
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-2214
– volume: 266
  start-page: 37
  year: 2008
  ident: 10.1016/j.molcel.2015.01.002_bib52
  article-title: Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2008.02.044
– volume: 12
  start-page: 288
  year: 2008
  ident: 10.1016/j.molcel.2015.01.002_bib19
  article-title: Pancreatic cancer cell genetics and signaling response to treatment correlate with efficacy of gemcitabine-based molecular targeting strategies
  publication-title: J. Gastrointest. Surg.
  doi: 10.1007/s11605-007-0406-6
– volume: 400
  start-page: 464
  year: 1999
  ident: 10.1016/j.molcel.2015.01.002_bib16
  article-title: Creation of human tumour cells with defined genetic elements
  publication-title: Nature
  doi: 10.1038/22780
– volume: 283
  start-page: 34500
  year: 2008
  ident: 10.1016/j.molcel.2015.01.002_bib24
  article-title: Isolation of intrinsically active (MEK-independent) variants of the ERK family of mitogen-activated protein (MAP) kinases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806443200
– volume: 1
  start-page: 50
  year: 1999
  ident: 10.1016/j.molcel.2015.01.002_bib4
  article-title: In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice
  publication-title: Neoplasia
  doi: 10.1038/sj.neo.7900005
– volume: 16
  start-page: 345
  year: 2014
  ident: 10.1016/j.molcel.2015.01.002_bib62
  article-title: A time- and matrix-dependent TGFBR3–JUND–KRT5 regulatory circuit in single breast epithelial cells and basal-like premalignancies
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2930
– volume: 144
  start-page: 646
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib18
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 17
  start-page: 997
  year: 2013
  ident: 10.1016/j.molcel.2015.01.002_bib38
  article-title: The role of dynamin-related protein 1 in cancer growth: a promising therapeutic target?
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1517/14728222.2013.823160
– volume: 16
  start-page: 2045
  year: 2002
  ident: 10.1016/j.molcel.2015.01.002_bib17
  article-title: Distinct requirements for Ras oncogenesis in human versus mouse cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.993902
– volume: 282
  start-page: 21583
  year: 2007
  ident: 10.1016/j.molcel.2015.01.002_bib6
  article-title: Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C700083200
– volume: 7
  start-page: 533
  year: 2005
  ident: 10.1016/j.molcel.2015.01.002_bib26
  article-title: Activation of RalA is critical for Ras-induced tumorigenesis of human cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2005.04.030
– volume: 41
  start-page: 2062
  year: 2009
  ident: 10.1016/j.molcel.2015.01.002_bib1
  article-title: Electron microscopy morphology of the mitochondrial network in human cancer
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2009.02.002
– volume: 125
  start-page: 5745
  year: 2012
  ident: 10.1016/j.molcel.2015.01.002_bib37
  article-title: Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.109769
– volume: 283
  start-page: 125
  year: 2009
  ident: 10.1016/j.molcel.2015.01.002_bib34
  article-title: Targeting the RAF-MEK-ERK pathway in cancer therapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2009.01.022
– volume: 1842
  start-page: 220
  year: 2014
  ident: 10.1016/j.molcel.2015.01.002_bib13
  article-title: Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2013.11.009
– volume: 89
  start-page: 372
  year: 2010
  ident: 10.1016/j.molcel.2015.01.002_bib12
  article-title: Cancer metabolism: the Warburg effect today
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/j.yexmp.2010.08.006
– volume: 22
  start-page: 165
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib29
  article-title: Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E10-06-0500
– volume: 28
  start-page: 382
  year: 2014
  ident: 10.1016/j.molcel.2015.01.002_bib7
  article-title: Role of mitofusin 2 (Mfn2) in controlling cellular proliferation
  publication-title: FASEB J.
  doi: 10.1096/fj.13-230037
– volume: 23
  start-page: 395
  year: 2012
  ident: 10.1016/j.molcel.2015.01.002_bib30
  article-title: Autophagy and cancer cell metabolism
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2012.01.005
– volume: 106
  start-page: 11960
  year: 2009
  ident: 10.1016/j.molcel.2015.01.002_bib33
  article-title: A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904875106
– volume: 4
  start-page: 937
  year: 2004
  ident: 10.1016/j.molcel.2015.01.002_bib43
  article-title: Targeting the mitogen-activated protein kinase cascade to treat cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1503
– volume: 17
  start-page: 491
  year: 2013
  ident: 10.1016/j.molcel.2015.01.002_bib25
  article-title: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.03.002
– volume: 10
  start-page: 2135
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib48
  article-title: Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-11-0261
– volume: 14
  start-page: 425
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib59
  article-title: High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3284
– volume: 4
  start-page: 257
  year: 2003
  ident: 10.1016/j.molcel.2015.01.002_bib31
  article-title: Targeting the PI3K-Akt pathway in human cancer: rationale and promise
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00248-4
– volume: 7
  start-page: 1187
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib23
  article-title: Involvement of mitophagy in oncogenic K-Ras-induced transformation: overcoming a cellular energy deficit from glucose deficiency
  publication-title: Autophagy
  doi: 10.4161/auto.7.10.16643
– volume: 504
  start-page: 296
  year: 2013
  ident: 10.1016/j.molcel.2015.01.002_bib42
  article-title: p53 status determines the role of autophagy in pancreatic tumour development
  publication-title: Nature
  doi: 10.1038/nature12865
– volume: 16
  start-page: 935
  year: 2012
  ident: 10.1016/j.molcel.2015.01.002_bib27
  article-title: Mitochondrial dynamics and Parkinson’s disease: focus on parkin
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2011.4105
– volume: 14
  start-page: 13005
  year: 2013
  ident: 10.1016/j.molcel.2015.01.002_bib60
  article-title: Anti-tumor effects of mfn2 in gastric cancer
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140713005
– volume: 67
  start-page: 10823
  year: 2007
  ident: 10.1016/j.molcel.2015.01.002_bib56
  article-title: Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0783
– volume: 25
  start-page: 460
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib14
  article-title: Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.2016311
– volume: 6
  start-page: 657
  year: 2005
  ident: 10.1016/j.molcel.2015.01.002_bib58
  article-title: Mitochondrial fission in apoptosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1697
– volume: 41
  start-page: 87
  year: 2010
  ident: 10.1016/j.molcel.2015.01.002_bib50
  article-title: Abnormal mitochondrial dynamics—a novel therapeutic target for Alzheimer’s disease?
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-009-8095-7
– volume: 49
  start-page: 4682
  year: 1989
  ident: 10.1016/j.molcel.2015.01.002_bib2
  article-title: ras oncogenes in human cancer: a review
  publication-title: Cancer Res.
– volume: 1796
  start-page: 252
  year: 2009
  ident: 10.1016/j.molcel.2015.01.002_bib9
  article-title: Tumor cell energy metabolism and its common features with yeast metabolism
  publication-title: Biochim. Biophys. Acta
– volume: 4
  start-page: rs11
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib5
  article-title: Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002010
– volume: 3
  start-page: 11
  year: 2003
  ident: 10.1016/j.molcel.2015.01.002_bib11
  article-title: Targeting RAS signalling pathways in cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc969
– volume: 123
  start-page: 309
  year: 1956
  ident: 10.1016/j.molcel.2015.01.002_bib54
  article-title: On the origin of cancer cells
  publication-title: Science
  doi: 10.1126/science.123.3191.309
– volume: 14
  start-page: 439
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib57
  article-title: Mitochondrial dynamics in diabetes
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3286
– volume: 496
  start-page: 101
  year: 2013
  ident: 10.1016/j.molcel.2015.01.002_bib46
  article-title: Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
  publication-title: Nature
  doi: 10.1038/nature12040
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1016/j.molcel.2015.01.002_bib53
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 282
  start-page: 11521
  year: 2007
  ident: 10.1016/j.molcel.2015.01.002_bib51
  article-title: Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M607279200
– volume: 9
  start-page: 3379
  year: 1994
  ident: 10.1016/j.molcel.2015.01.002_bib3
  article-title: Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts
  publication-title: Oncogene
– volume: 10
  start-page: 640
  year: 2010
  ident: 10.1016/j.molcel.2015.01.002_bib44
  article-title: Mitochondrial fission/fusion dynamics and apoptosis
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2010.08.005
– volume: 26
  start-page: 2175
  year: 2012
  ident: 10.1016/j.molcel.2015.01.002_bib40
  article-title: Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer
  publication-title: FASEB J.
  doi: 10.1096/fj.11-196543
– volume: 32
  start-page: 955
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib41
  article-title: The multiple roles of autophagy in cancer
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgr031
– volume: 8
  start-page: 627
  year: 2009
  ident: 10.1016/j.molcel.2015.01.002_bib28
  article-title: Targeting the phosphoinositide 3-kinase pathway in cancer
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2926
– volume: 32
  start-page: 4748
  year: 2013
  ident: 10.1016/j.molcel.2015.01.002_bib15
  article-title: BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery
  publication-title: Oncogene
  doi: 10.1038/onc.2012.500
– volume: 164
  start-page: 493
  year: 2004
  ident: 10.1016/j.molcel.2015.01.002_bib21
  article-title: Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200309082
– volume: 279
  start-page: 50286
  year: 2004
  ident: 10.1016/j.molcel.2015.01.002_bib36
  article-title: Mitochondria-specific function of the dynamin family protein DLP1 is mediated by its C-terminal domains
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M405531200
– volume: 32
  start-page: 4814
  year: 2013
  ident: 10.1016/j.molcel.2015.01.002_bib61
  article-title: Mitochondrial dynamics regulates migration and invasion of breast cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2012.494
– volume: 35
  start-page: 955
  year: 2013
  ident: 10.1016/j.molcel.2015.01.002_bib32
  article-title: Mitochondrial fission-fusion as an emerging key regulator of cell proliferation and differentiation
  publication-title: Bioessays
  doi: 10.1002/bies.201300011
– volume: 13
  start-page: 1108
  year: 2011
  ident: 10.1016/j.molcel.2015.01.002_bib22
  article-title: RALA and RALBP1 regulate mitochondrial fission at mitosis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2310
– volume: 10
  start-page: 147
  year: 2000
  ident: 10.1016/j.molcel.2015.01.002_bib45
  article-title: Understanding Ras: ‘it ain’t over ‘til it’s over’
  publication-title: Trends Cell Biol.
  doi: 10.1016/S0962-8924(00)01740-2
– volume: 39
  start-page: 425
  year: 2010
  ident: 10.1016/j.molcel.2015.01.002_bib8
  article-title: Phenotype and genotype of pancreatic cancer cell lines
  publication-title: Pancreas
  doi: 10.1097/MPA.0b013e3181c15963
– volume: 439
  start-page: 798
  year: 2001
  ident: 10.1016/j.molcel.2015.01.002_bib35
  article-title: Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4
  publication-title: Virchows Arch.
  doi: 10.1007/s004280100474
– reference: 23888838 - Expert Opin Ther Targets. 2013 Sep;17(9):997-1001
– reference: 11787853 - Virchows Arch. 2001 Dec;439(6):798-802
– reference: 18829462 - J Biol Chem. 2008 Dec 12;283(50):34500-10
– reference: 23965987 - Cancer Discov. 2013 Nov;3(11):1272-85
– reference: 21385921 - Clin Cancer Res. 2011 May 1;17(9):2744-56
– reference: 21668405 - Antioxid Redox Signal. 2012 May 1;16(9):935-49
– reference: 12183360 - Genes Dev. 2002 Aug 15;16(16):2045-57
– reference: 21903606 - Mol Cancer Ther. 2011 Nov;10(11):2135-45
– reference: 21119005 - Mol Biol Cell. 2011 Jan 15;22(2):165-78
– reference: 20518702 - Antioxid Redox Signal. 2011 Feb 1;14(3):425-37
– reference: 10740269 - Trends Cell Biol. 2000 Apr;10(4):147-54
– reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74
– reference: 12509763 - Nat Rev Cancer. 2003 Jan;3(1):11-22
– reference: 15950903 - Cancer Cell. 2005 Jun;7(6):533-45
– reference: 20727425 - Mitochondrion. 2010 Nov;10(6):640-8
– reference: 24445999 - Nat Commun. 2014;5:3056
– reference: 17301055 - J Biol Chem. 2007 Apr 13;282(15):11521-9
– reference: 20518704 - Antioxid Redox Signal. 2011 Feb 1;14(3):439-57
– reference: 24081906 - FASEB J. 2014 Jan;28(1):382-94
– reference: 21822277 - Nat Cell Biol. 2011 Sep;13(9):1108-15
– reference: 23562075 - Cell Metab. 2013 Apr 2;17(4):491-506
– reference: 24252614 - Biochim Biophys Acta. 2014 Feb;1842(2):220-31
– reference: 18406051 - Cancer Lett. 2008 Jul 18;266(1):37-52
– reference: 20804748 - Exp Mol Pathol. 2010 Dec;89(3):372-80
– reference: 14769861 - J Cell Biol. 2004 Feb 16;164(4):493-9
– reference: 24305049 - Nature. 2013 Dec 12;504(7479):296-300
– reference: 21738012 - Autophagy. 2011 Oct;7(10):1187-98
– reference: 22028470 - Sci Signal. 2011;4(196):rs11
– reference: 17553808 - J Biol Chem. 2007 Jul 27;282(30):21583-7
– reference: 19460998 - Science. 2009 May 22;324(5930):1029-33
– reference: 21317301 - Carcinogenesis. 2011 Jul;32(7):955-63
– reference: 14585353 - Cancer Cell. 2003 Oct;4(4):257-62
– reference: 13298683 - Science. 1956 Feb 24;123(3191):309-14
– reference: 20418756 - Pancreas. 2010 May;39(4):425-35
– reference: 23535601 - Nature. 2013 Apr 4;496(7443):101-5
– reference: 19644473 - Nat Rev Drug Discov. 2009 Aug;8(8):627-44
– reference: 19682552 - Biochim Biophys Acta. 2009 Dec;1796(2):252-65
– reference: 10935470 - Neoplasia. 1999 Apr;1(1):50-62
– reference: 20101529 - Mol Neurobiol. 2010 Jun;41(2-3):87-96
– reference: 23146905 - Oncogene. 2013 Oct;32(40):4748-57
– reference: 2547513 - Cancer Res. 1989 Sep 1;49(17):4682-9
– reference: 22321727 - FASEB J. 2012 May;26(5):2175-86
– reference: 22487795 - Biochem Biophys Res Commun. 2012 Apr 27;421(1):81-5
– reference: 2710120 - Mol Cell Biol. 1989 Feb;9(2):639-47
– reference: 23015593 - J Cell Sci. 2012 Dec 1;125(Pt 23):5745-57
– reference: 19617534 - Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11960-5
– reference: 21102612 - Nat Rev Mol Cell Biol. 2010 Dec;11(12):872-84
– reference: 15573115 - Nat Rev Cancer. 2004 Dec;4(12):937-47
– reference: 7936666 - Oncogene. 1994 Nov;9(11):3379-87
– reference: 23128392 - Oncogene. 2013 Oct;32(40):4814-24
– reference: 23943303 - Bioessays. 2013 Nov;35(11):955-64
– reference: 18006827 - Cancer Res. 2007 Nov 15;67(22):10823-30
– reference: 23797661 - Int J Mol Sci. 2013;14(7):13005-21
– reference: 21317241 - Genes Dev. 2011 Mar 1;25(5):460-70
– reference: 10440377 - Nature. 1999 Jul 29;400(6743):464-8
– reference: 18049840 - J Gastrointest Surg. 2008 Feb;12(2):288-96
– reference: 16025099 - Nat Rev Mol Cell Biol. 2005 Aug;6(8):657-63
– reference: 19703662 - Int J Biochem Cell Biol. 2009 Oct;41(10):2062-8
– reference: 19217204 - Cancer Lett. 2009 Oct 8;283(2):125-34
– reference: 22281437 - Semin Cell Dev Biol. 2012 Jun;23(4):395-401
– reference: 15364948 - J Biol Chem. 2004 Nov 26;279(48):50286-94
SSID ssj0014589
Score 2.6311634
Snippet Ras is mutated in up to 30% of cancers, including 90% of pancreatic ductal adenocarcinomas, causing it to be constitutively GTP-bound, and leading to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 537
SubjectTerms adenocarcinoma
Animals
Benzamides - pharmacology
Cell Line, Tumor
Diphenylamine - analogs & derivatives
Diphenylamine - pharmacology
Gene Knockdown Techniques
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
guanosinetriphosphatase
HEK293 Cells
HeLa Cells
Humans
Mice
Mice, Nude
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
mitochondria
Mitochondrial Dynamics - drug effects
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase 1 - metabolism
Neoplasms, Experimental - metabolism
pancreatic neoplasms
Pancreatic Neoplasms - metabolism
phenotype
Phosphorylation
ras Proteins - metabolism
serine
Serine - metabolism
Title Erk2 Phosphorylation of Drp1 Promotes Mitochondrial Fission and MAPK-Driven Tumor Growth
URI https://dx.doi.org/10.1016/j.molcel.2015.01.002
https://www.ncbi.nlm.nih.gov/pubmed/25658205
https://www.proquest.com/docview/1653128067
https://www.proquest.com/docview/2000186169
https://pubmed.ncbi.nlm.nih.gov/PMC4393013
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBalY7CXsfuyS9FgryKRZd0es7ZZWcgIW8vyJmRJJtlaOzjJQ__9jmQ7LLtQ2KPtI5CPzuWzzw2h90F4EWypieJeEvD4OVGWKyKc1Zn3Bdepz_bss7i4yj8t-OIInfa1MDGtsrP9rU1P1rq7M-y4OVyvVsOvMXaayTjKe5RKTMEOs1ylIr7Fh30kIedpDF4kJpG6L59LOV439bULMQBB2-ad3c-Vv7inP-Hn71mUv7ilySP0sMOTeNxu-TE6CtUTdL-dMHn7FC3Omx8Zni_rzXpZN7dt4huuS3zWrCmep1y8sMEz0Guwg5WP4ognq5gaW2FbeTwbz6fkrIk2EV_ubuoGf4QP9-3yGbqanF-eXpBumAJxAHG2pOSlYww02CmmSp8xAEZBB6-DzWJPNFUUTDLpNFPFKPjgaFFSKYPMhdKZtew5Oq7qKrxEOLZBCyXPWcZsrr1WIWhhARdYJxllYYBYz0Pjuk7jceDFtelTyr6blvMmct6MqAHODxDZr1q3nTbuoJf98ZgDiTHgDO5Y-a4_TQPKFCMktgr1bmOoAJMUY83y3zSxtokqQYUeoBetBOz3C_iRA6TisLcD2dgTxGbeh0-q1TI19QZgCLaWvfrvt3qNHsSrlFHO36DjbbMLbwEwbYsTdG88_fJtepI04yckfBX1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXNO6FDYwEj1YbO47tBx7GutLSdapEJ_XNOLGjFrakSltN_V38QY5zqSgXTULaa-NE7vHxd77kfD4HoXcuspEzqSKSW0Eg4odEGi5JlBhFrY25Kutsj86j_kX4ecqne-hHcxbGyypr7K8wvUTr-pd2bc32Yj5vf_G5Uyp8K-9OecS0VlYO3eYa3tuWHwZdWOT3lPZOJyd9UrcWIAkE_BVJeZowBv6cSCZTSxnQBKecVc5QXyFMxjETTCSKybjjrEuCOA2EcCKMpKLGMHjuHXQX2IfwaDCYftymLkJe9t3zsyN-es15vVJUdpVfJs5nPIKqWmj9Necv8fBPvvu7bPOXONg7QA9rAouPKxs9Qnsue4zuVS0tN0_Q9LT4TvF4li8Xs7zYVEo7nKe4WywCPC7Ff26JRwAkALyZ9f6Pe3Ovxc2wySweHY-HpFt4EMaT9VVe4E9Ffr2aPUUXt2LiZ2g_yzP3AmFfd82lPGSUmVBZJZ1TkQEiYhLBAuZaiDU21Eld2tx32LjUjYbtm64sr73ldSfQYPkWItu7FlVpjxvGi2Z59I6Laog-N9z5tllNDbvXp2RM5vL1UgcRYKBPbot_j_GHqQIZBZFqoeeVB2znC4SVA4fjMLcd39gO8NXDd69k81lZRRyYKIA7e_nf_-oNut-fjM702eB8-Ao98FdKOTs_RPurYu2OgK2t4tfl7sDo621vx5_MlVF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Erk2+Phosphorylation+of+Drp1+Promotes+Mitochondrial+Fission+and+MAPK-Driven+Tumor+Growth&rft.jtitle=Molecular+cell&rft.au=Kashatus%2C+Jennifer%C2%A0A.&rft.au=Nascimento%2C+Aldo&rft.au=Myers%2C+Lindsey%C2%A0J.&rft.au=Sher%2C+Annie&rft.date=2015-02-05&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=57&rft.issue=3&rft.spage=537&rft.epage=551&rft_id=info:doi/10.1016%2Fj.molcel.2015.01.002&rft.externalDocID=S1097276515000039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon