Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein

Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a di...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 63; no. 1; pp. 72 - 85
Main Authors Pak, Chi W., Kosno, Martyna, Holehouse, Alex S., Padrick, Shae B., Mittal, Anuradha, Ali, Rustam, Yunus, Ali A., Liu, David R., Pappu, Rohit V., Rosen, Michael K.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation. [Display omitted] •Disordered Nephrin intracellular domain (NICD) forms phase-separated nuclear bodies•NICD phase separates via complex coacervation•Aromatic/hydrophobic residues and high (−) charge density promote phase separation•Disordered regions with NICD-like sequence features are common in human proteome Pak et al. describe cellular liquid-liquid phase separation of a negatively charged intrinsically disordered protein, the Nephrin intracellular domain. Phase separation is driven by co-assembly with positively charged partners, a process termed complex coacervation. Disordered regions with NICD-like sequence features are common in the human proteome, suggesting complex coacervation may be widespread.
AbstractList Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation.
Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation.Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation.
Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation.
Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation. [Display omitted] •Disordered Nephrin intracellular domain (NICD) forms phase-separated nuclear bodies•NICD phase separates via complex coacervation•Aromatic/hydrophobic residues and high (−) charge density promote phase separation•Disordered regions with NICD-like sequence features are common in human proteome Pak et al. describe cellular liquid-liquid phase separation of a negatively charged intrinsically disordered protein, the Nephrin intracellular domain. Phase separation is driven by co-assembly with positively charged partners, a process termed complex coacervation. Disordered regions with NICD-like sequence features are common in the human proteome, suggesting complex coacervation may be widespread.
Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation.
Author Pak, Chi W.
Liu, David R.
Holehouse, Alex S.
Mittal, Anuradha
Yunus, Ali A.
Pappu, Rohit V.
Padrick, Shae B.
Kosno, Martyna
Rosen, Michael K.
Ali, Rustam
AuthorAffiliation 1 Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
3 Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
4 Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, 02138, USA
2 Computational and Molecular Biophysics Graduate Program, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
AuthorAffiliation_xml – name: 2 Computational and Molecular Biophysics Graduate Program, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
– name: 1 Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
– name: 4 Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, 02138, USA
– name: 3 Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
Author_xml – sequence: 1
  givenname: Chi W.
  surname: Pak
  fullname: Pak, Chi W.
  organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 2
  givenname: Martyna
  surname: Kosno
  fullname: Kosno, Martyna
  organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 3
  givenname: Alex S.
  surname: Holehouse
  fullname: Holehouse, Alex S.
  organization: Computational and Molecular Biophysics Graduate Program, Washington University in St. Louis, St. Louis, MO 63130, USA
– sequence: 4
  givenname: Shae B.
  surname: Padrick
  fullname: Padrick, Shae B.
  organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 5
  givenname: Anuradha
  surname: Mittal
  fullname: Mittal, Anuradha
  organization: Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
– sequence: 6
  givenname: Rustam
  surname: Ali
  fullname: Ali, Rustam
  organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 7
  givenname: Ali A.
  surname: Yunus
  fullname: Yunus, Ali A.
  organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 8
  givenname: David R.
  surname: Liu
  fullname: Liu, David R.
  organization: Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
– sequence: 9
  givenname: Rohit V.
  surname: Pappu
  fullname: Pappu, Rohit V.
  email: pappu@wustl.edu
  organization: Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
– sequence: 10
  givenname: Michael K.
  surname: Rosen
  fullname: Rosen, Michael K.
  email: michael.rosen@utsouthwestern.edu
  organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27392146$$D View this record in MEDLINE/PubMed
BookMark eNqNUktv1DAYtFARfcA_QChHLhtsx4-YAxLaQqlUqZUKZ8txvrReJfZie1f03-N0t6jlAM3li-2Z0XjGx-jABw8IvSW4JpiID6t6CqOFsaZlVWNeY0ZfoCOClVwwItjB_p9KwQ_RcUorjAnjrXqFDqlsFCVMHKGba_i5AW-hOoUMcXLe-JyqMFTnPkdT9MfNaGJ1dWsSVNewNtFkF3zV3VXLMK1H-FVmwcXtbr8wTXXqUog9ROirqxgyOP8avRzMmODNfp6gH1-_fF9-W1xcnp0vP18sLBc0LwauuOgYodKwXjAiLWaNtGVQqYCLpi9fO5DWCqKIorTpMDaNsp1osDSqOUGfdrrrTTdBb2G-xajX0U0m3ulgnH564t2tvglbzZRsmGBF4P1eIIaSTMp6cmmOwXgIm6RJSzlrMGbtM6DFNWOSz9B3j2398fNQRAF83AFsDClFGLR1-T7R4tKNmmA9t65Xete6nlvXmOvSeiGzv8gP-v-h7bOCUsjWQdTJuvkt9C6CzboP7t8CvwGIMslv
CitedBy_id crossref_primary_10_1038_s41467_018_07624_w
crossref_primary_10_1073_pnas_2304036120
crossref_primary_10_1146_annurev_conmatphys_042020_113457
crossref_primary_10_3389_fonc_2025_1509810
crossref_primary_10_1021_acs_langmuir_4c04114
crossref_primary_10_3390_polym13132074
crossref_primary_10_1042_BST20170570
crossref_primary_10_1016_j_devcel_2021_09_021
crossref_primary_10_1074_jbc_RA118_006620
crossref_primary_10_1016_j_ccell_2020_12_003
crossref_primary_10_1039_C8CC09842E
crossref_primary_10_1039_D4SM01477D
crossref_primary_10_1021_acs_jpcb_8b10051
crossref_primary_10_1021_acs_macromol_0c00758
crossref_primary_10_1002_chem_202301274
crossref_primary_10_1016_j_tibs_2020_06_007
crossref_primary_10_1021_acs_jpcb_1c06696
crossref_primary_10_1016_j_bpj_2016_12_031
crossref_primary_10_1016_j_bpj_2019_01_001
crossref_primary_10_1038_s41467_021_27433_y
crossref_primary_10_1126_science_aaw8653
crossref_primary_10_1021_jacs_4c08946
crossref_primary_10_1038_s41467_020_19391_8
crossref_primary_10_1038_s41418_022_00955_8
crossref_primary_10_1038_s41467_021_21035_4
crossref_primary_10_1039_C9SM02462J
crossref_primary_10_15252_embj_2020106389
crossref_primary_10_1016_j_cis_2022_102777
crossref_primary_10_1016_j_mser_2023_100762
crossref_primary_10_1021_acs_biochem_1c00501
crossref_primary_10_1039_D4SM00470A
crossref_primary_10_1016_j_bpj_2024_05_026
crossref_primary_10_2139_ssrn_3929009
crossref_primary_10_1016_j_abb_2023_109857
crossref_primary_10_1073_pnas_2024685118
crossref_primary_10_1038_s41580_020_0264_6
crossref_primary_10_3390_ijms21165908
crossref_primary_10_1021_acs_biomac_0c01765
crossref_primary_10_1016_j_xcrp_2024_102218
crossref_primary_10_1016_j_isci_2024_110435
crossref_primary_10_1016_j_ceb_2024_102394
crossref_primary_10_1016_j_neuropharm_2024_110083
crossref_primary_10_3390_biom10101458
crossref_primary_10_1016_j_jmb_2018_07_006
crossref_primary_10_1021_acs_biochem_2c00250
crossref_primary_10_1016_j_jmb_2021_167368
crossref_primary_10_1016_j_cocis_2021_101457
crossref_primary_10_1242_dev_200398
crossref_primary_10_1016_j_sbi_2017_01_006
crossref_primary_10_1038_s41598_020_57521_w
crossref_primary_10_1016_j_tcb_2020_02_002
crossref_primary_10_1021_acs_jctc_8b00573
crossref_primary_10_3390_ijms23147664
crossref_primary_10_1021_acs_chemrev_2c00586
crossref_primary_10_1088_1361_6633_aaa61e
crossref_primary_10_1002_1873_3468_14409
crossref_primary_10_1021_acs_iecr_3c03830
crossref_primary_10_1360_TB_2024_1158
crossref_primary_10_1016_j_tcb_2018_12_004
crossref_primary_10_1038_s41564_022_01314_6
crossref_primary_10_1038_s41419_023_06267_0
crossref_primary_10_1016_j_dnarep_2021_103179
crossref_primary_10_1039_C9RA09632A
crossref_primary_10_3390_ijms20215501
crossref_primary_10_1016_j_jconrel_2023_11_030
crossref_primary_10_1073_pnas_1821038116
crossref_primary_10_1080_19491034_2024_2319957
crossref_primary_10_1246_bcsj_20200397
crossref_primary_10_1002_advs_202202855
crossref_primary_10_1021_acs_jpcb_7b11723
crossref_primary_10_1073_pnas_2401622121
crossref_primary_10_1021_acsnano_8b00417
crossref_primary_10_3389_fgene_2019_01179
crossref_primary_10_1016_j_bbagrm_2019_06_009
crossref_primary_10_7554_eLife_62403
crossref_primary_10_1021_jacsau_4c00673
crossref_primary_10_3390_molecules24183265
crossref_primary_10_1016_j_bbamcr_2021_119205
crossref_primary_10_1371_journal_pbio_3002305
crossref_primary_10_1371_journal_pcbi_1005941
crossref_primary_10_1146_annurev_physchem_071819_113553
crossref_primary_10_1016_j_tibs_2022_09_008
crossref_primary_10_1021_acs_biochem_8b00056
crossref_primary_10_1016_j_jmb_2021_167269
crossref_primary_10_4252_wjsc_v13_i5_416
crossref_primary_10_1021_acs_biochem_8b00058
crossref_primary_10_1016_j_cell_2021_05_008
crossref_primary_10_1016_j_bbapap_2017_10_001
crossref_primary_10_1038_s41467_019_12740_2
crossref_primary_10_1002_ange_201703191
crossref_primary_10_3389_fonc_2022_922604
crossref_primary_10_3390_ijms22116016
crossref_primary_10_1016_j_jmb_2025_168987
crossref_primary_10_1021_acs_macromol_3c01221
crossref_primary_10_1016_j_jmb_2021_167373
crossref_primary_10_1038_s41586_021_03662_5
crossref_primary_10_1016_j_molcel_2024_07_022
crossref_primary_10_1126_sciadv_adg3913
crossref_primary_10_1126_sciadv_adp9333
crossref_primary_10_1007_s10753_024_02202_3
crossref_primary_10_1016_j_jbc_2022_102801
crossref_primary_10_1073_pnas_2216338120
crossref_primary_10_31857_S0320972524040087
crossref_primary_10_1242_jcs_214692
crossref_primary_10_1039_C8CC08337A
crossref_primary_10_1093_jmcb_mjab028
crossref_primary_10_1002_1873_3468_13211
crossref_primary_10_1021_acschemneuro_1c00098
crossref_primary_10_1073_pnas_2000223117
crossref_primary_10_1074_jbc_M117_802793
crossref_primary_10_1021_acs_jpcb_9b05206
crossref_primary_10_1073_pnas_2119509119
crossref_primary_10_1080_07391102_2019_1692073
crossref_primary_10_1128_mSphere_00314_19
crossref_primary_10_7554_eLife_48562
crossref_primary_10_1016_j_ijbiomac_2018_12_038
crossref_primary_10_1016_j_molcel_2020_01_025
crossref_primary_10_1038_s41467_022_28765_z
crossref_primary_10_1242_jcs_214304
crossref_primary_10_1016_j_sbi_2020_09_004
crossref_primary_10_1016_j_bpc_2022_106767
crossref_primary_10_1016_j_bpj_2017_04_021
crossref_primary_10_15252_embr_201947952
crossref_primary_10_1021_acs_biochem_1c00434
crossref_primary_10_1042_BST20170310
crossref_primary_10_1021_acs_biochem_8b00081
crossref_primary_10_1021_acs_jpclett_1c00697
crossref_primary_10_1021_acs_langmuir_2c01920
crossref_primary_10_1021_acs_macromol_1c02000
crossref_primary_10_1021_acs_biomac_4c00736
crossref_primary_10_1021_acs_biochem_7b00990
crossref_primary_10_1016_j_cossms_2020_100897
crossref_primary_10_1016_j_ymeth_2024_01_008
crossref_primary_10_1007_s10118_024_3221_6
crossref_primary_10_1038_s41421_020_0172_0
crossref_primary_10_1016_j_ijbiomac_2018_06_030
crossref_primary_10_1016_j_molliq_2020_113717
crossref_primary_10_1126_sciadv_adm9926
crossref_primary_10_1002_bkcs_12840
crossref_primary_10_1016_j_pbi_2020_08_006
crossref_primary_10_1016_j_str_2024_02_015
crossref_primary_10_3390_biom12101480
crossref_primary_10_1021_acs_biomac_3c01032
crossref_primary_10_1042_BST20200351
crossref_primary_10_1016_j_ceb_2017_03_003
crossref_primary_10_1101_gad_331520_119
crossref_primary_10_15252_msb_20178075
crossref_primary_10_1038_s41576_024_00780_4
crossref_primary_10_1021_acs_biomac_0c01506
crossref_primary_10_1242_jcs_185710
crossref_primary_10_1007_s11427_024_2661_3
crossref_primary_10_1038_s41467_024_48775_3
crossref_primary_10_1021_acs_biochem_7b01136
crossref_primary_10_1126_sciadv_adh5152
crossref_primary_10_1021_acs_jpcb_0c04575
crossref_primary_10_1016_j_jmb_2023_167988
crossref_primary_10_1038_s41467_020_18859_x
crossref_primary_10_1016_j_jmb_2018_05_012
crossref_primary_10_1038_s41467_020_15128_9
crossref_primary_10_1021_acs_jpcb_3c04052
crossref_primary_10_1021_acs_chemrev_2c00608
crossref_primary_10_1038_s41467_021_21089_4
crossref_primary_10_1002_pro_4093
crossref_primary_10_1016_j_tcb_2018_02_002
crossref_primary_10_1021_acs_jpclett_9b01731
crossref_primary_10_1021_acs_nanolett_9b02764
crossref_primary_10_1016_j_tcb_2018_02_004
crossref_primary_10_1021_acs_jpcb_3c03087
crossref_primary_10_3390_genes14091675
crossref_primary_10_3390_polym16202928
crossref_primary_10_1038_s41467_023_41274_x
crossref_primary_10_1016_j_chempr_2019_03_012
crossref_primary_10_1016_j_bbamcr_2020_118823
crossref_primary_10_1021_acs_biochem_8b00008
crossref_primary_10_1021_acs_biomac_9b01354
crossref_primary_10_1038_s41589_022_01175_4
crossref_primary_10_1021_acs_biochem_8b00001
crossref_primary_10_1021_acscentsci_9b00102
crossref_primary_10_1021_acs_biomac_3c00550
crossref_primary_10_1103_PhysRevX_14_031011
crossref_primary_10_1016_j_devcel_2020_09_014
crossref_primary_10_3389_fcell_2021_674203
crossref_primary_10_1002_anie_201703191
crossref_primary_10_1021_acs_jpclett_2c01920
crossref_primary_10_1038_s41467_022_35156_x
crossref_primary_10_1016_j_bpj_2018_09_022
crossref_primary_10_1093_molbev_msae181
crossref_primary_10_1002_advs_202303807
crossref_primary_10_1140_epje_s10189_023_00335_1
crossref_primary_10_1016_j_cell_2020_11_050
crossref_primary_10_1016_j_tcb_2022_11_009
crossref_primary_10_1111_jipb_13152
crossref_primary_10_1371_journal_pcbi_1010036
crossref_primary_10_1126_sciadv_abj9247
crossref_primary_10_1016_j_devcel_2020_09_003
crossref_primary_10_1016_j_jmb_2018_10_023
crossref_primary_10_1126_sciadv_abk2775
crossref_primary_10_1021_acs_chemrev_1c00774
crossref_primary_10_1038_s41467_017_01249_1
crossref_primary_10_1016_j_tibs_2020_04_011
crossref_primary_10_1038_s41467_022_35529_2
crossref_primary_10_1016_j_jbc_2024_107310
crossref_primary_10_1111_sji_12951
crossref_primary_10_1038_s41586_023_07004_5
crossref_primary_10_1016_j_molcel_2020_11_041
crossref_primary_10_1038_s41594_018_0112_y
crossref_primary_10_1039_C9SM00581A
crossref_primary_10_1261_rna_078738_121
crossref_primary_10_1140_epje_s10189_023_00324_4
crossref_primary_10_1126_science_aaf4382
crossref_primary_10_1016_j_molcel_2022_05_018
crossref_primary_10_1038_s41557_023_01423_7
crossref_primary_10_1111_nph_19691
crossref_primary_10_1016_j_cell_2024_02_029
crossref_primary_10_1038_s41467_024_47602_z
crossref_primary_10_1016_j_jmb_2018_06_031
crossref_primary_10_1016_j_jcis_2022_02_021
crossref_primary_10_1186_s43556_022_00075_2
crossref_primary_10_1093_protein_gzz014
crossref_primary_10_1039_D0SM00001A
crossref_primary_10_1073_pnas_2212516120
crossref_primary_10_1088_1367_2630_aab8d9
crossref_primary_10_1371_journal_pgen_1011462
crossref_primary_10_1021_acsomega_0c04647
crossref_primary_10_1007_s11538_020_00823_x
crossref_primary_10_1016_j_bpj_2021_10_012
crossref_primary_10_1063_1_5100890
crossref_primary_10_1063_5_0223001
crossref_primary_10_1038_s41557_020_0465_9
crossref_primary_10_3389_fbioe_2022_913057
crossref_primary_10_1021_acs_biochem_7b01215
crossref_primary_10_15252_embj_2021109952
crossref_primary_10_1002_adbi_202200006
crossref_primary_10_1039_C9SM00372J
crossref_primary_10_15252_embj_2020107568
crossref_primary_10_1038_s42004_020_0328_8
crossref_primary_10_1111_tra_12650
crossref_primary_10_1038_s41551_024_01254_y
crossref_primary_10_1002_pmic_201700193
crossref_primary_10_1016_j_neuron_2017_02_013
crossref_primary_10_1038_s41467_022_28821_8
crossref_primary_10_1371_journal_pbio_2002183
crossref_primary_10_1039_C8SM02285B
crossref_primary_10_1038_s41589_022_01046_y
crossref_primary_10_1021_acs_biomac_1c01301
crossref_primary_10_1073_pnas_2210492119
crossref_primary_10_3390_molecules24050868
crossref_primary_10_1038_s41467_021_23595_x
crossref_primary_10_1021_acs_biochem_7b01228
crossref_primary_10_15252_embj_201696394
crossref_primary_10_1016_j_jmb_2022_167713
crossref_primary_10_1021_jacs_4c09557
crossref_primary_10_1080_19491034_2023_2205758
crossref_primary_10_1016_j_jcis_2020_07_022
crossref_primary_10_1038_s44286_025_00193_y
crossref_primary_10_1016_j_cej_2025_160239
crossref_primary_10_1016_j_sbi_2017_12_007
crossref_primary_10_1021_acschemneuro_1c00377
crossref_primary_10_1016_j_biotechadv_2024_108452
crossref_primary_10_1016_j_plantsci_2024_112178
crossref_primary_10_1073_pnas_1900435116
crossref_primary_10_1039_D2SM01422J
crossref_primary_10_1016_j_sbi_2016_11_006
crossref_primary_10_1016_j_jmb_2018_11_027
crossref_primary_10_1002_pro_4270
crossref_primary_10_1126_science_aar3958
crossref_primary_10_1016_j_cocis_2019_01_007
crossref_primary_10_1016_j_celrep_2017_08_042
crossref_primary_10_1016_j_celrep_2021_108705
crossref_primary_10_1016_j_tcb_2024_01_009
crossref_primary_10_1039_D1CC05266G
crossref_primary_10_1088_1367_2630_aa9369
crossref_primary_10_1038_s41467_022_30158_1
crossref_primary_10_1103_PhysRevE_99_012411
crossref_primary_10_1371_journal_pcbi_1011565
crossref_primary_10_1021_acsapm_2c00580
crossref_primary_10_1038_s41467_023_41864_9
crossref_primary_10_3390_ncrna5040050
crossref_primary_10_1016_j_crstbi_2021_08_002
crossref_primary_10_1016_j_brainres_2018_04_036
crossref_primary_10_1073_pnas_2122476119
crossref_primary_10_3390_ijms222212271
crossref_primary_10_1016_j_bpj_2021_11_2886
crossref_primary_10_3390_ijms21176208
crossref_primary_10_1261_rna_079008_121
crossref_primary_10_1002_smll_201907671
crossref_primary_10_1073_pnas_1912723117
crossref_primary_10_1038_s42003_023_04963_3
crossref_primary_10_1039_D3SM00633F
crossref_primary_10_1103_PhysRevE_104_L042801
crossref_primary_10_1093_nargab_lqab048
crossref_primary_10_1039_C9SC03191J
crossref_primary_10_1007_s12551_023_01172_4
crossref_primary_10_1074_jbc_TM118_001192
crossref_primary_10_1039_D2SM01581A
crossref_primary_10_1146_annurev_biophys_121219_081629
crossref_primary_10_1016_j_molcel_2024_12_021
crossref_primary_10_1021_acs_jctc_1c00889
crossref_primary_10_7554_eLife_30294
crossref_primary_10_1021_acs_biomac_2c01148
crossref_primary_10_1038_nchem_2803
crossref_primary_10_1038_s41388_022_02195_z
crossref_primary_10_1126_sciadv_ads0427
crossref_primary_10_1016_j_celrep_2018_01_036
crossref_primary_10_1038_s41598_023_39102_9
crossref_primary_10_1002_1873_3468_14294
crossref_primary_10_1016_j_ceb_2021_01_002
crossref_primary_10_1021_acs_macromol_4c00429
crossref_primary_10_1002_mco2_223
crossref_primary_10_1016_j_bpj_2016_11_3200
crossref_primary_10_1128_JVI_01771_19
crossref_primary_10_1021_acschemneuro_9b00627
crossref_primary_10_1093_nar_gkae216
crossref_primary_10_1083_jcb_201910086
crossref_primary_10_1038_s44318_024_00090_9
crossref_primary_10_1038_s41467_020_16580_3
crossref_primary_10_1021_acs_jpcb_0c09975
crossref_primary_10_3389_fnagi_2023_1145420
crossref_primary_10_1016_j_ghir_2019_11_003
crossref_primary_10_1016_j_molcel_2019_08_016
crossref_primary_10_1371_journal_pgen_1009205
crossref_primary_10_1074_jbc_AC117_001037
crossref_primary_10_1039_D3CS01065A
crossref_primary_10_1073_pnas_2401834121
crossref_primary_10_1021_acs_biochem_8b00313
crossref_primary_10_3389_fpls_2023_1159181
crossref_primary_10_1016_j_ijbiomac_2023_127754
crossref_primary_10_1016_j_progpolymsci_2023_101752
crossref_primary_10_7554_eLife_81786
crossref_primary_10_1002_wnan_1442
crossref_primary_10_1038_s41570_019_0120_4
crossref_primary_10_1021_acs_jpcb_0c07349
crossref_primary_10_1073_pnas_1614787114
crossref_primary_10_1371_journal_pcbi_1009328
crossref_primary_10_1073_pnas_2122523119
crossref_primary_10_1039_D2SM00384H
crossref_primary_10_1016_j_cell_2018_12_035
crossref_primary_10_1021_acs_macromol_2c01205
crossref_primary_10_1021_acs_jpclett_2c00307
crossref_primary_10_1002_bies_202300203
crossref_primary_10_7555_JBR_36_20220072
crossref_primary_10_1038_s44318_024_00147_9
crossref_primary_10_7554_eLife_71982
crossref_primary_10_1016_j_cell_2024_09_040
crossref_primary_10_7554_eLife_31486
crossref_primary_10_7554_eLife_70535
crossref_primary_10_1042_ETLS20190164
crossref_primary_10_1016_j_bbamcr_2021_118949
crossref_primary_10_1002_wrna_1514
crossref_primary_10_1016_j_bpj_2022_05_038
crossref_primary_10_1021_acscentsci_9b00087
crossref_primary_10_1038_s41374_022_00791_x
crossref_primary_10_1016_j_cell_2017_02_027
crossref_primary_10_26508_lsa_202201536
crossref_primary_10_1073_pnas_1804177115
crossref_primary_10_1002_smll_202306817
crossref_primary_10_1242_jcs_244657
crossref_primary_10_1371_journal_pcbi_1007028
crossref_primary_10_2139_ssrn_3362257
crossref_primary_10_1073_pnas_2120456119
crossref_primary_10_1016_j_jmb_2021_166948
crossref_primary_10_1016_j_molliq_2016_09_090
crossref_primary_10_1155_2022_1487165
crossref_primary_10_1126_sciadv_adk7160
crossref_primary_10_1021_acs_biomac_3c00938
crossref_primary_10_1038_s41392_022_01076_x
crossref_primary_10_1021_acs_macromol_4c00595
crossref_primary_10_1083_jcb_201911129
crossref_primary_10_1016_j_bpj_2021_02_013
crossref_primary_10_1039_C8SM01047A
crossref_primary_10_1038_s41467_023_38118_z
crossref_primary_10_1371_journal_pcbi_1009748
crossref_primary_10_3390_molecules26082118
crossref_primary_10_1016_j_tig_2020_09_016
crossref_primary_10_14348_molcells_2021_0204
crossref_primary_10_1111_febs_15765
crossref_primary_10_1039_C7SM02146A
crossref_primary_10_1103_PhysRevE_100_052404
crossref_primary_10_1038_s41467_020_18224_y
crossref_primary_10_1063_1_5005821
crossref_primary_10_1016_j_bpj_2021_02_008
crossref_primary_10_1016_j_bpj_2022_04_034
crossref_primary_10_1017_qrd_2023_5
crossref_primary_10_1016_j_molcel_2019_09_016
crossref_primary_10_1016_j_abb_2020_108305
crossref_primary_10_3390_biom12081131
crossref_primary_10_1016_j_cocis_2020_101407
crossref_primary_10_3389_fmolb_2019_00021
crossref_primary_10_1042_BST20160172
crossref_primary_10_1016_j_jmb_2024_168800
crossref_primary_10_1007_s00018_018_2894_9
crossref_primary_10_1098_rstb_2017_0193
crossref_primary_10_1002_bmm2_12058
crossref_primary_10_7498_aps_69_20200438
crossref_primary_10_1021_acs_chemrev_2c00814
crossref_primary_10_3389_fncel_2021_664151
crossref_primary_10_3390_ijms222312758
crossref_primary_10_1038_s41556_022_00903_1
crossref_primary_10_1128_mbio_01378_23
crossref_primary_10_1016_j_bpj_2018_02_020
crossref_primary_10_1016_j_bbagrm_2020_194641
crossref_primary_10_1146_annurev_food_032818_121907
crossref_primary_10_1073_pnas_1912055117
crossref_primary_10_7554_eLife_64004
crossref_primary_10_1074_jbc_REV120_010899
crossref_primary_10_1021_acs_chemrev_3c00131
crossref_primary_10_1042_BCJ20230040
crossref_primary_10_1038_s42254_019_0077_8
crossref_primary_10_1146_annurev_arplant_081720_015238
crossref_primary_10_1016_j_tins_2023_01_001
crossref_primary_10_26508_lsa_202302118
crossref_primary_10_1021_acs_jpcb_1c01146
crossref_primary_10_1039_D1SM00543J
crossref_primary_10_1016_j_tibs_2023_01_004
crossref_primary_10_1038_nchem_2715
crossref_primary_10_1073_pnas_2321334121
crossref_primary_10_1002_advs_202402570
crossref_primary_10_1016_j_biopha_2021_111520
crossref_primary_10_1186_s12943_025_02239_4
crossref_primary_10_1371_journal_pcbi_1006256
crossref_primary_10_1021_acs_macromol_2c02346
crossref_primary_10_1021_acs_biochem_7b01173
crossref_primary_10_1038_s41467_023_43742_w
crossref_primary_10_1016_j_jmb_2025_168955
crossref_primary_10_1042_BST20200467
crossref_primary_10_1186_s12915_020_0751_4
crossref_primary_10_1038_s41564_020_0760_7
crossref_primary_10_1016_j_tibs_2018_03_007
crossref_primary_10_1016_j_ijbiomac_2022_08_132
crossref_primary_10_1021_acs_biochem_1c00465
crossref_primary_10_1016_j_jmb_2020_11_023
crossref_primary_10_1021_acs_macromol_1c02623
crossref_primary_10_3390_app11031288
crossref_primary_10_1016_j_bpj_2023_05_032
crossref_primary_10_1038_s12276_023_00978_2
crossref_primary_10_1186_s12929_024_00993_z
crossref_primary_10_1038_s41556_020_0550_8
crossref_primary_10_3390_chemistry4010011
crossref_primary_10_1038_s41421_021_00270_5
crossref_primary_10_1093_jxb_erac321
crossref_primary_10_1038_s42003_020_01517_9
crossref_primary_10_1126_science_aaz4427
crossref_primary_10_1016_j_jtbi_2017_04_006
crossref_primary_10_1080_19491034_2021_1889858
crossref_primary_10_1109_TCBB_2022_3149310
crossref_primary_10_1021_acs_biomac_9b00701
crossref_primary_10_1016_j_carbpol_2023_120836
crossref_primary_10_1038_s41467_024_50489_5
crossref_primary_10_1038_s41557_020_0511_7
crossref_primary_10_1038_s44321_024_00032_2
crossref_primary_10_1002_adfm_202011276
crossref_primary_10_1103_PhysRevLett_131_218201
crossref_primary_10_1016_j_jmb_2018_08_003
crossref_primary_10_3390_ijms24043729
crossref_primary_10_1016_j_jmb_2018_08_005
crossref_primary_10_1074_jbc_M117_800466
crossref_primary_10_1002_jsfa_9228
crossref_primary_10_1002_pro_70068
crossref_primary_10_2139_ssrn_3155795
crossref_primary_10_1016_j_tibs_2020_12_005
crossref_primary_10_1021_jacs_3c06965
crossref_primary_10_1002_adfm_201802063
crossref_primary_10_1038_s41467_022_30614_y
crossref_primary_10_1039_D0CP02764B
crossref_primary_10_3390_cells12162054
crossref_primary_10_1016_j_cocis_2020_101416
crossref_primary_10_1016_j_cocis_2020_101415
crossref_primary_10_1093_nar_gkad184
crossref_primary_10_1007_s00294_019_01044_z
crossref_primary_10_1063_1_5139661
crossref_primary_10_1038_s41467_019_10792_y
crossref_primary_10_1016_j_celrep_2018_07_040
crossref_primary_10_3389_fmolb_2021_781981
crossref_primary_10_1021_acs_macromol_3c00512
crossref_primary_10_1093_pnasnexus_pgae367
crossref_primary_10_1073_pnas_2417920122
crossref_primary_10_1039_C9ME00074G
crossref_primary_10_1038_s41467_022_28797_5
crossref_primary_10_1186_s12967_022_03266_1
crossref_primary_10_1021_acs_biochem_1c00376
crossref_primary_10_1038_nrm_2017_7
crossref_primary_10_3389_fpls_2024_1391043
crossref_primary_10_1074_jbc_RA119_011501
crossref_primary_10_1016_j_jpha_2023_11_012
crossref_primary_10_1016_j_molcel_2021_01_010
crossref_primary_10_1063_1_5140756
crossref_primary_10_1016_j_bpj_2018_05_023
crossref_primary_10_1038_s41467_018_06072_w
crossref_primary_10_1002_adbi_201800314
crossref_primary_10_1016_j_bbrc_2021_05_078
crossref_primary_10_3390_biom9030088
crossref_primary_10_1016_j_cis_2025_103420
crossref_primary_10_1016_j_supmat_2023_100049
crossref_primary_10_1021_acs_chemrev_7b00305
crossref_primary_10_1080_15548627_2022_2148432
crossref_primary_10_1038_s41580_023_00673_0
crossref_primary_10_1002_jcp_30980
crossref_primary_10_1016_j_ceb_2023_102215
crossref_primary_10_1038_s41598_020_74080_2
crossref_primary_10_1038_s41467_022_33697_9
crossref_primary_10_1016_j_devcel_2020_06_012
crossref_primary_10_1038_s41581_023_00767_0
crossref_primary_10_1073_pnas_1701877114
crossref_primary_10_1002_marc_202400426
crossref_primary_10_1101_gad_350353_122
crossref_primary_10_1021_acs_jpcb_0c11479
crossref_primary_10_3390_v16050676
crossref_primary_10_1016_j_devcel_2019_11_019
crossref_primary_10_1038_s41586_020_2574_4
crossref_primary_10_1073_pnas_1814385116
crossref_primary_10_1016_j_bpj_2020_07_005
crossref_primary_10_1002_jcp_30853
crossref_primary_10_1134_S0006297924040084
crossref_primary_10_1016_j_bpj_2024_04_031
crossref_primary_10_1042_EBC20220052
crossref_primary_10_1002_syst_202000022
crossref_primary_10_3390_molecules23081958
crossref_primary_10_1038_s42003_021_02247_2
crossref_primary_10_3390_ijms22031251
crossref_primary_10_1038_nature25762
crossref_primary_10_1038_s41578_025_00782_6
crossref_primary_10_1039_D3SC00993A
crossref_primary_10_1042_BCJ20190497
crossref_primary_10_1016_j_sbi_2018_10_003
crossref_primary_10_1016_j_cocis_2021_101419
crossref_primary_10_1016_j_cell_2018_06_006
crossref_primary_10_1021_acs_accounts_3c00689
crossref_primary_10_1080_23746149_2021_1936638
crossref_primary_10_1016_j_molp_2021_01_014
crossref_primary_10_1093_hmg_ddz162
crossref_primary_10_1021_jacs_9b10892
crossref_primary_10_1007_s12035_023_03789_8
crossref_primary_10_1016_j_bpj_2019_12_022
crossref_primary_10_7554_eLife_74655
crossref_primary_10_1111_febs_14493
crossref_primary_10_1007_s00018_017_2554_5
crossref_primary_10_1073_pnas_2300154120
crossref_primary_10_1021_acscentsci_0c01146
crossref_primary_10_1021_acs_jpcb_0c10489
crossref_primary_10_1038_s41467_019_09902_7
crossref_primary_10_1016_j_bbamcr_2021_118984
crossref_primary_10_1016_j_ijbiomac_2020_06_255
crossref_primary_10_1016_j_molcel_2023_10_023
crossref_primary_10_1016_j_bpj_2021_08_003
crossref_primary_10_1016_j_jbc_2021_100860
crossref_primary_10_7554_eLife_18413
crossref_primary_10_1080_15548627_2017_1384889
crossref_primary_10_1021_acs_jpcb_9b01024
crossref_primary_10_1021_acs_macromol_2c00569
crossref_primary_10_1038_s41467_020_15395_6
crossref_primary_10_1021_acs_jpcb_3c08149
crossref_primary_10_1016_j_colsurfb_2024_114385
crossref_primary_10_1038_s41467_020_19211_z
crossref_primary_10_1002_prot_26058
crossref_primary_10_1016_j_preme_2024_100012
crossref_primary_10_1021_acs_biomac_0c00934
crossref_primary_10_3389_fphys_2022_910759
crossref_primary_10_1073_pnas_2209975119
Cites_doi 10.1038/nrm3920
10.1038/nature04662
10.1093/nar/gku982
10.1073/pnas.1017150108
10.1073/pnas.1504822112
10.1002/jcc.21005
10.1016/j.cell.2015.08.010
10.1146/annurev-cellbio-100913-013325
10.1016/j.cell.2015.09.015
10.1093/nar/gks1118
10.1016/j.cell.2012.04.017
10.1093/hmg/dds116
10.7554/eLife.06807
10.1016/j.molcel.2015.08.018
10.1002/anie.201402885
10.1126/science.1172046
10.1016/j.molcel.2015.09.006
10.7554/eLife.04123
10.1073/pnas.0807883106
10.1016/j.molcel.2015.09.017
10.1016/j.bpj.2014.11.1260
10.1038/nature10879
10.7554/eLife.04591
10.1073/pnas.1304749110
10.1073/pnas.1509317112
10.1016/j.molcel.2015.01.013
10.1074/jbc.M308465200
10.1016/j.cell.2006.11.026
10.1073/pnas.1508778112
10.1038/nphys3532
10.1016/j.cell.2012.04.016
10.1016/j.cell.2015.07.047
10.1016/j.cis.2011.01.007
10.1016/j.cell.2015.10.040
10.1016/j.molcel.2009.01.026
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.molcel.2016.05.042
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 85
ExternalDocumentID PMC4973464
27392146
10_1016_j_molcel_2016_05_042
S1097276516302283
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: F32 DK091074
– fundername: NCI NIH HHS
  grantid: P30 CA142543
– fundername: NIGMS NIH HHS
  grantid: R01 GM095501
– fundername: NINDS NIH HHS
  grantid: R01 NS056114
– fundername: Howard Hughes Medical Institute
– fundername: NIGMS NIH HHS
  grantid: R01 GM056322
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c562t-f5956b4127a4d6417c0437c7c0279e563dddd8f18c61919223b00a39cb6307a93
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 18:31:17 EDT 2025
Thu Jul 10 18:31:20 EDT 2025
Thu Jul 10 18:42:15 EDT 2025
Mon Jul 21 06:04:02 EDT 2025
Tue Jul 01 03:40:47 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Fri Feb 23 02:30:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-f5956b4127a4d6417c0437c7c0279e563dddd8f18c61919223b00a39cb6307a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276516302283
PMID 27392146
PQID 1802744758
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4973464
proquest_miscellaneous_1825430048
proquest_miscellaneous_1802744758
pubmed_primary_27392146
crossref_citationtrail_10_1016_j_molcel_2016_05_042
crossref_primary_10_1016_j_molcel_2016_05_042
elsevier_sciencedirect_doi_10_1016_j_molcel_2016_05_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-07
PublicationDateYYYYMMDD 2016-07-07
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Burke, Janke, Rhine, Fawzi (bib7) 2015; 60
Banjade, Wu, Mittal, Peeples, Pappu, Rosen (bib2) 2015; 112
Berry, Weber, Vaidya, Haataja, Brangwynne (bib3) 2015; 112
Hyman, Weber, Jülicher (bib16) 2014; 30
Elbaum-Garfinkle, Kim, Szczepaniak, Chen, Eckmann, Myong, Brangwynne (bib12) 2015; 112
Brangwynne, Eckmann, Courson, Rybarska, Hoege, Gharakhani, Jülicher, Hyman (bib4) 2009; 324
Brangwynne, Tompa, Pappu (bib6) 2015; 11
Jones, Blasutig, Eremina, Ruston, Bladt, Li, Huang, Larose, Li, Takano (bib18) 2006; 440
Spector (bib30) 2006; 127
Das, Pappu (bib10) 2013; 110
Molliex, Temirov, Lee, Coughlin, Kanagaraj, Kim, Mittag, Taylor (bib26) 2015; 163
Nott, Petsalaki, Farber, Jervis, Fussner, Plochowietz, Craggs, Bazett-Jones, Pawson, Forman-Kay, Baldwin (bib27) 2015; 57
Brangwynne, Mitchison, Hyman (bib5) 2011; 108
Wang, Smith, Chen, Schmidt, Rasoloson, Paix, Lambrus, Calidas, Betzig, Seydoux (bib33) 2014; 3
McNaughton, Cronican, Thompson, Liu (bib23) 2009; 106
Zhang, Elbaum-Garfinkle, Langdon, Taylor, Occhipinti, Bridges, Brangwynne, Gladfelter (bib36) 2015; 60
Xiang, Kato, Wu, Lin, Ding, Zhang, Yu, McKnight (bib35) 2015; 163
Vitalis, Pappu (bib32) 2009; 30
Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei (bib19) 2012; 149
Wright, Dyson (bib34) 2015; 16
Holehouse, Ahad, Das, Pappu (bib15) 2015; 108
Fromm, Kamenz, Nöldeke, Neu, Zocher, Sprangers (bib13) 2014; 53
Han, Kato, Xie, Wu, Mirzaei, Pei, Chen, Xie, Allen, Xiao, McKnight (bib14) 2012; 149
Li, Banjade, Cheng, Kim, Chen, Guo, Llaguno, Hollingsworth, King, Banani (bib21) 2012; 483
Patel, Lee, Jawerth, Maharana, Jahnel, Hein, Stoynov, Mahamid, Saha, Franzmann (bib28) 2015; 162
Lin, Protter, Rosen, Parker (bib22) 2015; 60
Jiang, Wang, Huang, He, Cui, Zhu, Zheng (bib17) 2015; 163
Potenza, Di Domenico, Walsh, Tosatto (bib29) 2015; 43
Mi, Muruganujan, Thomas (bib24) 2013; 41
Veis (bib31) 2011; 167
Couthouis, Hart, Erion, King, Diaz, Nakaya, Ibrahim, Kim, Mojsilovic-Petrovic, Panossian (bib9) 2012; 21
Kroschwald, Maharana, Mateju, Malinovska, Nüske, Poser, Richter, Alberti (bib20) 2015; 4
Banjade, Rosen (bib1) 2014; 3
Dill, Bromberg (bib11) 2010
Miao, Bellingham, Stahl, Sitarz, Lane, Keeley (bib25) 2003; 278
Clemson, Hutchinson, Sara, Ensminger, Fox, Chess, Lawrence (bib8) 2009; 33
Elbaum-Garfinkle (10.1016/j.molcel.2016.05.042_bib12) 2015; 112
Banjade (10.1016/j.molcel.2016.05.042_bib2) 2015; 112
Clemson (10.1016/j.molcel.2016.05.042_bib8) 2009; 33
Miao (10.1016/j.molcel.2016.05.042_bib25) 2003; 278
Holehouse (10.1016/j.molcel.2016.05.042_bib15) 2015; 108
Kato (10.1016/j.molcel.2016.05.042_bib19) 2012; 149
Molliex (10.1016/j.molcel.2016.05.042_bib26) 2015; 163
Li (10.1016/j.molcel.2016.05.042_bib21) 2012; 483
Veis (10.1016/j.molcel.2016.05.042_bib31) 2011; 167
Potenza (10.1016/j.molcel.2016.05.042_bib29) 2015; 43
Couthouis (10.1016/j.molcel.2016.05.042_bib9) 2012; 21
Spector (10.1016/j.molcel.2016.05.042_bib30) 2006; 127
Das (10.1016/j.molcel.2016.05.042_bib10) 2013; 110
Mi (10.1016/j.molcel.2016.05.042_bib24) 2013; 41
Xiang (10.1016/j.molcel.2016.05.042_bib35) 2015; 163
Wright (10.1016/j.molcel.2016.05.042_bib34) 2015; 16
Brangwynne (10.1016/j.molcel.2016.05.042_bib4) 2009; 324
Brangwynne (10.1016/j.molcel.2016.05.042_bib5) 2011; 108
Banjade (10.1016/j.molcel.2016.05.042_bib1) 2014; 3
Dill (10.1016/j.molcel.2016.05.042_bib11) 2010
Kroschwald (10.1016/j.molcel.2016.05.042_bib20) 2015; 4
Nott (10.1016/j.molcel.2016.05.042_bib27) 2015; 57
Berry (10.1016/j.molcel.2016.05.042_bib3) 2015; 112
Hyman (10.1016/j.molcel.2016.05.042_bib16) 2014; 30
Burke (10.1016/j.molcel.2016.05.042_bib7) 2015; 60
Wang (10.1016/j.molcel.2016.05.042_bib33) 2014; 3
Jiang (10.1016/j.molcel.2016.05.042_bib17) 2015; 163
Fromm (10.1016/j.molcel.2016.05.042_bib13) 2014; 53
Brangwynne (10.1016/j.molcel.2016.05.042_bib6) 2015; 11
Lin (10.1016/j.molcel.2016.05.042_bib22) 2015; 60
McNaughton (10.1016/j.molcel.2016.05.042_bib23) 2009; 106
Patel (10.1016/j.molcel.2016.05.042_bib28) 2015; 162
Zhang (10.1016/j.molcel.2016.05.042_bib36) 2015; 60
Jones (10.1016/j.molcel.2016.05.042_bib18) 2006; 440
Vitalis (10.1016/j.molcel.2016.05.042_bib32) 2009; 30
Han (10.1016/j.molcel.2016.05.042_bib14) 2012; 149
References_xml – volume: 163
  start-page: 108
  year: 2015
  end-page: 122
  ident: bib17
  article-title: Phase transition of spindle-associated protein regulate spindle apparatus assembly
  publication-title: Cell
– volume: 41
  start-page: D377
  year: 2013
  end-page: D386
  ident: bib24
  article-title: PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees
  publication-title: Nucleic Acids Res.
– volume: 163
  start-page: 829
  year: 2015
  end-page: 839
  ident: bib35
  article-title: The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei
  publication-title: Cell
– volume: 112
  start-page: E6426
  year: 2015
  end-page: E6435
  ident: bib2
  article-title: Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  start-page: 39
  year: 2014
  end-page: 58
  ident: bib16
  article-title: Liquid-liquid phase separation in biology
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 60
  start-page: 220
  year: 2015
  end-page: 230
  ident: bib36
  article-title: RNA Controls PolyQ Protein Phase Transitions
  publication-title: Mol. Cell
– volume: 16
  start-page: 18
  year: 2015
  end-page: 29
  ident: bib34
  article-title: Intrinsically disordered proteins in cellular signalling and regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 162
  start-page: 1066
  year: 2015
  end-page: 1077
  ident: bib28
  article-title: A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation
  publication-title: Cell
– volume: 53
  start-page: 7354
  year: 2014
  end-page: 7359
  ident: bib13
  article-title: In vitro reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 112
  start-page: 7189
  year: 2015
  end-page: 7194
  ident: bib12
  article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 33
  start-page: 717
  year: 2009
  end-page: 726
  ident: bib8
  article-title: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles
  publication-title: Mol. Cell
– volume: 106
  start-page: 6111
  year: 2009
  end-page: 6116
  ident: bib23
  article-title: Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 278
  start-page: 48553
  year: 2003
  end-page: 48562
  ident: bib25
  article-title: Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 2899
  year: 2012
  end-page: 2911
  ident: bib9
  article-title: Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis
  publication-title: Hum. Mol. Genet.
– volume: 324
  start-page: 1729
  year: 2009
  end-page: 1732
  ident: bib4
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
– volume: 108
  start-page: 228a
  year: 2015
  ident: bib15
  article-title: CIDER: Classification of Intrinsically Disordered Ensemble Regions
  publication-title: Biophys. J.
– volume: 440
  start-page: 818
  year: 2006
  end-page: 823
  ident: bib18
  article-title: Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes
  publication-title: Nature
– volume: 11
  start-page: 899
  year: 2015
  end-page: 904
  ident: bib6
  article-title: Polymer physics of intracellular phase transitions
  publication-title: Nat. Phys.
– volume: 149
  start-page: 768
  year: 2012
  end-page: 779
  ident: bib14
  article-title: Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies
  publication-title: Cell
– volume: 30
  start-page: 673
  year: 2009
  end-page: 699
  ident: bib32
  article-title: ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions
  publication-title: J. Comput. Chem.
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  ident: bib27
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol. Cell
– volume: 483
  start-page: 336
  year: 2012
  end-page: 340
  ident: bib21
  article-title: Phase transitions in the assembly of multivalent signalling proteins
  publication-title: Nature
– volume: 43
  start-page: D315
  year: 2015
  end-page: D320
  ident: bib29
  article-title: MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins
  publication-title: Nucleic Acids Res.
– volume: 127
  start-page: 1071
  year: 2006
  ident: bib30
  article-title: SnapShot: Cellular bodies
  publication-title: Cell
– volume: 60
  start-page: 231
  year: 2015
  end-page: 241
  ident: bib7
  article-title: Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II
  publication-title: Mol. Cell
– volume: 149
  start-page: 753
  year: 2012
  end-page: 767
  ident: bib19
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
– volume: 3
  start-page: e04591
  year: 2014
  ident: bib33
  article-title: Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans
  publication-title: eLife
– volume: 167
  start-page: 2
  year: 2011
  end-page: 11
  ident: bib31
  article-title: A review of the early development of the thermodynamics of the complex coacervation phase separation
  publication-title: Adv. Colloid Interface Sci.
– volume: 108
  start-page: 4334
  year: 2011
  end-page: 4339
  ident: bib5
  article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 163
  start-page: 123
  year: 2015
  end-page: 133
  ident: bib26
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
– year: 2010
  ident: bib11
  article-title: Molecular driving forces: statistical thermodynamics in biology, chemistry, physics, and nanoscience
– volume: 60
  start-page: 208
  year: 2015
  end-page: 219
  ident: bib22
  article-title: Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins
  publication-title: Mol. Cell
– volume: 4
  start-page: e06807
  year: 2015
  ident: bib20
  article-title: Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules
  publication-title: eLife
– volume: 3
  start-page: 3
  year: 2014
  ident: bib1
  article-title: Phase transitions of multivalent proteins can promote clustering of membrane receptors
  publication-title: eLife
– volume: 112
  start-page: E5237
  year: 2015
  end-page: E5245
  ident: bib3
  article-title: RNA transcription modulates phase transition-driven nuclear body assembly
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 110
  start-page: 13392
  year: 2013
  end-page: 13397
  ident: bib10
  article-title: Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 18
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib34
  article-title: Intrinsically disordered proteins in cellular signalling and regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3920
– volume: 440
  start-page: 818
  year: 2006
  ident: 10.1016/j.molcel.2016.05.042_bib18
  article-title: Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes
  publication-title: Nature
  doi: 10.1038/nature04662
– volume: 43
  start-page: D315
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib29
  article-title: MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku982
– volume: 108
  start-page: 4334
  year: 2011
  ident: 10.1016/j.molcel.2016.05.042_bib5
  article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1017150108
– volume: 112
  start-page: 7189
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib12
  article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1504822112
– volume: 30
  start-page: 673
  year: 2009
  ident: 10.1016/j.molcel.2016.05.042_bib32
  article-title: ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21005
– volume: 163
  start-page: 108
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib17
  article-title: Phase transition of spindle-associated protein regulate spindle apparatus assembly
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.010
– year: 2010
  ident: 10.1016/j.molcel.2016.05.042_bib11
– volume: 30
  start-page: 39
  year: 2014
  ident: 10.1016/j.molcel.2016.05.042_bib16
  article-title: Liquid-liquid phase separation in biology
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100913-013325
– volume: 163
  start-page: 123
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib26
  article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.015
– volume: 41
  start-page: D377
  year: 2013
  ident: 10.1016/j.molcel.2016.05.042_bib24
  article-title: PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1118
– volume: 149
  start-page: 753
  year: 2012
  ident: 10.1016/j.molcel.2016.05.042_bib19
  article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.017
– volume: 21
  start-page: 2899
  year: 2012
  ident: 10.1016/j.molcel.2016.05.042_bib9
  article-title: Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds116
– volume: 4
  start-page: e06807
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib20
  article-title: Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules
  publication-title: eLife
  doi: 10.7554/eLife.06807
– volume: 60
  start-page: 208
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib22
  article-title: Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.08.018
– volume: 53
  start-page: 7354
  year: 2014
  ident: 10.1016/j.molcel.2016.05.042_bib13
  article-title: In vitro reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201402885
– volume: 324
  start-page: 1729
  year: 2009
  ident: 10.1016/j.molcel.2016.05.042_bib4
  article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation
  publication-title: Science
  doi: 10.1126/science.1172046
– volume: 60
  start-page: 231
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib7
  article-title: Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.09.006
– volume: 3
  start-page: 3
  year: 2014
  ident: 10.1016/j.molcel.2016.05.042_bib1
  article-title: Phase transitions of multivalent proteins can promote clustering of membrane receptors
  publication-title: eLife
  doi: 10.7554/eLife.04123
– volume: 106
  start-page: 6111
  year: 2009
  ident: 10.1016/j.molcel.2016.05.042_bib23
  article-title: Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807883106
– volume: 60
  start-page: 220
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib36
  article-title: RNA Controls PolyQ Protein Phase Transitions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.09.017
– volume: 108
  start-page: 228a
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib15
  article-title: CIDER: Classification of Intrinsically Disordered Ensemble Regions
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.11.1260
– volume: 483
  start-page: 336
  year: 2012
  ident: 10.1016/j.molcel.2016.05.042_bib21
  article-title: Phase transitions in the assembly of multivalent signalling proteins
  publication-title: Nature
  doi: 10.1038/nature10879
– volume: 3
  start-page: e04591
  year: 2014
  ident: 10.1016/j.molcel.2016.05.042_bib33
  article-title: Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans
  publication-title: eLife
  doi: 10.7554/eLife.04591
– volume: 110
  start-page: 13392
  year: 2013
  ident: 10.1016/j.molcel.2016.05.042_bib10
  article-title: Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1304749110
– volume: 112
  start-page: E5237
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib3
  article-title: RNA transcription modulates phase transition-driven nuclear body assembly
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1509317112
– volume: 57
  start-page: 936
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib27
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 278
  start-page: 48553
  year: 2003
  ident: 10.1016/j.molcel.2016.05.042_bib25
  article-title: Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308465200
– volume: 127
  start-page: 1071
  year: 2006
  ident: 10.1016/j.molcel.2016.05.042_bib30
  article-title: SnapShot: Cellular bodies
  publication-title: Cell
  doi: 10.1016/j.cell.2006.11.026
– volume: 112
  start-page: E6426
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib2
  article-title: Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1508778112
– volume: 11
  start-page: 899
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib6
  article-title: Polymer physics of intracellular phase transitions
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3532
– volume: 149
  start-page: 768
  year: 2012
  ident: 10.1016/j.molcel.2016.05.042_bib14
  article-title: Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.016
– volume: 162
  start-page: 1066
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib28
  article-title: A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.047
– volume: 167
  start-page: 2
  year: 2011
  ident: 10.1016/j.molcel.2016.05.042_bib31
  article-title: A review of the early development of the thermodynamics of the complex coacervation phase separation
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2011.01.007
– volume: 163
  start-page: 829
  year: 2015
  ident: 10.1016/j.molcel.2016.05.042_bib35
  article-title: The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.040
– volume: 33
  start-page: 717
  year: 2009
  ident: 10.1016/j.molcel.2016.05.042_bib8
  article-title: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.01.026
SSID ssj0014589
Score 2.6573055
Snippet Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 72
SubjectTerms amino acid composition
Amino Acid Sequence
Animals
Cell Nucleus - chemistry
Cell Nucleus - metabolism
Computer Simulation
droplets
HeLa Cells
Humans
Hydrophobic and Hydrophilic Interactions
hydrophobicity
in vitro studies
Intrinsically Disordered Proteins - chemistry
Intrinsically Disordered Proteins - genetics
Intrinsically Disordered Proteins - metabolism
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Models, Molecular
mutagenesis
Mutation
organelles
Organelles - chemistry
Organelles - metabolism
Protein Domains
proteins
Proteomics - methods
separation
Static Electricity
Structure-Activity Relationship
Surface Properties
Time Factors
Transfection
Title Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein
URI https://dx.doi.org/10.1016/j.molcel.2016.05.042
https://www.ncbi.nlm.nih.gov/pubmed/27392146
https://www.proquest.com/docview/1802744758
https://www.proquest.com/docview/1825430048
https://pubmed.ncbi.nlm.nih.gov/PMC4973464
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQCGkvCMY2Ohgy0l6tLvHFTh7LlxiICa0g-mY5jrsWdQmCItH_njsnqShoQyIvVpJz5NzZd2f7_DvGvvvcxTlIJ2wBIKCwibBDlYlIap868ACe1jvOf6mTKzgdJIMldtCehaGwykb31zo9aOvmSbfhZvd2PO72ae801ipBjyKAuKAelpCGQ3yD_flOAiQhDR4RC6Juj8-FGK-_1cR52oCIVMDvhPhf5um1-_kyivKZWTpeZ2uNP8l7dZM32JIvP7LVOsPkbJP96Teh0vzwWdwLr4b8J32Olu0pDpVfjNCa8b6vkcCrkuczTqpi4h-xRLpm6ZZqWt5CdvqCXxDOw7j8xK6Ojy4PTkSTW0E49HimYpjgxCiHKNYWCgWRdgRy5LCIdeYTJQu80mGUOpxhoRcYSxyfVmYuR25rm8nPbLmsSr_FeFaAK2yKvgSKNiFE91SlzuLs1ysJme4w2bLUuAZ4nPJfTEwbYXZjakEYEoT5kRgURIeJea3bGnjjDXrdSsssdCCDtuGNmnutcA2OLeK8LX31cG8IHU8TImL6PxqCEyBF2GFf6g4xby-6hhklTse2LXSVOQFhey--KcejgPGNfJOg4Ou7_2qbfaC7EFmsd9jy9O7Bf0P_aZrvspXe2e_rs90wUJ4Aa1Ub6g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQwhe0Pgu48NI8GiVJBc7edgDMKaWfWhSN6lvxnHcragkE-vE-nfxD3KXONUKgklI60ukxk6cu_PdOf7ldwBvfOHiAhMnbYkosbSptBOVyyjRPnPoET2_79g_UINj_DxOx2vws_sWhmGVwfe3Pr3x1uGffpBm_2w67Y947zTWKqWMoiFxCcjKXb_4Qeu2863hNin5bRzvfDr6OJChtIB0FPDncpLSuqDAKNYWS4WRdszx4-gQ69ynKinpl02izNECg5KgOCHztEnuCrqZtszARH7_FmUfmr3BcPxhuXWBaVN3j0cneXjd93oNqOxbPXOedzwi1RCGYvy3ePhnvvs7bPNKHNzZgHshgRXvWxndhzVfPYDbbUnLxUM4GQVstti-ArQR9UQM-XK8T8DAV3F4SuFTjHxLPV5XolgI9k0zf0lHahfeFXNPKzqOUF-KQyaWmFaP4PhGJP4Y1qu68k9B5CW60maUvJAtpUwhn6nMWVpue5VgrnuQdCI1LjCdc8GNmekgbV9NqwjDijDvUkOK6IFc9jprmT6uaa87bZkVizUUjK7p-bpTrqHJzJK3la8vzg3T8WmmYMz-1Yb5C9jz9uBJaxDL8VIumnOldhrbiqksGzCZ-OqZanrakIqT3BJU-Oy_n-oV3Bkc7e-ZveHB7ibc5TMNrFk_h_X59wv_gpK3efGymSwCvtz07PwFm51VYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+Determinants+of+Intracellular+Phase+Separation+by+Complex+Coacervation+of+a+Disordered+Protein&rft.jtitle=Molecular+cell&rft.au=Pak%2C+Chi+W.&rft.au=Kosno%2C+Martyna&rft.au=Holehouse%2C+Alex+S.&rft.au=Padrick%2C+Shae+B.&rft.date=2016-07-07&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=63&rft.issue=1&rft.spage=72&rft.epage=85&rft_id=info:doi/10.1016%2Fj.molcel.2016.05.042&rft_id=info%3Apmid%2F27392146&rft.externalDocID=PMC4973464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon