Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein
Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a di...
Saved in:
Published in | Molecular cell Vol. 63; no. 1; pp. 72 - 85 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation.
[Display omitted]
•Disordered Nephrin intracellular domain (NICD) forms phase-separated nuclear bodies•NICD phase separates via complex coacervation•Aromatic/hydrophobic residues and high (−) charge density promote phase separation•Disordered regions with NICD-like sequence features are common in human proteome
Pak et al. describe cellular liquid-liquid phase separation of a negatively charged intrinsically disordered protein, the Nephrin intracellular domain. Phase separation is driven by co-assembly with positively charged partners, a process termed complex coacervation. Disordered regions with NICD-like sequence features are common in the human proteome, suggesting complex coacervation may be widespread. |
---|---|
AbstractList | Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation. Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation.Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation. Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation. Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation. [Display omitted] •Disordered Nephrin intracellular domain (NICD) forms phase-separated nuclear bodies•NICD phase separates via complex coacervation•Aromatic/hydrophobic residues and high (−) charge density promote phase separation•Disordered regions with NICD-like sequence features are common in human proteome Pak et al. describe cellular liquid-liquid phase separation of a negatively charged intrinsically disordered protein, the Nephrin intracellular domain. Phase separation is driven by co-assembly with positively charged partners, a process termed complex coacervation. Disordered regions with NICD-like sequence features are common in the human proteome, suggesting complex coacervation may be widespread. Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the negatively charged NICD co-assembles with positively charged partners to form protein-rich dense liquid droplets. Mutagenesis reveals that the driving force for phase separation depends on the overall amino acid composition and not the precise sequence of NICD. Instead, phase separation is promoted by one or more regions of high negative charge density and aromatic/hydrophobic residues that are distributed across the protein. Many disordered proteins share similar sequence characteristics with NICD, suggesting that complex coacervation may be a widely used mechanism to promote intracellular phase separation. |
Author | Pak, Chi W. Liu, David R. Holehouse, Alex S. Mittal, Anuradha Yunus, Ali A. Pappu, Rohit V. Padrick, Shae B. Kosno, Martyna Rosen, Michael K. Ali, Rustam |
AuthorAffiliation | 1 Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA 3 Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA 4 Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, 02138, USA 2 Computational and Molecular Biophysics Graduate Program, Washington University in St. Louis, St. Louis, Missouri, 63130, USA |
AuthorAffiliation_xml | – name: 2 Computational and Molecular Biophysics Graduate Program, Washington University in St. Louis, St. Louis, Missouri, 63130, USA – name: 1 Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA – name: 4 Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, 02138, USA – name: 3 Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA |
Author_xml | – sequence: 1 givenname: Chi W. surname: Pak fullname: Pak, Chi W. organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 2 givenname: Martyna surname: Kosno fullname: Kosno, Martyna organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 3 givenname: Alex S. surname: Holehouse fullname: Holehouse, Alex S. organization: Computational and Molecular Biophysics Graduate Program, Washington University in St. Louis, St. Louis, MO 63130, USA – sequence: 4 givenname: Shae B. surname: Padrick fullname: Padrick, Shae B. organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 5 givenname: Anuradha surname: Mittal fullname: Mittal, Anuradha organization: Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA – sequence: 6 givenname: Rustam surname: Ali fullname: Ali, Rustam organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 7 givenname: Ali A. surname: Yunus fullname: Yunus, Ali A. organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 8 givenname: David R. surname: Liu fullname: Liu, David R. organization: Department of Chemistry and Chemical Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA – sequence: 9 givenname: Rohit V. surname: Pappu fullname: Pappu, Rohit V. email: pappu@wustl.edu organization: Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA – sequence: 10 givenname: Michael K. surname: Rosen fullname: Rosen, Michael K. email: michael.rosen@utsouthwestern.edu organization: Department of Biophysics and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27392146$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUktv1DAYtFARfcA_QChHLhtsx4-YAxLaQqlUqZUKZ8txvrReJfZie1f03-N0t6jlAM3li-2Z0XjGx-jABw8IvSW4JpiID6t6CqOFsaZlVWNeY0ZfoCOClVwwItjB_p9KwQ_RcUorjAnjrXqFDqlsFCVMHKGba_i5AW-hOoUMcXLe-JyqMFTnPkdT9MfNaGJ1dWsSVNewNtFkF3zV3VXLMK1H-FVmwcXtbr8wTXXqUog9ROirqxgyOP8avRzMmODNfp6gH1-_fF9-W1xcnp0vP18sLBc0LwauuOgYodKwXjAiLWaNtGVQqYCLpi9fO5DWCqKIorTpMDaNsp1osDSqOUGfdrrrTTdBb2G-xajX0U0m3ulgnH564t2tvglbzZRsmGBF4P1eIIaSTMp6cmmOwXgIm6RJSzlrMGbtM6DFNWOSz9B3j2398fNQRAF83AFsDClFGLR1-T7R4tKNmmA9t65Xete6nlvXmOvSeiGzv8gP-v-h7bOCUsjWQdTJuvkt9C6CzboP7t8CvwGIMslv |
CitedBy_id | crossref_primary_10_1038_s41467_018_07624_w crossref_primary_10_1073_pnas_2304036120 crossref_primary_10_1146_annurev_conmatphys_042020_113457 crossref_primary_10_3389_fonc_2025_1509810 crossref_primary_10_1021_acs_langmuir_4c04114 crossref_primary_10_3390_polym13132074 crossref_primary_10_1042_BST20170570 crossref_primary_10_1016_j_devcel_2021_09_021 crossref_primary_10_1074_jbc_RA118_006620 crossref_primary_10_1016_j_ccell_2020_12_003 crossref_primary_10_1039_C8CC09842E crossref_primary_10_1039_D4SM01477D crossref_primary_10_1021_acs_jpcb_8b10051 crossref_primary_10_1021_acs_macromol_0c00758 crossref_primary_10_1002_chem_202301274 crossref_primary_10_1016_j_tibs_2020_06_007 crossref_primary_10_1021_acs_jpcb_1c06696 crossref_primary_10_1016_j_bpj_2016_12_031 crossref_primary_10_1016_j_bpj_2019_01_001 crossref_primary_10_1038_s41467_021_27433_y crossref_primary_10_1126_science_aaw8653 crossref_primary_10_1021_jacs_4c08946 crossref_primary_10_1038_s41467_020_19391_8 crossref_primary_10_1038_s41418_022_00955_8 crossref_primary_10_1038_s41467_021_21035_4 crossref_primary_10_1039_C9SM02462J crossref_primary_10_15252_embj_2020106389 crossref_primary_10_1016_j_cis_2022_102777 crossref_primary_10_1016_j_mser_2023_100762 crossref_primary_10_1021_acs_biochem_1c00501 crossref_primary_10_1039_D4SM00470A crossref_primary_10_1016_j_bpj_2024_05_026 crossref_primary_10_2139_ssrn_3929009 crossref_primary_10_1016_j_abb_2023_109857 crossref_primary_10_1073_pnas_2024685118 crossref_primary_10_1038_s41580_020_0264_6 crossref_primary_10_3390_ijms21165908 crossref_primary_10_1021_acs_biomac_0c01765 crossref_primary_10_1016_j_xcrp_2024_102218 crossref_primary_10_1016_j_isci_2024_110435 crossref_primary_10_1016_j_ceb_2024_102394 crossref_primary_10_1016_j_neuropharm_2024_110083 crossref_primary_10_3390_biom10101458 crossref_primary_10_1016_j_jmb_2018_07_006 crossref_primary_10_1021_acs_biochem_2c00250 crossref_primary_10_1016_j_jmb_2021_167368 crossref_primary_10_1016_j_cocis_2021_101457 crossref_primary_10_1242_dev_200398 crossref_primary_10_1016_j_sbi_2017_01_006 crossref_primary_10_1038_s41598_020_57521_w crossref_primary_10_1016_j_tcb_2020_02_002 crossref_primary_10_1021_acs_jctc_8b00573 crossref_primary_10_3390_ijms23147664 crossref_primary_10_1021_acs_chemrev_2c00586 crossref_primary_10_1088_1361_6633_aaa61e crossref_primary_10_1002_1873_3468_14409 crossref_primary_10_1021_acs_iecr_3c03830 crossref_primary_10_1360_TB_2024_1158 crossref_primary_10_1016_j_tcb_2018_12_004 crossref_primary_10_1038_s41564_022_01314_6 crossref_primary_10_1038_s41419_023_06267_0 crossref_primary_10_1016_j_dnarep_2021_103179 crossref_primary_10_1039_C9RA09632A crossref_primary_10_3390_ijms20215501 crossref_primary_10_1016_j_jconrel_2023_11_030 crossref_primary_10_1073_pnas_1821038116 crossref_primary_10_1080_19491034_2024_2319957 crossref_primary_10_1246_bcsj_20200397 crossref_primary_10_1002_advs_202202855 crossref_primary_10_1021_acs_jpcb_7b11723 crossref_primary_10_1073_pnas_2401622121 crossref_primary_10_1021_acsnano_8b00417 crossref_primary_10_3389_fgene_2019_01179 crossref_primary_10_1016_j_bbagrm_2019_06_009 crossref_primary_10_7554_eLife_62403 crossref_primary_10_1021_jacsau_4c00673 crossref_primary_10_3390_molecules24183265 crossref_primary_10_1016_j_bbamcr_2021_119205 crossref_primary_10_1371_journal_pbio_3002305 crossref_primary_10_1371_journal_pcbi_1005941 crossref_primary_10_1146_annurev_physchem_071819_113553 crossref_primary_10_1016_j_tibs_2022_09_008 crossref_primary_10_1021_acs_biochem_8b00056 crossref_primary_10_1016_j_jmb_2021_167269 crossref_primary_10_4252_wjsc_v13_i5_416 crossref_primary_10_1021_acs_biochem_8b00058 crossref_primary_10_1016_j_cell_2021_05_008 crossref_primary_10_1016_j_bbapap_2017_10_001 crossref_primary_10_1038_s41467_019_12740_2 crossref_primary_10_1002_ange_201703191 crossref_primary_10_3389_fonc_2022_922604 crossref_primary_10_3390_ijms22116016 crossref_primary_10_1016_j_jmb_2025_168987 crossref_primary_10_1021_acs_macromol_3c01221 crossref_primary_10_1016_j_jmb_2021_167373 crossref_primary_10_1038_s41586_021_03662_5 crossref_primary_10_1016_j_molcel_2024_07_022 crossref_primary_10_1126_sciadv_adg3913 crossref_primary_10_1126_sciadv_adp9333 crossref_primary_10_1007_s10753_024_02202_3 crossref_primary_10_1016_j_jbc_2022_102801 crossref_primary_10_1073_pnas_2216338120 crossref_primary_10_31857_S0320972524040087 crossref_primary_10_1242_jcs_214692 crossref_primary_10_1039_C8CC08337A crossref_primary_10_1093_jmcb_mjab028 crossref_primary_10_1002_1873_3468_13211 crossref_primary_10_1021_acschemneuro_1c00098 crossref_primary_10_1073_pnas_2000223117 crossref_primary_10_1074_jbc_M117_802793 crossref_primary_10_1021_acs_jpcb_9b05206 crossref_primary_10_1073_pnas_2119509119 crossref_primary_10_1080_07391102_2019_1692073 crossref_primary_10_1128_mSphere_00314_19 crossref_primary_10_7554_eLife_48562 crossref_primary_10_1016_j_ijbiomac_2018_12_038 crossref_primary_10_1016_j_molcel_2020_01_025 crossref_primary_10_1038_s41467_022_28765_z crossref_primary_10_1242_jcs_214304 crossref_primary_10_1016_j_sbi_2020_09_004 crossref_primary_10_1016_j_bpc_2022_106767 crossref_primary_10_1016_j_bpj_2017_04_021 crossref_primary_10_15252_embr_201947952 crossref_primary_10_1021_acs_biochem_1c00434 crossref_primary_10_1042_BST20170310 crossref_primary_10_1021_acs_biochem_8b00081 crossref_primary_10_1021_acs_jpclett_1c00697 crossref_primary_10_1021_acs_langmuir_2c01920 crossref_primary_10_1021_acs_macromol_1c02000 crossref_primary_10_1021_acs_biomac_4c00736 crossref_primary_10_1021_acs_biochem_7b00990 crossref_primary_10_1016_j_cossms_2020_100897 crossref_primary_10_1016_j_ymeth_2024_01_008 crossref_primary_10_1007_s10118_024_3221_6 crossref_primary_10_1038_s41421_020_0172_0 crossref_primary_10_1016_j_ijbiomac_2018_06_030 crossref_primary_10_1016_j_molliq_2020_113717 crossref_primary_10_1126_sciadv_adm9926 crossref_primary_10_1002_bkcs_12840 crossref_primary_10_1016_j_pbi_2020_08_006 crossref_primary_10_1016_j_str_2024_02_015 crossref_primary_10_3390_biom12101480 crossref_primary_10_1021_acs_biomac_3c01032 crossref_primary_10_1042_BST20200351 crossref_primary_10_1016_j_ceb_2017_03_003 crossref_primary_10_1101_gad_331520_119 crossref_primary_10_15252_msb_20178075 crossref_primary_10_1038_s41576_024_00780_4 crossref_primary_10_1021_acs_biomac_0c01506 crossref_primary_10_1242_jcs_185710 crossref_primary_10_1007_s11427_024_2661_3 crossref_primary_10_1038_s41467_024_48775_3 crossref_primary_10_1021_acs_biochem_7b01136 crossref_primary_10_1126_sciadv_adh5152 crossref_primary_10_1021_acs_jpcb_0c04575 crossref_primary_10_1016_j_jmb_2023_167988 crossref_primary_10_1038_s41467_020_18859_x crossref_primary_10_1016_j_jmb_2018_05_012 crossref_primary_10_1038_s41467_020_15128_9 crossref_primary_10_1021_acs_jpcb_3c04052 crossref_primary_10_1021_acs_chemrev_2c00608 crossref_primary_10_1038_s41467_021_21089_4 crossref_primary_10_1002_pro_4093 crossref_primary_10_1016_j_tcb_2018_02_002 crossref_primary_10_1021_acs_jpclett_9b01731 crossref_primary_10_1021_acs_nanolett_9b02764 crossref_primary_10_1016_j_tcb_2018_02_004 crossref_primary_10_1021_acs_jpcb_3c03087 crossref_primary_10_3390_genes14091675 crossref_primary_10_3390_polym16202928 crossref_primary_10_1038_s41467_023_41274_x crossref_primary_10_1016_j_chempr_2019_03_012 crossref_primary_10_1016_j_bbamcr_2020_118823 crossref_primary_10_1021_acs_biochem_8b00008 crossref_primary_10_1021_acs_biomac_9b01354 crossref_primary_10_1038_s41589_022_01175_4 crossref_primary_10_1021_acs_biochem_8b00001 crossref_primary_10_1021_acscentsci_9b00102 crossref_primary_10_1021_acs_biomac_3c00550 crossref_primary_10_1103_PhysRevX_14_031011 crossref_primary_10_1016_j_devcel_2020_09_014 crossref_primary_10_3389_fcell_2021_674203 crossref_primary_10_1002_anie_201703191 crossref_primary_10_1021_acs_jpclett_2c01920 crossref_primary_10_1038_s41467_022_35156_x crossref_primary_10_1016_j_bpj_2018_09_022 crossref_primary_10_1093_molbev_msae181 crossref_primary_10_1002_advs_202303807 crossref_primary_10_1140_epje_s10189_023_00335_1 crossref_primary_10_1016_j_cell_2020_11_050 crossref_primary_10_1016_j_tcb_2022_11_009 crossref_primary_10_1111_jipb_13152 crossref_primary_10_1371_journal_pcbi_1010036 crossref_primary_10_1126_sciadv_abj9247 crossref_primary_10_1016_j_devcel_2020_09_003 crossref_primary_10_1016_j_jmb_2018_10_023 crossref_primary_10_1126_sciadv_abk2775 crossref_primary_10_1021_acs_chemrev_1c00774 crossref_primary_10_1038_s41467_017_01249_1 crossref_primary_10_1016_j_tibs_2020_04_011 crossref_primary_10_1038_s41467_022_35529_2 crossref_primary_10_1016_j_jbc_2024_107310 crossref_primary_10_1111_sji_12951 crossref_primary_10_1038_s41586_023_07004_5 crossref_primary_10_1016_j_molcel_2020_11_041 crossref_primary_10_1038_s41594_018_0112_y crossref_primary_10_1039_C9SM00581A crossref_primary_10_1261_rna_078738_121 crossref_primary_10_1140_epje_s10189_023_00324_4 crossref_primary_10_1126_science_aaf4382 crossref_primary_10_1016_j_molcel_2022_05_018 crossref_primary_10_1038_s41557_023_01423_7 crossref_primary_10_1111_nph_19691 crossref_primary_10_1016_j_cell_2024_02_029 crossref_primary_10_1038_s41467_024_47602_z crossref_primary_10_1016_j_jmb_2018_06_031 crossref_primary_10_1016_j_jcis_2022_02_021 crossref_primary_10_1186_s43556_022_00075_2 crossref_primary_10_1093_protein_gzz014 crossref_primary_10_1039_D0SM00001A crossref_primary_10_1073_pnas_2212516120 crossref_primary_10_1088_1367_2630_aab8d9 crossref_primary_10_1371_journal_pgen_1011462 crossref_primary_10_1021_acsomega_0c04647 crossref_primary_10_1007_s11538_020_00823_x crossref_primary_10_1016_j_bpj_2021_10_012 crossref_primary_10_1063_1_5100890 crossref_primary_10_1063_5_0223001 crossref_primary_10_1038_s41557_020_0465_9 crossref_primary_10_3389_fbioe_2022_913057 crossref_primary_10_1021_acs_biochem_7b01215 crossref_primary_10_15252_embj_2021109952 crossref_primary_10_1002_adbi_202200006 crossref_primary_10_1039_C9SM00372J crossref_primary_10_15252_embj_2020107568 crossref_primary_10_1038_s42004_020_0328_8 crossref_primary_10_1111_tra_12650 crossref_primary_10_1038_s41551_024_01254_y crossref_primary_10_1002_pmic_201700193 crossref_primary_10_1016_j_neuron_2017_02_013 crossref_primary_10_1038_s41467_022_28821_8 crossref_primary_10_1371_journal_pbio_2002183 crossref_primary_10_1039_C8SM02285B crossref_primary_10_1038_s41589_022_01046_y crossref_primary_10_1021_acs_biomac_1c01301 crossref_primary_10_1073_pnas_2210492119 crossref_primary_10_3390_molecules24050868 crossref_primary_10_1038_s41467_021_23595_x crossref_primary_10_1021_acs_biochem_7b01228 crossref_primary_10_15252_embj_201696394 crossref_primary_10_1016_j_jmb_2022_167713 crossref_primary_10_1021_jacs_4c09557 crossref_primary_10_1080_19491034_2023_2205758 crossref_primary_10_1016_j_jcis_2020_07_022 crossref_primary_10_1038_s44286_025_00193_y crossref_primary_10_1016_j_cej_2025_160239 crossref_primary_10_1016_j_sbi_2017_12_007 crossref_primary_10_1021_acschemneuro_1c00377 crossref_primary_10_1016_j_biotechadv_2024_108452 crossref_primary_10_1016_j_plantsci_2024_112178 crossref_primary_10_1073_pnas_1900435116 crossref_primary_10_1039_D2SM01422J crossref_primary_10_1016_j_sbi_2016_11_006 crossref_primary_10_1016_j_jmb_2018_11_027 crossref_primary_10_1002_pro_4270 crossref_primary_10_1126_science_aar3958 crossref_primary_10_1016_j_cocis_2019_01_007 crossref_primary_10_1016_j_celrep_2017_08_042 crossref_primary_10_1016_j_celrep_2021_108705 crossref_primary_10_1016_j_tcb_2024_01_009 crossref_primary_10_1039_D1CC05266G crossref_primary_10_1088_1367_2630_aa9369 crossref_primary_10_1038_s41467_022_30158_1 crossref_primary_10_1103_PhysRevE_99_012411 crossref_primary_10_1371_journal_pcbi_1011565 crossref_primary_10_1021_acsapm_2c00580 crossref_primary_10_1038_s41467_023_41864_9 crossref_primary_10_3390_ncrna5040050 crossref_primary_10_1016_j_crstbi_2021_08_002 crossref_primary_10_1016_j_brainres_2018_04_036 crossref_primary_10_1073_pnas_2122476119 crossref_primary_10_3390_ijms222212271 crossref_primary_10_1016_j_bpj_2021_11_2886 crossref_primary_10_3390_ijms21176208 crossref_primary_10_1261_rna_079008_121 crossref_primary_10_1002_smll_201907671 crossref_primary_10_1073_pnas_1912723117 crossref_primary_10_1038_s42003_023_04963_3 crossref_primary_10_1039_D3SM00633F crossref_primary_10_1103_PhysRevE_104_L042801 crossref_primary_10_1093_nargab_lqab048 crossref_primary_10_1039_C9SC03191J crossref_primary_10_1007_s12551_023_01172_4 crossref_primary_10_1074_jbc_TM118_001192 crossref_primary_10_1039_D2SM01581A crossref_primary_10_1146_annurev_biophys_121219_081629 crossref_primary_10_1016_j_molcel_2024_12_021 crossref_primary_10_1021_acs_jctc_1c00889 crossref_primary_10_7554_eLife_30294 crossref_primary_10_1021_acs_biomac_2c01148 crossref_primary_10_1038_nchem_2803 crossref_primary_10_1038_s41388_022_02195_z crossref_primary_10_1126_sciadv_ads0427 crossref_primary_10_1016_j_celrep_2018_01_036 crossref_primary_10_1038_s41598_023_39102_9 crossref_primary_10_1002_1873_3468_14294 crossref_primary_10_1016_j_ceb_2021_01_002 crossref_primary_10_1021_acs_macromol_4c00429 crossref_primary_10_1002_mco2_223 crossref_primary_10_1016_j_bpj_2016_11_3200 crossref_primary_10_1128_JVI_01771_19 crossref_primary_10_1021_acschemneuro_9b00627 crossref_primary_10_1093_nar_gkae216 crossref_primary_10_1083_jcb_201910086 crossref_primary_10_1038_s44318_024_00090_9 crossref_primary_10_1038_s41467_020_16580_3 crossref_primary_10_1021_acs_jpcb_0c09975 crossref_primary_10_3389_fnagi_2023_1145420 crossref_primary_10_1016_j_ghir_2019_11_003 crossref_primary_10_1016_j_molcel_2019_08_016 crossref_primary_10_1371_journal_pgen_1009205 crossref_primary_10_1074_jbc_AC117_001037 crossref_primary_10_1039_D3CS01065A crossref_primary_10_1073_pnas_2401834121 crossref_primary_10_1021_acs_biochem_8b00313 crossref_primary_10_3389_fpls_2023_1159181 crossref_primary_10_1016_j_ijbiomac_2023_127754 crossref_primary_10_1016_j_progpolymsci_2023_101752 crossref_primary_10_7554_eLife_81786 crossref_primary_10_1002_wnan_1442 crossref_primary_10_1038_s41570_019_0120_4 crossref_primary_10_1021_acs_jpcb_0c07349 crossref_primary_10_1073_pnas_1614787114 crossref_primary_10_1371_journal_pcbi_1009328 crossref_primary_10_1073_pnas_2122523119 crossref_primary_10_1039_D2SM00384H crossref_primary_10_1016_j_cell_2018_12_035 crossref_primary_10_1021_acs_macromol_2c01205 crossref_primary_10_1021_acs_jpclett_2c00307 crossref_primary_10_1002_bies_202300203 crossref_primary_10_7555_JBR_36_20220072 crossref_primary_10_1038_s44318_024_00147_9 crossref_primary_10_7554_eLife_71982 crossref_primary_10_1016_j_cell_2024_09_040 crossref_primary_10_7554_eLife_31486 crossref_primary_10_7554_eLife_70535 crossref_primary_10_1042_ETLS20190164 crossref_primary_10_1016_j_bbamcr_2021_118949 crossref_primary_10_1002_wrna_1514 crossref_primary_10_1016_j_bpj_2022_05_038 crossref_primary_10_1021_acscentsci_9b00087 crossref_primary_10_1038_s41374_022_00791_x crossref_primary_10_1016_j_cell_2017_02_027 crossref_primary_10_26508_lsa_202201536 crossref_primary_10_1073_pnas_1804177115 crossref_primary_10_1002_smll_202306817 crossref_primary_10_1242_jcs_244657 crossref_primary_10_1371_journal_pcbi_1007028 crossref_primary_10_2139_ssrn_3362257 crossref_primary_10_1073_pnas_2120456119 crossref_primary_10_1016_j_jmb_2021_166948 crossref_primary_10_1016_j_molliq_2016_09_090 crossref_primary_10_1155_2022_1487165 crossref_primary_10_1126_sciadv_adk7160 crossref_primary_10_1021_acs_biomac_3c00938 crossref_primary_10_1038_s41392_022_01076_x crossref_primary_10_1021_acs_macromol_4c00595 crossref_primary_10_1083_jcb_201911129 crossref_primary_10_1016_j_bpj_2021_02_013 crossref_primary_10_1039_C8SM01047A crossref_primary_10_1038_s41467_023_38118_z crossref_primary_10_1371_journal_pcbi_1009748 crossref_primary_10_3390_molecules26082118 crossref_primary_10_1016_j_tig_2020_09_016 crossref_primary_10_14348_molcells_2021_0204 crossref_primary_10_1111_febs_15765 crossref_primary_10_1039_C7SM02146A crossref_primary_10_1103_PhysRevE_100_052404 crossref_primary_10_1038_s41467_020_18224_y crossref_primary_10_1063_1_5005821 crossref_primary_10_1016_j_bpj_2021_02_008 crossref_primary_10_1016_j_bpj_2022_04_034 crossref_primary_10_1017_qrd_2023_5 crossref_primary_10_1016_j_molcel_2019_09_016 crossref_primary_10_1016_j_abb_2020_108305 crossref_primary_10_3390_biom12081131 crossref_primary_10_1016_j_cocis_2020_101407 crossref_primary_10_3389_fmolb_2019_00021 crossref_primary_10_1042_BST20160172 crossref_primary_10_1016_j_jmb_2024_168800 crossref_primary_10_1007_s00018_018_2894_9 crossref_primary_10_1098_rstb_2017_0193 crossref_primary_10_1002_bmm2_12058 crossref_primary_10_7498_aps_69_20200438 crossref_primary_10_1021_acs_chemrev_2c00814 crossref_primary_10_3389_fncel_2021_664151 crossref_primary_10_3390_ijms222312758 crossref_primary_10_1038_s41556_022_00903_1 crossref_primary_10_1128_mbio_01378_23 crossref_primary_10_1016_j_bpj_2018_02_020 crossref_primary_10_1016_j_bbagrm_2020_194641 crossref_primary_10_1146_annurev_food_032818_121907 crossref_primary_10_1073_pnas_1912055117 crossref_primary_10_7554_eLife_64004 crossref_primary_10_1074_jbc_REV120_010899 crossref_primary_10_1021_acs_chemrev_3c00131 crossref_primary_10_1042_BCJ20230040 crossref_primary_10_1038_s42254_019_0077_8 crossref_primary_10_1146_annurev_arplant_081720_015238 crossref_primary_10_1016_j_tins_2023_01_001 crossref_primary_10_26508_lsa_202302118 crossref_primary_10_1021_acs_jpcb_1c01146 crossref_primary_10_1039_D1SM00543J crossref_primary_10_1016_j_tibs_2023_01_004 crossref_primary_10_1038_nchem_2715 crossref_primary_10_1073_pnas_2321334121 crossref_primary_10_1002_advs_202402570 crossref_primary_10_1016_j_biopha_2021_111520 crossref_primary_10_1186_s12943_025_02239_4 crossref_primary_10_1371_journal_pcbi_1006256 crossref_primary_10_1021_acs_macromol_2c02346 crossref_primary_10_1021_acs_biochem_7b01173 crossref_primary_10_1038_s41467_023_43742_w crossref_primary_10_1016_j_jmb_2025_168955 crossref_primary_10_1042_BST20200467 crossref_primary_10_1186_s12915_020_0751_4 crossref_primary_10_1038_s41564_020_0760_7 crossref_primary_10_1016_j_tibs_2018_03_007 crossref_primary_10_1016_j_ijbiomac_2022_08_132 crossref_primary_10_1021_acs_biochem_1c00465 crossref_primary_10_1016_j_jmb_2020_11_023 crossref_primary_10_1021_acs_macromol_1c02623 crossref_primary_10_3390_app11031288 crossref_primary_10_1016_j_bpj_2023_05_032 crossref_primary_10_1038_s12276_023_00978_2 crossref_primary_10_1186_s12929_024_00993_z crossref_primary_10_1038_s41556_020_0550_8 crossref_primary_10_3390_chemistry4010011 crossref_primary_10_1038_s41421_021_00270_5 crossref_primary_10_1093_jxb_erac321 crossref_primary_10_1038_s42003_020_01517_9 crossref_primary_10_1126_science_aaz4427 crossref_primary_10_1016_j_jtbi_2017_04_006 crossref_primary_10_1080_19491034_2021_1889858 crossref_primary_10_1109_TCBB_2022_3149310 crossref_primary_10_1021_acs_biomac_9b00701 crossref_primary_10_1016_j_carbpol_2023_120836 crossref_primary_10_1038_s41467_024_50489_5 crossref_primary_10_1038_s41557_020_0511_7 crossref_primary_10_1038_s44321_024_00032_2 crossref_primary_10_1002_adfm_202011276 crossref_primary_10_1103_PhysRevLett_131_218201 crossref_primary_10_1016_j_jmb_2018_08_003 crossref_primary_10_3390_ijms24043729 crossref_primary_10_1016_j_jmb_2018_08_005 crossref_primary_10_1074_jbc_M117_800466 crossref_primary_10_1002_jsfa_9228 crossref_primary_10_1002_pro_70068 crossref_primary_10_2139_ssrn_3155795 crossref_primary_10_1016_j_tibs_2020_12_005 crossref_primary_10_1021_jacs_3c06965 crossref_primary_10_1002_adfm_201802063 crossref_primary_10_1038_s41467_022_30614_y crossref_primary_10_1039_D0CP02764B crossref_primary_10_3390_cells12162054 crossref_primary_10_1016_j_cocis_2020_101416 crossref_primary_10_1016_j_cocis_2020_101415 crossref_primary_10_1093_nar_gkad184 crossref_primary_10_1007_s00294_019_01044_z crossref_primary_10_1063_1_5139661 crossref_primary_10_1038_s41467_019_10792_y crossref_primary_10_1016_j_celrep_2018_07_040 crossref_primary_10_3389_fmolb_2021_781981 crossref_primary_10_1021_acs_macromol_3c00512 crossref_primary_10_1093_pnasnexus_pgae367 crossref_primary_10_1073_pnas_2417920122 crossref_primary_10_1039_C9ME00074G crossref_primary_10_1038_s41467_022_28797_5 crossref_primary_10_1186_s12967_022_03266_1 crossref_primary_10_1021_acs_biochem_1c00376 crossref_primary_10_1038_nrm_2017_7 crossref_primary_10_3389_fpls_2024_1391043 crossref_primary_10_1074_jbc_RA119_011501 crossref_primary_10_1016_j_jpha_2023_11_012 crossref_primary_10_1016_j_molcel_2021_01_010 crossref_primary_10_1063_1_5140756 crossref_primary_10_1016_j_bpj_2018_05_023 crossref_primary_10_1038_s41467_018_06072_w crossref_primary_10_1002_adbi_201800314 crossref_primary_10_1016_j_bbrc_2021_05_078 crossref_primary_10_3390_biom9030088 crossref_primary_10_1016_j_cis_2025_103420 crossref_primary_10_1016_j_supmat_2023_100049 crossref_primary_10_1021_acs_chemrev_7b00305 crossref_primary_10_1080_15548627_2022_2148432 crossref_primary_10_1038_s41580_023_00673_0 crossref_primary_10_1002_jcp_30980 crossref_primary_10_1016_j_ceb_2023_102215 crossref_primary_10_1038_s41598_020_74080_2 crossref_primary_10_1038_s41467_022_33697_9 crossref_primary_10_1016_j_devcel_2020_06_012 crossref_primary_10_1038_s41581_023_00767_0 crossref_primary_10_1073_pnas_1701877114 crossref_primary_10_1002_marc_202400426 crossref_primary_10_1101_gad_350353_122 crossref_primary_10_1021_acs_jpcb_0c11479 crossref_primary_10_3390_v16050676 crossref_primary_10_1016_j_devcel_2019_11_019 crossref_primary_10_1038_s41586_020_2574_4 crossref_primary_10_1073_pnas_1814385116 crossref_primary_10_1016_j_bpj_2020_07_005 crossref_primary_10_1002_jcp_30853 crossref_primary_10_1134_S0006297924040084 crossref_primary_10_1016_j_bpj_2024_04_031 crossref_primary_10_1042_EBC20220052 crossref_primary_10_1002_syst_202000022 crossref_primary_10_3390_molecules23081958 crossref_primary_10_1038_s42003_021_02247_2 crossref_primary_10_3390_ijms22031251 crossref_primary_10_1038_nature25762 crossref_primary_10_1038_s41578_025_00782_6 crossref_primary_10_1039_D3SC00993A crossref_primary_10_1042_BCJ20190497 crossref_primary_10_1016_j_sbi_2018_10_003 crossref_primary_10_1016_j_cocis_2021_101419 crossref_primary_10_1016_j_cell_2018_06_006 crossref_primary_10_1021_acs_accounts_3c00689 crossref_primary_10_1080_23746149_2021_1936638 crossref_primary_10_1016_j_molp_2021_01_014 crossref_primary_10_1093_hmg_ddz162 crossref_primary_10_1021_jacs_9b10892 crossref_primary_10_1007_s12035_023_03789_8 crossref_primary_10_1016_j_bpj_2019_12_022 crossref_primary_10_7554_eLife_74655 crossref_primary_10_1111_febs_14493 crossref_primary_10_1007_s00018_017_2554_5 crossref_primary_10_1073_pnas_2300154120 crossref_primary_10_1021_acscentsci_0c01146 crossref_primary_10_1021_acs_jpcb_0c10489 crossref_primary_10_1038_s41467_019_09902_7 crossref_primary_10_1016_j_bbamcr_2021_118984 crossref_primary_10_1016_j_ijbiomac_2020_06_255 crossref_primary_10_1016_j_molcel_2023_10_023 crossref_primary_10_1016_j_bpj_2021_08_003 crossref_primary_10_1016_j_jbc_2021_100860 crossref_primary_10_7554_eLife_18413 crossref_primary_10_1080_15548627_2017_1384889 crossref_primary_10_1021_acs_jpcb_9b01024 crossref_primary_10_1021_acs_macromol_2c00569 crossref_primary_10_1038_s41467_020_15395_6 crossref_primary_10_1021_acs_jpcb_3c08149 crossref_primary_10_1016_j_colsurfb_2024_114385 crossref_primary_10_1038_s41467_020_19211_z crossref_primary_10_1002_prot_26058 crossref_primary_10_1016_j_preme_2024_100012 crossref_primary_10_1021_acs_biomac_0c00934 crossref_primary_10_3389_fphys_2022_910759 crossref_primary_10_1073_pnas_2209975119 |
Cites_doi | 10.1038/nrm3920 10.1038/nature04662 10.1093/nar/gku982 10.1073/pnas.1017150108 10.1073/pnas.1504822112 10.1002/jcc.21005 10.1016/j.cell.2015.08.010 10.1146/annurev-cellbio-100913-013325 10.1016/j.cell.2015.09.015 10.1093/nar/gks1118 10.1016/j.cell.2012.04.017 10.1093/hmg/dds116 10.7554/eLife.06807 10.1016/j.molcel.2015.08.018 10.1002/anie.201402885 10.1126/science.1172046 10.1016/j.molcel.2015.09.006 10.7554/eLife.04123 10.1073/pnas.0807883106 10.1016/j.molcel.2015.09.017 10.1016/j.bpj.2014.11.1260 10.1038/nature10879 10.7554/eLife.04591 10.1073/pnas.1304749110 10.1073/pnas.1509317112 10.1016/j.molcel.2015.01.013 10.1074/jbc.M308465200 10.1016/j.cell.2006.11.026 10.1073/pnas.1508778112 10.1038/nphys3532 10.1016/j.cell.2012.04.016 10.1016/j.cell.2015.07.047 10.1016/j.cis.2011.01.007 10.1016/j.cell.2015.10.040 10.1016/j.molcel.2009.01.026 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2016.05.042 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 85 |
ExternalDocumentID | PMC4973464 27392146 10_1016_j_molcel_2016_05_042 S1097276516302283 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: F32 DK091074 – fundername: NCI NIH HHS grantid: P30 CA142543 – fundername: NIGMS NIH HHS grantid: R01 GM095501 – fundername: NINDS NIH HHS grantid: R01 NS056114 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R01 GM056322 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c562t-f5956b4127a4d6417c0437c7c0279e563dddd8f18c61919223b00a39cb6307a93 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 18:31:17 EDT 2025 Thu Jul 10 18:31:20 EDT 2025 Thu Jul 10 18:42:15 EDT 2025 Mon Jul 21 06:04:02 EDT 2025 Tue Jul 01 03:40:47 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Fri Feb 23 02:30:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-f5956b4127a4d6417c0437c7c0279e563dddd8f18c61919223b00a39cb6307a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276516302283 |
PMID | 27392146 |
PQID | 1802744758 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4973464 proquest_miscellaneous_1825430048 proquest_miscellaneous_1802744758 pubmed_primary_27392146 crossref_citationtrail_10_1016_j_molcel_2016_05_042 crossref_primary_10_1016_j_molcel_2016_05_042 elsevier_sciencedirect_doi_10_1016_j_molcel_2016_05_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-07 |
PublicationDateYYYYMMDD | 2016-07-07 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Burke, Janke, Rhine, Fawzi (bib7) 2015; 60 Banjade, Wu, Mittal, Peeples, Pappu, Rosen (bib2) 2015; 112 Berry, Weber, Vaidya, Haataja, Brangwynne (bib3) 2015; 112 Hyman, Weber, Jülicher (bib16) 2014; 30 Elbaum-Garfinkle, Kim, Szczepaniak, Chen, Eckmann, Myong, Brangwynne (bib12) 2015; 112 Brangwynne, Eckmann, Courson, Rybarska, Hoege, Gharakhani, Jülicher, Hyman (bib4) 2009; 324 Brangwynne, Tompa, Pappu (bib6) 2015; 11 Jones, Blasutig, Eremina, Ruston, Bladt, Li, Huang, Larose, Li, Takano (bib18) 2006; 440 Spector (bib30) 2006; 127 Das, Pappu (bib10) 2013; 110 Molliex, Temirov, Lee, Coughlin, Kanagaraj, Kim, Mittag, Taylor (bib26) 2015; 163 Nott, Petsalaki, Farber, Jervis, Fussner, Plochowietz, Craggs, Bazett-Jones, Pawson, Forman-Kay, Baldwin (bib27) 2015; 57 Brangwynne, Mitchison, Hyman (bib5) 2011; 108 Wang, Smith, Chen, Schmidt, Rasoloson, Paix, Lambrus, Calidas, Betzig, Seydoux (bib33) 2014; 3 McNaughton, Cronican, Thompson, Liu (bib23) 2009; 106 Zhang, Elbaum-Garfinkle, Langdon, Taylor, Occhipinti, Bridges, Brangwynne, Gladfelter (bib36) 2015; 60 Xiang, Kato, Wu, Lin, Ding, Zhang, Yu, McKnight (bib35) 2015; 163 Vitalis, Pappu (bib32) 2009; 30 Kato, Han, Xie, Shi, Du, Wu, Mirzaei, Goldsmith, Longgood, Pei (bib19) 2012; 149 Wright, Dyson (bib34) 2015; 16 Holehouse, Ahad, Das, Pappu (bib15) 2015; 108 Fromm, Kamenz, Nöldeke, Neu, Zocher, Sprangers (bib13) 2014; 53 Han, Kato, Xie, Wu, Mirzaei, Pei, Chen, Xie, Allen, Xiao, McKnight (bib14) 2012; 149 Li, Banjade, Cheng, Kim, Chen, Guo, Llaguno, Hollingsworth, King, Banani (bib21) 2012; 483 Patel, Lee, Jawerth, Maharana, Jahnel, Hein, Stoynov, Mahamid, Saha, Franzmann (bib28) 2015; 162 Lin, Protter, Rosen, Parker (bib22) 2015; 60 Jiang, Wang, Huang, He, Cui, Zhu, Zheng (bib17) 2015; 163 Potenza, Di Domenico, Walsh, Tosatto (bib29) 2015; 43 Mi, Muruganujan, Thomas (bib24) 2013; 41 Veis (bib31) 2011; 167 Couthouis, Hart, Erion, King, Diaz, Nakaya, Ibrahim, Kim, Mojsilovic-Petrovic, Panossian (bib9) 2012; 21 Kroschwald, Maharana, Mateju, Malinovska, Nüske, Poser, Richter, Alberti (bib20) 2015; 4 Banjade, Rosen (bib1) 2014; 3 Dill, Bromberg (bib11) 2010 Miao, Bellingham, Stahl, Sitarz, Lane, Keeley (bib25) 2003; 278 Clemson, Hutchinson, Sara, Ensminger, Fox, Chess, Lawrence (bib8) 2009; 33 Elbaum-Garfinkle (10.1016/j.molcel.2016.05.042_bib12) 2015; 112 Banjade (10.1016/j.molcel.2016.05.042_bib2) 2015; 112 Clemson (10.1016/j.molcel.2016.05.042_bib8) 2009; 33 Miao (10.1016/j.molcel.2016.05.042_bib25) 2003; 278 Holehouse (10.1016/j.molcel.2016.05.042_bib15) 2015; 108 Kato (10.1016/j.molcel.2016.05.042_bib19) 2012; 149 Molliex (10.1016/j.molcel.2016.05.042_bib26) 2015; 163 Li (10.1016/j.molcel.2016.05.042_bib21) 2012; 483 Veis (10.1016/j.molcel.2016.05.042_bib31) 2011; 167 Potenza (10.1016/j.molcel.2016.05.042_bib29) 2015; 43 Couthouis (10.1016/j.molcel.2016.05.042_bib9) 2012; 21 Spector (10.1016/j.molcel.2016.05.042_bib30) 2006; 127 Das (10.1016/j.molcel.2016.05.042_bib10) 2013; 110 Mi (10.1016/j.molcel.2016.05.042_bib24) 2013; 41 Xiang (10.1016/j.molcel.2016.05.042_bib35) 2015; 163 Wright (10.1016/j.molcel.2016.05.042_bib34) 2015; 16 Brangwynne (10.1016/j.molcel.2016.05.042_bib4) 2009; 324 Brangwynne (10.1016/j.molcel.2016.05.042_bib5) 2011; 108 Banjade (10.1016/j.molcel.2016.05.042_bib1) 2014; 3 Dill (10.1016/j.molcel.2016.05.042_bib11) 2010 Kroschwald (10.1016/j.molcel.2016.05.042_bib20) 2015; 4 Nott (10.1016/j.molcel.2016.05.042_bib27) 2015; 57 Berry (10.1016/j.molcel.2016.05.042_bib3) 2015; 112 Hyman (10.1016/j.molcel.2016.05.042_bib16) 2014; 30 Burke (10.1016/j.molcel.2016.05.042_bib7) 2015; 60 Wang (10.1016/j.molcel.2016.05.042_bib33) 2014; 3 Jiang (10.1016/j.molcel.2016.05.042_bib17) 2015; 163 Fromm (10.1016/j.molcel.2016.05.042_bib13) 2014; 53 Brangwynne (10.1016/j.molcel.2016.05.042_bib6) 2015; 11 Lin (10.1016/j.molcel.2016.05.042_bib22) 2015; 60 McNaughton (10.1016/j.molcel.2016.05.042_bib23) 2009; 106 Patel (10.1016/j.molcel.2016.05.042_bib28) 2015; 162 Zhang (10.1016/j.molcel.2016.05.042_bib36) 2015; 60 Jones (10.1016/j.molcel.2016.05.042_bib18) 2006; 440 Vitalis (10.1016/j.molcel.2016.05.042_bib32) 2009; 30 Han (10.1016/j.molcel.2016.05.042_bib14) 2012; 149 |
References_xml | – volume: 163 start-page: 108 year: 2015 end-page: 122 ident: bib17 article-title: Phase transition of spindle-associated protein regulate spindle apparatus assembly publication-title: Cell – volume: 41 start-page: D377 year: 2013 end-page: D386 ident: bib24 article-title: PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees publication-title: Nucleic Acids Res. – volume: 163 start-page: 829 year: 2015 end-page: 839 ident: bib35 article-title: The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei publication-title: Cell – volume: 112 start-page: E6426 year: 2015 end-page: E6435 ident: bib2 article-title: Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 start-page: 39 year: 2014 end-page: 58 ident: bib16 article-title: Liquid-liquid phase separation in biology publication-title: Annu. Rev. Cell Dev. Biol. – volume: 60 start-page: 220 year: 2015 end-page: 230 ident: bib36 article-title: RNA Controls PolyQ Protein Phase Transitions publication-title: Mol. Cell – volume: 16 start-page: 18 year: 2015 end-page: 29 ident: bib34 article-title: Intrinsically disordered proteins in cellular signalling and regulation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 162 start-page: 1066 year: 2015 end-page: 1077 ident: bib28 article-title: A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation publication-title: Cell – volume: 53 start-page: 7354 year: 2014 end-page: 7359 ident: bib13 article-title: In vitro reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery publication-title: Angew. Chem. Int. Ed. Engl. – volume: 112 start-page: 7189 year: 2015 end-page: 7194 ident: bib12 article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics publication-title: Proc. Natl. Acad. Sci. USA – volume: 33 start-page: 717 year: 2009 end-page: 726 ident: bib8 article-title: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles publication-title: Mol. Cell – volume: 106 start-page: 6111 year: 2009 end-page: 6116 ident: bib23 article-title: Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 278 start-page: 48553 year: 2003 end-page: 48562 ident: bib25 article-title: Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin publication-title: J. Biol. Chem. – volume: 21 start-page: 2899 year: 2012 end-page: 2911 ident: bib9 article-title: Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis publication-title: Hum. Mol. Genet. – volume: 324 start-page: 1729 year: 2009 end-page: 1732 ident: bib4 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science – volume: 108 start-page: 228a year: 2015 ident: bib15 article-title: CIDER: Classification of Intrinsically Disordered Ensemble Regions publication-title: Biophys. J. – volume: 440 start-page: 818 year: 2006 end-page: 823 ident: bib18 article-title: Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes publication-title: Nature – volume: 11 start-page: 899 year: 2015 end-page: 904 ident: bib6 article-title: Polymer physics of intracellular phase transitions publication-title: Nat. Phys. – volume: 149 start-page: 768 year: 2012 end-page: 779 ident: bib14 article-title: Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies publication-title: Cell – volume: 30 start-page: 673 year: 2009 end-page: 699 ident: bib32 article-title: ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions publication-title: J. Comput. Chem. – volume: 57 start-page: 936 year: 2015 end-page: 947 ident: bib27 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell – volume: 483 start-page: 336 year: 2012 end-page: 340 ident: bib21 article-title: Phase transitions in the assembly of multivalent signalling proteins publication-title: Nature – volume: 43 start-page: D315 year: 2015 end-page: D320 ident: bib29 article-title: MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins publication-title: Nucleic Acids Res. – volume: 127 start-page: 1071 year: 2006 ident: bib30 article-title: SnapShot: Cellular bodies publication-title: Cell – volume: 60 start-page: 231 year: 2015 end-page: 241 ident: bib7 article-title: Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II publication-title: Mol. Cell – volume: 149 start-page: 753 year: 2012 end-page: 767 ident: bib19 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell – volume: 3 start-page: e04591 year: 2014 ident: bib33 article-title: Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans publication-title: eLife – volume: 167 start-page: 2 year: 2011 end-page: 11 ident: bib31 article-title: A review of the early development of the thermodynamics of the complex coacervation phase separation publication-title: Adv. Colloid Interface Sci. – volume: 108 start-page: 4334 year: 2011 end-page: 4339 ident: bib5 article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes publication-title: Proc. Natl. Acad. Sci. USA – volume: 163 start-page: 123 year: 2015 end-page: 133 ident: bib26 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell – year: 2010 ident: bib11 article-title: Molecular driving forces: statistical thermodynamics in biology, chemistry, physics, and nanoscience – volume: 60 start-page: 208 year: 2015 end-page: 219 ident: bib22 article-title: Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins publication-title: Mol. Cell – volume: 4 start-page: e06807 year: 2015 ident: bib20 article-title: Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules publication-title: eLife – volume: 3 start-page: 3 year: 2014 ident: bib1 article-title: Phase transitions of multivalent proteins can promote clustering of membrane receptors publication-title: eLife – volume: 112 start-page: E5237 year: 2015 end-page: E5245 ident: bib3 article-title: RNA transcription modulates phase transition-driven nuclear body assembly publication-title: Proc. Natl. Acad. Sci. USA – volume: 110 start-page: 13392 year: 2013 end-page: 13397 ident: bib10 article-title: Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 18 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib34 article-title: Intrinsically disordered proteins in cellular signalling and regulation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3920 – volume: 440 start-page: 818 year: 2006 ident: 10.1016/j.molcel.2016.05.042_bib18 article-title: Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes publication-title: Nature doi: 10.1038/nature04662 – volume: 43 start-page: D315 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib29 article-title: MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku982 – volume: 108 start-page: 4334 year: 2011 ident: 10.1016/j.molcel.2016.05.042_bib5 article-title: Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1017150108 – volume: 112 start-page: 7189 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib12 article-title: The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1504822112 – volume: 30 start-page: 673 year: 2009 ident: 10.1016/j.molcel.2016.05.042_bib32 article-title: ABSINTH: a new continuum solvation model for simulations of polypeptides in aqueous solutions publication-title: J. Comput. Chem. doi: 10.1002/jcc.21005 – volume: 163 start-page: 108 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib17 article-title: Phase transition of spindle-associated protein regulate spindle apparatus assembly publication-title: Cell doi: 10.1016/j.cell.2015.08.010 – year: 2010 ident: 10.1016/j.molcel.2016.05.042_bib11 – volume: 30 start-page: 39 year: 2014 ident: 10.1016/j.molcel.2016.05.042_bib16 article-title: Liquid-liquid phase separation in biology publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100913-013325 – volume: 163 start-page: 123 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib26 article-title: Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization publication-title: Cell doi: 10.1016/j.cell.2015.09.015 – volume: 41 start-page: D377 year: 2013 ident: 10.1016/j.molcel.2016.05.042_bib24 article-title: PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1118 – volume: 149 start-page: 753 year: 2012 ident: 10.1016/j.molcel.2016.05.042_bib19 article-title: Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels publication-title: Cell doi: 10.1016/j.cell.2012.04.017 – volume: 21 start-page: 2899 year: 2012 ident: 10.1016/j.molcel.2016.05.042_bib9 article-title: Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds116 – volume: 4 start-page: e06807 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib20 article-title: Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules publication-title: eLife doi: 10.7554/eLife.06807 – volume: 60 start-page: 208 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib22 article-title: Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.08.018 – volume: 53 start-page: 7354 year: 2014 ident: 10.1016/j.molcel.2016.05.042_bib13 article-title: In vitro reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201402885 – volume: 324 start-page: 1729 year: 2009 ident: 10.1016/j.molcel.2016.05.042_bib4 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science doi: 10.1126/science.1172046 – volume: 60 start-page: 231 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib7 article-title: Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.09.006 – volume: 3 start-page: 3 year: 2014 ident: 10.1016/j.molcel.2016.05.042_bib1 article-title: Phase transitions of multivalent proteins can promote clustering of membrane receptors publication-title: eLife doi: 10.7554/eLife.04123 – volume: 106 start-page: 6111 year: 2009 ident: 10.1016/j.molcel.2016.05.042_bib23 article-title: Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0807883106 – volume: 60 start-page: 220 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib36 article-title: RNA Controls PolyQ Protein Phase Transitions publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.09.017 – volume: 108 start-page: 228a year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib15 article-title: CIDER: Classification of Intrinsically Disordered Ensemble Regions publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.11.1260 – volume: 483 start-page: 336 year: 2012 ident: 10.1016/j.molcel.2016.05.042_bib21 article-title: Phase transitions in the assembly of multivalent signalling proteins publication-title: Nature doi: 10.1038/nature10879 – volume: 3 start-page: e04591 year: 2014 ident: 10.1016/j.molcel.2016.05.042_bib33 article-title: Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans publication-title: eLife doi: 10.7554/eLife.04591 – volume: 110 start-page: 13392 year: 2013 ident: 10.1016/j.molcel.2016.05.042_bib10 article-title: Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1304749110 – volume: 112 start-page: E5237 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib3 article-title: RNA transcription modulates phase transition-driven nuclear body assembly publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1509317112 – volume: 57 start-page: 936 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib27 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 278 start-page: 48553 year: 2003 ident: 10.1016/j.molcel.2016.05.042_bib25 article-title: Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308465200 – volume: 127 start-page: 1071 year: 2006 ident: 10.1016/j.molcel.2016.05.042_bib30 article-title: SnapShot: Cellular bodies publication-title: Cell doi: 10.1016/j.cell.2006.11.026 – volume: 112 start-page: E6426 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib2 article-title: Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1508778112 – volume: 11 start-page: 899 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib6 article-title: Polymer physics of intracellular phase transitions publication-title: Nat. Phys. doi: 10.1038/nphys3532 – volume: 149 start-page: 768 year: 2012 ident: 10.1016/j.molcel.2016.05.042_bib14 article-title: Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies publication-title: Cell doi: 10.1016/j.cell.2012.04.016 – volume: 162 start-page: 1066 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib28 article-title: A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation publication-title: Cell doi: 10.1016/j.cell.2015.07.047 – volume: 167 start-page: 2 year: 2011 ident: 10.1016/j.molcel.2016.05.042_bib31 article-title: A review of the early development of the thermodynamics of the complex coacervation phase separation publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2011.01.007 – volume: 163 start-page: 829 year: 2015 ident: 10.1016/j.molcel.2016.05.042_bib35 article-title: The LC Domain of hnRNPA2 Adopts Similar Conformations in Hydrogel Polymers, Liquid-like Droplets, and Nuclei publication-title: Cell doi: 10.1016/j.cell.2015.10.040 – volume: 33 start-page: 717 year: 2009 ident: 10.1016/j.molcel.2016.05.042_bib8 article-title: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.026 |
SSID | ssj0014589 |
Score | 2.6573055 |
Snippet | Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 72 |
SubjectTerms | amino acid composition Amino Acid Sequence Animals Cell Nucleus - chemistry Cell Nucleus - metabolism Computer Simulation droplets HeLa Cells Humans Hydrophobic and Hydrophilic Interactions hydrophobicity in vitro studies Intrinsically Disordered Proteins - chemistry Intrinsically Disordered Proteins - genetics Intrinsically Disordered Proteins - metabolism Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - metabolism Mice Models, Molecular mutagenesis Mutation organelles Organelles - chemistry Organelles - metabolism Protein Domains proteins Proteomics - methods separation Static Electricity Structure-Activity Relationship Surface Properties Time Factors Transfection |
Title | Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein |
URI | https://dx.doi.org/10.1016/j.molcel.2016.05.042 https://www.ncbi.nlm.nih.gov/pubmed/27392146 https://www.proquest.com/docview/1802744758 https://www.proquest.com/docview/1825430048 https://pubmed.ncbi.nlm.nih.gov/PMC4973464 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQCGkvCMY2Ohgy0l6tLvHFTh7LlxiICa0g-mY5jrsWdQmCItH_njsnqShoQyIvVpJz5NzZd2f7_DvGvvvcxTlIJ2wBIKCwibBDlYlIap868ACe1jvOf6mTKzgdJIMldtCehaGwykb31zo9aOvmSbfhZvd2PO72ae801ipBjyKAuKAelpCGQ3yD_flOAiQhDR4RC6Juj8-FGK-_1cR52oCIVMDvhPhf5um1-_kyivKZWTpeZ2uNP8l7dZM32JIvP7LVOsPkbJP96Teh0vzwWdwLr4b8J32Olu0pDpVfjNCa8b6vkcCrkuczTqpi4h-xRLpm6ZZqWt5CdvqCXxDOw7j8xK6Ojy4PTkSTW0E49HimYpjgxCiHKNYWCgWRdgRy5LCIdeYTJQu80mGUOpxhoRcYSxyfVmYuR25rm8nPbLmsSr_FeFaAK2yKvgSKNiFE91SlzuLs1ysJme4w2bLUuAZ4nPJfTEwbYXZjakEYEoT5kRgURIeJea3bGnjjDXrdSsssdCCDtuGNmnutcA2OLeK8LX31cG8IHU8TImL6PxqCEyBF2GFf6g4xby-6hhklTse2LXSVOQFhey--KcejgPGNfJOg4Ou7_2qbfaC7EFmsd9jy9O7Bf0P_aZrvspXe2e_rs90wUJ4Aa1Ub6g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQwhe0Pgu48NI8GiVJBc7edgDMKaWfWhSN6lvxnHcragkE-vE-nfxD3KXONUKgklI60ukxk6cu_PdOf7ldwBvfOHiAhMnbYkosbSptBOVyyjRPnPoET2_79g_UINj_DxOx2vws_sWhmGVwfe3Pr3x1uGffpBm_2w67Y947zTWKqWMoiFxCcjKXb_4Qeu2863hNin5bRzvfDr6OJChtIB0FPDncpLSuqDAKNYWS4WRdszx4-gQ69ynKinpl02izNECg5KgOCHztEnuCrqZtszARH7_FmUfmr3BcPxhuXWBaVN3j0cneXjd93oNqOxbPXOedzwi1RCGYvy3ePhnvvs7bPNKHNzZgHshgRXvWxndhzVfPYDbbUnLxUM4GQVstti-ArQR9UQM-XK8T8DAV3F4SuFTjHxLPV5XolgI9k0zf0lHahfeFXNPKzqOUF-KQyaWmFaP4PhGJP4Y1qu68k9B5CW60maUvJAtpUwhn6nMWVpue5VgrnuQdCI1LjCdc8GNmekgbV9NqwjDijDvUkOK6IFc9jprmT6uaa87bZkVizUUjK7p-bpTrqHJzJK3la8vzg3T8WmmYMz-1Yb5C9jz9uBJaxDL8VIumnOldhrbiqksGzCZ-OqZanrakIqT3BJU-Oy_n-oV3Bkc7e-ZveHB7ibc5TMNrFk_h_X59wv_gpK3efGymSwCvtz07PwFm51VYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence+Determinants+of+Intracellular+Phase+Separation+by+Complex+Coacervation+of+a+Disordered+Protein&rft.jtitle=Molecular+cell&rft.au=Pak%2C+Chi+W.&rft.au=Kosno%2C+Martyna&rft.au=Holehouse%2C+Alex+S.&rft.au=Padrick%2C+Shae+B.&rft.date=2016-07-07&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=63&rft.issue=1&rft.spage=72&rft.epage=85&rft_id=info:doi/10.1016%2Fj.molcel.2016.05.042&rft_id=info%3Apmid%2F27392146&rft.externalDocID=PMC4973464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |