An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data

Overdispersion is a problem encountered in the analysis of count data that can lead to invalid inference if unaddressed. Decision about whether data are overdispersed is often reached by checking whether the ratio of the Pearson chi-square statistic to its degrees of freedom is greater than one; how...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 47; no. 6; pp. 1722 - 1738
Main Authors Payne, Elizabeth H., Gebregziabher, Mulugeta, Hardin, James W., Ramakrishnan, Viswanathan, Egede, Leonard E.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 05.07.2018
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Overdispersion is a problem encountered in the analysis of count data that can lead to invalid inference if unaddressed. Decision about whether data are overdispersed is often reached by checking whether the ratio of the Pearson chi-square statistic to its degrees of freedom is greater than one; however, there is currently no fixed threshold for declaring the need for statistical intervention. We consider simulated cross-sectional and longitudinal datasets containing varying magnitudes of overdispersion caused by outliers or zero inflation, as well as real datasets, to determine an appropriate threshold value of this statistic which indicates when overdispersion should be addressed.
AbstractList Overdispersion is a problem encountered in the analysis of count data that can lead to invalid inference if unaddressed. Decision about whether data are overdispersed is often reached by checking whether the ratio of the Pearson chi-square statistic to its degrees of freedom is greater than one; however, there is currently no fixed threshold for declaring the need for statistical intervention. We consider simulated cross-sectional and longitudinal datasets containing varying magnitudes of overdispersion caused by outliers or zero inflation, as well as real datasets, to determine an appropriate threshold value of this statistic which indicates when overdispersion should be addressed.
Overdispersion is a problem encountered in the analysis of count data that can lead to invalid inference if unaddressed. Decision about whether data are overdispersed is often reached by checking whether the ratio of the Pearson chi-square statistic to its degrees of freedom is greater than one; however, there is currently no fixed threshold for declaring the need for statistical intervention. We consider simulated cross-sectional and longitudinal datasets containing varying magnitudes of overdispersion caused by outliers or zero inflation, as well as real datasets, to determine an appropriate threshold value of this statistic which indicates when overdispersion should be addressed.Overdispersion is a problem encountered in the analysis of count data that can lead to invalid inference if unaddressed. Decision about whether data are overdispersed is often reached by checking whether the ratio of the Pearson chi-square statistic to its degrees of freedom is greater than one; however, there is currently no fixed threshold for declaring the need for statistical intervention. We consider simulated cross-sectional and longitudinal datasets containing varying magnitudes of overdispersion caused by outliers or zero inflation, as well as real datasets, to determine an appropriate threshold value of this statistic which indicates when overdispersion should be addressed.
Author Egede, Leonard E.
Ramakrishnan, Viswanathan
Gebregziabher, Mulugeta
Hardin, James W.
Payne, Elizabeth H.
AuthorAffiliation d Division of Biostatistics, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
b Health Equity and Rural Outreach Innovation Center (HEROIC), Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA
a Department of Public Health Sciences—Biostatistics, Medical University of South Carolina, Charleston, SC, USA
c The EMMES Corporation, Rockville, MD, USA
AuthorAffiliation_xml – name: b Health Equity and Rural Outreach Innovation Center (HEROIC), Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC, USA
– name: d Division of Biostatistics, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
– name: a Department of Public Health Sciences—Biostatistics, Medical University of South Carolina, Charleston, SC, USA
– name: c The EMMES Corporation, Rockville, MD, USA
Author_xml – sequence: 1
  givenname: Elizabeth H.
  surname: Payne
  fullname: Payne, Elizabeth H.
  email: epayne@emmes.com
  organization: The EMMES Corporation
– sequence: 2
  givenname: Mulugeta
  surname: Gebregziabher
  fullname: Gebregziabher, Mulugeta
  organization: Health Equity and Rural Outreach Innovation Center (HEROIC), Ralph H. Johnson Department of Veterans Affairs Medical Center
– sequence: 3
  givenname: James W.
  surname: Hardin
  fullname: Hardin, James W.
  organization: Division of Biostatistics, Department of Epidemiology and Biostatistics, University of South Carolina
– sequence: 4
  givenname: Viswanathan
  surname: Ramakrishnan
  fullname: Ramakrishnan, Viswanathan
  organization: Department of Public Health Sciences-Biostatistics, Medical University of South Carolina
– sequence: 5
  givenname: Leonard E.
  surname: Egede
  fullname: Egede, Leonard E.
  organization: Health Equity and Rural Outreach Innovation Center (HEROIC), Ralph H. Johnson Department of Veterans Affairs Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30555205$$D View this record in MEDLINE/PubMed
BookMark eNqFkkuLFDEUhYOMOD2jP0EJuHHTbR6VeiCIw-ALBnSh63ArudWdoSopk3TLbP3lpu1u0VnoKoF85-Q-zgU588EjIU85W3HWspdM1px1vF0JxpsVl0IKIR-QBVdSLCte8TOy2DPLPXROLlK6ZYzJtmofkXPJlFKCqQX5ceUpTrOLzsBIYZ5jALOhOVCLGePkPFKgeRMxbcJo6RAihZQwJefXNOwwWpdmjMkFT52nn4NLqVzBW-pxDdntkPbOh8kV_ylYHNMvExO2PlMLGR6ThwOMCZ8cz0vy9d3bL9cfljef3n-8vrpZGlWLvBwYSuihEgMaOwzV0EklKwBRo7S8bmqsGyuACY695aZpDbZdVbO-b7pqsJ28JK8PvvO2n9Aa9DnCqOfoJoh3OoDTf794t9HrsNO16FjH2mLw4mgQw7ctpqwnlwyOI3gM26QFV02t2kbJgj6_h96GbfSlPV3G3lVtw2RTqGd_VvS7lNN6CvDqAJgYUoo4aONymWnYF-hGzZneh0GfwqD3YdDHMBS1uqc-ffA_3ZuDzvmyqQm-hzhaneFuDHGI4I1LWv7b4iffXs4S
CitedBy_id crossref_primary_10_1136_bmjopen_2024_084032
crossref_primary_10_1016_j_scs_2023_104853
crossref_primary_10_1016_j_heliyon_2023_e19365
crossref_primary_10_1016_j_mex_2022_101619
crossref_primary_10_1038_s41598_021_93533_w
crossref_primary_10_1016_j_msksp_2021_102347
crossref_primary_10_1016_j_envint_2024_108810
crossref_primary_10_1038_s41598_022_16461_3
crossref_primary_10_1093_beheco_arab139
crossref_primary_10_1136_bmjment_2024_301131
crossref_primary_10_3389_fsufs_2025_1443215
crossref_primary_10_1186_s12888_024_06078_3
crossref_primary_10_1371_journal_pone_0311299
crossref_primary_10_1186_s13033_021_00452_4
crossref_primary_10_7717_peerj_17889
crossref_primary_10_1186_s12877_020_01800_8
crossref_primary_10_3390_sym15122107
crossref_primary_10_1029_2023GL106277
crossref_primary_10_1080_08927014_2021_1996564
crossref_primary_10_1108_INTR_08_2022_0594
crossref_primary_10_3389_fpubh_2024_1331254
crossref_primary_10_1016_j_biocon_2021_109336
crossref_primary_10_3390_epidemiologia2030020
crossref_primary_10_1016_j_ntt_2023_107152
crossref_primary_10_1097_HMR_0000000000000321
crossref_primary_10_2188_jea_JE20200415
crossref_primary_10_52707_1081_1710_48_1_52
crossref_primary_10_7717_peerj_15145
crossref_primary_10_1093_gbe_evab215
crossref_primary_10_1371_journal_pone_0236974
crossref_primary_10_1038_s41598_023_37083_3
crossref_primary_10_1097_CEJ_0000000000000786
crossref_primary_10_1007_s12144_021_01751_2
crossref_primary_10_1177_0306624X211049190
crossref_primary_10_1016_j_atmosenv_2023_119677
crossref_primary_10_3389_fsuep_2024_1457743
crossref_primary_10_1016_j_etap_2023_104119
crossref_primary_10_1007_s10329_019_00752_x
crossref_primary_10_1080_13683500_2021_1902286
crossref_primary_10_1007_s10980_023_01755_2
crossref_primary_10_1007_s10530_020_02452_w
crossref_primary_10_1136_bmjopen_2020_038356
crossref_primary_10_1038_s41598_023_34911_4
crossref_primary_10_3390_agriculture12101651
crossref_primary_10_1016_j_ocecoaman_2020_105489
crossref_primary_10_1002_2688_8319_12363
crossref_primary_10_1007_s10109_024_00454_z
crossref_primary_10_1044_2022_JSLHR_22_00130
crossref_primary_10_1016_j_jbusres_2024_114883
crossref_primary_10_1016_j_bbi_2023_06_010
crossref_primary_10_1017_spq_2023_23
crossref_primary_10_1111_head_14359
crossref_primary_10_1177_11786329241258836
crossref_primary_10_1093_ecco_jcc_jjab095
crossref_primary_10_3233_JSA_200437
crossref_primary_10_1016_j_jtbi_2022_111323
crossref_primary_10_1177_20552076221085061
crossref_primary_10_3390_su151411025
crossref_primary_10_1007_s11077_023_09511_8
crossref_primary_10_1093_conphys_coae053
crossref_primary_10_1111_psj_12426
crossref_primary_10_1155_2021_5521881
crossref_primary_10_1515_em_2020_0031
crossref_primary_10_1371_journal_pone_0316046
crossref_primary_10_2139_ssrn_4506296
crossref_primary_10_1007_s12144_023_05538_5
crossref_primary_10_1016_j_gecco_2021_e01819
crossref_primary_10_1177_02724316231193363
crossref_primary_10_1016_j_addbeh_2025_108304
crossref_primary_10_1016_j_baae_2021_08_015
crossref_primary_10_1016_j_seps_2024_101976
crossref_primary_10_1038_s41598_022_21320_2
crossref_primary_10_1016_j_psychres_2023_115253
crossref_primary_10_1016_j_puhe_2021_04_008
crossref_primary_10_1093_infdis_jiab259
crossref_primary_10_1111_oik_07645
crossref_primary_10_1007_s11135_022_01501_x
crossref_primary_10_1007_s40520_021_02035_2
crossref_primary_10_1111_evo_14394
crossref_primary_10_1007_s00168_023_01228_z
crossref_primary_10_1038_s42003_023_05720_2
crossref_primary_10_1080_00949655_2024_2408351
crossref_primary_10_1016_j_lingua_2021_103164
crossref_primary_10_1108_LHS_06_2022_0069
crossref_primary_10_1093_ee_nvab138
crossref_primary_10_1007_s11069_024_07078_y
crossref_primary_10_1007_s11252_024_01584_4
crossref_primary_10_1515_jqas_2024_0072
crossref_primary_10_1002_ldr_5241
ContentType Journal Article
Copyright 2017 Taylor & Francis Group, LLC 2017
2017 Taylor & Francis Group, LLC
Copyright_xml – notice: 2017 Taylor & Francis Group, LLC 2017
– notice: 2017 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
DOI 10.1080/03610918.2017.1323223
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 1738
ExternalDocumentID PMC6290908
30555205
10_1080_03610918_2017_1323223
1323223
Genre Article
Journal Article
GrantInformation_xml – fundername: HSRD VA
  grantid: I50 HX001229
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
NPM
TASJS
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c562t-f0e3aba42fecdff4f93534aa26e3d1676e67d2a021ebd1c78ce89460bb794fd93
ISSN 0361-0918
IngestDate Thu Aug 21 18:43:01 EDT 2025
Thu Jul 10 23:36:40 EDT 2025
Wed Aug 13 05:15:56 EDT 2025
Mon Jul 21 05:57:33 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Tue Jul 01 03:09:57 EDT 2025
Wed Dec 25 09:08:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Count data
62Fxx
outliers
Pearson chi-square
overdispersion
62J12
zero inflation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c562t-f0e3aba42fecdff4f93534aa26e3d1676e67d2a021ebd1c78ce89460bb794fd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Authors’Contributions: Study concept and design: MG, EP, Acquisition of data: EP, MG, LE, Analysis and interpretation of data: MG, EP, JH, LE, VR, Drafting of the manuscript: MG, EP, JH, LE, VR, Critical revision of the manuscript for important intellectual content: MG, EP, JH, LE, VR, Final approval of manuscript: MG, EP, JH, LE, VR
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6290908
PMID 30555205
PQID 2059487037
PQPubID 186203
PageCount 17
ParticipantIDs pubmed_primary_30555205
crossref_citationtrail_10_1080_03610918_2017_1323223
crossref_primary_10_1080_03610918_2017_1323223
informaworld_taylorfrancis_310_1080_03610918_2017_1323223
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6290908
proquest_miscellaneous_2157658753
proquest_journals_2059487037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180705
PublicationDateYYYYMMDD 2018-07-05
PublicationDate_xml – month: 7
  year: 2018
  text: 20180705
  day: 5
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationTitleAlternate Commun Stat Simul Comput
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References McCullagh P. (cit0017)
Breslow N. (cit0002); 85
Cameron A. C. (cit0003); 1
Lambert D. (cit0014); 90
Molla D. T. (cit0018); 1
Cameron A. C. (cit0005)
Mortelmans K. (cit0020); 455
Hardin J. (cit0012)
Payne E. H. (cit0022)
Rodriguez G. (cit0024)
Cox D. R. (cit0007); 70
Hilbe J. M. (cit0013)
O'Hara Hines R. J. (cit0021); 58
Ruoyan M. (cit0025)
Faddy M. J. (cit0010); 38
Lawless J. F. (cit0015); 82
Aberle D. R. (cit0001); 365
Cameron A. C. (cit0004); 46
Morel J. G. (cit0019)
Dean C. B. (cit0008); 87
Collings B. J. (cit0006); 80
Lee S. (cit0016); 24
Rigby R. A. (cit0023); 53
Yang Z. (cit0027); 49
Dean C. (cit0009); 84
Gurmu S. (cit0011); 9
Yang Z. (cit0026); 139
References_xml – volume: 85
  start-page: 565
  issue: 410
  ident: cit0002
  publication-title: 1990
– volume-title: 1998
  ident: cit0005
– volume: 84
  start-page: 467
  ident: cit0009
  publication-title: 1989
– volume: 365
  start-page: 395
  issue: 5
  ident: cit0001
  publication-title: 2011
– volume: 87
  start-page: 451
  issue: 418
  ident: cit0008
  publication-title: 1992
– volume: 90
  start-page: 1225
  issue: 432
  ident: cit0014
  publication-title: 1995
– volume: 24
  start-page: 2405
  issue: 9
  ident: cit0016
  publication-title: 2007
– volume-title: 2007, 2011
  ident: cit0013
– volume: 58
  start-page: 323
  issue: 1
  ident: cit0021
  publication-title: 1997
– volume: 9
  start-page: 215
  issue: 2
  ident: cit0011
  publication-title: 1991
– volume: 80
  start-page: 411
  issue: 390
  ident: cit0006
  publication-title: 1985
– volume-title: 2012
  ident: cit0019
– volume: 53
  start-page: 381
  issue: 2
  ident: cit0023
  publication-title: 2008
– volume: 38
  start-page: 2683
  issue: 12
  ident: cit0010
  publication-title: 2011
– volume: 1
  start-page: 29
  issue: 1
  ident: cit0003
  publication-title: 1986
– ident: cit0022
  publication-title: 2015
– volume-title: 2015
  ident: cit0024
– volume: 70
  start-page: 269
  issue: 1
  ident: cit0007
  publication-title: 1983
– volume-title: 1983, 1989
  ident: cit0017
– volume: 49
  start-page: 565
  issue: 4
  ident: cit0027
  publication-title: 2007
– volume: 46
  start-page: 347
  ident: cit0004
  publication-title: 1990
– volume-title: 2001, 2007
  ident: cit0012
– volume: 1
  start-page: 29
  issue: 4
  ident: cit0018
  publication-title: 2012
– volume: 139
  start-page: 1514
  issue: 4
  ident: cit0026
  publication-title: 2009
– volume: 82
  start-page: 808
  issue: 399
  ident: cit0015
  publication-title: 1987
– volume: 455
  start-page: 29
  issue: 1
  ident: cit0020
  publication-title: 2000
– volume-title: 2004
  ident: cit0025
SSID ssj0003848
Score 2.4556339
Snippet Overdispersion is a problem encountered in the analysis of count data that can lead to invalid inference if unaddressed. Decision about whether data are...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1722
SubjectTerms 62Fxx
Chi-square test
Computer simulation
Count data
Datasets
Economic models
Empirical analysis
outliers
Outliers (statistics)
overdispersion
Pearson chi-square
Statistical analysis
Statistical tests
zero inflation
Title An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2017.1323223
https://www.ncbi.nlm.nih.gov/pubmed/30555205
https://www.proquest.com/docview/2059487037
https://www.proquest.com/docview/2157658753
https://pubmed.ncbi.nlm.nih.gov/PMC6290908
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkFB54KN8FQYyEm9RqiR2vh4rBExInSa2ob1FTuJ00da0ookQe-Qv5_zZBBUNeImq2HEd3S_nO_vudwi9C72yBDuYu1Gcpi4N4tJlNGFuWkR5UcaJp2oRLI6jo3P6-SK8GI36DMFdm8-Km715Jf8jVbgHchVZsv8gWTso3IDfIF-4goTh-lcynjcOX21qxfJh2MGFNVnqIBfuMFGJh2_FIZMKmJSHvDLUGV63rAVR-FbHO56sQQo6OrnhS0UJDp7zeiW21WXNHMne4MgCE45Oa9sRHfRzTWSYrchWUkTQM-e0XulKYSaVbtMNwwBO2A-1vWpDzXaZE5-E6768qVmuMbborrslb9lOg8LLNDbu17FbR1_Yil2BJrvUhZi_1tvvTJ0Y9Hc8_ERGx4Y9xUgi3wU7J-lrccXbqdHaV8lgoQV71wodXEkE4bwvo_ziGfjmoOFIvz-IfLOSAJLkaIGeyZCk2zTdQXcD8FdEKQ3iHVuTgCSyjJuduEklEyTv-_5_jO6ZEQf20oBNd59P9Htob89WOnuEHmgnB88VYh-jEW8m6KEpIIL1ejJB9xeWNHg7QeNTC5cn6Oe8wRbb2GAbt2tssY0ZttjGMGFssY2H2MZ1gzW2MWAPG2xjg22ssC0HkdjGAttP0fnHD2fvj1xdL8QtwIpv3crjhOWMBhUvyqqiVUpCQhkLIk5KP4ojHsVlwMCq5XnpF3FS8CSlkZfnsChVZUqeoYNm3fAXCPuxX4HpnPiUUwoqKycsiVJOwLQDYVE6RdRIJSs0mb6o6XKd-YZzV8s1E3LNtFynaGYf2yg2mdseSPsiz1q5jVepmjsZueXZQ4OPTCutLXQQ_EywzMdT9NY2w5IizglZw9cd9PHDGByTOIQhnis42dkaWE5RPACa7SDo6octTX0paeujIPVSL3n5xzFfofHucz9EB-23jr8Gk7_N38jP6RcoQAF3
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOVAOLSyvlAJG4poliR07PlYV1QLdFYdW6i1yYqesoEnFZi8c-eWdcR7arUA99BbJHiu2x-MZe_x9AB_TyFr0g10oldahSJQNjchMqEtZlFZlUcdFMF_I2bn4epFebLyFobRKiqGrDijC22pa3HQYPaTEfUKrS3iWPjNLTTGeQq3kD-FRqqUiFgMeLUZrzDPPoEUiIckMr3j-18zW_rSFXvovH_R2KuXG3nSyD-XQqy4l5ed03RbT8s8twMf7dfsp7PWuKzvqdO0ZPHD1BPYHWgjWW4kJPJmPULCrCeySO9uhQT-Hv0c1c1fXS49LwgY8c9Y2zPZpOY4Z1qJ-rehajOGwMOOvpXGHZZRtapcEbU5HfGxZs-8N6g1-Yp9Y7S49iDnDWL-5wmXFPMvPyjfiKTEYpcO-gPOTz2fHs7BngQhL9M3asIocN4URSeVKW1Wi0jzlwphEOm5jqaSTyiYGfRVX2LhUWekyLWRUFGhqKqv5S9ipm9q9BharuEKHKIuFEwIVseAmk9px3LBxXIUIQAxzn5c9RDoxdfzK4wFJtZ-CnKYg76cggOkodt1hhNwloDcVK2_94UzVMank_A7Zw0EL897crLACoe6g8VYBfBiL0VDQ7Y-pXbPGOjGGlimFpwG86pR2_FsP-4aNBKC21HmsQCDk2yX18ocHI5eJjnSUHdyjS-_h8exsfpqffll8ewO7WJT5hOj0EHba32v3Ft2-tnjn1_UNE3pKhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkVA5UFhegQJG4poliR07PlbAqjy66oFK3CIntmEFza5I9sKRX86M81C3AvXQ20r2WOv483gm_vINwOs8sRbjYBdLpXUsMmVjIwoT61pWtVVF0tciOFnK4zPx8Ws-sgnbgVZJObTvhSKCr6bNvbF-ZMS9QadLcpaBmKXmmE4hKPlNuCVJPJy-4kiWkzPmRSigRSYx2Ywf8fxvmJ3jaUe89F8h6GUm5YWjaXEA1TipnpHyY77tqnn9-5Le47VmfQ_uDoErO-qRdh9uuGYGB2NRCDb4iBncOZmEYNsZ7FMw22tBP4A_Rw1z55tVUCVho5o569bMDqQcxwzrEF0tXYoxfCrMhEtpPF8ZcU3tioTN6QUfWzXsdI2owZ84Jda4b0HCnGGmvz7HTcVCjZ82DBIKYjAiwz6Es8X7L2-P46EGRFxjZNbFPnHcVEZk3tXWe-E1z7kwJpOO21Qq6aSymcFIxVU2rVVRu0ILmVQVOhpvNX8Ee826cU-ApSr1GA4VqXBCIAwrbgqpHcfjGp-rEBGIcenLehBIpzodP8t01FEdlqCkJSiHJYhgPplteoWQqwz0RVyVXXg14_s6KiW_wvZwBGE5OJsWO5DmDrpuFcGrqRndBN39mMatt9gnxcQyp-Q0gsc9Zqd_G0TfcJAI1A6apw4kQb7b0qy-BylymelEJ8XTa0zpJdw-fbcoP39YfnoG-9hSBDZ0fgh73a-te44xX1e9CLv6L8G3SSk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+approach+to+determine+a+threshold+for+assessing+overdispersion+in+Poisson+and+negative+binomial+models+for+count+data&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Payne%2C+Elizabeth+H&rft.au=Gebregziabher%2C+Mulugeta&rft.au=Hardin%2C+James+W&rft.au=Ramakrishnan%2C+Viswanathan&rft.date=2018-07-05&rft.issn=0361-0918&rft.volume=47&rft.issue=6&rft.spage=1722&rft_id=info:doi/10.1080%2F03610918.2017.1323223&rft_id=info%3Apmid%2F30555205&rft.externalDocID=30555205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon