High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity

Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 447; pp. 387 - 394
Main Authors Swaidan, Raja, Ma, Xiaohua, Litwiller, Eric, Pinnau, Ingo
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO2:CH4 mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range. [Display omitted] . •TR polymers show more stable mixed-gas CO2/CH4 selectivity than CMS membranes.•TR: 15% increase in αMixCO2/CH4 over pure-gas values up to 30bar.•TR: 27% reduction in PMixCH4 due to co-permeation of CO2 at 30bar.•CMS membranes retain higher selectivity than TR membranes up to 30bar.•CMS: 50% loss in αMixCO2/CH4 and increase in PMixCH4 over pure-gas values.
AbstractList Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO₂/CH₄ transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO₂:CH₄ mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO₂/CH₄ selectivity relative to pure-gas feeds due to reductions in mixed-gas CH₄ permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH₄ transport by co-permeation of CO₂. Interestingly, unusual increases in mixed-gas CH₄ permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range.
Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO2:CH4 mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range. [Display omitted] . •TR polymers show more stable mixed-gas CO2/CH4 selectivity than CMS membranes.•TR: 15% increase in αMixCO2/CH4 over pure-gas values up to 30bar.•TR: 27% reduction in PMixCH4 due to co-permeation of CO2 at 30bar.•CMS membranes retain higher selectivity than TR membranes up to 30bar.•CMS: 50% loss in αMixCO2/CH4 and increase in PMixCH4 over pure-gas values.
Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440 degree C) and carbon molecular sieve (CMS) membranes (600, 630 and 800 degree C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30 bar for 1:1, CO2:CH4 mixed-gas feeds at 35 degree C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30 bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range.
Author Swaidan, Raja
Pinnau, Ingo
Litwiller, Eric
Ma, Xiaohua
Author_xml – sequence: 1
  givenname: Raja
  surname: Swaidan
  fullname: Swaidan, Raja
– sequence: 2
  givenname: Xiaohua
  surname: Ma
  fullname: Ma, Xiaohua
– sequence: 3
  givenname: Eric
  surname: Litwiller
  fullname: Litwiller, Eric
– sequence: 4
  givenname: Ingo
  surname: Pinnau
  fullname: Pinnau, Ingo
  email: ingo.pinnau@kaust.edu.sa
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27728142$$DView record in Pascal Francis
BookMark eNqFks2O1DAQhHNYJPaHN0DCFyQuydrOjzMckNAImJVW2gPs2erY7VmPkji0MyPyRjwmnp3lwoG52JevqkvddZVdjGHELHsreCG4aG53xYBDNL6QXJQFVwWv1UV2yUvV5Kps29fZVYw7zoXi7eoy-73x2yc2Eca4J2RTenIGo2WD_4U230JkEScgmH0YWXBs_SBv15uKdQubn5AG6PslJwQiGLdon7UGqEv0EHo0-x6IRY8HZClYlyiMzCL5Q4IdhYEBm0K_-MFbPA7w40x-jN6kCIbCFChEPy832SsHfcQ3L_919vj1y4_1Jr9_-Ha3_nyfm7qRc44NuBWC66RqG4lOQmUd5yuQHSq0ZV1bZQ3wRkjpXGe7VdOsVFdD5xAkVuV19uHkO1H4ucc468FHg32fgod91KLlpRC8qvh5VNVlzUUt1Xm0FmXVCCWOru9fUIgGepc2ZnzUE_kBaNFSKdmKSibu44lLS4qR0Gnj5-czzQS-14LrYyH0Tp8KoY-F0FzpVIgkrv4R__U_I3t3kjkIGraUcj1-T0DDOW9r0R6JTycC040OHkknDxwNWk9oZm2D__-IP4NM4sw
CODEN JMESDO
CitedBy_id crossref_primary_10_1016_j_memsci_2020_118269
crossref_primary_10_1021_acs_chemmater_8b02102
crossref_primary_10_1002_adma_201802922
crossref_primary_10_1002_aic_18561
crossref_primary_10_1016_j_memsci_2017_09_004
crossref_primary_10_1016_j_jiec_2017_08_038
crossref_primary_10_1039_C6TA03951K
crossref_primary_10_1016_j_memsci_2023_121674
crossref_primary_10_1039_C6TA09181D
crossref_primary_10_1002_app_44889
crossref_primary_10_3390_membranes9090113
crossref_primary_10_1021_acssuschemeng_5b00409
crossref_primary_10_1039_D4TA02112F
crossref_primary_10_3390_membranes11060457
crossref_primary_10_1016_j_ijhydene_2017_08_071
crossref_primary_10_1016_j_memsci_2014_04_023
crossref_primary_10_1039_C6TA07820F
crossref_primary_10_1021_acs_chemrev_7b00629
crossref_primary_10_1016_j_cej_2019_123575
crossref_primary_10_1016_S1872_5805_22_60613_9
crossref_primary_10_3390_membranes11070482
crossref_primary_10_1007_s43153_021_00112_7
crossref_primary_10_1016_j_cherd_2016_03_033
crossref_primary_10_1016_j_matpr_2022_07_195
crossref_primary_10_1016_j_jece_2024_114106
crossref_primary_10_1021_acsami_9b03825
crossref_primary_10_1002_anie_201906653
crossref_primary_10_1016_j_memsci_2021_120114
crossref_primary_10_1016_j_memsci_2023_121570
crossref_primary_10_1002_ange_201904913
crossref_primary_10_1016_j_memsci_2024_122481
crossref_primary_10_1039_D3CS00235G
crossref_primary_10_1016_j_memsci_2015_08_059
crossref_primary_10_1002_ange_202006521
crossref_primary_10_1021_acs_macromol_5b01581
crossref_primary_10_1016_j_memsci_2020_118701
crossref_primary_10_1016_j_cej_2025_161483
crossref_primary_10_1021_acs_iecr_3c03687
crossref_primary_10_1016_j_seppur_2020_117473
crossref_primary_10_1021_acsami_1c15018
crossref_primary_10_1016_j_memsci_2016_07_058
crossref_primary_10_1016_j_seppur_2020_117870
crossref_primary_10_3390_nano13040656
crossref_primary_10_1039_D0RA10113C
crossref_primary_10_1002_ange_201906653
crossref_primary_10_1016_j_pmatsci_2024_101285
crossref_primary_10_1021_ma501798v
crossref_primary_10_1016_j_memsci_2025_123880
crossref_primary_10_1002_ange_202315611
crossref_primary_10_1016_j_memsci_2017_01_025
crossref_primary_10_1016_j_memsci_2023_121781
crossref_primary_10_1016_j_memsci_2021_120250
crossref_primary_10_1016_j_cej_2020_126084
crossref_primary_10_1016_j_memsci_2021_119541
crossref_primary_10_1016_j_polymer_2017_06_006
crossref_primary_10_1016_j_memsci_2016_02_036
crossref_primary_10_1007_s10853_022_07650_6
crossref_primary_10_1016_j_polymer_2018_04_033
crossref_primary_10_1016_j_reactfunctpolym_2017_08_013
crossref_primary_10_1016_j_memsci_2020_118437
crossref_primary_10_1016_j_memsci_2016_04_030
crossref_primary_10_1002_pol_20200128
crossref_primary_10_1021_acs_iecr_7b03018
crossref_primary_10_1016_j_memsci_2022_121127
crossref_primary_10_1016_j_memsci_2024_123503
crossref_primary_10_1016_j_memsci_2024_122533
crossref_primary_10_1021_acssuschemeng_8b05832
crossref_primary_10_1016_j_memsci_2014_01_055
crossref_primary_10_1016_j_seppur_2017_08_030
crossref_primary_10_1002_pc_24555
crossref_primary_10_1016_j_jngse_2016_03_089
crossref_primary_10_1016_j_memsci_2017_02_051
crossref_primary_10_1016_j_memsci_2018_12_062
crossref_primary_10_1016_j_seppur_2017_08_038
crossref_primary_10_1080_15583724_2014_963235
crossref_primary_10_1002_cben_202100002
crossref_primary_10_1021_acs_iecr_3c02933
crossref_primary_10_1002_ange_202106740
crossref_primary_10_1016_j_memsci_2019_05_020
crossref_primary_10_1002_smll_202104698
crossref_primary_10_1021_acs_iecr_8b02386
crossref_primary_10_1016_j_memsci_2017_08_006
crossref_primary_10_1016_j_seppur_2018_08_047
crossref_primary_10_1016_j_memsci_2017_04_069
crossref_primary_10_1080_00986445_2018_1457027
crossref_primary_10_1016_j_memsci_2015_08_008
crossref_primary_10_1016_j_memsci_2015_11_013
crossref_primary_10_1016_j_ceja_2020_100016
crossref_primary_10_1016_j_memsci_2016_09_041
crossref_primary_10_1016_j_micromeso_2020_110476
crossref_primary_10_1016_j_micromeso_2024_113466
crossref_primary_10_1016_j_jechem_2024_11_006
crossref_primary_10_1016_j_jngse_2018_03_007
crossref_primary_10_1016_j_memsci_2014_07_040
crossref_primary_10_3390_molecules25153532
crossref_primary_10_1016_j_memsci_2020_118477
crossref_primary_10_1016_j_surfin_2025_105977
crossref_primary_10_3390_membranes12010093
crossref_primary_10_1016_j_jechem_2020_03_008
crossref_primary_10_1002_anie_202315611
crossref_primary_10_1016_j_jiec_2020_11_024
crossref_primary_10_1016_j_ijhydene_2020_07_191
crossref_primary_10_1016_j_memsci_2014_10_046
crossref_primary_10_1016_j_memsci_2023_121764
crossref_primary_10_1002_ceat_201500495
crossref_primary_10_1016_j_memsci_2024_123255
crossref_primary_10_1021_acs_iecr_9b02480
crossref_primary_10_1016_j_memsci_2022_121194
crossref_primary_10_14579_MEMBRANE_JOURNAL_2020_30_4_260
crossref_primary_10_1016_j_memsci_2018_12_084
crossref_primary_10_1016_j_dwt_2024_100863
crossref_primary_10_1016_j_seppur_2016_03_035
crossref_primary_10_1002_cben_201600012
crossref_primary_10_1002_cjce_22868
crossref_primary_10_1016_j_ijhydene_2020_05_009
crossref_primary_10_1016_j_memsci_2019_117220
crossref_primary_10_1002_anie_201904913
crossref_primary_10_1038_s41563_022_01426_8
crossref_primary_10_1016_j_pecs_2021_100903
crossref_primary_10_5360_membrane_39_118
crossref_primary_10_3390_membranes9010010
crossref_primary_10_1021_ma5011183
crossref_primary_10_3390_membranes12090847
crossref_primary_10_1080_15422119_2018_1532911
crossref_primary_10_1007_s11426_017_9058_x
crossref_primary_10_1016_j_chemosphere_2025_144304
crossref_primary_10_1016_j_progpolymsci_2014_10_005
crossref_primary_10_1002_anie_202006521
crossref_primary_10_1016_j_memsci_2022_120639
crossref_primary_10_1039_D1TA06530K
crossref_primary_10_1002_pen_25788
crossref_primary_10_1002_ceat_201800111
crossref_primary_10_1002_cssc_202001567
crossref_primary_10_1016_j_memsci_2025_123689
crossref_primary_10_1021_acsapm_3c02344
crossref_primary_10_1016_j_memsci_2019_117512
crossref_primary_10_1016_j_seppur_2024_128797
crossref_primary_10_1016_j_memsci_2016_08_057
crossref_primary_10_1002_anie_202106740
crossref_primary_10_1039_C6RA24699K
crossref_primary_10_1016_j_seppur_2016_01_045
crossref_primary_10_1016_j_memsci_2020_118529
crossref_primary_10_1021_acs_iecr_2c00020
Cites_doi 10.1021/ie010119w
10.1016/S0376-7388(00)85069-3
10.1021/ie071083w
10.1016/j.micromeso.2005.04.026
10.1021/jp307365y
10.1016/j.memsci.2003.10.023
10.1016/S1383-5866(98)00057-4
10.1002/adma.201202393
10.1016/S0958-2118(10)70081-1
10.1016/S0376-7388(00)81262-4
10.1021/ma900898m
10.1021/ma101930x
10.1016/S1387-1811(99)00129-8
10.1016/j.carbon.2013.05.057
10.1039/b311764b
10.1016/S0376-7388(99)00083-6
10.1021/ie101978q
10.1021/ie950746j
10.1038/nmat2989
10.1016/j.fuel.2011.12.074
10.5402/2012/513986
10.1002/adma.200702400
10.1016/S0376-7388(00)00352-5
10.1126/science.1146744
10.1016/j.carbon.2004.07.026
10.1039/C1EE02668B
10.1016/j.memsci.2005.02.002
10.1021/ma801858d
10.1016/S0376-7388(03)00245-X
10.1021/jp982075j
10.1016/0008-6223(94)90135-X
10.1039/C2TA00799A
10.1016/j.carbon.2005.02.028
10.1002/marc.200700346
10.1016/j.memsci.2008.04.030
10.1016/0376-7388(96)00041-5
10.1016/j.carbon.2010.08.002
10.2115/fiber.56.P_20
10.1016/j.memsci.2009.04.021
10.1021/ma300549m
10.1016/j.memsci.2013.01.011
10.1134/S0965544110040043
10.1016/j.carbon.2011.11.019
10.1021/ie0108088
10.1126/science.1069580
10.1016/j.memsci.2009.02.003
10.1016/S0008-6223(02)00309-3
10.1021/ma901430q
10.1039/f19736902166
10.1016/0360-5442(91)90141-8
10.1021/ie020698k
10.1021/jp963997u
10.1016/j.memsci.2008.09.010
10.1016/j.polymer.2012.04.032
10.1016/0376-7388(92)87070-E
10.1080/01496398308068576
10.1016/j.memsci.2007.07.048
10.1016/j.memsci.2012.03.060
10.1016/S0376-7388(98)00156-2
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7QH
7UA
C1K
F1W
H97
L.G
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.memsci.2013.07.057
DatabaseName AGRIS
CrossRef
Pascal-Francis
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Materials Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EndPage 394
ExternalDocumentID 27728142
10_1016_j_memsci_2013_07_057
US201600085187
S0376738813006339
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSH
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AACTN
AAQXK
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AI.
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
EJD
FBQ
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
VH1
WUQ
AAYXX
AGQPQ
AIGII
APXCP
CITATION
IQODW
7QH
7UA
C1K
F1W
H97
L.G
7SR
8FD
JG9
7S9
L.6
ID FETCH-LOGICAL-c562t-e6af9eafb27862ef2a4df009a2be7ed355d7dca06122ffbdb96697b5abfea2e43
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Thu Jul 10 19:33:26 EDT 2025
Thu Jul 10 18:57:41 EDT 2025
Thu Jul 10 19:29:22 EDT 2025
Wed Apr 02 07:15:02 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Tue Jul 01 03:37:54 EDT 2025
Thu Apr 03 09:43:30 EDT 2025
Thu Jul 17 02:00:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Gas separation
Intrinsic microporosity
Carbon molecular sieve
CO2/CH4 mixed-gas permeation
Thermal-rearrangement
Methane
Polyimide
Separation
CH
Permeation
CO
Porous material
Carbon
Molecular sieve
mixed-gas permeation
High pressure
Microporosity
Membrane
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-e6af9eafb27862ef2a4df009a2be7ed355d7dca06122ffbdb96697b5abfea2e43
Notes http://dx.doi.org/10.1016/j.memsci.2013.07.057
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1513461710
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1803110440
proquest_miscellaneous_1753501527
proquest_miscellaneous_1513461710
pascalfrancis_primary_27728142
crossref_citationtrail_10_1016_j_memsci_2013_07_057
crossref_primary_10_1016_j_memsci_2013_07_057
fao_agris_US201600085187
elsevier_sciencedirect_doi_10_1016_j_memsci_2013_07_057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20131101
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 20131101
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of membrane science
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Sanders (bib8) 1988; 37
Ghanem, McKeown, Budd, Al-Harbi, Fritsch, Heinrich, Starannikova, Tokarev, Yampolskii (bib25) 2009; 42
Obrien, Koros, Barbari, Sanders, New (bib57) 1986; 29
Guo, Sanders, Smith, Freeman, Paul, McGrath (bib40) 2013; 1
Robeson (bib19) 2008; 320
McKeown (bib27) 2012; 2012
Kiyono, Williams, Koros (bib36) 2010; 48
Ash, Barrer, Pope (bib61) 1963; 271
Baker, Lokhandwala (bib4) 2008; 47
Ma, Swaidan, Belmabkhout, Zhu, Litwiller, Jouiad, Pinnau, Han (bib28) 2012; 45
Ghanem, McKeown, Budd, Selbie, Fritsch (bib30) 2008; 20
Centeno, Fuertes (bib52) 1999; 160
Budd, McKeown, Ghanem, Msayib, Fritsch, Starannikova, Belov, Sanfirova, Yampolskii, Shantarovich (bib23) 2008; 325
Bezzu, Carta, Tonkins, Jansen, Bernardo, Bazzarelli, McKeown, Spirobifluorene-Based (bib29) 2012; 24
Ash, Barrer, Lowson (bib62) 1973; 1
Koresh, Sofer (bib32) 1983; 18
Scholes, Stevens, Kentish (bib5) 2012; 96
Rungta, Xu, Koros (bib37) 2012; 50
Thomas, Pinnau, Du, Guiver (bib16) 2009; 338
Calle, Chan, Jo, Lee (bib42) 2012; 53
Weber, Su, Antonietti, Thomas (bib31) 2007; 28
Park, Kim, Lee, Lee, Lee (bib34) 2004; 229
Sanders, Jordan, Subramanian (bib9) 1992; 74
Global natural gas production doubled between 1980 and 2010, EIA, 2012.
Sanders, Smith, Ribeiro, Guo, McGrath, Paul, Freeman (bib39) 2012; 409
Al-Saleh, Duffuaa, Al-Marhoun, Al-Zayer (bib17) 1991; 16
Baker (bib1) 2002; 41
Steel, Koros (bib43) 2005; 43
He, Lie, Sheridan, Hagg (bib63) 2011; 50
Du, Robertson, Pinnau, Guiver (bib24) 2009; 42
Kim, Park, Lee (bib35) 2005; 255
Li, Jo, Han, Park, Kim, Budd, Lee (bib56) 2013; 434
Park, Tocci, Lee, Drioli (bib41) 2012; 116
Geiszler, Koros (bib46) 1996; 35
Thomas, Pinnau, Du, Guiver (bib15) 2009; 333
Ogawa, Nakano (bib64) 2000; 173
McKeown, Budd (bib20) 2002
Haraya (bib59) 2000; 56
Pinnau, Toy (bib10) 1996; 116
Fuertes, Nevskaia, Centeno (bib50) 1999; 33
Tin, Chung, Liu, Wang (bib51) 2004; 42
Du, Park, Dal-Cin, Guiver (bib53) 2012; 5
Visser, Masetto, Wessling (bib14) 2007; 306
Sedigh, Onstot, Xu, Peng, Tsotsis, Sahimi (bib65) 1998; 102
Pinnau, Casillas, Morisato, Freeman (bib11) 1996; 34
Vu, Koros, Miller (bib18) 2002; 41
Du, Robertson, Pinnau, Guiver (bib26) 2010; 43
Merkel, Freeman, Spontak, He, Pinnau, Meakin, Hill (bib13) 2002; 296
Bernardo, Drioli (bib6) 2010; 50
Du, Robertson, Song, Pinnau, Thomas, Guiver (bib22) 2008; 41
Du, Park, Robertson, Dal-Cin, Visser, Scoles, Guiver (bib60) 2011; 10
Vu, Koros, Miller (bib49) 2003; 42
Kusakabe, Yamamoto, Morooka (bib47) 1998; 149
Shao, Chung, Pramoda (bib45) 2005; 84
Baker (bib2) 2004
Park, Jung, Lee, Hill, Pas, Mudie, Van Wagner, Freeman, Cookson (bib38) 2007; 318
Han, Lee (bib54) 2011
D. Bessarabov, UGS project uses UOP technology to remove impurities from gas, Membrane Technology 2010 (2010) 2.
Bos, Punt, Wessling, Strathmann (bib12) 1998; 14
Steel, Koros (bib44) 2003; 41
Ma, Swaidan, Teng, Tan, Salinas, Litwiller, Han, Pinnau (bib55) 2013; 62
Vu, Koros, Miller (bib48) 2003; 221
Suda, Haraya (bib58) 1997; 101
Budd, Ghanem, Makhseed, McKeown, Msayib, Tattershall (bib21) 2004
Jones, Koros (bib33) 1994; 32
Budd (10.1016/j.memsci.2013.07.057_bib21) 2004
Ma (10.1016/j.memsci.2013.07.057_bib28) 2012; 45
Al-Saleh (10.1016/j.memsci.2013.07.057_bib17) 1991; 16
Vu (10.1016/j.memsci.2013.07.057_bib49) 2003; 42
Ash (10.1016/j.memsci.2013.07.057_bib62) 1973; 1
Ghanem (10.1016/j.memsci.2013.07.057_bib30) 2008; 20
Pinnau (10.1016/j.memsci.2013.07.057_bib10) 1996; 116
Bos (10.1016/j.memsci.2013.07.057_bib12) 1998; 14
Robeson (10.1016/j.memsci.2013.07.057_bib19) 2008; 320
Sanders (10.1016/j.memsci.2013.07.057_bib39) 2012; 409
Tin (10.1016/j.memsci.2013.07.057_bib51) 2004; 42
Baker (10.1016/j.memsci.2013.07.057_bib4) 2008; 47
Pinnau (10.1016/j.memsci.2013.07.057_bib11) 1996; 34
Du (10.1016/j.memsci.2013.07.057_bib22) 2008; 41
Haraya (10.1016/j.memsci.2013.07.057_bib59) 2000; 56
Park (10.1016/j.memsci.2013.07.057_bib34) 2004; 229
Budd (10.1016/j.memsci.2013.07.057_bib23) 2008; 325
Ma (10.1016/j.memsci.2013.07.057_bib55) 2013; 62
Vu (10.1016/j.memsci.2013.07.057_bib18) 2002; 41
Merkel (10.1016/j.memsci.2013.07.057_bib13) 2002; 296
Sanders (10.1016/j.memsci.2013.07.057_bib9) 1992; 74
Centeno (10.1016/j.memsci.2013.07.057_bib52) 1999; 160
Bezzu (10.1016/j.memsci.2013.07.057_bib29) 2012; 24
Jones (10.1016/j.memsci.2013.07.057_bib33) 1994; 32
Scholes (10.1016/j.memsci.2013.07.057_bib5) 2012; 96
Du (10.1016/j.memsci.2013.07.057_bib24) 2009; 42
Weber (10.1016/j.memsci.2013.07.057_bib31) 2007; 28
Kim (10.1016/j.memsci.2013.07.057_bib35) 2005; 255
Sanders (10.1016/j.memsci.2013.07.057_bib8) 1988; 37
Ogawa (10.1016/j.memsci.2013.07.057_bib64) 2000; 173
Baker (10.1016/j.memsci.2013.07.057_bib2) 2004
Kusakabe (10.1016/j.memsci.2013.07.057_bib47) 1998; 149
Ash (10.1016/j.memsci.2013.07.057_bib61) 1963; 271
He (10.1016/j.memsci.2013.07.057_bib63) 2011; 50
Koresh (10.1016/j.memsci.2013.07.057_bib32) 1983; 18
Geiszler (10.1016/j.memsci.2013.07.057_bib46) 1996; 35
Visser (10.1016/j.memsci.2013.07.057_bib14) 2007; 306
Kiyono (10.1016/j.memsci.2013.07.057_bib36) 2010; 48
Park (10.1016/j.memsci.2013.07.057_bib41) 2012; 116
McKeown (10.1016/j.memsci.2013.07.057_bib20) 2002
Ghanem (10.1016/j.memsci.2013.07.057_bib25) 2009; 42
Vu (10.1016/j.memsci.2013.07.057_bib48) 2003; 221
Du (10.1016/j.memsci.2013.07.057_bib26) 2010; 43
Guo (10.1016/j.memsci.2013.07.057_bib40) 2013; 1
Calle (10.1016/j.memsci.2013.07.057_bib42) 2012; 53
Thomas (10.1016/j.memsci.2013.07.057_bib16) 2009; 338
Fuertes (10.1016/j.memsci.2013.07.057_bib50) 1999; 33
Du (10.1016/j.memsci.2013.07.057_bib60) 2011; 10
Steel (10.1016/j.memsci.2013.07.057_bib44) 2003; 41
Suda (10.1016/j.memsci.2013.07.057_bib58) 1997; 101
Baker (10.1016/j.memsci.2013.07.057_bib1) 2002; 41
Thomas (10.1016/j.memsci.2013.07.057_bib15) 2009; 333
Du (10.1016/j.memsci.2013.07.057_bib53) 2012; 5
10.1016/j.memsci.2013.07.057_bib7
Sedigh (10.1016/j.memsci.2013.07.057_bib65) 1998; 102
10.1016/j.memsci.2013.07.057_bib3
Park (10.1016/j.memsci.2013.07.057_bib38) 2007; 318
Shao (10.1016/j.memsci.2013.07.057_bib45) 2005; 84
Bernardo (10.1016/j.memsci.2013.07.057_bib6) 2010; 50
Steel (10.1016/j.memsci.2013.07.057_bib43) 2005; 43
Obrien (10.1016/j.memsci.2013.07.057_bib57) 1986; 29
Han (10.1016/j.memsci.2013.07.057_bib54) 2011
McKeown (10.1016/j.memsci.2013.07.057_bib27) 2012; 2012
Rungta (10.1016/j.memsci.2013.07.057_bib37) 2012; 50
Li (10.1016/j.memsci.2013.07.057_bib56) 2013; 434
References_xml – volume: 42
  start-page: 7881
  year: 2009
  end-page: 7888
  ident: bib25
  article-title: Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides
  publication-title: Macromolecules
– year: 2004
  ident: bib2
  article-title: Membrane Technology and Applications
– volume: 24
  start-page: 5930
  year: 2012
  ident: bib29
  article-title: Polymer of intrinsic microporosity with improved performance for gas separation
  publication-title: Advanced Materials
– volume: 96
  start-page: 15
  year: 2012
  end-page: 28
  ident: bib5
  article-title: Membrane gas separation applications in natural gas processing
  publication-title: Fuel
– volume: 271
  start-page: 19
  year: 1963
  ident: bib61
  article-title: Flow of adsorbable gases and vapours in a microporous medium. 2. Binary mixtures
  publication-title: Proceedings of the Royal Society of London, Series A
– volume: 84
  start-page: 59
  year: 2005
  end-page: 68
  ident: bib45
  article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon
  publication-title: Microporous and Mesoporous Materials
– start-page: 230
  year: 2004
  end-page: 231
  ident: bib21
  article-title: Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials
  publication-title: Chemical Communications
– volume: 14
  start-page: 27
  year: 1998
  end-page: 39
  ident: bib12
  article-title: Plasticization-resistant glassy polyimide membranes for CO
  publication-title: Separation and Purification Technology
– volume: 338
  start-page: 1
  year: 2009
  end-page: 4
  ident: bib16
  article-title: Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer
  publication-title: Journal of Membrane Science
– volume: 33
  start-page: 115
  year: 1999
  end-page: 125
  ident: bib50
  article-title: Carbon composite membranes from Matrimid (R) and Kapton (R) polyimides for gas separation
  publication-title: Microporous and Mesoporous Materials
– volume: 102
  start-page: 8580
  year: 1998
  end-page: 8589
  ident: bib65
  article-title: Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieve membranes
  publication-title: Journal of Physical Chemistry A
– volume: 318
  start-page: 254
  year: 2007
  end-page: 258
  ident: bib38
  article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions
  publication-title: Science
– volume: 48
  start-page: 4432
  year: 2010
  end-page: 4441
  ident: bib36
  article-title: Effect of polymer precursors on carbon molecular sieve structure and separation performance properties
  publication-title: Carbon
– volume: 255
  start-page: 265
  year: 2005
  end-page: 273
  ident: bib35
  article-title: Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties
  publication-title: Journal of Membrane Science
– volume: 5
  start-page: 7306
  year: 2012
  end-page: 7322
  ident: bib53
  article-title: Advances in high permeability polymeric membrane materials for CO
  publication-title: Energy & Environmental Science
– volume: 42
  start-page: 3123
  year: 2004
  end-page: 3131
  ident: bib51
  article-title: Separation of CO
  publication-title: Carbon
– volume: 42
  start-page: 6023
  year: 2009
  end-page: 6030
  ident: bib24
  article-title: Polymers of intrinsic microporosity derived from novel disulfone-based monomers
  publication-title: Macromolecules
– volume: 320
  start-page: 390
  year: 2008
  end-page: 400
  ident: bib19
  article-title: The upper bound revisited
  publication-title: Journal of Membrane Science
– volume: 409
  start-page: 232
  year: 2012
  end-page: 241
  ident: bib39
  article-title: Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)
  publication-title: Journal of Membrane Science
– volume: 306
  start-page: 16
  year: 2007
  end-page: 28
  ident: bib14
  article-title: Materials dependence of mixed gas plasticization behavior in asymmetric membranes
  publication-title: Journal of Membrane Science
– volume: 29
  start-page: 229
  year: 1986
  end-page: 238
  ident: bib57
  article-title: Technique for the measurement of multicomponent gas-transport through polymeric films
  publication-title: Journal of Membrane Science
– volume: 28
  start-page: 1871
  year: 2007
  end-page: 1876
  ident: bib31
  article-title: Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and polyimide
  publication-title: Macromolecular Rapid Communications
– volume: 229
  start-page: 117
  year: 2004
  end-page: 127
  ident: bib34
  article-title: Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes
  publication-title: Journal of Membrane Science
– volume: 325
  start-page: 851
  year: 2008
  end-page: 860
  ident: bib23
  article-title: Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1
  publication-title: Journal of Membrane Science
– volume: 2012
  start-page: 16
  year: 2012
  ident: bib27
  article-title: Polymers of intrinsic microporosity
  publication-title: ISRN Materials Science
– year: 2011
  ident: bib54
  article-title: Recent high performance polymer membranes for CO
  publication-title: Membrane Engineering for the Treatment of Gases
– reference: Global natural gas production doubled between 1980 and 2010, EIA, 2012.
– volume: 62
  start-page: 88
  year: 2013
  end-page: 96
  ident: bib55
  article-title: Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor
  publication-title: Carbon
– volume: 296
  start-page: 519
  year: 2002
  end-page: 522
  ident: bib13
  article-title: Ultrapermeable, reverse-selective nanocomposite membranes
  publication-title: Science
– volume: 53
  start-page: 2783
  year: 2012
  end-page: 2791
  ident: bib42
  article-title: The relationship between the chemical structure and thermal conversion temperatures of thermally rearranged (TR) polymers
  publication-title: Polymer
– volume: 1
  start-page: 262
  year: 2013
  end-page: 272
  ident: bib40
  article-title: Synthesis and characterization of Thermally Rearranged (TR) polymers: influence of ortho-positioned functional groups of polyimide precursors on TR process and gas transport properties
  publication-title: Journal of Materials Chemistry A
– volume: 41
  start-page: 9656
  year: 2008
  end-page: 9662
  ident: bib22
  article-title: Polymers of Intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation
  publication-title: Macromolecules
– volume: 434
  start-page: 137
  year: 2013
  end-page: 147
  ident: bib56
  article-title: Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation
  publication-title: Journal of Membrane Science
– volume: 43
  start-page: 8580
  year: 2010
  end-page: 8587
  ident: bib26
  article-title: Polymers of intrinsic microporosity with dinaphthyl and thianthrene segments
  publication-title: Macromolecules
– volume: 47
  start-page: 2109
  year: 2008
  end-page: 2121
  ident: bib4
  article-title: Natural gas processing with membranes: An overview
  publication-title: Industrial & Engineering Chemistry Research
– volume: 41
  start-page: 1393
  year: 2002
  end-page: 1411
  ident: bib1
  article-title: Future directions of membrane gas separation technology
  publication-title: Industrial & Engineering Chemistry Research
– volume: 20
  start-page: 2766
  year: 2008
  end-page: 2771
  ident: bib30
  article-title: High-performance membranes from polyimides with intrinsic microporosity
  publication-title: Advanced Materials
– volume: 50
  start-page: 2080
  year: 2011
  end-page: 2087
  ident: bib63
  article-title: Preparation and characterization of hollow fiber carbon membranes from cellulose acetate precursors
  publication-title: Industrial & Engineering Chemistry Research
– volume: 116
  start-page: 199
  year: 1996
  end-page: 209
  ident: bib10
  article-title: Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)
  publication-title: Journal of Membrane Science
– reference: D. Bessarabov, UGS project uses UOP technology to remove impurities from gas, Membrane Technology 2010 (2010) 2.
– volume: 173
  start-page: 123
  year: 2000
  end-page: 132
  ident: bib64
  article-title: Separation of CO
  publication-title: Journal of Membrane Science
– volume: 45
  start-page: 3841
  year: 2012
  end-page: 3849
  ident: bib28
  article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity
  publication-title: Macromolecules
– volume: 42
  start-page: 1064
  year: 2003
  end-page: 1075
  ident: bib49
  article-title: Effect of condensable impurities in CO
  publication-title: Industrial & Engineering Chemistry Research
– year: 2002
  ident: bib20
  article-title: Polymers of intrinsic microporosity
  publication-title: Encyclopedia of Polymer Science and Technology
– volume: 37
  start-page: 63
  year: 1988
  end-page: 80
  ident: bib8
  article-title: Penetrant-induced plasticization and gas permeation in glassy-polymers
  publication-title: Journal of Membrane Science
– volume: 41
  start-page: 367
  year: 2002
  end-page: 380
  ident: bib18
  article-title: High pressure CO
  publication-title: Industrial & Engineering Chemistry Research
– volume: 56
  start-page: P20
  year: 2000
  end-page: P24
  ident: bib59
  article-title: Carbon molecular sieve membrane for gas separation
  publication-title: Sen-I Gakkaishi
– volume: 32
  start-page: 1419
  year: 1994
  end-page: 1425
  ident: bib33
  article-title: Carbon molecular-sieve gas separation membranes. 1. Preparation and characterization based on polyimide precursors
  publication-title: Carbon
– volume: 43
  start-page: 1843
  year: 2005
  end-page: 1856
  ident: bib43
  article-title: An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials
  publication-title: Carbon
– volume: 149
  start-page: 59
  year: 1998
  end-page: 67
  ident: bib47
  article-title: Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation
  publication-title: Journal of Membrane Science
– volume: 34
  start-page: 2613
  year: 1996
  end-page: 2621
  ident: bib11
  article-title: Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and PTMSP/PPP blends
  publication-title: Journal of Polymer Science: Polymer Physics
– volume: 10
  start-page: 372
  year: 2011
  end-page: 375
  ident: bib60
  article-title: Polymer nanosieve membranes for CO
  publication-title: Nature Materials
– volume: 160
  start-page: 201
  year: 1999
  end-page: 211
  ident: bib52
  article-title: Supported carbon molecular sieve membranes based on a phenolic resin
  publication-title: Journal of Membrane Science
– volume: 116
  start-page: 12864
  year: 2012
  end-page: 12877
  ident: bib41
  article-title: Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)
  publication-title: Journal of Physical Chemistry B
– volume: 101
  start-page: 3988
  year: 1997
  end-page: 3994
  ident: bib58
  article-title: Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide
  publication-title: Journal of Physical Chemistry B
– volume: 41
  start-page: 253
  year: 2003
  end-page: 266
  ident: bib44
  article-title: Investigation of porosity of carbon materials and related effects on gas separation properties
  publication-title: Carbon
– volume: 50
  start-page: 1488
  year: 2012
  end-page: 1502
  ident: bib37
  article-title: Carbon molecular sieve dense film membranes derived from Matrimid (R) for ethylene/ethane separation
  publication-title: Carbon
– volume: 74
  start-page: 29
  year: 1992
  end-page: 36
  ident: bib9
  article-title: Penetrant-plasticized permeation in polymethylmethacrylate
  publication-title: Journal of Membrane Science
– volume: 1
  start-page: 2166
  year: 1973
  end-page: 2178
  ident: bib62
  article-title: Transport of single gases and of binary gas-mixtures in a microporous carbon membrane
  publication-title: Journal of the Chemical Society, Faraday Transactions
– volume: 50
  start-page: 271
  year: 2010
  end-page: 282
  ident: bib6
  article-title: Membrane gas separation progresses for process intensification strategy in the petrochemical industry
  publication-title: Petroleum Chemistry
– volume: 333
  start-page: 125
  year: 2009
  end-page: 131
  ident: bib15
  article-title: Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1)
  publication-title: Journal of Membrane Science
– volume: 221
  start-page: 233
  year: 2003
  end-page: 239
  ident: bib48
  article-title: Effect of condensable impurity in CO
  publication-title: Journal of Membrane Science
– volume: 18
  start-page: 723
  year: 1983
  end-page: 734
  ident: bib32
  article-title: Molecular-sieve carbon permselective membrane. 1. Presentation of a new device for gas-mixture separation
  publication-title: Separation Science and Technology
– volume: 16
  start-page: 1089
  year: 1991
  end-page: 1099
  ident: bib17
  article-title: Impact of crude oil production on the petrochemical industry in Saudi Arabia
  publication-title: Energy
– volume: 35
  start-page: 2999
  year: 1996
  end-page: 3003
  ident: bib46
  article-title: Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties
  publication-title: Industrial & Engineering Chemistry Research
– volume: 41
  start-page: 367
  year: 2002
  ident: 10.1016/j.memsci.2013.07.057_bib18
  article-title: High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie010119w
– volume: 37
  start-page: 63
  year: 1988
  ident: 10.1016/j.memsci.2013.07.057_bib8
  article-title: Penetrant-induced plasticization and gas permeation in glassy-polymers
  publication-title: Journal of Membrane Science
  doi: 10.1016/S0376-7388(00)85069-3
– volume: 47
  start-page: 2109
  year: 2008
  ident: 10.1016/j.memsci.2013.07.057_bib4
  article-title: Natural gas processing with membranes: An overview
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie071083w
– volume: 84
  start-page: 59
  year: 2005
  ident: 10.1016/j.memsci.2013.07.057_bib45
  article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon
  publication-title: Microporous and Mesoporous Materials
  doi: 10.1016/j.micromeso.2005.04.026
– volume: 116
  start-page: 12864
  year: 2012
  ident: 10.1016/j.memsci.2013.07.057_bib41
  article-title: Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp307365y
– volume: 229
  start-page: 117
  year: 2004
  ident: 10.1016/j.memsci.2013.07.057_bib34
  article-title: Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2003.10.023
– volume: 14
  start-page: 27
  year: 1998
  ident: 10.1016/j.memsci.2013.07.057_bib12
  article-title: Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations
  publication-title: Separation and Purification Technology
  doi: 10.1016/S1383-5866(98)00057-4
– year: 2004
  ident: 10.1016/j.memsci.2013.07.057_bib2
– volume: 24
  start-page: 5930
  year: 2012
  ident: 10.1016/j.memsci.2013.07.057_bib29
  article-title: Polymer of intrinsic microporosity with improved performance for gas separation
  publication-title: Advanced Materials
  doi: 10.1002/adma.201202393
– ident: 10.1016/j.memsci.2013.07.057_bib7
  doi: 10.1016/S0958-2118(10)70081-1
– volume: 29
  start-page: 229
  year: 1986
  ident: 10.1016/j.memsci.2013.07.057_bib57
  article-title: Technique for the measurement of multicomponent gas-transport through polymeric films
  publication-title: Journal of Membrane Science
  doi: 10.1016/S0376-7388(00)81262-4
– volume: 42
  start-page: 6023
  year: 2009
  ident: 10.1016/j.memsci.2013.07.057_bib24
  article-title: Polymers of intrinsic microporosity derived from novel disulfone-based monomers
  publication-title: Macromolecules
  doi: 10.1021/ma900898m
– volume: 43
  start-page: 8580
  year: 2010
  ident: 10.1016/j.memsci.2013.07.057_bib26
  article-title: Polymers of intrinsic microporosity with dinaphthyl and thianthrene segments
  publication-title: Macromolecules
  doi: 10.1021/ma101930x
– volume: 33
  start-page: 115
  year: 1999
  ident: 10.1016/j.memsci.2013.07.057_bib50
  article-title: Carbon composite membranes from Matrimid (R) and Kapton (R) polyimides for gas separation
  publication-title: Microporous and Mesoporous Materials
  doi: 10.1016/S1387-1811(99)00129-8
– volume: 62
  start-page: 88
  year: 2013
  ident: 10.1016/j.memsci.2013.07.057_bib55
  article-title: Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.05.057
– start-page: 230
  year: 2004
  ident: 10.1016/j.memsci.2013.07.057_bib21
  article-title: Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials
  publication-title: Chemical Communications
  doi: 10.1039/b311764b
– volume: 160
  start-page: 201
  year: 1999
  ident: 10.1016/j.memsci.2013.07.057_bib52
  article-title: Supported carbon molecular sieve membranes based on a phenolic resin
  publication-title: Journal of Membrane Science
  doi: 10.1016/S0376-7388(99)00083-6
– volume: 50
  start-page: 2080
  year: 2011
  ident: 10.1016/j.memsci.2013.07.057_bib63
  article-title: Preparation and characterization of hollow fiber carbon membranes from cellulose acetate precursors
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie101978q
– ident: 10.1016/j.memsci.2013.07.057_bib3
– volume: 35
  start-page: 2999
  year: 1996
  ident: 10.1016/j.memsci.2013.07.057_bib46
  article-title: Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie950746j
– volume: 10
  start-page: 372
  year: 2011
  ident: 10.1016/j.memsci.2013.07.057_bib60
  article-title: Polymer nanosieve membranes for CO2-capture applications
  publication-title: Nature Materials
  doi: 10.1038/nmat2989
– volume: 96
  start-page: 15
  year: 2012
  ident: 10.1016/j.memsci.2013.07.057_bib5
  article-title: Membrane gas separation applications in natural gas processing
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.12.074
– volume: 2012
  start-page: 16
  year: 2012
  ident: 10.1016/j.memsci.2013.07.057_bib27
  article-title: Polymers of intrinsic microporosity
  publication-title: ISRN Materials Science
  doi: 10.5402/2012/513986
– volume: 20
  start-page: 2766
  year: 2008
  ident: 10.1016/j.memsci.2013.07.057_bib30
  article-title: High-performance membranes from polyimides with intrinsic microporosity
  publication-title: Advanced Materials
  doi: 10.1002/adma.200702400
– volume: 173
  start-page: 123
  year: 2000
  ident: 10.1016/j.memsci.2013.07.057_bib64
  article-title: Separation of CO2/CH4 mixture through carbonized membrane prepared by gel modification
  publication-title: Journal of Membrane Science
  doi: 10.1016/S0376-7388(00)00352-5
– volume: 318
  start-page: 254
  year: 2007
  ident: 10.1016/j.memsci.2013.07.057_bib38
  article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions
  publication-title: Science
  doi: 10.1126/science.1146744
– volume: 42
  start-page: 3123
  year: 2004
  ident: 10.1016/j.memsci.2013.07.057_bib51
  article-title: Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.07.026
– year: 2002
  ident: 10.1016/j.memsci.2013.07.057_bib20
  article-title: Polymers of intrinsic microporosity
– volume: 5
  start-page: 7306
  year: 2012
  ident: 10.1016/j.memsci.2013.07.057_bib53
  article-title: Advances in high permeability polymeric membrane materials for CO2 separations
  publication-title: Energy & Environmental Science
  doi: 10.1039/C1EE02668B
– volume: 255
  start-page: 265
  year: 2005
  ident: 10.1016/j.memsci.2013.07.057_bib35
  article-title: Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2005.02.002
– volume: 41
  start-page: 9656
  year: 2008
  ident: 10.1016/j.memsci.2013.07.057_bib22
  article-title: Polymers of Intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation
  publication-title: Macromolecules
  doi: 10.1021/ma801858d
– volume: 221
  start-page: 233
  year: 2003
  ident: 10.1016/j.memsci.2013.07.057_bib48
  article-title: Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves
  publication-title: Journal of Membrane Science
  doi: 10.1016/S0376-7388(03)00245-X
– volume: 102
  start-page: 8580
  year: 1998
  ident: 10.1016/j.memsci.2013.07.057_bib65
  article-title: Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieve membranes
  publication-title: Journal of Physical Chemistry A
  doi: 10.1021/jp982075j
– volume: 32
  start-page: 1419
  year: 1994
  ident: 10.1016/j.memsci.2013.07.057_bib33
  article-title: Carbon molecular-sieve gas separation membranes. 1. Preparation and characterization based on polyimide precursors
  publication-title: Carbon
  doi: 10.1016/0008-6223(94)90135-X
– volume: 1
  start-page: 262
  year: 2013
  ident: 10.1016/j.memsci.2013.07.057_bib40
  article-title: Synthesis and characterization of Thermally Rearranged (TR) polymers: influence of ortho-positioned functional groups of polyimide precursors on TR process and gas transport properties
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/C2TA00799A
– volume: 34
  start-page: 2613
  year: 1996
  ident: 10.1016/j.memsci.2013.07.057_bib11
  article-title: Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and PTMSP/PPP blends
  publication-title: Journal of Polymer Science: Polymer Physics
– volume: 43
  start-page: 1843
  year: 2005
  ident: 10.1016/j.memsci.2013.07.057_bib43
  article-title: An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.02.028
– volume: 28
  start-page: 1871
  year: 2007
  ident: 10.1016/j.memsci.2013.07.057_bib31
  article-title: Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and polyimide
  publication-title: Macromolecular Rapid Communications
  doi: 10.1002/marc.200700346
– volume: 320
  start-page: 390
  year: 2008
  ident: 10.1016/j.memsci.2013.07.057_bib19
  article-title: The upper bound revisited
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2008.04.030
– volume: 116
  start-page: 199
  year: 1996
  ident: 10.1016/j.memsci.2013.07.057_bib10
  article-title: Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)
  publication-title: Journal of Membrane Science
  doi: 10.1016/0376-7388(96)00041-5
– volume: 48
  start-page: 4432
  year: 2010
  ident: 10.1016/j.memsci.2013.07.057_bib36
  article-title: Effect of polymer precursors on carbon molecular sieve structure and separation performance properties
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.08.002
– volume: 56
  start-page: P20
  year: 2000
  ident: 10.1016/j.memsci.2013.07.057_bib59
  article-title: Carbon molecular sieve membrane for gas separation
  publication-title: Sen-I Gakkaishi
  doi: 10.2115/fiber.56.P_20
– volume: 338
  start-page: 1
  year: 2009
  ident: 10.1016/j.memsci.2013.07.057_bib16
  article-title: Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2009.04.021
– volume: 45
  start-page: 3841
  year: 2012
  ident: 10.1016/j.memsci.2013.07.057_bib28
  article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity
  publication-title: Macromolecules
  doi: 10.1021/ma300549m
– volume: 434
  start-page: 137
  year: 2013
  ident: 10.1016/j.memsci.2013.07.057_bib56
  article-title: Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2013.01.011
– volume: 50
  start-page: 271
  year: 2010
  ident: 10.1016/j.memsci.2013.07.057_bib6
  article-title: Membrane gas separation progresses for process intensification strategy in the petrochemical industry
  publication-title: Petroleum Chemistry
  doi: 10.1134/S0965544110040043
– volume: 50
  start-page: 1488
  year: 2012
  ident: 10.1016/j.memsci.2013.07.057_bib37
  article-title: Carbon molecular sieve dense film membranes derived from Matrimid (R) for ethylene/ethane separation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.11.019
– volume: 41
  start-page: 1393
  year: 2002
  ident: 10.1016/j.memsci.2013.07.057_bib1
  article-title: Future directions of membrane gas separation technology
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie0108088
– volume: 296
  start-page: 519
  year: 2002
  ident: 10.1016/j.memsci.2013.07.057_bib13
  article-title: Ultrapermeable, reverse-selective nanocomposite membranes
  publication-title: Science
  doi: 10.1126/science.1069580
– volume: 333
  start-page: 125
  year: 2009
  ident: 10.1016/j.memsci.2013.07.057_bib15
  article-title: Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1)
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2009.02.003
– volume: 41
  start-page: 253
  year: 2003
  ident: 10.1016/j.memsci.2013.07.057_bib44
  article-title: Investigation of porosity of carbon materials and related effects on gas separation properties
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00309-3
– volume: 42
  start-page: 7881
  year: 2009
  ident: 10.1016/j.memsci.2013.07.057_bib25
  article-title: Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides
  publication-title: Macromolecules
  doi: 10.1021/ma901430q
– volume: 1
  start-page: 2166
  issue: 69
  year: 1973
  ident: 10.1016/j.memsci.2013.07.057_bib62
  article-title: Transport of single gases and of binary gas-mixtures in a microporous carbon membrane
  publication-title: Journal of the Chemical Society, Faraday Transactions
  doi: 10.1039/f19736902166
– volume: 16
  start-page: 1089
  year: 1991
  ident: 10.1016/j.memsci.2013.07.057_bib17
  article-title: Impact of crude oil production on the petrochemical industry in Saudi Arabia
  publication-title: Energy
  doi: 10.1016/0360-5442(91)90141-8
– volume: 42
  start-page: 1064
  year: 2003
  ident: 10.1016/j.memsci.2013.07.057_bib49
  article-title: Effect of condensable impurities in CO2/CH4 gas feeds on carbon molecular sieve hollow-fiber membranes
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie020698k
– year: 2011
  ident: 10.1016/j.memsci.2013.07.057_bib54
  article-title: Recent high performance polymer membranes for CO2 separation
– volume: 271
  start-page: 19
  year: 1963
  ident: 10.1016/j.memsci.2013.07.057_bib61
  article-title: Flow of adsorbable gases and vapours in a microporous medium. 2. Binary mixtures
  publication-title: Proceedings of the Royal Society of London, Series A
– volume: 101
  start-page: 3988
  year: 1997
  ident: 10.1016/j.memsci.2013.07.057_bib58
  article-title: Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide
  publication-title: Journal of Physical Chemistry B
  doi: 10.1021/jp963997u
– volume: 325
  start-page: 851
  year: 2008
  ident: 10.1016/j.memsci.2013.07.057_bib23
  article-title: Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2008.09.010
– volume: 53
  start-page: 2783
  year: 2012
  ident: 10.1016/j.memsci.2013.07.057_bib42
  article-title: The relationship between the chemical structure and thermal conversion temperatures of thermally rearranged (TR) polymers
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.04.032
– volume: 74
  start-page: 29
  year: 1992
  ident: 10.1016/j.memsci.2013.07.057_bib9
  article-title: Penetrant-plasticized permeation in polymethylmethacrylate
  publication-title: Journal of Membrane Science
  doi: 10.1016/0376-7388(92)87070-E
– volume: 18
  start-page: 723
  year: 1983
  ident: 10.1016/j.memsci.2013.07.057_bib32
  article-title: Molecular-sieve carbon permselective membrane. 1. Presentation of a new device for gas-mixture separation
  publication-title: Separation Science and Technology
  doi: 10.1080/01496398308068576
– volume: 306
  start-page: 16
  year: 2007
  ident: 10.1016/j.memsci.2013.07.057_bib14
  article-title: Materials dependence of mixed gas plasticization behavior in asymmetric membranes
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2007.07.048
– volume: 409
  start-page: 232
  year: 2012
  ident: 10.1016/j.memsci.2013.07.057_bib39
  article-title: Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)
  publication-title: Journal of Membrane Science
  doi: 10.1016/j.memsci.2012.03.060
– volume: 149
  start-page: 59
  year: 1998
  ident: 10.1016/j.memsci.2013.07.057_bib47
  article-title: Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation
  publication-title: Journal of Membrane Science
  doi: 10.1016/S0376-7388(98)00156-2
SSID ssj0017089
Score 2.4823456
Snippet Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 387
SubjectTerms artificial membranes
Carbon
Carbon dioxide
Carbon molecular sieve
Chemistry
CO2/CH4 mixed-gas permeation
Colloidal state and disperse state
Exact sciences and technology
Gas separation
General and physical chemistry
heat treatment
Intrinsic microporosity
Membranes
methane
Microporosity
Molecular sieves
natural gas
Permeability
Polyimide resins
polymers
Porous materials
Selectivity
Thermal-rearrangement
Title High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity
URI https://dx.doi.org/10.1016/j.memsci.2013.07.057
https://www.proquest.com/docview/1513461710
https://www.proquest.com/docview/1753501527
https://www.proquest.com/docview/1803110440
Volume 447
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QIHxFNbHpWRuJo6jpO4x1XFqoBYDkulvVl2bK-CmqRK2hW98Hv4mczkUbFC7EpcKqUZJ05mPP5G-WaGkHeR46mac8WSfM4ZGIVgRnLLYFnZEMskZBJzh7-cp8uV_HSZXB6RxZgLg7TKwff3Pr3z1sM_s-FtzjZFMbvgWIgkVgo_yKRxjEl8UmZo5e9_HmgeUca7NngozFB6TJ_rOF6lL-HSSPCK-xKe2b-2p3vB1MibNC28utD3vPjLfXd70tlj8mgAk_S0n-8TcuSrp-ThHyUGn5FfSOSgHdt113i6gR9GTeVoWfzwjl2Zlra-r_9dV7QOdPFVzBZLSe2eIjYszXq9Zw0yejENwXVjc9NYkC7H1rq0Lfy1p_CcEHuD76QO7n4Nwpi8Qg3d1Ot9URbO4w2KagtTA-OAKWD_sLpB3tj-OVmdffi2WLKhOwPLATNtmU9NmHsTrMggKvJBGOkCIDYjrM-8AxzjMpcbhFAiBOssBFbzzCbGBm-El_ELclzVlT8hFPyK5SHizqdOhjxVPlYcjCuoNHAXywmJR6XofChdjh001nrkqH3XvSo1qlLzTIMqJ4QdRm360h13yGejvvUNE9Swu9wx8gTMQ5sr8Mt6dSGwal-HZRWcmt6wmcNMBIQ1KpJiQt6ORqRhZePnGlBUvWs1YLFYAsCM-C0yEG0mHFsT3yKjwHFH2Fr85X8_4SvyAI_6JMzX5Hjb7PwbQGNbO-2W25TcP_34eXn-G5YZNtQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBba9LDtMOyJZo9OA3YVotjy61gEK9y1zQ5tgN4EyZIKD7Ed2Emx_KP-zJJ-BCuGtcAuOdhULJsU9RH6SBLybWp4GCc8ZkGWcAZG4TEluGawrLTzReAigbnDF_MwXYgf18H1HpkNuTBIq-x9f-fTW2_dX5n0X3OyyvPJJcdCJH4c44FM6PvJPjnA6lTBiBwcn56l891hQsTbTngoz3DAkEHX0rwKW8C_I8fL76p4Rv_aofadqpA6qRr4eq5re_GXB2-3pZNX5GWPJ-lxN-XXZM-Wb8iLP6oMviV3yOWgLeF1U1u6gh9GVWlokf-2ht2ohja2KwFelbRydPbTm8xSQfWWIjws1HK5ZTWSejETwbRjM1VrkC6G7rq0ye2tpfCeEH6D-6QGnn4Lwpi_QhVdVcttXuTG4gPycg1TA_uAKWALsapG6tj2HVmcfL-apaxv0MAygE1rZkPlEquc9iIIjKzzlDAOQJvytI2sAShjIpMpRFGec9poiK2SSAdKO6s8K_z3ZFRWpT0kFFyL5m7KjQ2NcFkYWz_mYF8uDh03vhgTf1CKzPrq5dhEYykHmtov2alSoioljySockzYbtSqq97xhHw06Fs-sEIJG8wTIw_BPKS6AdcsF5ceFu5r4WwMt44e2MxuJh5ENvFUeGPydTAiCYsbT2xAUdWmkQDHfAEYc8ofkYGAM-DYnfgRmRh89xS7i3_47zf8Qp6lVxfn8vx0fvaRPMc7XU7mJzJa1xv7GcDZWh_1i-8eFc05hQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+pressure+pure-+and+mixed-gas+separation+of+CO2%2FCH4+by+thermally-rearranged+and+carbon+molecular+sieve+membranes+derived+from+a+polyimide+of+intrinsic+microporosity&rft.jtitle=Journal+of+membrane+science&rft.au=Swaidan%2C+Raja&rft.au=Ma%2C+Xiaohua&rft.au=Litwiller%2C+Eric&rft.au=Pinnau%2C+Ingo&rft.date=2013-11-01&rft.issn=0376-7388&rft.volume=447&rft.spage=387&rft.epage=394&rft_id=info:doi/10.1016%2Fj.memsci.2013.07.057&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon