High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity
Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement...
Saved in:
Published in | Journal of membrane science Vol. 447; pp. 387 - 394 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO2:CH4 mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range.
[Display omitted] .
•TR polymers show more stable mixed-gas CO2/CH4 selectivity than CMS membranes.•TR: 15% increase in αMixCO2/CH4 over pure-gas values up to 30bar.•TR: 27% reduction in PMixCH4 due to co-permeation of CO2 at 30bar.•CMS membranes retain higher selectivity than TR membranes up to 30bar.•CMS: 50% loss in αMixCO2/CH4 and increase in PMixCH4 over pure-gas values. |
---|---|
AbstractList | Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO₂/CH₄ transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO₂:CH₄ mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO₂/CH₄ selectivity relative to pure-gas feeds due to reductions in mixed-gas CH₄ permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH₄ transport by co-permeation of CO₂. Interestingly, unusual increases in mixed-gas CH₄ permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range. Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440°C) and carbon molecular sieve (CMS) membranes (600, 630 and 800°C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30bar for 1:1, CO2:CH4 mixed-gas feeds at 35°C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range. [Display omitted] . •TR polymers show more stable mixed-gas CO2/CH4 selectivity than CMS membranes.•TR: 15% increase in αMixCO2/CH4 over pure-gas values up to 30bar.•TR: 27% reduction in PMixCH4 due to co-permeation of CO2 at 30bar.•CMS membranes retain higher selectivity than TR membranes up to 30bar.•CMS: 50% loss in αMixCO2/CH4 and increase in PMixCH4 over pure-gas values. Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with relatively low permeabilities and moderate selectivities. One strategy towards improving the gas transport properties of a polymer is enhancement of microporosity either by design of polymers of intrinsic microporosity (PIMs) or by thermal treatment of polymeric precursors. For the first time, the mixed-gas CO2/CH4 transport properties are investigated for a complete series of thermally-rearranged (TR) (440 degree C) and carbon molecular sieve (CMS) membranes (600, 630 and 800 degree C) derived from a polyimide of intrinsic microporosity (PIM-6FDA-OH). The pressure dependence of permeability and selectivity is reported up to 30 bar for 1:1, CO2:CH4 mixed-gas feeds at 35 degree C. The TR membrane exhibited ~15% higher CO2/CH4 selectivity relative to pure-gas feeds due to reductions in mixed-gas CH4 permeability reaching 27% at 30 bar. This is attributed to increased hindrance of CH4 transport by co-permeation of CO2. Interestingly, unusual increases in mixed-gas CH4 permeabilities relative to pure-gas values were observed for the CMS membranes, resulting in up to 50% losses in mixed-gas selectivity over the applied pressure range. |
Author | Swaidan, Raja Pinnau, Ingo Litwiller, Eric Ma, Xiaohua |
Author_xml | – sequence: 1 givenname: Raja surname: Swaidan fullname: Swaidan, Raja – sequence: 2 givenname: Xiaohua surname: Ma fullname: Ma, Xiaohua – sequence: 3 givenname: Eric surname: Litwiller fullname: Litwiller, Eric – sequence: 4 givenname: Ingo surname: Pinnau fullname: Pinnau, Ingo email: ingo.pinnau@kaust.edu.sa |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27728142$$DView record in Pascal Francis |
BookMark | eNqFks2O1DAQhHNYJPaHN0DCFyQuydrOjzMckNAImJVW2gPs2erY7VmPkji0MyPyRjwmnp3lwoG52JevqkvddZVdjGHELHsreCG4aG53xYBDNL6QXJQFVwWv1UV2yUvV5Kps29fZVYw7zoXi7eoy-73x2yc2Eca4J2RTenIGo2WD_4U230JkEScgmH0YWXBs_SBv15uKdQubn5AG6PslJwQiGLdon7UGqEv0EHo0-x6IRY8HZClYlyiMzCL5Q4IdhYEBm0K_-MFbPA7w40x-jN6kCIbCFChEPy832SsHfcQ3L_919vj1y4_1Jr9_-Ha3_nyfm7qRc44NuBWC66RqG4lOQmUd5yuQHSq0ZV1bZQ3wRkjpXGe7VdOsVFdD5xAkVuV19uHkO1H4ucc468FHg32fgod91KLlpRC8qvh5VNVlzUUt1Xm0FmXVCCWOru9fUIgGepc2ZnzUE_kBaNFSKdmKSibu44lLS4qR0Gnj5-czzQS-14LrYyH0Tp8KoY-F0FzpVIgkrv4R__U_I3t3kjkIGraUcj1-T0DDOW9r0R6JTycC040OHkknDxwNWk9oZm2D__-IP4NM4sw |
CODEN | JMESDO |
CitedBy_id | crossref_primary_10_1016_j_memsci_2020_118269 crossref_primary_10_1021_acs_chemmater_8b02102 crossref_primary_10_1002_adma_201802922 crossref_primary_10_1002_aic_18561 crossref_primary_10_1016_j_memsci_2017_09_004 crossref_primary_10_1016_j_jiec_2017_08_038 crossref_primary_10_1039_C6TA03951K crossref_primary_10_1016_j_memsci_2023_121674 crossref_primary_10_1039_C6TA09181D crossref_primary_10_1002_app_44889 crossref_primary_10_3390_membranes9090113 crossref_primary_10_1021_acssuschemeng_5b00409 crossref_primary_10_1039_D4TA02112F crossref_primary_10_3390_membranes11060457 crossref_primary_10_1016_j_ijhydene_2017_08_071 crossref_primary_10_1016_j_memsci_2014_04_023 crossref_primary_10_1039_C6TA07820F crossref_primary_10_1021_acs_chemrev_7b00629 crossref_primary_10_1016_j_cej_2019_123575 crossref_primary_10_1016_S1872_5805_22_60613_9 crossref_primary_10_3390_membranes11070482 crossref_primary_10_1007_s43153_021_00112_7 crossref_primary_10_1016_j_cherd_2016_03_033 crossref_primary_10_1016_j_matpr_2022_07_195 crossref_primary_10_1016_j_jece_2024_114106 crossref_primary_10_1021_acsami_9b03825 crossref_primary_10_1002_anie_201906653 crossref_primary_10_1016_j_memsci_2021_120114 crossref_primary_10_1016_j_memsci_2023_121570 crossref_primary_10_1002_ange_201904913 crossref_primary_10_1016_j_memsci_2024_122481 crossref_primary_10_1039_D3CS00235G crossref_primary_10_1016_j_memsci_2015_08_059 crossref_primary_10_1002_ange_202006521 crossref_primary_10_1021_acs_macromol_5b01581 crossref_primary_10_1016_j_memsci_2020_118701 crossref_primary_10_1016_j_cej_2025_161483 crossref_primary_10_1021_acs_iecr_3c03687 crossref_primary_10_1016_j_seppur_2020_117473 crossref_primary_10_1021_acsami_1c15018 crossref_primary_10_1016_j_memsci_2016_07_058 crossref_primary_10_1016_j_seppur_2020_117870 crossref_primary_10_3390_nano13040656 crossref_primary_10_1039_D0RA10113C crossref_primary_10_1002_ange_201906653 crossref_primary_10_1016_j_pmatsci_2024_101285 crossref_primary_10_1021_ma501798v crossref_primary_10_1016_j_memsci_2025_123880 crossref_primary_10_1002_ange_202315611 crossref_primary_10_1016_j_memsci_2017_01_025 crossref_primary_10_1016_j_memsci_2023_121781 crossref_primary_10_1016_j_memsci_2021_120250 crossref_primary_10_1016_j_cej_2020_126084 crossref_primary_10_1016_j_memsci_2021_119541 crossref_primary_10_1016_j_polymer_2017_06_006 crossref_primary_10_1016_j_memsci_2016_02_036 crossref_primary_10_1007_s10853_022_07650_6 crossref_primary_10_1016_j_polymer_2018_04_033 crossref_primary_10_1016_j_reactfunctpolym_2017_08_013 crossref_primary_10_1016_j_memsci_2020_118437 crossref_primary_10_1016_j_memsci_2016_04_030 crossref_primary_10_1002_pol_20200128 crossref_primary_10_1021_acs_iecr_7b03018 crossref_primary_10_1016_j_memsci_2022_121127 crossref_primary_10_1016_j_memsci_2024_123503 crossref_primary_10_1016_j_memsci_2024_122533 crossref_primary_10_1021_acssuschemeng_8b05832 crossref_primary_10_1016_j_memsci_2014_01_055 crossref_primary_10_1016_j_seppur_2017_08_030 crossref_primary_10_1002_pc_24555 crossref_primary_10_1016_j_jngse_2016_03_089 crossref_primary_10_1016_j_memsci_2017_02_051 crossref_primary_10_1016_j_memsci_2018_12_062 crossref_primary_10_1016_j_seppur_2017_08_038 crossref_primary_10_1080_15583724_2014_963235 crossref_primary_10_1002_cben_202100002 crossref_primary_10_1021_acs_iecr_3c02933 crossref_primary_10_1002_ange_202106740 crossref_primary_10_1016_j_memsci_2019_05_020 crossref_primary_10_1002_smll_202104698 crossref_primary_10_1021_acs_iecr_8b02386 crossref_primary_10_1016_j_memsci_2017_08_006 crossref_primary_10_1016_j_seppur_2018_08_047 crossref_primary_10_1016_j_memsci_2017_04_069 crossref_primary_10_1080_00986445_2018_1457027 crossref_primary_10_1016_j_memsci_2015_08_008 crossref_primary_10_1016_j_memsci_2015_11_013 crossref_primary_10_1016_j_ceja_2020_100016 crossref_primary_10_1016_j_memsci_2016_09_041 crossref_primary_10_1016_j_micromeso_2020_110476 crossref_primary_10_1016_j_micromeso_2024_113466 crossref_primary_10_1016_j_jechem_2024_11_006 crossref_primary_10_1016_j_jngse_2018_03_007 crossref_primary_10_1016_j_memsci_2014_07_040 crossref_primary_10_3390_molecules25153532 crossref_primary_10_1016_j_memsci_2020_118477 crossref_primary_10_1016_j_surfin_2025_105977 crossref_primary_10_3390_membranes12010093 crossref_primary_10_1016_j_jechem_2020_03_008 crossref_primary_10_1002_anie_202315611 crossref_primary_10_1016_j_jiec_2020_11_024 crossref_primary_10_1016_j_ijhydene_2020_07_191 crossref_primary_10_1016_j_memsci_2014_10_046 crossref_primary_10_1016_j_memsci_2023_121764 crossref_primary_10_1002_ceat_201500495 crossref_primary_10_1016_j_memsci_2024_123255 crossref_primary_10_1021_acs_iecr_9b02480 crossref_primary_10_1016_j_memsci_2022_121194 crossref_primary_10_14579_MEMBRANE_JOURNAL_2020_30_4_260 crossref_primary_10_1016_j_memsci_2018_12_084 crossref_primary_10_1016_j_dwt_2024_100863 crossref_primary_10_1016_j_seppur_2016_03_035 crossref_primary_10_1002_cben_201600012 crossref_primary_10_1002_cjce_22868 crossref_primary_10_1016_j_ijhydene_2020_05_009 crossref_primary_10_1016_j_memsci_2019_117220 crossref_primary_10_1002_anie_201904913 crossref_primary_10_1038_s41563_022_01426_8 crossref_primary_10_1016_j_pecs_2021_100903 crossref_primary_10_5360_membrane_39_118 crossref_primary_10_3390_membranes9010010 crossref_primary_10_1021_ma5011183 crossref_primary_10_3390_membranes12090847 crossref_primary_10_1080_15422119_2018_1532911 crossref_primary_10_1007_s11426_017_9058_x crossref_primary_10_1016_j_chemosphere_2025_144304 crossref_primary_10_1016_j_progpolymsci_2014_10_005 crossref_primary_10_1002_anie_202006521 crossref_primary_10_1016_j_memsci_2022_120639 crossref_primary_10_1039_D1TA06530K crossref_primary_10_1002_pen_25788 crossref_primary_10_1002_ceat_201800111 crossref_primary_10_1002_cssc_202001567 crossref_primary_10_1016_j_memsci_2025_123689 crossref_primary_10_1021_acsapm_3c02344 crossref_primary_10_1016_j_memsci_2019_117512 crossref_primary_10_1016_j_seppur_2024_128797 crossref_primary_10_1016_j_memsci_2016_08_057 crossref_primary_10_1002_anie_202106740 crossref_primary_10_1039_C6RA24699K crossref_primary_10_1016_j_seppur_2016_01_045 crossref_primary_10_1016_j_memsci_2020_118529 crossref_primary_10_1021_acs_iecr_2c00020 |
Cites_doi | 10.1021/ie010119w 10.1016/S0376-7388(00)85069-3 10.1021/ie071083w 10.1016/j.micromeso.2005.04.026 10.1021/jp307365y 10.1016/j.memsci.2003.10.023 10.1016/S1383-5866(98)00057-4 10.1002/adma.201202393 10.1016/S0958-2118(10)70081-1 10.1016/S0376-7388(00)81262-4 10.1021/ma900898m 10.1021/ma101930x 10.1016/S1387-1811(99)00129-8 10.1016/j.carbon.2013.05.057 10.1039/b311764b 10.1016/S0376-7388(99)00083-6 10.1021/ie101978q 10.1021/ie950746j 10.1038/nmat2989 10.1016/j.fuel.2011.12.074 10.5402/2012/513986 10.1002/adma.200702400 10.1016/S0376-7388(00)00352-5 10.1126/science.1146744 10.1016/j.carbon.2004.07.026 10.1039/C1EE02668B 10.1016/j.memsci.2005.02.002 10.1021/ma801858d 10.1016/S0376-7388(03)00245-X 10.1021/jp982075j 10.1016/0008-6223(94)90135-X 10.1039/C2TA00799A 10.1016/j.carbon.2005.02.028 10.1002/marc.200700346 10.1016/j.memsci.2008.04.030 10.1016/0376-7388(96)00041-5 10.1016/j.carbon.2010.08.002 10.2115/fiber.56.P_20 10.1016/j.memsci.2009.04.021 10.1021/ma300549m 10.1016/j.memsci.2013.01.011 10.1134/S0965544110040043 10.1016/j.carbon.2011.11.019 10.1021/ie0108088 10.1126/science.1069580 10.1016/j.memsci.2009.02.003 10.1016/S0008-6223(02)00309-3 10.1021/ma901430q 10.1039/f19736902166 10.1016/0360-5442(91)90141-8 10.1021/ie020698k 10.1021/jp963997u 10.1016/j.memsci.2008.09.010 10.1016/j.polymer.2012.04.032 10.1016/0376-7388(92)87070-E 10.1080/01496398308068576 10.1016/j.memsci.2007.07.048 10.1016/j.memsci.2012.03.060 10.1016/S0376-7388(98)00156-2 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7QH 7UA C1K F1W H97 L.G 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.memsci.2013.07.057 |
DatabaseName | AGRIS CrossRef Pascal-Francis Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EndPage | 394 |
ExternalDocumentID | 27728142 10_1016_j_memsci_2013_07_057 US201600085187 S0376738813006339 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHPOS AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSH SSM SSZ T5K XPP Y6R ZMT ~G- 29L AACTN AAQXK ACNNM ACRPL ADMUD ADNMO AFJKZ AI. ASPBG AVWKF AZFZN BBWZM BNPGV EJD FBQ FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ AAYXX AGQPQ AIGII APXCP CITATION IQODW 7QH 7UA C1K F1W H97 L.G 7SR 8FD JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c562t-e6af9eafb27862ef2a4df009a2be7ed355d7dca06122ffbdb96697b5abfea2e43 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Thu Jul 10 19:33:26 EDT 2025 Thu Jul 10 18:57:41 EDT 2025 Thu Jul 10 19:29:22 EDT 2025 Wed Apr 02 07:15:02 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Tue Jul 01 03:37:54 EDT 2025 Thu Apr 03 09:43:30 EDT 2025 Thu Jul 17 02:00:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gas separation Intrinsic microporosity Carbon molecular sieve CO2/CH4 mixed-gas permeation Thermal-rearrangement Methane Polyimide Separation CH Permeation CO Porous material Carbon Molecular sieve mixed-gas permeation High pressure Microporosity Membrane |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-e6af9eafb27862ef2a4df009a2be7ed355d7dca06122ffbdb96697b5abfea2e43 |
Notes | http://dx.doi.org/10.1016/j.memsci.2013.07.057 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1513461710 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1803110440 proquest_miscellaneous_1753501527 proquest_miscellaneous_1513461710 pascalfrancis_primary_27728142 crossref_citationtrail_10_1016_j_memsci_2013_07_057 crossref_primary_10_1016_j_memsci_2013_07_057 fao_agris_US201600085187 elsevier_sciencedirect_doi_10_1016_j_memsci_2013_07_057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20131101 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 20131101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of membrane science |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Sanders (bib8) 1988; 37 Ghanem, McKeown, Budd, Al-Harbi, Fritsch, Heinrich, Starannikova, Tokarev, Yampolskii (bib25) 2009; 42 Obrien, Koros, Barbari, Sanders, New (bib57) 1986; 29 Guo, Sanders, Smith, Freeman, Paul, McGrath (bib40) 2013; 1 Robeson (bib19) 2008; 320 McKeown (bib27) 2012; 2012 Kiyono, Williams, Koros (bib36) 2010; 48 Ash, Barrer, Pope (bib61) 1963; 271 Baker, Lokhandwala (bib4) 2008; 47 Ma, Swaidan, Belmabkhout, Zhu, Litwiller, Jouiad, Pinnau, Han (bib28) 2012; 45 Ghanem, McKeown, Budd, Selbie, Fritsch (bib30) 2008; 20 Centeno, Fuertes (bib52) 1999; 160 Budd, McKeown, Ghanem, Msayib, Fritsch, Starannikova, Belov, Sanfirova, Yampolskii, Shantarovich (bib23) 2008; 325 Bezzu, Carta, Tonkins, Jansen, Bernardo, Bazzarelli, McKeown, Spirobifluorene-Based (bib29) 2012; 24 Ash, Barrer, Lowson (bib62) 1973; 1 Koresh, Sofer (bib32) 1983; 18 Scholes, Stevens, Kentish (bib5) 2012; 96 Rungta, Xu, Koros (bib37) 2012; 50 Thomas, Pinnau, Du, Guiver (bib16) 2009; 338 Calle, Chan, Jo, Lee (bib42) 2012; 53 Weber, Su, Antonietti, Thomas (bib31) 2007; 28 Park, Kim, Lee, Lee, Lee (bib34) 2004; 229 Sanders, Jordan, Subramanian (bib9) 1992; 74 Global natural gas production doubled between 1980 and 2010, EIA, 2012. Sanders, Smith, Ribeiro, Guo, McGrath, Paul, Freeman (bib39) 2012; 409 Al-Saleh, Duffuaa, Al-Marhoun, Al-Zayer (bib17) 1991; 16 Baker (bib1) 2002; 41 Steel, Koros (bib43) 2005; 43 He, Lie, Sheridan, Hagg (bib63) 2011; 50 Du, Robertson, Pinnau, Guiver (bib24) 2009; 42 Kim, Park, Lee (bib35) 2005; 255 Li, Jo, Han, Park, Kim, Budd, Lee (bib56) 2013; 434 Park, Tocci, Lee, Drioli (bib41) 2012; 116 Geiszler, Koros (bib46) 1996; 35 Thomas, Pinnau, Du, Guiver (bib15) 2009; 333 Ogawa, Nakano (bib64) 2000; 173 McKeown, Budd (bib20) 2002 Haraya (bib59) 2000; 56 Pinnau, Toy (bib10) 1996; 116 Fuertes, Nevskaia, Centeno (bib50) 1999; 33 Tin, Chung, Liu, Wang (bib51) 2004; 42 Du, Park, Dal-Cin, Guiver (bib53) 2012; 5 Visser, Masetto, Wessling (bib14) 2007; 306 Sedigh, Onstot, Xu, Peng, Tsotsis, Sahimi (bib65) 1998; 102 Pinnau, Casillas, Morisato, Freeman (bib11) 1996; 34 Vu, Koros, Miller (bib18) 2002; 41 Du, Robertson, Pinnau, Guiver (bib26) 2010; 43 Merkel, Freeman, Spontak, He, Pinnau, Meakin, Hill (bib13) 2002; 296 Bernardo, Drioli (bib6) 2010; 50 Du, Robertson, Song, Pinnau, Thomas, Guiver (bib22) 2008; 41 Du, Park, Robertson, Dal-Cin, Visser, Scoles, Guiver (bib60) 2011; 10 Vu, Koros, Miller (bib49) 2003; 42 Kusakabe, Yamamoto, Morooka (bib47) 1998; 149 Shao, Chung, Pramoda (bib45) 2005; 84 Baker (bib2) 2004 Park, Jung, Lee, Hill, Pas, Mudie, Van Wagner, Freeman, Cookson (bib38) 2007; 318 Han, Lee (bib54) 2011 D. Bessarabov, UGS project uses UOP technology to remove impurities from gas, Membrane Technology 2010 (2010) 2. Bos, Punt, Wessling, Strathmann (bib12) 1998; 14 Steel, Koros (bib44) 2003; 41 Ma, Swaidan, Teng, Tan, Salinas, Litwiller, Han, Pinnau (bib55) 2013; 62 Vu, Koros, Miller (bib48) 2003; 221 Suda, Haraya (bib58) 1997; 101 Budd, Ghanem, Makhseed, McKeown, Msayib, Tattershall (bib21) 2004 Jones, Koros (bib33) 1994; 32 Budd (10.1016/j.memsci.2013.07.057_bib21) 2004 Ma (10.1016/j.memsci.2013.07.057_bib28) 2012; 45 Al-Saleh (10.1016/j.memsci.2013.07.057_bib17) 1991; 16 Vu (10.1016/j.memsci.2013.07.057_bib49) 2003; 42 Ash (10.1016/j.memsci.2013.07.057_bib62) 1973; 1 Ghanem (10.1016/j.memsci.2013.07.057_bib30) 2008; 20 Pinnau (10.1016/j.memsci.2013.07.057_bib10) 1996; 116 Bos (10.1016/j.memsci.2013.07.057_bib12) 1998; 14 Robeson (10.1016/j.memsci.2013.07.057_bib19) 2008; 320 Sanders (10.1016/j.memsci.2013.07.057_bib39) 2012; 409 Tin (10.1016/j.memsci.2013.07.057_bib51) 2004; 42 Baker (10.1016/j.memsci.2013.07.057_bib4) 2008; 47 Pinnau (10.1016/j.memsci.2013.07.057_bib11) 1996; 34 Du (10.1016/j.memsci.2013.07.057_bib22) 2008; 41 Haraya (10.1016/j.memsci.2013.07.057_bib59) 2000; 56 Park (10.1016/j.memsci.2013.07.057_bib34) 2004; 229 Budd (10.1016/j.memsci.2013.07.057_bib23) 2008; 325 Ma (10.1016/j.memsci.2013.07.057_bib55) 2013; 62 Vu (10.1016/j.memsci.2013.07.057_bib18) 2002; 41 Merkel (10.1016/j.memsci.2013.07.057_bib13) 2002; 296 Sanders (10.1016/j.memsci.2013.07.057_bib9) 1992; 74 Centeno (10.1016/j.memsci.2013.07.057_bib52) 1999; 160 Bezzu (10.1016/j.memsci.2013.07.057_bib29) 2012; 24 Jones (10.1016/j.memsci.2013.07.057_bib33) 1994; 32 Scholes (10.1016/j.memsci.2013.07.057_bib5) 2012; 96 Du (10.1016/j.memsci.2013.07.057_bib24) 2009; 42 Weber (10.1016/j.memsci.2013.07.057_bib31) 2007; 28 Kim (10.1016/j.memsci.2013.07.057_bib35) 2005; 255 Sanders (10.1016/j.memsci.2013.07.057_bib8) 1988; 37 Ogawa (10.1016/j.memsci.2013.07.057_bib64) 2000; 173 Baker (10.1016/j.memsci.2013.07.057_bib2) 2004 Kusakabe (10.1016/j.memsci.2013.07.057_bib47) 1998; 149 Ash (10.1016/j.memsci.2013.07.057_bib61) 1963; 271 He (10.1016/j.memsci.2013.07.057_bib63) 2011; 50 Koresh (10.1016/j.memsci.2013.07.057_bib32) 1983; 18 Geiszler (10.1016/j.memsci.2013.07.057_bib46) 1996; 35 Visser (10.1016/j.memsci.2013.07.057_bib14) 2007; 306 Kiyono (10.1016/j.memsci.2013.07.057_bib36) 2010; 48 Park (10.1016/j.memsci.2013.07.057_bib41) 2012; 116 McKeown (10.1016/j.memsci.2013.07.057_bib20) 2002 Ghanem (10.1016/j.memsci.2013.07.057_bib25) 2009; 42 Vu (10.1016/j.memsci.2013.07.057_bib48) 2003; 221 Du (10.1016/j.memsci.2013.07.057_bib26) 2010; 43 Guo (10.1016/j.memsci.2013.07.057_bib40) 2013; 1 Calle (10.1016/j.memsci.2013.07.057_bib42) 2012; 53 Thomas (10.1016/j.memsci.2013.07.057_bib16) 2009; 338 Fuertes (10.1016/j.memsci.2013.07.057_bib50) 1999; 33 Du (10.1016/j.memsci.2013.07.057_bib60) 2011; 10 Steel (10.1016/j.memsci.2013.07.057_bib44) 2003; 41 Suda (10.1016/j.memsci.2013.07.057_bib58) 1997; 101 Baker (10.1016/j.memsci.2013.07.057_bib1) 2002; 41 Thomas (10.1016/j.memsci.2013.07.057_bib15) 2009; 333 Du (10.1016/j.memsci.2013.07.057_bib53) 2012; 5 10.1016/j.memsci.2013.07.057_bib7 Sedigh (10.1016/j.memsci.2013.07.057_bib65) 1998; 102 10.1016/j.memsci.2013.07.057_bib3 Park (10.1016/j.memsci.2013.07.057_bib38) 2007; 318 Shao (10.1016/j.memsci.2013.07.057_bib45) 2005; 84 Bernardo (10.1016/j.memsci.2013.07.057_bib6) 2010; 50 Steel (10.1016/j.memsci.2013.07.057_bib43) 2005; 43 Obrien (10.1016/j.memsci.2013.07.057_bib57) 1986; 29 Han (10.1016/j.memsci.2013.07.057_bib54) 2011 McKeown (10.1016/j.memsci.2013.07.057_bib27) 2012; 2012 Rungta (10.1016/j.memsci.2013.07.057_bib37) 2012; 50 Li (10.1016/j.memsci.2013.07.057_bib56) 2013; 434 |
References_xml | – volume: 42 start-page: 7881 year: 2009 end-page: 7888 ident: bib25 article-title: Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides publication-title: Macromolecules – year: 2004 ident: bib2 article-title: Membrane Technology and Applications – volume: 24 start-page: 5930 year: 2012 ident: bib29 article-title: Polymer of intrinsic microporosity with improved performance for gas separation publication-title: Advanced Materials – volume: 96 start-page: 15 year: 2012 end-page: 28 ident: bib5 article-title: Membrane gas separation applications in natural gas processing publication-title: Fuel – volume: 271 start-page: 19 year: 1963 ident: bib61 article-title: Flow of adsorbable gases and vapours in a microporous medium. 2. Binary mixtures publication-title: Proceedings of the Royal Society of London, Series A – volume: 84 start-page: 59 year: 2005 end-page: 68 ident: bib45 article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon publication-title: Microporous and Mesoporous Materials – start-page: 230 year: 2004 end-page: 231 ident: bib21 article-title: Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials publication-title: Chemical Communications – volume: 14 start-page: 27 year: 1998 end-page: 39 ident: bib12 article-title: Plasticization-resistant glassy polyimide membranes for CO publication-title: Separation and Purification Technology – volume: 338 start-page: 1 year: 2009 end-page: 4 ident: bib16 article-title: Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer publication-title: Journal of Membrane Science – volume: 33 start-page: 115 year: 1999 end-page: 125 ident: bib50 article-title: Carbon composite membranes from Matrimid (R) and Kapton (R) polyimides for gas separation publication-title: Microporous and Mesoporous Materials – volume: 102 start-page: 8580 year: 1998 end-page: 8589 ident: bib65 article-title: Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieve membranes publication-title: Journal of Physical Chemistry A – volume: 318 start-page: 254 year: 2007 end-page: 258 ident: bib38 article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions publication-title: Science – volume: 48 start-page: 4432 year: 2010 end-page: 4441 ident: bib36 article-title: Effect of polymer precursors on carbon molecular sieve structure and separation performance properties publication-title: Carbon – volume: 255 start-page: 265 year: 2005 end-page: 273 ident: bib35 article-title: Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties publication-title: Journal of Membrane Science – volume: 5 start-page: 7306 year: 2012 end-page: 7322 ident: bib53 article-title: Advances in high permeability polymeric membrane materials for CO publication-title: Energy & Environmental Science – volume: 42 start-page: 3123 year: 2004 end-page: 3131 ident: bib51 article-title: Separation of CO publication-title: Carbon – volume: 42 start-page: 6023 year: 2009 end-page: 6030 ident: bib24 article-title: Polymers of intrinsic microporosity derived from novel disulfone-based monomers publication-title: Macromolecules – volume: 320 start-page: 390 year: 2008 end-page: 400 ident: bib19 article-title: The upper bound revisited publication-title: Journal of Membrane Science – volume: 409 start-page: 232 year: 2012 end-page: 241 ident: bib39 article-title: Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) publication-title: Journal of Membrane Science – volume: 306 start-page: 16 year: 2007 end-page: 28 ident: bib14 article-title: Materials dependence of mixed gas plasticization behavior in asymmetric membranes publication-title: Journal of Membrane Science – volume: 29 start-page: 229 year: 1986 end-page: 238 ident: bib57 article-title: Technique for the measurement of multicomponent gas-transport through polymeric films publication-title: Journal of Membrane Science – volume: 28 start-page: 1871 year: 2007 end-page: 1876 ident: bib31 article-title: Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and polyimide publication-title: Macromolecular Rapid Communications – volume: 229 start-page: 117 year: 2004 end-page: 127 ident: bib34 article-title: Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes publication-title: Journal of Membrane Science – volume: 325 start-page: 851 year: 2008 end-page: 860 ident: bib23 article-title: Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1 publication-title: Journal of Membrane Science – volume: 2012 start-page: 16 year: 2012 ident: bib27 article-title: Polymers of intrinsic microporosity publication-title: ISRN Materials Science – year: 2011 ident: bib54 article-title: Recent high performance polymer membranes for CO publication-title: Membrane Engineering for the Treatment of Gases – reference: Global natural gas production doubled between 1980 and 2010, EIA, 2012. – volume: 62 start-page: 88 year: 2013 end-page: 96 ident: bib55 article-title: Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor publication-title: Carbon – volume: 296 start-page: 519 year: 2002 end-page: 522 ident: bib13 article-title: Ultrapermeable, reverse-selective nanocomposite membranes publication-title: Science – volume: 53 start-page: 2783 year: 2012 end-page: 2791 ident: bib42 article-title: The relationship between the chemical structure and thermal conversion temperatures of thermally rearranged (TR) polymers publication-title: Polymer – volume: 1 start-page: 262 year: 2013 end-page: 272 ident: bib40 article-title: Synthesis and characterization of Thermally Rearranged (TR) polymers: influence of ortho-positioned functional groups of polyimide precursors on TR process and gas transport properties publication-title: Journal of Materials Chemistry A – volume: 41 start-page: 9656 year: 2008 end-page: 9662 ident: bib22 article-title: Polymers of Intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation publication-title: Macromolecules – volume: 434 start-page: 137 year: 2013 end-page: 147 ident: bib56 article-title: Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation publication-title: Journal of Membrane Science – volume: 43 start-page: 8580 year: 2010 end-page: 8587 ident: bib26 article-title: Polymers of intrinsic microporosity with dinaphthyl and thianthrene segments publication-title: Macromolecules – volume: 47 start-page: 2109 year: 2008 end-page: 2121 ident: bib4 article-title: Natural gas processing with membranes: An overview publication-title: Industrial & Engineering Chemistry Research – volume: 41 start-page: 1393 year: 2002 end-page: 1411 ident: bib1 article-title: Future directions of membrane gas separation technology publication-title: Industrial & Engineering Chemistry Research – volume: 20 start-page: 2766 year: 2008 end-page: 2771 ident: bib30 article-title: High-performance membranes from polyimides with intrinsic microporosity publication-title: Advanced Materials – volume: 50 start-page: 2080 year: 2011 end-page: 2087 ident: bib63 article-title: Preparation and characterization of hollow fiber carbon membranes from cellulose acetate precursors publication-title: Industrial & Engineering Chemistry Research – volume: 116 start-page: 199 year: 1996 end-page: 209 ident: bib10 article-title: Transport of organic vapors through poly(1-trimethylsilyl-1-propyne) publication-title: Journal of Membrane Science – reference: D. Bessarabov, UGS project uses UOP technology to remove impurities from gas, Membrane Technology 2010 (2010) 2. – volume: 173 start-page: 123 year: 2000 end-page: 132 ident: bib64 article-title: Separation of CO publication-title: Journal of Membrane Science – volume: 45 start-page: 3841 year: 2012 end-page: 3849 ident: bib28 article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity publication-title: Macromolecules – volume: 42 start-page: 1064 year: 2003 end-page: 1075 ident: bib49 article-title: Effect of condensable impurities in CO publication-title: Industrial & Engineering Chemistry Research – year: 2002 ident: bib20 article-title: Polymers of intrinsic microporosity publication-title: Encyclopedia of Polymer Science and Technology – volume: 37 start-page: 63 year: 1988 end-page: 80 ident: bib8 article-title: Penetrant-induced plasticization and gas permeation in glassy-polymers publication-title: Journal of Membrane Science – volume: 41 start-page: 367 year: 2002 end-page: 380 ident: bib18 article-title: High pressure CO publication-title: Industrial & Engineering Chemistry Research – volume: 56 start-page: P20 year: 2000 end-page: P24 ident: bib59 article-title: Carbon molecular sieve membrane for gas separation publication-title: Sen-I Gakkaishi – volume: 32 start-page: 1419 year: 1994 end-page: 1425 ident: bib33 article-title: Carbon molecular-sieve gas separation membranes. 1. Preparation and characterization based on polyimide precursors publication-title: Carbon – volume: 43 start-page: 1843 year: 2005 end-page: 1856 ident: bib43 article-title: An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials publication-title: Carbon – volume: 149 start-page: 59 year: 1998 end-page: 67 ident: bib47 article-title: Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation publication-title: Journal of Membrane Science – volume: 34 start-page: 2613 year: 1996 end-page: 2621 ident: bib11 article-title: Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and PTMSP/PPP blends publication-title: Journal of Polymer Science: Polymer Physics – volume: 10 start-page: 372 year: 2011 end-page: 375 ident: bib60 article-title: Polymer nanosieve membranes for CO publication-title: Nature Materials – volume: 160 start-page: 201 year: 1999 end-page: 211 ident: bib52 article-title: Supported carbon molecular sieve membranes based on a phenolic resin publication-title: Journal of Membrane Science – volume: 116 start-page: 12864 year: 2012 end-page: 12877 ident: bib41 article-title: Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO) publication-title: Journal of Physical Chemistry B – volume: 101 start-page: 3988 year: 1997 end-page: 3994 ident: bib58 article-title: Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide publication-title: Journal of Physical Chemistry B – volume: 41 start-page: 253 year: 2003 end-page: 266 ident: bib44 article-title: Investigation of porosity of carbon materials and related effects on gas separation properties publication-title: Carbon – volume: 50 start-page: 1488 year: 2012 end-page: 1502 ident: bib37 article-title: Carbon molecular sieve dense film membranes derived from Matrimid (R) for ethylene/ethane separation publication-title: Carbon – volume: 74 start-page: 29 year: 1992 end-page: 36 ident: bib9 article-title: Penetrant-plasticized permeation in polymethylmethacrylate publication-title: Journal of Membrane Science – volume: 1 start-page: 2166 year: 1973 end-page: 2178 ident: bib62 article-title: Transport of single gases and of binary gas-mixtures in a microporous carbon membrane publication-title: Journal of the Chemical Society, Faraday Transactions – volume: 50 start-page: 271 year: 2010 end-page: 282 ident: bib6 article-title: Membrane gas separation progresses for process intensification strategy in the petrochemical industry publication-title: Petroleum Chemistry – volume: 333 start-page: 125 year: 2009 end-page: 131 ident: bib15 article-title: Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1) publication-title: Journal of Membrane Science – volume: 221 start-page: 233 year: 2003 end-page: 239 ident: bib48 article-title: Effect of condensable impurity in CO publication-title: Journal of Membrane Science – volume: 18 start-page: 723 year: 1983 end-page: 734 ident: bib32 article-title: Molecular-sieve carbon permselective membrane. 1. Presentation of a new device for gas-mixture separation publication-title: Separation Science and Technology – volume: 16 start-page: 1089 year: 1991 end-page: 1099 ident: bib17 article-title: Impact of crude oil production on the petrochemical industry in Saudi Arabia publication-title: Energy – volume: 35 start-page: 2999 year: 1996 end-page: 3003 ident: bib46 article-title: Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties publication-title: Industrial & Engineering Chemistry Research – volume: 41 start-page: 367 year: 2002 ident: 10.1016/j.memsci.2013.07.057_bib18 article-title: High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie010119w – volume: 37 start-page: 63 year: 1988 ident: 10.1016/j.memsci.2013.07.057_bib8 article-title: Penetrant-induced plasticization and gas permeation in glassy-polymers publication-title: Journal of Membrane Science doi: 10.1016/S0376-7388(00)85069-3 – volume: 47 start-page: 2109 year: 2008 ident: 10.1016/j.memsci.2013.07.057_bib4 article-title: Natural gas processing with membranes: An overview publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie071083w – volume: 84 start-page: 59 year: 2005 ident: 10.1016/j.memsci.2013.07.057_bib45 article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon publication-title: Microporous and Mesoporous Materials doi: 10.1016/j.micromeso.2005.04.026 – volume: 116 start-page: 12864 year: 2012 ident: 10.1016/j.memsci.2013.07.057_bib41 article-title: Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO) publication-title: Journal of Physical Chemistry B doi: 10.1021/jp307365y – volume: 229 start-page: 117 year: 2004 ident: 10.1016/j.memsci.2013.07.057_bib34 article-title: Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2003.10.023 – volume: 14 start-page: 27 year: 1998 ident: 10.1016/j.memsci.2013.07.057_bib12 article-title: Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations publication-title: Separation and Purification Technology doi: 10.1016/S1383-5866(98)00057-4 – year: 2004 ident: 10.1016/j.memsci.2013.07.057_bib2 – volume: 24 start-page: 5930 year: 2012 ident: 10.1016/j.memsci.2013.07.057_bib29 article-title: Polymer of intrinsic microporosity with improved performance for gas separation publication-title: Advanced Materials doi: 10.1002/adma.201202393 – ident: 10.1016/j.memsci.2013.07.057_bib7 doi: 10.1016/S0958-2118(10)70081-1 – volume: 29 start-page: 229 year: 1986 ident: 10.1016/j.memsci.2013.07.057_bib57 article-title: Technique for the measurement of multicomponent gas-transport through polymeric films publication-title: Journal of Membrane Science doi: 10.1016/S0376-7388(00)81262-4 – volume: 42 start-page: 6023 year: 2009 ident: 10.1016/j.memsci.2013.07.057_bib24 article-title: Polymers of intrinsic microporosity derived from novel disulfone-based monomers publication-title: Macromolecules doi: 10.1021/ma900898m – volume: 43 start-page: 8580 year: 2010 ident: 10.1016/j.memsci.2013.07.057_bib26 article-title: Polymers of intrinsic microporosity with dinaphthyl and thianthrene segments publication-title: Macromolecules doi: 10.1021/ma101930x – volume: 33 start-page: 115 year: 1999 ident: 10.1016/j.memsci.2013.07.057_bib50 article-title: Carbon composite membranes from Matrimid (R) and Kapton (R) polyimides for gas separation publication-title: Microporous and Mesoporous Materials doi: 10.1016/S1387-1811(99)00129-8 – volume: 62 start-page: 88 year: 2013 ident: 10.1016/j.memsci.2013.07.057_bib55 article-title: Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor publication-title: Carbon doi: 10.1016/j.carbon.2013.05.057 – start-page: 230 year: 2004 ident: 10.1016/j.memsci.2013.07.057_bib21 article-title: Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials publication-title: Chemical Communications doi: 10.1039/b311764b – volume: 160 start-page: 201 year: 1999 ident: 10.1016/j.memsci.2013.07.057_bib52 article-title: Supported carbon molecular sieve membranes based on a phenolic resin publication-title: Journal of Membrane Science doi: 10.1016/S0376-7388(99)00083-6 – volume: 50 start-page: 2080 year: 2011 ident: 10.1016/j.memsci.2013.07.057_bib63 article-title: Preparation and characterization of hollow fiber carbon membranes from cellulose acetate precursors publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie101978q – ident: 10.1016/j.memsci.2013.07.057_bib3 – volume: 35 start-page: 2999 year: 1996 ident: 10.1016/j.memsci.2013.07.057_bib46 article-title: Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie950746j – volume: 10 start-page: 372 year: 2011 ident: 10.1016/j.memsci.2013.07.057_bib60 article-title: Polymer nanosieve membranes for CO2-capture applications publication-title: Nature Materials doi: 10.1038/nmat2989 – volume: 96 start-page: 15 year: 2012 ident: 10.1016/j.memsci.2013.07.057_bib5 article-title: Membrane gas separation applications in natural gas processing publication-title: Fuel doi: 10.1016/j.fuel.2011.12.074 – volume: 2012 start-page: 16 year: 2012 ident: 10.1016/j.memsci.2013.07.057_bib27 article-title: Polymers of intrinsic microporosity publication-title: ISRN Materials Science doi: 10.5402/2012/513986 – volume: 20 start-page: 2766 year: 2008 ident: 10.1016/j.memsci.2013.07.057_bib30 article-title: High-performance membranes from polyimides with intrinsic microporosity publication-title: Advanced Materials doi: 10.1002/adma.200702400 – volume: 173 start-page: 123 year: 2000 ident: 10.1016/j.memsci.2013.07.057_bib64 article-title: Separation of CO2/CH4 mixture through carbonized membrane prepared by gel modification publication-title: Journal of Membrane Science doi: 10.1016/S0376-7388(00)00352-5 – volume: 318 start-page: 254 year: 2007 ident: 10.1016/j.memsci.2013.07.057_bib38 article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions publication-title: Science doi: 10.1126/science.1146744 – volume: 42 start-page: 3123 year: 2004 ident: 10.1016/j.memsci.2013.07.057_bib51 article-title: Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide publication-title: Carbon doi: 10.1016/j.carbon.2004.07.026 – year: 2002 ident: 10.1016/j.memsci.2013.07.057_bib20 article-title: Polymers of intrinsic microporosity – volume: 5 start-page: 7306 year: 2012 ident: 10.1016/j.memsci.2013.07.057_bib53 article-title: Advances in high permeability polymeric membrane materials for CO2 separations publication-title: Energy & Environmental Science doi: 10.1039/C1EE02668B – volume: 255 start-page: 265 year: 2005 ident: 10.1016/j.memsci.2013.07.057_bib35 article-title: Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2005.02.002 – volume: 41 start-page: 9656 year: 2008 ident: 10.1016/j.memsci.2013.07.057_bib22 article-title: Polymers of Intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation publication-title: Macromolecules doi: 10.1021/ma801858d – volume: 221 start-page: 233 year: 2003 ident: 10.1016/j.memsci.2013.07.057_bib48 article-title: Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves publication-title: Journal of Membrane Science doi: 10.1016/S0376-7388(03)00245-X – volume: 102 start-page: 8580 year: 1998 ident: 10.1016/j.memsci.2013.07.057_bib65 article-title: Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieve membranes publication-title: Journal of Physical Chemistry A doi: 10.1021/jp982075j – volume: 32 start-page: 1419 year: 1994 ident: 10.1016/j.memsci.2013.07.057_bib33 article-title: Carbon molecular-sieve gas separation membranes. 1. Preparation and characterization based on polyimide precursors publication-title: Carbon doi: 10.1016/0008-6223(94)90135-X – volume: 1 start-page: 262 year: 2013 ident: 10.1016/j.memsci.2013.07.057_bib40 article-title: Synthesis and characterization of Thermally Rearranged (TR) polymers: influence of ortho-positioned functional groups of polyimide precursors on TR process and gas transport properties publication-title: Journal of Materials Chemistry A doi: 10.1039/C2TA00799A – volume: 34 start-page: 2613 year: 1996 ident: 10.1016/j.memsci.2013.07.057_bib11 article-title: Hydrocarbon/hydrogen mixed gas permeation in poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and PTMSP/PPP blends publication-title: Journal of Polymer Science: Polymer Physics – volume: 43 start-page: 1843 year: 2005 ident: 10.1016/j.memsci.2013.07.057_bib43 article-title: An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials publication-title: Carbon doi: 10.1016/j.carbon.2005.02.028 – volume: 28 start-page: 1871 year: 2007 ident: 10.1016/j.memsci.2013.07.057_bib31 article-title: Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and polyimide publication-title: Macromolecular Rapid Communications doi: 10.1002/marc.200700346 – volume: 320 start-page: 390 year: 2008 ident: 10.1016/j.memsci.2013.07.057_bib19 article-title: The upper bound revisited publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2008.04.030 – volume: 116 start-page: 199 year: 1996 ident: 10.1016/j.memsci.2013.07.057_bib10 article-title: Transport of organic vapors through poly(1-trimethylsilyl-1-propyne) publication-title: Journal of Membrane Science doi: 10.1016/0376-7388(96)00041-5 – volume: 48 start-page: 4432 year: 2010 ident: 10.1016/j.memsci.2013.07.057_bib36 article-title: Effect of polymer precursors on carbon molecular sieve structure and separation performance properties publication-title: Carbon doi: 10.1016/j.carbon.2010.08.002 – volume: 56 start-page: P20 year: 2000 ident: 10.1016/j.memsci.2013.07.057_bib59 article-title: Carbon molecular sieve membrane for gas separation publication-title: Sen-I Gakkaishi doi: 10.2115/fiber.56.P_20 – volume: 338 start-page: 1 year: 2009 ident: 10.1016/j.memsci.2013.07.057_bib16 article-title: Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2009.04.021 – volume: 45 start-page: 3841 year: 2012 ident: 10.1016/j.memsci.2013.07.057_bib28 article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity publication-title: Macromolecules doi: 10.1021/ma300549m – volume: 434 start-page: 137 year: 2013 ident: 10.1016/j.memsci.2013.07.057_bib56 article-title: Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2013.01.011 – volume: 50 start-page: 271 year: 2010 ident: 10.1016/j.memsci.2013.07.057_bib6 article-title: Membrane gas separation progresses for process intensification strategy in the petrochemical industry publication-title: Petroleum Chemistry doi: 10.1134/S0965544110040043 – volume: 50 start-page: 1488 year: 2012 ident: 10.1016/j.memsci.2013.07.057_bib37 article-title: Carbon molecular sieve dense film membranes derived from Matrimid (R) for ethylene/ethane separation publication-title: Carbon doi: 10.1016/j.carbon.2011.11.019 – volume: 41 start-page: 1393 year: 2002 ident: 10.1016/j.memsci.2013.07.057_bib1 article-title: Future directions of membrane gas separation technology publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie0108088 – volume: 296 start-page: 519 year: 2002 ident: 10.1016/j.memsci.2013.07.057_bib13 article-title: Ultrapermeable, reverse-selective nanocomposite membranes publication-title: Science doi: 10.1126/science.1069580 – volume: 333 start-page: 125 year: 2009 ident: 10.1016/j.memsci.2013.07.057_bib15 article-title: Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1) publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2009.02.003 – volume: 41 start-page: 253 year: 2003 ident: 10.1016/j.memsci.2013.07.057_bib44 article-title: Investigation of porosity of carbon materials and related effects on gas separation properties publication-title: Carbon doi: 10.1016/S0008-6223(02)00309-3 – volume: 42 start-page: 7881 year: 2009 ident: 10.1016/j.memsci.2013.07.057_bib25 article-title: Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides publication-title: Macromolecules doi: 10.1021/ma901430q – volume: 1 start-page: 2166 issue: 69 year: 1973 ident: 10.1016/j.memsci.2013.07.057_bib62 article-title: Transport of single gases and of binary gas-mixtures in a microporous carbon membrane publication-title: Journal of the Chemical Society, Faraday Transactions doi: 10.1039/f19736902166 – volume: 16 start-page: 1089 year: 1991 ident: 10.1016/j.memsci.2013.07.057_bib17 article-title: Impact of crude oil production on the petrochemical industry in Saudi Arabia publication-title: Energy doi: 10.1016/0360-5442(91)90141-8 – volume: 42 start-page: 1064 year: 2003 ident: 10.1016/j.memsci.2013.07.057_bib49 article-title: Effect of condensable impurities in CO2/CH4 gas feeds on carbon molecular sieve hollow-fiber membranes publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie020698k – year: 2011 ident: 10.1016/j.memsci.2013.07.057_bib54 article-title: Recent high performance polymer membranes for CO2 separation – volume: 271 start-page: 19 year: 1963 ident: 10.1016/j.memsci.2013.07.057_bib61 article-title: Flow of adsorbable gases and vapours in a microporous medium. 2. Binary mixtures publication-title: Proceedings of the Royal Society of London, Series A – volume: 101 start-page: 3988 year: 1997 ident: 10.1016/j.memsci.2013.07.057_bib58 article-title: Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide publication-title: Journal of Physical Chemistry B doi: 10.1021/jp963997u – volume: 325 start-page: 851 year: 2008 ident: 10.1016/j.memsci.2013.07.057_bib23 article-title: Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1 publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2008.09.010 – volume: 53 start-page: 2783 year: 2012 ident: 10.1016/j.memsci.2013.07.057_bib42 article-title: The relationship between the chemical structure and thermal conversion temperatures of thermally rearranged (TR) polymers publication-title: Polymer doi: 10.1016/j.polymer.2012.04.032 – volume: 74 start-page: 29 year: 1992 ident: 10.1016/j.memsci.2013.07.057_bib9 article-title: Penetrant-plasticized permeation in polymethylmethacrylate publication-title: Journal of Membrane Science doi: 10.1016/0376-7388(92)87070-E – volume: 18 start-page: 723 year: 1983 ident: 10.1016/j.memsci.2013.07.057_bib32 article-title: Molecular-sieve carbon permselective membrane. 1. Presentation of a new device for gas-mixture separation publication-title: Separation Science and Technology doi: 10.1080/01496398308068576 – volume: 306 start-page: 16 year: 2007 ident: 10.1016/j.memsci.2013.07.057_bib14 article-title: Materials dependence of mixed gas plasticization behavior in asymmetric membranes publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2007.07.048 – volume: 409 start-page: 232 year: 2012 ident: 10.1016/j.memsci.2013.07.057_bib39 article-title: Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxy-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) publication-title: Journal of Membrane Science doi: 10.1016/j.memsci.2012.03.060 – volume: 149 start-page: 59 year: 1998 ident: 10.1016/j.memsci.2013.07.057_bib47 article-title: Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation publication-title: Journal of Membrane Science doi: 10.1016/S0376-7388(98)00156-2 |
SSID | ssj0017089 |
Score | 2.4823456 |
Snippet | Natural gas sweetening, one of the most promising venues for the growth of the membrane gas separation industry, is dominated by polymeric materials with... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 387 |
SubjectTerms | artificial membranes Carbon Carbon dioxide Carbon molecular sieve Chemistry CO2/CH4 mixed-gas permeation Colloidal state and disperse state Exact sciences and technology Gas separation General and physical chemistry heat treatment Intrinsic microporosity Membranes methane Microporosity Molecular sieves natural gas Permeability Polyimide resins polymers Porous materials Selectivity Thermal-rearrangement |
Title | High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity |
URI | https://dx.doi.org/10.1016/j.memsci.2013.07.057 https://www.proquest.com/docview/1513461710 https://www.proquest.com/docview/1753501527 https://www.proquest.com/docview/1803110440 |
Volume | 447 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QIHxFNbHpWRuJo6jpO4x1XFqoBYDkulvVl2bK-CmqRK2hW98Hv4mczkUbFC7EpcKqUZJ05mPP5G-WaGkHeR46mac8WSfM4ZGIVgRnLLYFnZEMskZBJzh7-cp8uV_HSZXB6RxZgLg7TKwff3Pr3z1sM_s-FtzjZFMbvgWIgkVgo_yKRxjEl8UmZo5e9_HmgeUca7NngozFB6TJ_rOF6lL-HSSPCK-xKe2b-2p3vB1MibNC28utD3vPjLfXd70tlj8mgAk_S0n-8TcuSrp-ThHyUGn5FfSOSgHdt113i6gR9GTeVoWfzwjl2Zlra-r_9dV7QOdPFVzBZLSe2eIjYszXq9Zw0yejENwXVjc9NYkC7H1rq0Lfy1p_CcEHuD76QO7n4Nwpi8Qg3d1Ot9URbO4w2KagtTA-OAKWD_sLpB3tj-OVmdffi2WLKhOwPLATNtmU9NmHsTrMggKvJBGOkCIDYjrM-8AxzjMpcbhFAiBOssBFbzzCbGBm-El_ELclzVlT8hFPyK5SHizqdOhjxVPlYcjCuoNHAXywmJR6XofChdjh001nrkqH3XvSo1qlLzTIMqJ4QdRm360h13yGejvvUNE9Swu9wx8gTMQ5sr8Mt6dSGwal-HZRWcmt6wmcNMBIQ1KpJiQt6ORqRhZePnGlBUvWs1YLFYAsCM-C0yEG0mHFsT3yKjwHFH2Fr85X8_4SvyAI_6JMzX5Hjb7PwbQGNbO-2W25TcP_34eXn-G5YZNtQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBba9LDtMOyJZo9OA3YVotjy61gEK9y1zQ5tgN4EyZIKD7Ed2Emx_KP-zJJ-BCuGtcAuOdhULJsU9RH6SBLybWp4GCc8ZkGWcAZG4TEluGawrLTzReAigbnDF_MwXYgf18H1HpkNuTBIq-x9f-fTW2_dX5n0X3OyyvPJJcdCJH4c44FM6PvJPjnA6lTBiBwcn56l891hQsTbTngoz3DAkEHX0rwKW8C_I8fL76p4Rv_aofadqpA6qRr4eq5re_GXB2-3pZNX5GWPJ-lxN-XXZM-Wb8iLP6oMviV3yOWgLeF1U1u6gh9GVWlokf-2ht2ohja2KwFelbRydPbTm8xSQfWWIjws1HK5ZTWSejETwbRjM1VrkC6G7rq0ye2tpfCeEH6D-6QGnn4Lwpi_QhVdVcttXuTG4gPycg1TA_uAKWALsapG6tj2HVmcfL-apaxv0MAygE1rZkPlEquc9iIIjKzzlDAOQJvytI2sAShjIpMpRFGec9poiK2SSAdKO6s8K_z3ZFRWpT0kFFyL5m7KjQ2NcFkYWz_mYF8uDh03vhgTf1CKzPrq5dhEYykHmtov2alSoioljySockzYbtSqq97xhHw06Fs-sEIJG8wTIw_BPKS6AdcsF5ceFu5r4WwMt44e2MxuJh5ENvFUeGPydTAiCYsbT2xAUdWmkQDHfAEYc8ofkYGAM-DYnfgRmRh89xS7i3_47zf8Qp6lVxfn8vx0fvaRPMc7XU7mJzJa1xv7GcDZWh_1i-8eFc05hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+pressure+pure-+and+mixed-gas+separation+of+CO2%2FCH4+by+thermally-rearranged+and+carbon+molecular+sieve+membranes+derived+from+a+polyimide+of+intrinsic+microporosity&rft.jtitle=Journal+of+membrane+science&rft.au=Swaidan%2C+Raja&rft.au=Ma%2C+Xiaohua&rft.au=Litwiller%2C+Eric&rft.au=Pinnau%2C+Ingo&rft.date=2013-11-01&rft.issn=0376-7388&rft.volume=447&rft.spage=387&rft.epage=394&rft_id=info:doi/10.1016%2Fj.memsci.2013.07.057&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |