Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study
To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H 2O 2 and Fe 2+, temperature, presence/absence of chloride io...
Saved in:
Published in | Journal of hazardous materials Vol. 161; no. 2; pp. 1052 - 1057 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
30.01.2009
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H
2O
2 and Fe
2+, temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H
2O
2 dosage 1.0
×
10
−2
M and molar ratio of [H
2O
2]/[Fe
2+] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21
×
10
−5 to 1.11
×
10
−4
M of OG, the decolorization efficiencies within 60
min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy
E, was detected to be 34.84
kJ
mol
−1. The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process. |
---|---|
AbstractList | To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H sub(2)O sub(2) and Fe super(2) super(+), temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H sub(2)O sub(2) dosage 1.0x10 super(-) super(2)M and molar ratio of [H sub(2)O sub(2)] /[Fe super(2) super(+)] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21x10 super(-) super(5) to 1.11x10 super(-) super(4)M of OG, the decolorization efficiencies within 60min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84kJmol super(-) super(1). The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process. To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H(2)O(2) and Fe(2+), temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H(2)O(2) dosage 1.0 x 10(-2)M and molar ratio of [H(2)O(2)]/[Fe(2+)] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 x 10(-5) to 1.11 x 10(-4)M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol(-1). The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process.To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H(2)O(2) and Fe(2+), temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H(2)O(2) dosage 1.0 x 10(-2)M and molar ratio of [H(2)O(2)]/[Fe(2+)] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 x 10(-5) to 1.11 x 10(-4)M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol(-1). The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process. To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H2O2 and Fe2+, temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H2O2 dosage 1.0 X 10-2 M and molar ratio of [H2O2]/[Fe2+] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 X 10-5 to 1.11 X 10-4 M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol-1. The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process. To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H(2)O(2) and Fe(2+), temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H(2)O(2) dosage 1.0 x 10(-2)M and molar ratio of [H(2)O(2)]/[Fe(2+)] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 x 10(-5) to 1.11 x 10(-4)M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol(-1). The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process. To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H 2O 2 and Fe 2+, temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H 2O 2 dosage 1.0 × 10 −2 M and molar ratio of [H 2O 2]/[Fe 2+] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 × 10 −5 to 1.11 × 10 −4 M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol −1. The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process. |
Author | Shi, Shao-Hui Zhou, Qi Sun, Sheng-Peng Fan, Mao-Hong Sun, Jian-Hui Li, Cheng-Jie |
Author_xml | – sequence: 1 givenname: Sheng-Peng surname: Sun fullname: Sun, Sheng-Peng organization: State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China – sequence: 2 givenname: Cheng-Jie surname: Li fullname: Li, Cheng-Jie organization: School of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China – sequence: 3 givenname: Jian-Hui surname: Sun fullname: Sun, Jian-Hui email: sunsp_hj@yahoo.com.cn organization: Henan Key Laboratory for Environmental Pollution Control, College of Chemistry and Environmental Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China – sequence: 4 givenname: Shao-Hui surname: Shi fullname: Shi, Shao-Hui organization: Henan Key Laboratory for Environmental Pollution Control, College of Chemistry and Environmental Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China – sequence: 5 givenname: Mao-Hong surname: Fan fullname: Fan, Mao-Hong organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA – sequence: 6 givenname: Qi surname: Zhou fullname: Zhou, Qi organization: State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21235792$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18538927$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URLcLHwHkC9wS_C9xAocKlbYgVeoFzpZjT8BLEi-2F5E988FxuksPXPZkafR743kz7wKdTX4ChF5SUlJC67ebcvNd70edSkZIUxJRkoY8QSvaSF5wzusztCKciII3rThHFzFuCCFUVuIZOqdNlctMrtCfj2D84IPb6-T8hH2P9YT13mM7A74PevoG-Ba7XPu5A7-LOPph94B2M76BKS2i384e5NvgDcT4Dl_3PZi0tItzTDDirQ56hAQh5g8s_uEmSM7gmHZ2fo6e9nqI8OL4rtHXm-svV5-Ku_vbz1cf7gpT1SwVnZG9Zj3lhBrbC9ItHnjXWtFVRlaaUCFso-u6ywCpgPWtbTVljHVGNKzja_Tm0DePmd3EpEYXDQyDnhZrqq4lky2vT4K8yhuWtTwJ0rZuM1ll8NUR3HUjWLUNbtRhVv8ukYHXR0BHo4c-b964-Mgxyngls901en_gTPAxBuiVcelh-SloNyhK1JIPtVHHfKglH4oIlfOR1dV_6sdBTuguDzrI5_nlIKhoHEwGrAv5zsp6d6LDX7do2OY |
CODEN | JHMAD9 |
CitedBy_id | crossref_primary_10_1007_s11356_013_1678_x crossref_primary_10_1080_09593330_2016_1139630 crossref_primary_10_3390_nano11123241 crossref_primary_10_1016_j_apcata_2017_07_001 crossref_primary_10_1039_D4NR02907K crossref_primary_10_1007_s11144_020_01809_5 crossref_primary_10_1002_anie_202112925 crossref_primary_10_1007_s10570_014_0188_4 crossref_primary_10_2174_2213337209666220407113453 crossref_primary_10_1016_j_clay_2014_06_030 crossref_primary_10_15251_JOBM_2022_144_145 crossref_primary_10_5004_dwt_2019_22966 crossref_primary_10_1007_s13204_022_02491_w crossref_primary_10_1016_j_cej_2011_11_109 crossref_primary_10_1016_j_jhazmat_2009_09_009 crossref_primary_10_1007_s10967_024_09600_9 crossref_primary_10_1002_sstr_202100110 crossref_primary_10_1016_j_psep_2018_05_020 crossref_primary_10_5004_dwt_2017_20355 crossref_primary_10_1016_j_jece_2021_105091 crossref_primary_10_1016_j_seppur_2014_11_005 crossref_primary_10_1007_s40974_022_00250_9 crossref_primary_10_1002_wer_1270 crossref_primary_10_1016_j_ecoenv_2018_06_081 crossref_primary_10_3233_MGC_210148 crossref_primary_10_1039_D1QM00134E crossref_primary_10_3389_fonc_2022_939365 crossref_primary_10_3390_ma10101169 crossref_primary_10_1002_wnan_1682 crossref_primary_10_1002_ep_12486 crossref_primary_10_1002_ep_10504 crossref_primary_10_1016_j_apcatb_2013_04_054 crossref_primary_10_1016_j_arabjc_2013_02_009 crossref_primary_10_1016_j_cclet_2021_03_036 crossref_primary_10_17341_gazimmfd_369536 crossref_primary_10_1016_j_psep_2022_07_010 crossref_primary_10_1016_j_apsusc_2024_160998 crossref_primary_10_5004_dwt_2019_24133 crossref_primary_10_1016_j_jwpe_2020_101540 crossref_primary_10_1007_s13762_019_02533_x crossref_primary_10_2965_jwet_2013_529 crossref_primary_10_1007_s11164_015_2035_0 crossref_primary_10_1021_acsomega_9b00170 crossref_primary_10_1149_2_026310jes crossref_primary_10_1007_s11270_012_1385_0 crossref_primary_10_1016_j_jtice_2014_04_019 crossref_primary_10_17482_uumfd_366155 crossref_primary_10_1002_clen_202000432 crossref_primary_10_1016_j_redox_2025_103515 crossref_primary_10_1016_j_seppur_2022_122052 crossref_primary_10_1134_S1070427212070129 crossref_primary_10_1016_j_jwpe_2022_102685 crossref_primary_10_1002_aoc_3903 crossref_primary_10_1007_s10098_017_1447_5 crossref_primary_10_1016_j_cej_2014_04_088 crossref_primary_10_5004_dwt_2018_22197 crossref_primary_10_1016_j_jes_2015_12_017 crossref_primary_10_1007_s40090_016_0071_2 crossref_primary_10_1007_s11356_018_3710_7 crossref_primary_10_1016_j_mssp_2015_10_018 crossref_primary_10_1016_j_seppur_2009_12_017 crossref_primary_10_1515_zpch_2017_1072 crossref_primary_10_1038_s41467_020_15730_x crossref_primary_10_1016_j_ijbiomac_2019_03_055 crossref_primary_10_1016_j_jscs_2013_07_004 crossref_primary_10_1002_apj_2200 crossref_primary_10_1039_C7RA08317C crossref_primary_10_1080_17458080_2019_1655143 crossref_primary_10_1021_ie403226v crossref_primary_10_1016_j_jhazmat_2010_12_089 crossref_primary_10_1016_j_cherd_2023_07_013 crossref_primary_10_1007_s13369_023_08297_4 crossref_primary_10_1002_smll_202004723 crossref_primary_10_1080_19443994_2013_773862 crossref_primary_10_1016_j_envres_2025_121048 crossref_primary_10_1016_j_jclepro_2023_139127 crossref_primary_10_1007_s11356_016_6360_7 crossref_primary_10_1088_1757_899X_495_1_012053 crossref_primary_10_3390_w14213381 crossref_primary_10_1016_j_matchemphys_2021_125583 crossref_primary_10_1016_j_biortech_2017_10_030 crossref_primary_10_1016_j_jhazmat_2025_137984 crossref_primary_10_2139_ssrn_4193752 crossref_primary_10_1039_C4RA13734E crossref_primary_10_1007_s11356_013_2099_6 crossref_primary_10_1080_03067319_2023_2178917 crossref_primary_10_2147_IJN_S475698 crossref_primary_10_1016_j_seppur_2022_121549 crossref_primary_10_1016_j_biortech_2012_09_001 crossref_primary_10_1155_2014_821674 crossref_primary_10_5004_dwt_2017_21370 crossref_primary_10_1016_j_seppur_2020_117270 crossref_primary_10_34133_research_0061 crossref_primary_10_1016_j_seppur_2014_06_009 crossref_primary_10_1016_j_micromeso_2017_07_036 crossref_primary_10_1080_09593330_2025_2450554 crossref_primary_10_1007_s10562_020_03403_9 crossref_primary_10_1007_s11814_015_0115_x crossref_primary_10_1002_ange_202112925 crossref_primary_10_1016_j_jwpe_2015_01_006 crossref_primary_10_1021_acsapm_0c00629 crossref_primary_10_21597_jist_1261438 crossref_primary_10_1080_19443994_2013_774296 crossref_primary_10_1016_j_jphotochem_2023_115246 crossref_primary_10_1080_03067319_2020_1786546 crossref_primary_10_1016_j_cej_2024_149640 crossref_primary_10_1180_clm_2018_18 crossref_primary_10_1016_j_cej_2012_12_060 crossref_primary_10_1021_acsami_1c16835 crossref_primary_10_1080_00986445_2014_968715 crossref_primary_10_1080_00986445_2019_1652603 crossref_primary_10_1007_s13201_022_01695_3 crossref_primary_10_1080_01496395_2019_1670209 crossref_primary_10_1007_s11144_014_0810_3 crossref_primary_10_1016_j_dyepig_2012_03_024 crossref_primary_10_5004_dwt_2009_934 crossref_primary_10_1021_ie403947b crossref_primary_10_1016_j_ijleo_2023_171589 crossref_primary_10_5004_dwt_2021_27223 crossref_primary_10_1016_j_jhazmat_2011_03_069 crossref_primary_10_1016_j_watres_2009_06_043 crossref_primary_10_1016_j_molliq_2022_120837 crossref_primary_10_4028_www_scientific_net_AMR_573_574_627 crossref_primary_10_1016_j_jenvman_2017_09_010 crossref_primary_10_1111_j_1365_2621_2012_03125_x crossref_primary_10_1016_j_jhazmat_2019_120759 crossref_primary_10_1016_j_jhazmat_2011_10_035 crossref_primary_10_1016_j_jphotochem_2016_09_031 crossref_primary_10_1134_S1023193515080029 crossref_primary_10_2166_washdev_2014_214 crossref_primary_10_1016_j_jes_2018_01_010 crossref_primary_10_3390_ijerph16091602 crossref_primary_10_1155_2023_3848456 crossref_primary_10_1016_j_apcatb_2012_04_028 crossref_primary_10_1016_j_chemosphere_2016_10_064 crossref_primary_10_1016_j_jics_2021_100266 crossref_primary_10_4236_msa_2016_76028 crossref_primary_10_1016_j_jece_2016_02_014 crossref_primary_10_1007_s10854_021_06562_6 crossref_primary_10_1016_j_chemosphere_2020_125849 crossref_primary_10_2175_106143017X15131012188277 crossref_primary_10_1016_j_desal_2010_02_035 crossref_primary_10_1100_2012_691569 crossref_primary_10_1002_ep_12298 crossref_primary_10_1016_j_desal_2011_07_015 crossref_primary_10_1039_c3gc40573g crossref_primary_10_1080_19443994_2013_821033 crossref_primary_10_1016_j_apcatb_2013_09_021 crossref_primary_10_1016_j_jallcom_2017_07_063 crossref_primary_10_1016_j_cdc_2019_100327 crossref_primary_10_1016_j_jwpe_2022_103231 crossref_primary_10_1038_s41598_018_19172_w crossref_primary_10_1039_C8RA07253A crossref_primary_10_1021_acsami_3c00297 crossref_primary_10_1002_ep_13701 crossref_primary_10_1016_j_apcatb_2012_04_034 crossref_primary_10_1016_j_matpr_2020_04_414 crossref_primary_10_1680_jenes_20_00044 crossref_primary_10_1002_jmr_2883 crossref_primary_10_1007_s11356_018_3270_x crossref_primary_10_1007_s13762_015_0854_6 crossref_primary_10_1016_j_ecoenv_2021_112422 crossref_primary_10_1088_1402_4896_acd5b9 crossref_primary_10_1007_s13369_023_07652_9 crossref_primary_10_1016_j_saa_2019_117138 crossref_primary_10_1039_c4pp00277f crossref_primary_10_3390_nano12060989 crossref_primary_10_1016_j_chemosphere_2018_02_075 crossref_primary_10_1021_ie302126c crossref_primary_10_1016_j_cej_2020_127730 crossref_primary_10_1016_j_chemosphere_2021_130104 crossref_primary_10_1002_jccs_200900165 crossref_primary_10_1016_j_jwpe_2025_107444 crossref_primary_10_1007_s11356_022_20453_1 crossref_primary_10_1007_s10971_019_05030_2 crossref_primary_10_1016_j_heliyon_2022_e10176 crossref_primary_10_1002_ep_12093 crossref_primary_10_1016_j_cej_2015_09_035 crossref_primary_10_1080_25740881_2021_1905842 crossref_primary_10_1007_s11434_011_4887_z crossref_primary_10_1016_j_cej_2009_08_027 crossref_primary_10_1021_acsami_7b03523 crossref_primary_10_1080_10934521003648883 crossref_primary_10_1080_19443994_2014_947778 crossref_primary_10_1088_1757_899X_358_1_012020 crossref_primary_10_1089_ees_2015_0534 crossref_primary_10_1007_s13369_022_06996_y crossref_primary_10_1002_wer_1441 crossref_primary_10_1016_j_jwpe_2020_101394 crossref_primary_10_1016_j_dyepig_2019_108158 crossref_primary_10_1007_s11356_012_1279_0 crossref_primary_10_1016_j_jhazmat_2017_02_029 crossref_primary_10_1016_j_serj_2016_04_003 crossref_primary_10_1080_00986445_2018_1508021 crossref_primary_10_1007_s42823_023_00551_x crossref_primary_10_1016_j_eti_2019_100380 crossref_primary_10_1007_s40201_019_00394_7 crossref_primary_10_1016_j_dwt_2024_100934 crossref_primary_10_1080_09593330_2011_635709 crossref_primary_10_1016_j_jiec_2014_03_008 crossref_primary_10_1021_ie302964a crossref_primary_10_1039_C8EN00346G crossref_primary_10_1016_j_cej_2014_06_006 crossref_primary_10_1007_s13201_017_0637_y crossref_primary_10_1016_j_cscee_2021_100126 crossref_primary_10_1039_D1CE00152C crossref_primary_10_1080_19443994_2015_1086694 crossref_primary_10_5004_dwt_2018_21863 crossref_primary_10_1080_19443994_2014_990930 crossref_primary_10_1021_acsomega_3c06420 crossref_primary_10_2139_ssrn_4046740 crossref_primary_10_5004_dwt_2019_24672 crossref_primary_10_2166_wst_2018_216 crossref_primary_10_1021_ie4018258 crossref_primary_10_1016_j_jclepro_2019_119076 crossref_primary_10_1080_19443994_2015_1049559 crossref_primary_10_1016_j_enmm_2020_100296 crossref_primary_10_1016_j_jallcom_2024_176474 crossref_primary_10_1016_j_jece_2014_08_001 crossref_primary_10_1016_j_jhazmat_2016_05_043 crossref_primary_10_1039_D2TB02161G crossref_primary_10_1360_SSC_2023_0197 crossref_primary_10_2139_ssrn_4105413 crossref_primary_10_1016_j_apcatb_2014_07_056 crossref_primary_10_5004_dwt_2012_1213 crossref_primary_10_1016_j_jenvman_2019_02_023 crossref_primary_10_3389_fbioe_2022_1022330 crossref_primary_10_1016_j_ultsonch_2015_08_001 crossref_primary_10_1016_j_jenvman_2017_08_048 crossref_primary_10_1016_j_bcab_2018_07_023 crossref_primary_10_1016_j_cej_2013_11_038 crossref_primary_10_1111_cote_12055 crossref_primary_10_1016_j_jphotochemrev_2024_100679 crossref_primary_10_1007_s11164_012_0756_x crossref_primary_10_1080_01919512_2015_1074855 crossref_primary_10_1039_C9RA05097C crossref_primary_10_1007_s11270_020_4402_8 crossref_primary_10_1016_j_dwt_2024_100837 crossref_primary_10_1002_clen_201000263 crossref_primary_10_1007_s11356_022_21851_1 crossref_primary_10_1016_j_matpr_2021_04_230 crossref_primary_10_1016_j_ultsonch_2013_10_008 crossref_primary_10_1016_j_ultsonch_2014_06_023 crossref_primary_10_1080_09593330_2023_2287025 crossref_primary_10_1002_clen_201100462 crossref_primary_10_1016_j_apcatb_2016_04_019 crossref_primary_10_1016_j_scitotenv_2018_12_224 crossref_primary_10_1016_j_jece_2017_09_039 crossref_primary_10_5004_dwt_2018_22387 crossref_primary_10_1016_j_jenvman_2021_112551 crossref_primary_10_1016_j_scitotenv_2020_144200 crossref_primary_10_1021_acs_inorgchem_1c03747 crossref_primary_10_1016_j_cej_2013_03_002 crossref_primary_10_1016_j_jiec_2013_06_045 crossref_primary_10_1016_j_jece_2014_08_020 crossref_primary_10_1016_j_chemosphere_2022_135682 crossref_primary_10_1016_j_jiec_2011_12_007 crossref_primary_10_1016_j_jcis_2021_11_181 crossref_primary_10_1039_D0DT04401F crossref_primary_10_5004_dwt_2020_25905 crossref_primary_10_1016_j_jre_2022_07_007 crossref_primary_10_1016_j_scitotenv_2021_147204 crossref_primary_10_4236_ajac_2017_81006 crossref_primary_10_1088_2053_1591_ac9819 crossref_primary_10_5004_dwt_2019_24685 crossref_primary_10_1049_mnl_2019_0111 crossref_primary_10_1080_19443994_2015_1098573 crossref_primary_10_1080_19443994_2013_776504 crossref_primary_10_2139_ssrn_4055911 crossref_primary_10_3906_kim_1701_8 crossref_primary_10_1186_2228_5547_3_15 crossref_primary_10_5004_dwt_2021_27626 |
Cites_doi | 10.1016/S0143-7208(02)00012-8 10.1021/ie0207010 10.1021/cr00018a003 10.1016/j.jphotochem.2005.08.025 10.1016/j.watres.2006.08.009 10.1016/j.chemosphere.2004.09.091 10.1016/j.apcatb.2003.09.010 10.1016/j.cattod.2007.06.022 10.1016/j.jcis.2004.03.043 10.1016/j.chemosphere.2005.03.065 10.1016/j.cattod.2005.07.060 10.1016/S0043-1354(98)00428-X 10.1021/ar50088a003 10.1016/j.dyepig.2006.04.006 10.1016/j.dyepig.2005.02.009 10.1016/j.dyepig.2004.03.004 10.1016/S0043-1354(00)00364-X 10.1016/j.watres.2005.12.021 10.1039/CT8946500899 10.1016/S0304-3894(02)00282-0 |
ContentType | Journal Article |
Copyright | 2008 Elsevier B.V. 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 Elsevier B.V. – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TV 7U7 C1K 8FD FR3 KR7 7X8 |
DOI | 10.1016/j.jhazmat.2008.04.080 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Pollution Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Technology Research Database Engineering Research Database Civil Engineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Pollution Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database MEDLINE - Academic |
DatabaseTitleList | Pollution Abstracts MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law Applied Sciences |
EISSN | 1873-3336 |
EndPage | 1057 |
ExternalDocumentID | 18538927 21235792 10_1016_j_jhazmat_2008_04_080 S0304389408005979 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .HR .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLECG BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HMC HVGLF HZ~ IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SEN SES SEW SPC SPCBC SSG SSJ SSZ T5K T9H TAE UAO VH1 WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7TV 7U7 C1K 8FD FR3 KR7 7X8 |
ID | FETCH-LOGICAL-c562t-bc7fa2f1301cdf40b38923b9d4b5c75a0144d8a66b01c05e2f9d9a1222bc482b3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 |
IngestDate | Fri Jul 11 04:20:04 EDT 2025 Fri Jul 11 03:07:47 EDT 2025 Mon Jul 21 11:13:55 EDT 2025 Mon Jul 21 06:06:19 EDT 2025 Mon Jul 21 09:12:48 EDT 2025 Thu Apr 24 22:54:27 EDT 2025 Tue Jul 01 00:49:45 EDT 2025 Fri Feb 23 02:30:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Fenton's reaction Orange G Kinetic Azo dye Hydroxyl radical Second order Discoloration Hydrogen peroxide Operating conditions Waste water Chlorides Hydroxyl radicals pH Fenton reaction Physicochemical purification Oxidation Kinetics Aqueous solution Thermodynamic properties Activation energy |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-bc7fa2f1301cdf40b38923b9d4b5c75a0144d8a66b01c05e2f9d9a1222bc482b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 18538927 |
PQID | 19693375 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_66727936 proquest_miscellaneous_35333767 proquest_miscellaneous_19693375 pubmed_primary_18538927 pascalfrancis_primary_21235792 crossref_citationtrail_10_1016_j_jhazmat_2008_04_080 crossref_primary_10_1016_j_jhazmat_2008_04_080 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2008_04_080 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-30 |
PublicationDateYYYYMMDD | 2009-01-30 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-30 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2009 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Hsueh, Huang, Wang, Chen (bib9) 2005; 58 Souza, Duarte, Girardi, Velani, Machado, Sattler, Oliveira, Miranda (bib18) 2006; 179 Ashraf, Rauf, Alhadrami (bib19) 2006; 69 Ozcan, Ozcan (bib1) 2004; 276 Ramirez, Costa, Madeira (bib10) 2005; 107-108 Sun, Sun, Wang, Qiao (bib11) 2007; 74 Kwon, Lee, Kang, Yoon (bib16) 1999; 33 Feng, Hu, Yue, Zhu, Lu (bib17) 2003; 42 Fenton (bib4) 1894; 65 Walling (bib7) 1975; 8 Feng, Hu, Yue (bib13) 2006; 40 Legrini, Oliveros, Braun (bib8) 1993; 93 Neyens, Baeyens (bib5) 2003; 98 Deng, Englehardt (bib14) 2006; 40 Chen, Zhu (bib20) 2007; 126 Mall, Srivastava, Agarwal, Mishra (bib2) 2005; 61 Muruganandham, Swaminathan (bib12) 2004; 63 Benitez, Acero, Real, Rubio, Leal (bib15) 2001; 35 Pera-Titus, García-Molina, Baños, Giménez, Esplugas (bib6) 2004; 47 Neamtu, Siminiceanu, Yediler, Kettrup (bib3) 2002; 53 Walling (10.1016/j.jhazmat.2008.04.080_bib7) 1975; 8 Chen (10.1016/j.jhazmat.2008.04.080_bib20) 2007; 126 Legrini (10.1016/j.jhazmat.2008.04.080_bib8) 1993; 93 Neyens (10.1016/j.jhazmat.2008.04.080_bib5) 2003; 98 Deng (10.1016/j.jhazmat.2008.04.080_bib14) 2006; 40 Benitez (10.1016/j.jhazmat.2008.04.080_bib15) 2001; 35 Ramirez (10.1016/j.jhazmat.2008.04.080_bib10) 2005; 107-108 Kwon (10.1016/j.jhazmat.2008.04.080_bib16) 1999; 33 Feng (10.1016/j.jhazmat.2008.04.080_bib17) 2003; 42 Feng (10.1016/j.jhazmat.2008.04.080_bib13) 2006; 40 Sun (10.1016/j.jhazmat.2008.04.080_bib11) 2007; 74 Ozcan (10.1016/j.jhazmat.2008.04.080_bib1) 2004; 276 Ashraf (10.1016/j.jhazmat.2008.04.080_bib19) 2006; 69 Muruganandham (10.1016/j.jhazmat.2008.04.080_bib12) 2004; 63 Pera-Titus (10.1016/j.jhazmat.2008.04.080_bib6) 2004; 47 Souza (10.1016/j.jhazmat.2008.04.080_bib18) 2006; 179 Mall (10.1016/j.jhazmat.2008.04.080_bib2) 2005; 61 Hsueh (10.1016/j.jhazmat.2008.04.080_bib9) 2005; 58 Neamtu (10.1016/j.jhazmat.2008.04.080_bib3) 2002; 53 Fenton (10.1016/j.jhazmat.2008.04.080_bib4) 1894; 65 |
References_xml | – volume: 107-108 start-page: 68 year: 2005 end-page: 76 ident: bib10 article-title: Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent publication-title: Catal. Today – volume: 53 start-page: 93 year: 2002 end-page: 99 ident: bib3 article-title: Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H publication-title: Dyes Pigments – volume: 47 start-page: 219 year: 2004 end-page: 256 ident: bib6 article-title: Degradation of chlorophenols by means of advanced oxidation processes: a general review publication-title: Appl. Catal. B: Environ. – volume: 8 start-page: 125 year: 1975 end-page: 131 ident: bib7 article-title: Fenton's reagent revisited publication-title: Acc. Chem. Res. – volume: 33 start-page: 2110 year: 1999 end-page: 2118 ident: bib16 article-title: Characteristics of publication-title: Water Res. – volume: 93 start-page: 671 year: 1993 end-page: 698 ident: bib8 article-title: Photochemical processes for water treatment publication-title: Chem. Rev. – volume: 42 start-page: 2058 year: 2003 end-page: 2066 ident: bib17 article-title: Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst publication-title: Ind. Eng. Chem. Res. – volume: 69 start-page: 74 year: 2006 end-page: 78 ident: bib19 article-title: Degradation of Methyl Red using Fenton's reagent and the effect of various salts publication-title: Dyes Pigments – volume: 74 start-page: 647 year: 2007 end-page: 652 ident: bib11 article-title: Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process publication-title: Dyes Pigments – volume: 40 start-page: 3683 year: 2006 end-page: 3694 ident: bib14 article-title: Treatment of landfill leachate by the Fenton process publication-title: Water Res. – volume: 126 start-page: 463 year: 2007 end-page: 470 ident: bib20 article-title: Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite publication-title: Cataly. Today – volume: 35 start-page: 1338 year: 2001 end-page: 1343 ident: bib15 article-title: The role of hydroxyl radicals for the decomposition of publication-title: Water Res. – volume: 40 start-page: 641 year: 2006 end-page: 646 ident: bib13 article-title: Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst publication-title: Water Res. – volume: 58 start-page: 1409 year: 2005 end-page: 1414 ident: bib9 article-title: Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system publication-title: Chemosphere – volume: 61 start-page: 492 year: 2005 end-page: 501 ident: bib2 article-title: Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses publication-title: Chemosphere – volume: 65 start-page: 899 year: 1894 end-page: 910 ident: bib4 article-title: Oxidation of tartaric acid in the presence of iron publication-title: J. Chem. Soc. – volume: 98 start-page: 33 year: 2003 end-page: 50 ident: bib5 article-title: A review of classic Fenton's peroxidation as an advanced oxidation technique publication-title: J. Hazard. Mater. – volume: 63 start-page: 315 year: 2004 end-page: 321 ident: bib12 article-title: Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology publication-title: Dyes Pigments – volume: 179 start-page: 269 year: 2006 end-page: 275 ident: bib18 article-title: Study of kinetic parameters related to the degradation of an industrial effluent using Fenton-like reactions publication-title: J. Photochem. Photobiol. A: Chem. – volume: 276 start-page: 39 year: 2004 end-page: 46 ident: bib1 article-title: Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite publication-title: J. Colloid Interface Sci. – volume: 53 start-page: 93 year: 2002 ident: 10.1016/j.jhazmat.2008.04.080_bib3 article-title: Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation publication-title: Dyes Pigments doi: 10.1016/S0143-7208(02)00012-8 – volume: 42 start-page: 2058 year: 2003 ident: 10.1016/j.jhazmat.2008.04.080_bib17 article-title: Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0207010 – volume: 93 start-page: 671 year: 1993 ident: 10.1016/j.jhazmat.2008.04.080_bib8 article-title: Photochemical processes for water treatment publication-title: Chem. Rev. doi: 10.1021/cr00018a003 – volume: 179 start-page: 269 year: 2006 ident: 10.1016/j.jhazmat.2008.04.080_bib18 article-title: Study of kinetic parameters related to the degradation of an industrial effluent using Fenton-like reactions publication-title: J. Photochem. Photobiol. A: Chem. doi: 10.1016/j.jphotochem.2005.08.025 – volume: 40 start-page: 3683 year: 2006 ident: 10.1016/j.jhazmat.2008.04.080_bib14 article-title: Treatment of landfill leachate by the Fenton process publication-title: Water Res. doi: 10.1016/j.watres.2006.08.009 – volume: 58 start-page: 1409 year: 2005 ident: 10.1016/j.jhazmat.2008.04.080_bib9 article-title: Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.09.091 – volume: 47 start-page: 219 year: 2004 ident: 10.1016/j.jhazmat.2008.04.080_bib6 article-title: Degradation of chlorophenols by means of advanced oxidation processes: a general review publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2003.09.010 – volume: 126 start-page: 463 year: 2007 ident: 10.1016/j.jhazmat.2008.04.080_bib20 article-title: Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite publication-title: Cataly. Today doi: 10.1016/j.cattod.2007.06.022 – volume: 276 start-page: 39 year: 2004 ident: 10.1016/j.jhazmat.2008.04.080_bib1 article-title: Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.03.043 – volume: 61 start-page: 492 year: 2005 ident: 10.1016/j.jhazmat.2008.04.080_bib2 article-title: Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.03.065 – volume: 107-108 start-page: 68 year: 2005 ident: 10.1016/j.jhazmat.2008.04.080_bib10 article-title: Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent publication-title: Catal. Today doi: 10.1016/j.cattod.2005.07.060 – volume: 33 start-page: 2110 year: 1999 ident: 10.1016/j.jhazmat.2008.04.080_bib16 article-title: Characteristics of p-chlorophenol oxidation by Fenton's reagent publication-title: Water Res. doi: 10.1016/S0043-1354(98)00428-X – volume: 8 start-page: 125 year: 1975 ident: 10.1016/j.jhazmat.2008.04.080_bib7 article-title: Fenton's reagent revisited publication-title: Acc. Chem. Res. doi: 10.1021/ar50088a003 – volume: 74 start-page: 647 year: 2007 ident: 10.1016/j.jhazmat.2008.04.080_bib11 article-title: Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process publication-title: Dyes Pigments doi: 10.1016/j.dyepig.2006.04.006 – volume: 69 start-page: 74 year: 2006 ident: 10.1016/j.jhazmat.2008.04.080_bib19 article-title: Degradation of Methyl Red using Fenton's reagent and the effect of various salts publication-title: Dyes Pigments doi: 10.1016/j.dyepig.2005.02.009 – volume: 63 start-page: 315 year: 2004 ident: 10.1016/j.jhazmat.2008.04.080_bib12 article-title: Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology publication-title: Dyes Pigments doi: 10.1016/j.dyepig.2004.03.004 – volume: 35 start-page: 1338 year: 2001 ident: 10.1016/j.jhazmat.2008.04.080_bib15 article-title: The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions publication-title: Water Res. doi: 10.1016/S0043-1354(00)00364-X – volume: 40 start-page: 641 year: 2006 ident: 10.1016/j.jhazmat.2008.04.080_bib13 article-title: Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst publication-title: Water Res. doi: 10.1016/j.watres.2005.12.021 – volume: 65 start-page: 899 year: 1894 ident: 10.1016/j.jhazmat.2008.04.080_bib4 article-title: Oxidation of tartaric acid in the presence of iron publication-title: J. Chem. Soc. doi: 10.1039/CT8946500899 – volume: 98 start-page: 33 year: 2003 ident: 10.1016/j.jhazmat.2008.04.080_bib5 article-title: A review of classic Fenton's peroxidation as an advanced oxidation technique publication-title: J. Hazard. Mater. doi: 10.1016/S0304-3894(02)00282-0 |
SSID | ssj0001754 |
Score | 2.45177 |
Snippet | To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG),... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1052 |
SubjectTerms | Applied sciences Azo Compounds - chemistry Azo dye Chemical engineering Chlorides - chemistry Coloring Agents - chemistry Exact sciences and technology Fenton's reaction General purification processes Hydrogen Peroxide - chemistry Hydrogen-Ion Concentration Hydroxyl radical Ions Iron - chemistry Kinetic Kinetics Models, Chemical Orange G Oxygen - chemistry Pollution Pressure Reactors Spectrophotometry, Ultraviolet Temperature Time Factors Wastewaters Water treatment and pollution |
Title | Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study |
URI | https://dx.doi.org/10.1016/j.jhazmat.2008.04.080 https://www.ncbi.nlm.nih.gov/pubmed/18538927 https://www.proquest.com/docview/19693375 https://www.proquest.com/docview/35333767 https://www.proquest.com/docview/66727936 |
Volume | 161 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYovbRCFaUPtoXtHHrNPmLnYW6I1_ZFDy0St8h2bLFbyK52F7Vw4NQfzkzssCB1hdRLDpEdOzMTz-eM5xvGPupYyZ4VSSR4LiIR455V4h47SmOjucGrrMsBfTtOByfi82lyusL2mlwYOlYZ1n6_pterdbjTDdLsTobD7g8K6qG7FYR5EBZTEp8QGVl552ZxzAPdo6eQoggAtl5k8XRHndGZukZgGI5Uik7NDvlv_7Q2UTOUmvPlLpbj0dovHa6zFwFQwq6f80u2YqsN9vwezeAGe_JV_X7F_u5bYqiehsRLGDtQFajrMZRXFr5PKcsAjmCI93DE8eUMGrMEfQVozXPq9GfoizDBxGcY7IDnP6bHeVZoIDbxCzplM8MBSviFE8G5QU1k-5qdHB783BtEoQZDZBAZzSNtMqdih56ub0onehplGHMtS6ETkyWKNmRlrtJUY4NeYmMnS6n6iDq0EXms-Ru2Wo0ru8lAW17v_nBSuXBG6lxaIVxp-jxzLktbTDSSL0wgKKc6GedFcxJtVASFheKZokCFtVjnrtvEM3Q81iFv1Fo8MLUCvchjXdsPzOBuQAIASSbjFvvQ2EWB3ykFX1RFKiuIhojzLFnegiPyJm6d5S1SCptLjpJ6601u8cKIulAx2bv_f7f37JmPlNH_yC22Op9e2m0EXHPdrr-oNnu6--nL4PgWgJIsPw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbacgBUoVIoDdDWBzhuHrb3YSQOiFJSmpYDrdTbYnttkdBuoiRVSQ-c-Ef8QWbW3oZKRJWQetnDyq_12PPYmfmGkFeaKdm2Io4Ez0QkGNisEmzsKGFGcwNPWZUDOjxKuifi02l8ukR-17kwGFYZeL_n6RW3Dm9aYTdbo36_9QWdeiBuBeo8oBbLEFl5YGeXYLdN3u7vApFfM7b34fh9NwqlBSIDAn8aaZM6xRww8I4pnGhrGIhxLQuhY5PGCu2MIlNJoqFBO7bMyUKqDghTbUTGNIdxl8k9AewCyyY0f87jSkAee8wqdDnA8uZpQ61Bc_BNXYEmGmI4RbOCo_y3QFwdqQmQyfn6GosV4EoQ7q2RR0GDpe_8Jj0mS7ZcJw__wjVcJ8s9dfmE_Nq1CIk9DpmedOioKqm6GtJiZunnMaY10I-0D-9gxuHFhNb3gOoZheszxU4_-r7qEx35lIY31AMu43AehpoifPk5hvVMYIKCfoeFwNpohZz7lJzcCWU2yEo5LO0modryytyERWXCGakzaYVwhenw1Lk0aRBR73xuAiI6FuY4y-vQt0EeCBaqdYocCNYgzetuIw8JcluHrCZrfuNs5yC2buu6feMYXE-IGkecStYgO_W5yIExoLdHlUiyHHGPOE_jxS04qPoI5rO4RYJ-eslhp575Izf_YFDzgDDp8___th1yv3t82Mt7-0cHL8gD76bDn6Evycp0fGG3QNub6u3qdlHy9a6v8x-4U2fD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decolorization+of+an+azo+dye+Orange+G+in+aqueous+solution+by+Fenton+oxidation+process%3A+Effect+of+system+parameters+and+kinetic+study&rft.jtitle=Journal+of+hazardous+materials&rft.au=Sun%2C+Sheng-Peng&rft.au=Li%2C+Cheng-Jie&rft.au=Sun%2C+Jian-Hui&rft.au=Shi%2C+Shao-Hui&rft.date=2009-01-30&rft.issn=0304-3894&rft.volume=161&rft.issue=2-3&rft.spage=1052&rft.epage=1057&rft_id=info:doi/10.1016%2Fj.jhazmat.2008.04.080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2008_04_080 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |