Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study

To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H 2O 2 and Fe 2+, temperature, presence/absence of chloride io...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 161; no. 2; pp. 1052 - 1057
Main Authors Sun, Sheng-Peng, Li, Cheng-Jie, Sun, Jian-Hui, Shi, Shao-Hui, Fan, Mao-Hong, Zhou, Qi
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 30.01.2009
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H 2O 2 and Fe 2+, temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H 2O 2 dosage 1.0 × 10 −2 M and molar ratio of [H 2O 2]/[Fe 2+] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 × 10 −5 to 1.11 × 10 −4 M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol −1. The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process.
AbstractList To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H sub(2)O sub(2) and Fe super(2) super(+), temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H sub(2)O sub(2) dosage 1.0x10 super(-) super(2)M and molar ratio of [H sub(2)O sub(2)] /[Fe super(2) super(+)] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21x10 super(-) super(5) to 1.11x10 super(-) super(4)M of OG, the decolorization efficiencies within 60min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84kJmol super(-) super(1). The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process.
To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H(2)O(2) and Fe(2+), temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H(2)O(2) dosage 1.0 x 10(-2)M and molar ratio of [H(2)O(2)]/[Fe(2+)] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 x 10(-5) to 1.11 x 10(-4)M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol(-1). The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process.To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H(2)O(2) and Fe(2+), temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H(2)O(2) dosage 1.0 x 10(-2)M and molar ratio of [H(2)O(2)]/[Fe(2+)] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 x 10(-5) to 1.11 x 10(-4)M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol(-1). The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process.
To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H2O2 and Fe2+, temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H2O2 dosage 1.0 X 10-2 M and molar ratio of [H2O2]/[Fe2+] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 X 10-5 to 1.11 X 10-4 M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol-1. The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process.
To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H(2)O(2) and Fe(2+), temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H(2)O(2) dosage 1.0 x 10(-2)M and molar ratio of [H(2)O(2)]/[Fe(2+)] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 x 10(-5) to 1.11 x 10(-4)M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol(-1). The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process.
To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG), some important operating parameters such as pH value of solutions, dosages of H 2O 2 and Fe 2+, temperature, presence/absence of chloride ion and concentration of the dye, which effect on the decolorization of OG in aqueous solution by Fenton oxidation have been investigated systematically. In addition, the decolorization kinetics of OG was also elucidated based on the experimental data. The results showed that a suitable decolorization condition was selected as initial pH 4.0, H 2O 2 dosage 1.0 × 10 −2 M and molar ratio of [H 2O 2]/[Fe 2+] 286:1. The decolorization of OG enhanced with the increasing of reaction temperature but decreased as a presence of chloride ion. On the given conditions, for 2.21 × 10 −5 to 1.11 × 10 −4 M of OG, the decolorization efficiencies within 60 min were more than 94.6%. The decolorization kinetics of OG by Fenton oxidation process followed the second-order reaction kinetics, and the apparent activation energy E, was detected to be 34.84 kJ mol −1. The results can provide fundamental knowledge for the treatment of wastewater containing OG and/or other azo dyes by Fenton oxidation process.
Author Shi, Shao-Hui
Zhou, Qi
Sun, Sheng-Peng
Fan, Mao-Hong
Sun, Jian-Hui
Li, Cheng-Jie
Author_xml – sequence: 1
  givenname: Sheng-Peng
  surname: Sun
  fullname: Sun, Sheng-Peng
  organization: State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
– sequence: 2
  givenname: Cheng-Jie
  surname: Li
  fullname: Li, Cheng-Jie
  organization: School of Resources and Environment, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
– sequence: 3
  givenname: Jian-Hui
  surname: Sun
  fullname: Sun, Jian-Hui
  email: sunsp_hj@yahoo.com.cn
  organization: Henan Key Laboratory for Environmental Pollution Control, College of Chemistry and Environmental Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
– sequence: 4
  givenname: Shao-Hui
  surname: Shi
  fullname: Shi, Shao-Hui
  organization: Henan Key Laboratory for Environmental Pollution Control, College of Chemistry and Environmental Sciences, Henan Normal University, Xinxiang, Henan 453007, PR China
– sequence: 5
  givenname: Mao-Hong
  surname: Fan
  fullname: Fan, Mao-Hong
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
– sequence: 6
  givenname: Qi
  surname: Zhou
  fullname: Zhou, Qi
  organization: State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21235792$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18538927$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxS1URLcLHwHkC9wS_C9xAocKlbYgVeoFzpZjT8BLEi-2F5E988FxuksPXPZkafR743kz7wKdTX4ChF5SUlJC67ebcvNd70edSkZIUxJRkoY8QSvaSF5wzusztCKciII3rThHFzFuCCFUVuIZOqdNlctMrtCfj2D84IPb6-T8hH2P9YT13mM7A74PevoG-Ba7XPu5A7-LOPph94B2M76BKS2i384e5NvgDcT4Dl_3PZi0tItzTDDirQ56hAQh5g8s_uEmSM7gmHZ2fo6e9nqI8OL4rtHXm-svV5-Ku_vbz1cf7gpT1SwVnZG9Zj3lhBrbC9ItHnjXWtFVRlaaUCFso-u6ywCpgPWtbTVljHVGNKzja_Tm0DePmd3EpEYXDQyDnhZrqq4lky2vT4K8yhuWtTwJ0rZuM1ll8NUR3HUjWLUNbtRhVv8ukYHXR0BHo4c-b964-Mgxyngls901en_gTPAxBuiVcelh-SloNyhK1JIPtVHHfKglH4oIlfOR1dV_6sdBTuguDzrI5_nlIKhoHEwGrAv5zsp6d6LDX7do2OY
CODEN JHMAD9
CitedBy_id crossref_primary_10_1007_s11356_013_1678_x
crossref_primary_10_1080_09593330_2016_1139630
crossref_primary_10_3390_nano11123241
crossref_primary_10_1016_j_apcata_2017_07_001
crossref_primary_10_1039_D4NR02907K
crossref_primary_10_1007_s11144_020_01809_5
crossref_primary_10_1002_anie_202112925
crossref_primary_10_1007_s10570_014_0188_4
crossref_primary_10_2174_2213337209666220407113453
crossref_primary_10_1016_j_clay_2014_06_030
crossref_primary_10_15251_JOBM_2022_144_145
crossref_primary_10_5004_dwt_2019_22966
crossref_primary_10_1007_s13204_022_02491_w
crossref_primary_10_1016_j_cej_2011_11_109
crossref_primary_10_1016_j_jhazmat_2009_09_009
crossref_primary_10_1007_s10967_024_09600_9
crossref_primary_10_1002_sstr_202100110
crossref_primary_10_1016_j_psep_2018_05_020
crossref_primary_10_5004_dwt_2017_20355
crossref_primary_10_1016_j_jece_2021_105091
crossref_primary_10_1016_j_seppur_2014_11_005
crossref_primary_10_1007_s40974_022_00250_9
crossref_primary_10_1002_wer_1270
crossref_primary_10_1016_j_ecoenv_2018_06_081
crossref_primary_10_3233_MGC_210148
crossref_primary_10_1039_D1QM00134E
crossref_primary_10_3389_fonc_2022_939365
crossref_primary_10_3390_ma10101169
crossref_primary_10_1002_wnan_1682
crossref_primary_10_1002_ep_12486
crossref_primary_10_1002_ep_10504
crossref_primary_10_1016_j_apcatb_2013_04_054
crossref_primary_10_1016_j_arabjc_2013_02_009
crossref_primary_10_1016_j_cclet_2021_03_036
crossref_primary_10_17341_gazimmfd_369536
crossref_primary_10_1016_j_psep_2022_07_010
crossref_primary_10_1016_j_apsusc_2024_160998
crossref_primary_10_5004_dwt_2019_24133
crossref_primary_10_1016_j_jwpe_2020_101540
crossref_primary_10_1007_s13762_019_02533_x
crossref_primary_10_2965_jwet_2013_529
crossref_primary_10_1007_s11164_015_2035_0
crossref_primary_10_1021_acsomega_9b00170
crossref_primary_10_1149_2_026310jes
crossref_primary_10_1007_s11270_012_1385_0
crossref_primary_10_1016_j_jtice_2014_04_019
crossref_primary_10_17482_uumfd_366155
crossref_primary_10_1002_clen_202000432
crossref_primary_10_1016_j_redox_2025_103515
crossref_primary_10_1016_j_seppur_2022_122052
crossref_primary_10_1134_S1070427212070129
crossref_primary_10_1016_j_jwpe_2022_102685
crossref_primary_10_1002_aoc_3903
crossref_primary_10_1007_s10098_017_1447_5
crossref_primary_10_1016_j_cej_2014_04_088
crossref_primary_10_5004_dwt_2018_22197
crossref_primary_10_1016_j_jes_2015_12_017
crossref_primary_10_1007_s40090_016_0071_2
crossref_primary_10_1007_s11356_018_3710_7
crossref_primary_10_1016_j_mssp_2015_10_018
crossref_primary_10_1016_j_seppur_2009_12_017
crossref_primary_10_1515_zpch_2017_1072
crossref_primary_10_1038_s41467_020_15730_x
crossref_primary_10_1016_j_ijbiomac_2019_03_055
crossref_primary_10_1016_j_jscs_2013_07_004
crossref_primary_10_1002_apj_2200
crossref_primary_10_1039_C7RA08317C
crossref_primary_10_1080_17458080_2019_1655143
crossref_primary_10_1021_ie403226v
crossref_primary_10_1016_j_jhazmat_2010_12_089
crossref_primary_10_1016_j_cherd_2023_07_013
crossref_primary_10_1007_s13369_023_08297_4
crossref_primary_10_1002_smll_202004723
crossref_primary_10_1080_19443994_2013_773862
crossref_primary_10_1016_j_envres_2025_121048
crossref_primary_10_1016_j_jclepro_2023_139127
crossref_primary_10_1007_s11356_016_6360_7
crossref_primary_10_1088_1757_899X_495_1_012053
crossref_primary_10_3390_w14213381
crossref_primary_10_1016_j_matchemphys_2021_125583
crossref_primary_10_1016_j_biortech_2017_10_030
crossref_primary_10_1016_j_jhazmat_2025_137984
crossref_primary_10_2139_ssrn_4193752
crossref_primary_10_1039_C4RA13734E
crossref_primary_10_1007_s11356_013_2099_6
crossref_primary_10_1080_03067319_2023_2178917
crossref_primary_10_2147_IJN_S475698
crossref_primary_10_1016_j_seppur_2022_121549
crossref_primary_10_1016_j_biortech_2012_09_001
crossref_primary_10_1155_2014_821674
crossref_primary_10_5004_dwt_2017_21370
crossref_primary_10_1016_j_seppur_2020_117270
crossref_primary_10_34133_research_0061
crossref_primary_10_1016_j_seppur_2014_06_009
crossref_primary_10_1016_j_micromeso_2017_07_036
crossref_primary_10_1080_09593330_2025_2450554
crossref_primary_10_1007_s10562_020_03403_9
crossref_primary_10_1007_s11814_015_0115_x
crossref_primary_10_1002_ange_202112925
crossref_primary_10_1016_j_jwpe_2015_01_006
crossref_primary_10_1021_acsapm_0c00629
crossref_primary_10_21597_jist_1261438
crossref_primary_10_1080_19443994_2013_774296
crossref_primary_10_1016_j_jphotochem_2023_115246
crossref_primary_10_1080_03067319_2020_1786546
crossref_primary_10_1016_j_cej_2024_149640
crossref_primary_10_1180_clm_2018_18
crossref_primary_10_1016_j_cej_2012_12_060
crossref_primary_10_1021_acsami_1c16835
crossref_primary_10_1080_00986445_2014_968715
crossref_primary_10_1080_00986445_2019_1652603
crossref_primary_10_1007_s13201_022_01695_3
crossref_primary_10_1080_01496395_2019_1670209
crossref_primary_10_1007_s11144_014_0810_3
crossref_primary_10_1016_j_dyepig_2012_03_024
crossref_primary_10_5004_dwt_2009_934
crossref_primary_10_1021_ie403947b
crossref_primary_10_1016_j_ijleo_2023_171589
crossref_primary_10_5004_dwt_2021_27223
crossref_primary_10_1016_j_jhazmat_2011_03_069
crossref_primary_10_1016_j_watres_2009_06_043
crossref_primary_10_1016_j_molliq_2022_120837
crossref_primary_10_4028_www_scientific_net_AMR_573_574_627
crossref_primary_10_1016_j_jenvman_2017_09_010
crossref_primary_10_1111_j_1365_2621_2012_03125_x
crossref_primary_10_1016_j_jhazmat_2019_120759
crossref_primary_10_1016_j_jhazmat_2011_10_035
crossref_primary_10_1016_j_jphotochem_2016_09_031
crossref_primary_10_1134_S1023193515080029
crossref_primary_10_2166_washdev_2014_214
crossref_primary_10_1016_j_jes_2018_01_010
crossref_primary_10_3390_ijerph16091602
crossref_primary_10_1155_2023_3848456
crossref_primary_10_1016_j_apcatb_2012_04_028
crossref_primary_10_1016_j_chemosphere_2016_10_064
crossref_primary_10_1016_j_jics_2021_100266
crossref_primary_10_4236_msa_2016_76028
crossref_primary_10_1016_j_jece_2016_02_014
crossref_primary_10_1007_s10854_021_06562_6
crossref_primary_10_1016_j_chemosphere_2020_125849
crossref_primary_10_2175_106143017X15131012188277
crossref_primary_10_1016_j_desal_2010_02_035
crossref_primary_10_1100_2012_691569
crossref_primary_10_1002_ep_12298
crossref_primary_10_1016_j_desal_2011_07_015
crossref_primary_10_1039_c3gc40573g
crossref_primary_10_1080_19443994_2013_821033
crossref_primary_10_1016_j_apcatb_2013_09_021
crossref_primary_10_1016_j_jallcom_2017_07_063
crossref_primary_10_1016_j_cdc_2019_100327
crossref_primary_10_1016_j_jwpe_2022_103231
crossref_primary_10_1038_s41598_018_19172_w
crossref_primary_10_1039_C8RA07253A
crossref_primary_10_1021_acsami_3c00297
crossref_primary_10_1002_ep_13701
crossref_primary_10_1016_j_apcatb_2012_04_034
crossref_primary_10_1016_j_matpr_2020_04_414
crossref_primary_10_1680_jenes_20_00044
crossref_primary_10_1002_jmr_2883
crossref_primary_10_1007_s11356_018_3270_x
crossref_primary_10_1007_s13762_015_0854_6
crossref_primary_10_1016_j_ecoenv_2021_112422
crossref_primary_10_1088_1402_4896_acd5b9
crossref_primary_10_1007_s13369_023_07652_9
crossref_primary_10_1016_j_saa_2019_117138
crossref_primary_10_1039_c4pp00277f
crossref_primary_10_3390_nano12060989
crossref_primary_10_1016_j_chemosphere_2018_02_075
crossref_primary_10_1021_ie302126c
crossref_primary_10_1016_j_cej_2020_127730
crossref_primary_10_1016_j_chemosphere_2021_130104
crossref_primary_10_1002_jccs_200900165
crossref_primary_10_1016_j_jwpe_2025_107444
crossref_primary_10_1007_s11356_022_20453_1
crossref_primary_10_1007_s10971_019_05030_2
crossref_primary_10_1016_j_heliyon_2022_e10176
crossref_primary_10_1002_ep_12093
crossref_primary_10_1016_j_cej_2015_09_035
crossref_primary_10_1080_25740881_2021_1905842
crossref_primary_10_1007_s11434_011_4887_z
crossref_primary_10_1016_j_cej_2009_08_027
crossref_primary_10_1021_acsami_7b03523
crossref_primary_10_1080_10934521003648883
crossref_primary_10_1080_19443994_2014_947778
crossref_primary_10_1088_1757_899X_358_1_012020
crossref_primary_10_1089_ees_2015_0534
crossref_primary_10_1007_s13369_022_06996_y
crossref_primary_10_1002_wer_1441
crossref_primary_10_1016_j_jwpe_2020_101394
crossref_primary_10_1016_j_dyepig_2019_108158
crossref_primary_10_1007_s11356_012_1279_0
crossref_primary_10_1016_j_jhazmat_2017_02_029
crossref_primary_10_1016_j_serj_2016_04_003
crossref_primary_10_1080_00986445_2018_1508021
crossref_primary_10_1007_s42823_023_00551_x
crossref_primary_10_1016_j_eti_2019_100380
crossref_primary_10_1007_s40201_019_00394_7
crossref_primary_10_1016_j_dwt_2024_100934
crossref_primary_10_1080_09593330_2011_635709
crossref_primary_10_1016_j_jiec_2014_03_008
crossref_primary_10_1021_ie302964a
crossref_primary_10_1039_C8EN00346G
crossref_primary_10_1016_j_cej_2014_06_006
crossref_primary_10_1007_s13201_017_0637_y
crossref_primary_10_1016_j_cscee_2021_100126
crossref_primary_10_1039_D1CE00152C
crossref_primary_10_1080_19443994_2015_1086694
crossref_primary_10_5004_dwt_2018_21863
crossref_primary_10_1080_19443994_2014_990930
crossref_primary_10_1021_acsomega_3c06420
crossref_primary_10_2139_ssrn_4046740
crossref_primary_10_5004_dwt_2019_24672
crossref_primary_10_2166_wst_2018_216
crossref_primary_10_1021_ie4018258
crossref_primary_10_1016_j_jclepro_2019_119076
crossref_primary_10_1080_19443994_2015_1049559
crossref_primary_10_1016_j_enmm_2020_100296
crossref_primary_10_1016_j_jallcom_2024_176474
crossref_primary_10_1016_j_jece_2014_08_001
crossref_primary_10_1016_j_jhazmat_2016_05_043
crossref_primary_10_1039_D2TB02161G
crossref_primary_10_1360_SSC_2023_0197
crossref_primary_10_2139_ssrn_4105413
crossref_primary_10_1016_j_apcatb_2014_07_056
crossref_primary_10_5004_dwt_2012_1213
crossref_primary_10_1016_j_jenvman_2019_02_023
crossref_primary_10_3389_fbioe_2022_1022330
crossref_primary_10_1016_j_ultsonch_2015_08_001
crossref_primary_10_1016_j_jenvman_2017_08_048
crossref_primary_10_1016_j_bcab_2018_07_023
crossref_primary_10_1016_j_cej_2013_11_038
crossref_primary_10_1111_cote_12055
crossref_primary_10_1016_j_jphotochemrev_2024_100679
crossref_primary_10_1007_s11164_012_0756_x
crossref_primary_10_1080_01919512_2015_1074855
crossref_primary_10_1039_C9RA05097C
crossref_primary_10_1007_s11270_020_4402_8
crossref_primary_10_1016_j_dwt_2024_100837
crossref_primary_10_1002_clen_201000263
crossref_primary_10_1007_s11356_022_21851_1
crossref_primary_10_1016_j_matpr_2021_04_230
crossref_primary_10_1016_j_ultsonch_2013_10_008
crossref_primary_10_1016_j_ultsonch_2014_06_023
crossref_primary_10_1080_09593330_2023_2287025
crossref_primary_10_1002_clen_201100462
crossref_primary_10_1016_j_apcatb_2016_04_019
crossref_primary_10_1016_j_scitotenv_2018_12_224
crossref_primary_10_1016_j_jece_2017_09_039
crossref_primary_10_5004_dwt_2018_22387
crossref_primary_10_1016_j_jenvman_2021_112551
crossref_primary_10_1016_j_scitotenv_2020_144200
crossref_primary_10_1021_acs_inorgchem_1c03747
crossref_primary_10_1016_j_cej_2013_03_002
crossref_primary_10_1016_j_jiec_2013_06_045
crossref_primary_10_1016_j_jece_2014_08_020
crossref_primary_10_1016_j_chemosphere_2022_135682
crossref_primary_10_1016_j_jiec_2011_12_007
crossref_primary_10_1016_j_jcis_2021_11_181
crossref_primary_10_1039_D0DT04401F
crossref_primary_10_5004_dwt_2020_25905
crossref_primary_10_1016_j_jre_2022_07_007
crossref_primary_10_1016_j_scitotenv_2021_147204
crossref_primary_10_4236_ajac_2017_81006
crossref_primary_10_1088_2053_1591_ac9819
crossref_primary_10_5004_dwt_2019_24685
crossref_primary_10_1049_mnl_2019_0111
crossref_primary_10_1080_19443994_2015_1098573
crossref_primary_10_1080_19443994_2013_776504
crossref_primary_10_2139_ssrn_4055911
crossref_primary_10_3906_kim_1701_8
crossref_primary_10_1186_2228_5547_3_15
crossref_primary_10_5004_dwt_2021_27626
Cites_doi 10.1016/S0143-7208(02)00012-8
10.1021/ie0207010
10.1021/cr00018a003
10.1016/j.jphotochem.2005.08.025
10.1016/j.watres.2006.08.009
10.1016/j.chemosphere.2004.09.091
10.1016/j.apcatb.2003.09.010
10.1016/j.cattod.2007.06.022
10.1016/j.jcis.2004.03.043
10.1016/j.chemosphere.2005.03.065
10.1016/j.cattod.2005.07.060
10.1016/S0043-1354(98)00428-X
10.1021/ar50088a003
10.1016/j.dyepig.2006.04.006
10.1016/j.dyepig.2005.02.009
10.1016/j.dyepig.2004.03.004
10.1016/S0043-1354(00)00364-X
10.1016/j.watres.2005.12.021
10.1039/CT8946500899
10.1016/S0304-3894(02)00282-0
ContentType Journal Article
Copyright 2008 Elsevier B.V.
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier B.V.
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TV
7U7
C1K
8FD
FR3
KR7
7X8
DOI 10.1016/j.jhazmat.2008.04.080
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Pollution Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Pollution Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList Pollution Abstracts
MEDLINE - Academic
Technology Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
Applied Sciences
EISSN 1873-3336
EndPage 1057
ExternalDocumentID 18538927
21235792
10_1016_j_jhazmat_2008_04_080
S0304389408005979
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.HR
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLECG
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
T9H
TAE
UAO
VH1
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TV
7U7
C1K
8FD
FR3
KR7
7X8
ID FETCH-LOGICAL-c562t-bc7fa2f1301cdf40b38923b9d4b5c75a0144d8a66b01c05e2f9d9a1222bc482b3
IEDL.DBID .~1
ISSN 0304-3894
IngestDate Fri Jul 11 04:20:04 EDT 2025
Fri Jul 11 03:07:47 EDT 2025
Mon Jul 21 11:13:55 EDT 2025
Mon Jul 21 06:06:19 EDT 2025
Mon Jul 21 09:12:48 EDT 2025
Thu Apr 24 22:54:27 EDT 2025
Tue Jul 01 00:49:45 EDT 2025
Fri Feb 23 02:30:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fenton's reaction
Orange G
Kinetic
Azo dye
Hydroxyl radical
Second order
Discoloration
Hydrogen peroxide
Operating conditions
Waste water
Chlorides
Hydroxyl radicals
pH
Fenton reaction
Physicochemical purification
Oxidation
Kinetics
Aqueous solution
Thermodynamic properties
Activation energy
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-bc7fa2f1301cdf40b38923b9d4b5c75a0144d8a66b01c05e2f9d9a1222bc482b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 18538927
PQID 19693375
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_66727936
proquest_miscellaneous_35333767
proquest_miscellaneous_19693375
pubmed_primary_18538927
pascalfrancis_primary_21235792
crossref_citationtrail_10_1016_j_jhazmat_2008_04_080
crossref_primary_10_1016_j_jhazmat_2008_04_080
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2008_04_080
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-01-30
PublicationDateYYYYMMDD 2009-01-30
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-30
  day: 30
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2009
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hsueh, Huang, Wang, Chen (bib9) 2005; 58
Souza, Duarte, Girardi, Velani, Machado, Sattler, Oliveira, Miranda (bib18) 2006; 179
Ashraf, Rauf, Alhadrami (bib19) 2006; 69
Ozcan, Ozcan (bib1) 2004; 276
Ramirez, Costa, Madeira (bib10) 2005; 107-108
Sun, Sun, Wang, Qiao (bib11) 2007; 74
Kwon, Lee, Kang, Yoon (bib16) 1999; 33
Feng, Hu, Yue, Zhu, Lu (bib17) 2003; 42
Fenton (bib4) 1894; 65
Walling (bib7) 1975; 8
Feng, Hu, Yue (bib13) 2006; 40
Legrini, Oliveros, Braun (bib8) 1993; 93
Neyens, Baeyens (bib5) 2003; 98
Deng, Englehardt (bib14) 2006; 40
Chen, Zhu (bib20) 2007; 126
Mall, Srivastava, Agarwal, Mishra (bib2) 2005; 61
Muruganandham, Swaminathan (bib12) 2004; 63
Benitez, Acero, Real, Rubio, Leal (bib15) 2001; 35
Pera-Titus, García-Molina, Baños, Giménez, Esplugas (bib6) 2004; 47
Neamtu, Siminiceanu, Yediler, Kettrup (bib3) 2002; 53
Walling (10.1016/j.jhazmat.2008.04.080_bib7) 1975; 8
Chen (10.1016/j.jhazmat.2008.04.080_bib20) 2007; 126
Legrini (10.1016/j.jhazmat.2008.04.080_bib8) 1993; 93
Neyens (10.1016/j.jhazmat.2008.04.080_bib5) 2003; 98
Deng (10.1016/j.jhazmat.2008.04.080_bib14) 2006; 40
Benitez (10.1016/j.jhazmat.2008.04.080_bib15) 2001; 35
Ramirez (10.1016/j.jhazmat.2008.04.080_bib10) 2005; 107-108
Kwon (10.1016/j.jhazmat.2008.04.080_bib16) 1999; 33
Feng (10.1016/j.jhazmat.2008.04.080_bib17) 2003; 42
Feng (10.1016/j.jhazmat.2008.04.080_bib13) 2006; 40
Sun (10.1016/j.jhazmat.2008.04.080_bib11) 2007; 74
Ozcan (10.1016/j.jhazmat.2008.04.080_bib1) 2004; 276
Ashraf (10.1016/j.jhazmat.2008.04.080_bib19) 2006; 69
Muruganandham (10.1016/j.jhazmat.2008.04.080_bib12) 2004; 63
Pera-Titus (10.1016/j.jhazmat.2008.04.080_bib6) 2004; 47
Souza (10.1016/j.jhazmat.2008.04.080_bib18) 2006; 179
Mall (10.1016/j.jhazmat.2008.04.080_bib2) 2005; 61
Hsueh (10.1016/j.jhazmat.2008.04.080_bib9) 2005; 58
Neamtu (10.1016/j.jhazmat.2008.04.080_bib3) 2002; 53
Fenton (10.1016/j.jhazmat.2008.04.080_bib4) 1894; 65
References_xml – volume: 107-108
  start-page: 68
  year: 2005
  end-page: 76
  ident: bib10
  article-title: Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent
  publication-title: Catal. Today
– volume: 53
  start-page: 93
  year: 2002
  end-page: 99
  ident: bib3
  article-title: Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H
  publication-title: Dyes Pigments
– volume: 47
  start-page: 219
  year: 2004
  end-page: 256
  ident: bib6
  article-title: Degradation of chlorophenols by means of advanced oxidation processes: a general review
  publication-title: Appl. Catal. B: Environ.
– volume: 8
  start-page: 125
  year: 1975
  end-page: 131
  ident: bib7
  article-title: Fenton's reagent revisited
  publication-title: Acc. Chem. Res.
– volume: 33
  start-page: 2110
  year: 1999
  end-page: 2118
  ident: bib16
  article-title: Characteristics of
  publication-title: Water Res.
– volume: 93
  start-page: 671
  year: 1993
  end-page: 698
  ident: bib8
  article-title: Photochemical processes for water treatment
  publication-title: Chem. Rev.
– volume: 42
  start-page: 2058
  year: 2003
  end-page: 2066
  ident: bib17
  article-title: Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst
  publication-title: Ind. Eng. Chem. Res.
– volume: 69
  start-page: 74
  year: 2006
  end-page: 78
  ident: bib19
  article-title: Degradation of Methyl Red using Fenton's reagent and the effect of various salts
  publication-title: Dyes Pigments
– volume: 74
  start-page: 647
  year: 2007
  end-page: 652
  ident: bib11
  article-title: Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process
  publication-title: Dyes Pigments
– volume: 40
  start-page: 3683
  year: 2006
  end-page: 3694
  ident: bib14
  article-title: Treatment of landfill leachate by the Fenton process
  publication-title: Water Res.
– volume: 126
  start-page: 463
  year: 2007
  end-page: 470
  ident: bib20
  article-title: Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite
  publication-title: Cataly. Today
– volume: 35
  start-page: 1338
  year: 2001
  end-page: 1343
  ident: bib15
  article-title: The role of hydroxyl radicals for the decomposition of
  publication-title: Water Res.
– volume: 40
  start-page: 641
  year: 2006
  end-page: 646
  ident: bib13
  article-title: Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst
  publication-title: Water Res.
– volume: 58
  start-page: 1409
  year: 2005
  end-page: 1414
  ident: bib9
  article-title: Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system
  publication-title: Chemosphere
– volume: 61
  start-page: 492
  year: 2005
  end-page: 501
  ident: bib2
  article-title: Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses
  publication-title: Chemosphere
– volume: 65
  start-page: 899
  year: 1894
  end-page: 910
  ident: bib4
  article-title: Oxidation of tartaric acid in the presence of iron
  publication-title: J. Chem. Soc.
– volume: 98
  start-page: 33
  year: 2003
  end-page: 50
  ident: bib5
  article-title: A review of classic Fenton's peroxidation as an advanced oxidation technique
  publication-title: J. Hazard. Mater.
– volume: 63
  start-page: 315
  year: 2004
  end-page: 321
  ident: bib12
  article-title: Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology
  publication-title: Dyes Pigments
– volume: 179
  start-page: 269
  year: 2006
  end-page: 275
  ident: bib18
  article-title: Study of kinetic parameters related to the degradation of an industrial effluent using Fenton-like reactions
  publication-title: J. Photochem. Photobiol. A: Chem.
– volume: 276
  start-page: 39
  year: 2004
  end-page: 46
  ident: bib1
  article-title: Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite
  publication-title: J. Colloid Interface Sci.
– volume: 53
  start-page: 93
  year: 2002
  ident: 10.1016/j.jhazmat.2008.04.080_bib3
  article-title: Kinetics of decolorization and mineralization of reactive azo dyes in aqueous solution by the UV/H2O2 oxidation
  publication-title: Dyes Pigments
  doi: 10.1016/S0143-7208(02)00012-8
– volume: 42
  start-page: 2058
  year: 2003
  ident: 10.1016/j.jhazmat.2008.04.080_bib17
  article-title: Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0207010
– volume: 93
  start-page: 671
  year: 1993
  ident: 10.1016/j.jhazmat.2008.04.080_bib8
  article-title: Photochemical processes for water treatment
  publication-title: Chem. Rev.
  doi: 10.1021/cr00018a003
– volume: 179
  start-page: 269
  year: 2006
  ident: 10.1016/j.jhazmat.2008.04.080_bib18
  article-title: Study of kinetic parameters related to the degradation of an industrial effluent using Fenton-like reactions
  publication-title: J. Photochem. Photobiol. A: Chem.
  doi: 10.1016/j.jphotochem.2005.08.025
– volume: 40
  start-page: 3683
  year: 2006
  ident: 10.1016/j.jhazmat.2008.04.080_bib14
  article-title: Treatment of landfill leachate by the Fenton process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.08.009
– volume: 58
  start-page: 1409
  year: 2005
  ident: 10.1016/j.jhazmat.2008.04.080_bib9
  article-title: Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.09.091
– volume: 47
  start-page: 219
  year: 2004
  ident: 10.1016/j.jhazmat.2008.04.080_bib6
  article-title: Degradation of chlorophenols by means of advanced oxidation processes: a general review
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2003.09.010
– volume: 126
  start-page: 463
  year: 2007
  ident: 10.1016/j.jhazmat.2008.04.080_bib20
  article-title: Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite
  publication-title: Cataly. Today
  doi: 10.1016/j.cattod.2007.06.022
– volume: 276
  start-page: 39
  year: 2004
  ident: 10.1016/j.jhazmat.2008.04.080_bib1
  article-title: Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.03.043
– volume: 61
  start-page: 492
  year: 2005
  ident: 10.1016/j.jhazmat.2008.04.080_bib2
  article-title: Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.03.065
– volume: 107-108
  start-page: 68
  year: 2005
  ident: 10.1016/j.jhazmat.2008.04.080_bib10
  article-title: Experimental design to optimize the degradation of the synthetic dye Orange II using Fenton's reagent
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2005.07.060
– volume: 33
  start-page: 2110
  year: 1999
  ident: 10.1016/j.jhazmat.2008.04.080_bib16
  article-title: Characteristics of p-chlorophenol oxidation by Fenton's reagent
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00428-X
– volume: 8
  start-page: 125
  year: 1975
  ident: 10.1016/j.jhazmat.2008.04.080_bib7
  article-title: Fenton's reagent revisited
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar50088a003
– volume: 74
  start-page: 647
  year: 2007
  ident: 10.1016/j.jhazmat.2008.04.080_bib11
  article-title: Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process
  publication-title: Dyes Pigments
  doi: 10.1016/j.dyepig.2006.04.006
– volume: 69
  start-page: 74
  year: 2006
  ident: 10.1016/j.jhazmat.2008.04.080_bib19
  article-title: Degradation of Methyl Red using Fenton's reagent and the effect of various salts
  publication-title: Dyes Pigments
  doi: 10.1016/j.dyepig.2005.02.009
– volume: 63
  start-page: 315
  year: 2004
  ident: 10.1016/j.jhazmat.2008.04.080_bib12
  article-title: Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology
  publication-title: Dyes Pigments
  doi: 10.1016/j.dyepig.2004.03.004
– volume: 35
  start-page: 1338
  year: 2001
  ident: 10.1016/j.jhazmat.2008.04.080_bib15
  article-title: The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(00)00364-X
– volume: 40
  start-page: 641
  year: 2006
  ident: 10.1016/j.jhazmat.2008.04.080_bib13
  article-title: Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.12.021
– volume: 65
  start-page: 899
  year: 1894
  ident: 10.1016/j.jhazmat.2008.04.080_bib4
  article-title: Oxidation of tartaric acid in the presence of iron
  publication-title: J. Chem. Soc.
  doi: 10.1039/CT8946500899
– volume: 98
  start-page: 33
  year: 2003
  ident: 10.1016/j.jhazmat.2008.04.080_bib5
  article-title: A review of classic Fenton's peroxidation as an advanced oxidation technique
  publication-title: J. Hazard. Mater.
  doi: 10.1016/S0304-3894(02)00282-0
SSID ssj0001754
Score 2.45177
Snippet To establish cost-efficient operating conditions for potential application of Fenton oxidation process to treat wastewater containing an azo dye Orange G (OG),...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1052
SubjectTerms Applied sciences
Azo Compounds - chemistry
Azo dye
Chemical engineering
Chlorides - chemistry
Coloring Agents - chemistry
Exact sciences and technology
Fenton's reaction
General purification processes
Hydrogen Peroxide - chemistry
Hydrogen-Ion Concentration
Hydroxyl radical
Ions
Iron - chemistry
Kinetic
Kinetics
Models, Chemical
Orange G
Oxygen - chemistry
Pollution
Pressure
Reactors
Spectrophotometry, Ultraviolet
Temperature
Time Factors
Wastewaters
Water treatment and pollution
Title Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study
URI https://dx.doi.org/10.1016/j.jhazmat.2008.04.080
https://www.ncbi.nlm.nih.gov/pubmed/18538927
https://www.proquest.com/docview/19693375
https://www.proquest.com/docview/35333767
https://www.proquest.com/docview/66727936
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYovbRCFaUPtoXtHHrNPmLnYW6I1_ZFDy0St8h2bLFbyK52F7Vw4NQfzkzssCB1hdRLDpEdOzMTz-eM5xvGPupYyZ4VSSR4LiIR455V4h47SmOjucGrrMsBfTtOByfi82lyusL2mlwYOlYZ1n6_pterdbjTDdLsTobD7g8K6qG7FYR5EBZTEp8QGVl552ZxzAPdo6eQoggAtl5k8XRHndGZukZgGI5Uik7NDvlv_7Q2UTOUmvPlLpbj0dovHa6zFwFQwq6f80u2YqsN9vwezeAGe_JV_X7F_u5bYqiehsRLGDtQFajrMZRXFr5PKcsAjmCI93DE8eUMGrMEfQVozXPq9GfoizDBxGcY7IDnP6bHeVZoIDbxCzplM8MBSviFE8G5QU1k-5qdHB783BtEoQZDZBAZzSNtMqdih56ub0onehplGHMtS6ETkyWKNmRlrtJUY4NeYmMnS6n6iDq0EXms-Ru2Wo0ru8lAW17v_nBSuXBG6lxaIVxp-jxzLktbTDSSL0wgKKc6GedFcxJtVASFheKZokCFtVjnrtvEM3Q81iFv1Fo8MLUCvchjXdsPzOBuQAIASSbjFvvQ2EWB3ykFX1RFKiuIhojzLFnegiPyJm6d5S1SCptLjpJ6601u8cKIulAx2bv_f7f37JmPlNH_yC22Op9e2m0EXHPdrr-oNnu6--nL4PgWgJIsPw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELbacgBUoVIoDdDWBzhuHrb3YSQOiFJSmpYDrdTbYnttkdBuoiRVSQ-c-Ef8QWbW3oZKRJWQetnDyq_12PPYmfmGkFeaKdm2Io4Ez0QkGNisEmzsKGFGcwNPWZUDOjxKuifi02l8ukR-17kwGFYZeL_n6RW3Dm9aYTdbo36_9QWdeiBuBeo8oBbLEFl5YGeXYLdN3u7vApFfM7b34fh9NwqlBSIDAn8aaZM6xRww8I4pnGhrGIhxLQuhY5PGCu2MIlNJoqFBO7bMyUKqDghTbUTGNIdxl8k9AewCyyY0f87jSkAee8wqdDnA8uZpQ61Bc_BNXYEmGmI4RbOCo_y3QFwdqQmQyfn6GosV4EoQ7q2RR0GDpe_8Jj0mS7ZcJw__wjVcJ8s9dfmE_Nq1CIk9DpmedOioKqm6GtJiZunnMaY10I-0D-9gxuHFhNb3gOoZheszxU4_-r7qEx35lIY31AMu43AehpoifPk5hvVMYIKCfoeFwNpohZz7lJzcCWU2yEo5LO0modryytyERWXCGakzaYVwhenw1Lk0aRBR73xuAiI6FuY4y-vQt0EeCBaqdYocCNYgzetuIw8JcluHrCZrfuNs5yC2buu6feMYXE-IGkecStYgO_W5yIExoLdHlUiyHHGPOE_jxS04qPoI5rO4RYJ-eslhp575Izf_YFDzgDDp8___th1yv3t82Mt7-0cHL8gD76bDn6Evycp0fGG3QNub6u3qdlHy9a6v8x-4U2fD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decolorization+of+an+azo+dye+Orange+G+in+aqueous+solution+by+Fenton+oxidation+process%3A+Effect+of+system+parameters+and+kinetic+study&rft.jtitle=Journal+of+hazardous+materials&rft.au=Sun%2C+Sheng-Peng&rft.au=Li%2C+Cheng-Jie&rft.au=Sun%2C+Jian-Hui&rft.au=Shi%2C+Shao-Hui&rft.date=2009-01-30&rft.issn=0304-3894&rft.volume=161&rft.issue=2-3&rft.spage=1052&rft.epage=1057&rft_id=info:doi/10.1016%2Fj.jhazmat.2008.04.080&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2008_04_080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon