Precision analysis of mutant U2AF1 activity reveals deployment of stress granules in myeloid malignancies
Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3′ splice site (3′SS)...
Saved in:
Published in | Molecular cell Vol. 82; no. 6; pp. 1107 - 1122.e7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3′ splice site (3′SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3′SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3′SS contacts at −3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.
[Display omitted]
•freCLIP-seq dissects in vivo U2AF1 RNA binding at single-nucleotide resolution•U2AF1 mutations create de novo 3′ splice site contacts that alter RNA splicing•Binding and splicing integration uncovers alterations in stress granule components•U2AF1-mutant MDS/AML cells exhibit enhanced stress granule response
Biancon et al. unmask a stress granule signature in U2AF1 mutant myeloid malignancies via multiomics dissection of RNA binding, splicing, and turnover. They document novel mutant-specific U2AF1-RNA binding peaks at 3′ splice site positions, determining aberrant splice outcomes. U2AF1 mutant cells display enhanced stress granule formation and stress resistance. |
---|---|
AbstractList | Splicing factor mutations are common among cancers, recently emerging as
drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA
binding motifs; yet how they affect splicing and promote cancer remains unclear.
The U2AF1/U2AF2 heterodimer is critical for 3’ splice site (3’SS)
definition. To specifically unmask changes in U2AF1 function
in
vivo
, we developed a crosslinking and immunoprecipitation procedure
detecting contacts between U2AF1 and the 3’SS AG at single-nucleotide
resolution. Our data reveal that U2AF1 S34F and Q157R mutants establish new
3’SS contacts at −3 and +1 nucleotides, respectively. These
effects compromise U2AF2-RNA interactions, resulting predominantly in intron
retention and exon exclusion. Integrating RNA binding, splicing and turnover
data, we predicted that U2AF1 mutations directly affect stress granule
components, corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell
lines and patient-derived MDS/AML blasts displayed a heightened stress granule
response, pointing to a novel role for biomolecular condensates in adaptive
oncogenic strategies.
Biancon et al. unmask a stress granule signature in U2AF1 mutant myeloid
malignancies, via multi-omics dissection of RNA binding, splicing and turnover.
They document novel mutant-specific U2AF1-RNA binding peaks at 3’ splice
site positions, determining aberrant splice outcomes. U2AF1 mutant cells display
enhanced stress granule formation and stress resistance. Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3′ splice site (3′SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3′SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3′SS contacts at −3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies. Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies. Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3′ splice site (3′SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3′SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3′SS contacts at −3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies. [Display omitted] •freCLIP-seq dissects in vivo U2AF1 RNA binding at single-nucleotide resolution•U2AF1 mutations create de novo 3′ splice site contacts that alter RNA splicing•Binding and splicing integration uncovers alterations in stress granule components•U2AF1-mutant MDS/AML cells exhibit enhanced stress granule response Biancon et al. unmask a stress granule signature in U2AF1 mutant myeloid malignancies via multiomics dissection of RNA binding, splicing, and turnover. They document novel mutant-specific U2AF1-RNA binding peaks at 3′ splice site positions, determining aberrant splice outcomes. U2AF1 mutant cells display enhanced stress granule formation and stress resistance. Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies. |
Author | Bewersdorf, Joerg Machyna, Martin Song, Yuanbin Joshi, Poorval Lin, Haifan Biancon, Giulia Hunck, Torben Botti, Valentina Gao, Yimeng Simon, Matthew D. Courchaine, Edward Neugebauer, Karla M. Viero, Gabriella Tebaldi, Toma Lessard, Mark D. Halene, Stephanie Zimmer, Joshua T. Kiefer, Lea Barentine, Andrew E.S. Qin, Ashley Neuenkirchen, Nils Gbyli, Rana Patel, Amisha |
AuthorAffiliation | 13 These authors contributed equally 9 Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA 3 Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA 10 Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy 5 Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China 14 Lead contact 6 Department of Neurology, University of California, San Francisco, San Francisco, CA, USA 1 Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA 2 Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA 4 Department of Biomedical Engineering, Yale University, New Haven, CT, USA 12 Department of Pathology, Yale University |
AuthorAffiliation_xml | – name: 3 Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA – name: 9 Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA – name: 6 Department of Neurology, University of California, San Francisco, San Francisco, CA, USA – name: 14 Lead contact – name: 4 Department of Biomedical Engineering, Yale University, New Haven, CT, USA – name: 8 Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA – name: 5 Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China – name: 11 Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, USA – name: 12 Department of Pathology, Yale University School of Medicine, New Haven, CT, USA – name: 10 Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy – name: 13 These authors contributed equally – name: 7 Institute of Biophysics, CNR, Trento, Italy – name: 2 Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA – name: 1 Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA |
Author_xml | – sequence: 1 givenname: Giulia surname: Biancon fullname: Biancon, Giulia email: giulia.biancon@yale.edu organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA – sequence: 2 givenname: Poorval surname: Joshi fullname: Joshi, Poorval organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA – sequence: 3 givenname: Joshua T. surname: Zimmer fullname: Zimmer, Joshua T. organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA – sequence: 4 givenname: Torben surname: Hunck fullname: Hunck, Torben organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA – sequence: 5 givenname: Yimeng surname: Gao fullname: Gao, Yimeng organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA – sequence: 6 givenname: Mark D. surname: Lessard fullname: Lessard, Mark D. organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA – sequence: 7 givenname: Edward surname: Courchaine fullname: Courchaine, Edward organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA – sequence: 8 givenname: Andrew E.S. surname: Barentine fullname: Barentine, Andrew E.S. organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA – sequence: 9 givenname: Martin surname: Machyna fullname: Machyna, Martin organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA – sequence: 10 givenname: Valentina surname: Botti fullname: Botti, Valentina organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA – sequence: 11 givenname: Ashley surname: Qin fullname: Qin, Ashley organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA – sequence: 12 givenname: Rana surname: Gbyli fullname: Gbyli, Rana organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA – sequence: 13 givenname: Amisha surname: Patel fullname: Patel, Amisha organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA – sequence: 14 givenname: Yuanbin surname: Song fullname: Song, Yuanbin organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA – sequence: 15 givenname: Lea surname: Kiefer fullname: Kiefer, Lea organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA – sequence: 16 givenname: Gabriella surname: Viero fullname: Viero, Gabriella organization: Institute of Biophysics, CNR, Trento, Italy – sequence: 17 givenname: Nils surname: Neuenkirchen fullname: Neuenkirchen, Nils organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA – sequence: 18 givenname: Haifan surname: Lin fullname: Lin, Haifan organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA – sequence: 19 givenname: Joerg surname: Bewersdorf fullname: Bewersdorf, Joerg organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA – sequence: 20 givenname: Matthew D. surname: Simon fullname: Simon, Matthew D. organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA – sequence: 21 givenname: Karla M. surname: Neugebauer fullname: Neugebauer, Karla M. organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA – sequence: 22 givenname: Toma surname: Tebaldi fullname: Tebaldi, Toma email: toma.tebaldi@unitn.it organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA – sequence: 23 givenname: Stephanie surname: Halene fullname: Halene, Stephanie email: stephanie.halene@yale.edu organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35303483$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsGKFDEUDLLi7o7-gUiOXmZM0unutAdhWVwVFvTgnsPr9OsxQzoZk8xA_71pZlzUgwoPkpCqolKVa3Lhg0dCXnK24Yw3b3abKTiDbiOYEBu2TP2EXHHWtWvJG3lx3ou2qS_JdUo7xrisVfeMXFZ1xSqpqitiv0Q0NtngKXhwc7KJhpFOhww-0wdxc8cpmGyPNs804hHBJTrg3oV5woIo2JQjpkS3EfzBYaLW02lGF-xAJ3B268Ebi-k5eToWMr44ryvycPf-6-3H9f3nD59ub-7Xpm5EXvcwyF5BJaRgBkBKFGwAMJL1XIq2U6wfVdP15QiFoNq65a1khgnDpBhNtSLvTrr7Qz_hYIrLCE7vo50gzjqA1b_fePtNb8NRq06pTogi8PosEMP3A6asJ5tK0A48hkPSopFKtV3L6_-Bsq6rRUl7RV79auvRz88qCkCeACaGlCKOjxDO9NK43ulT43ppXLNlFgtv_6AZmyGXQsvjrPsX-ZwVlkKOFqNOpSpvcLDlW2Q9BPt3gR-jgcsD |
CitedBy_id | crossref_primary_10_1158_1078_0432_CCR_22_1618 crossref_primary_10_1158_0008_5472_CAN_23_2543 crossref_primary_10_1261_rna_080368_124 crossref_primary_10_7554_eLife_98524 crossref_primary_10_1016_j_stem_2023_07_012 crossref_primary_10_1016_j_molcel_2024_07_019 crossref_primary_10_1186_s10020_025_01087_8 crossref_primary_10_1016_j_mito_2025_102011 crossref_primary_10_1261_rna_079451_122 crossref_primary_10_3390_cancers14184406 crossref_primary_10_1097_HS9_0000000000000923 crossref_primary_10_1038_s41577_025_01130_z crossref_primary_10_1007_s13577_022_00843_w crossref_primary_10_1016_j_cca_2024_117789 crossref_primary_10_1038_s41419_023_05953_3 crossref_primary_10_1016_j_canlet_2024_217160 crossref_primary_10_1016_j_exphem_2024_104279 crossref_primary_10_1016_j_exphem_2024_104655 crossref_primary_10_1016_j_isci_2024_110359 crossref_primary_10_1016_j_sbi_2024_102907 crossref_primary_10_1038_s41568_022_00541_7 crossref_primary_10_1016_j_molcel_2022_05_014 crossref_primary_10_1093_jleuko_qiac015 crossref_primary_10_1038_s41392_024_02013_w crossref_primary_10_1038_s41467_024_55607_x crossref_primary_10_3724_abbs_2023117 crossref_primary_10_3390_life13030604 crossref_primary_10_1016_j_xpro_2022_101823 crossref_primary_10_1016_j_molcel_2024_08_010 crossref_primary_10_1038_s41598_024_64517_3 crossref_primary_10_1093_nar_gkac287 crossref_primary_10_1038_s41576_022_00556_8 crossref_primary_10_1080_16078454_2025_2479257 crossref_primary_10_1101_gr_276578_122 crossref_primary_10_1016_j_jbc_2024_107414 crossref_primary_10_1038_s41467_024_51979_2 crossref_primary_10_1515_labmed_2024_0175 crossref_primary_10_1080_15476286_2024_2346688 crossref_primary_10_7554_eLife_98524_3 crossref_primary_10_3390_biomedicines12092147 |
Cites_doi | 10.1093/bioinformatics/btq033 10.1073/pnas.1419161111 10.1182/blood-2013-01-480970 10.1016/j.cell.2015.12.038 10.1261/rna.078204.120 10.1200/JCO.2016.71.0806 10.1038/nbt.1754 10.1093/bioinformatics/btp616 10.1038/nmeth.4582 10.1101/cshperspect.a032813 10.1101/gad.267104.115 10.1038/ng.1031 10.1073/pnas.1800038115 10.1261/rna.057919.116 10.1093/bioinformatics/bts635 10.1016/j.molcel.2020.10.031 10.1016/j.molcel.2020.10.032 10.1038/45602 10.1093/nar/gkaa293 10.1038/nsmb.2906 10.1016/j.cell.2016.11.035 10.1056/NEJMra1406184 10.1038/leu.2014.303 10.1182/blood-2016-10-692400 10.1038/s41571-020-0350-x 10.7554/eLife.00498 10.1182/blood-2013-08-518886 10.1016/j.bbagrm.2014.11.009 10.1016/j.cell.2017.12.032 10.1073/pnas.1815767116 10.1111/bph.14790 10.3324/haematol.2020.248955 10.1016/j.phrs.2020.105143 10.1093/bioinformatics/btu638 10.1186/s13059-014-0550-8 10.3390/cancers11121844 10.1016/j.tcb.2016.05.004 10.14806/ej.17.1.200 10.1016/j.ymeth.2016.12.007 10.1038/ncomms10950 10.15252/embj.201593517 10.1038/45597 10.1182/blood-2018-04-843771 10.1172/JCI91363 10.1038/s41467-020-18559-6 10.1038/s41467-019-13392-y 10.1093/nar/gku1273 10.1038/nature10496 10.1038/45590 10.1101/gr.181016.114 10.1093/nar/gkw377 10.1016/j.cell.2021.04.048 10.1016/j.chembiol.2021.02.007 10.1038/nmeth.3810 10.1016/j.molcel.2017.12.020 10.1038/ncomms14049 10.1016/S0092-8674(01)00480-9 10.1016/j.ccell.2015.04.008 10.1038/s41375-020-0839-4 10.1158/0008-5472.CAN-17-3970 10.1371/journal.pone.0087361 10.1016/j.ccell.2019.07.003 10.1016/j.mayocp.2015.04.001 10.1093/bioinformatics/btp352 10.1128/MCB.21.22.7673-7681.2001 10.1038/s41587-019-0201-4 10.1016/j.molcel.2009.12.027 10.1371/journal.pone.0041007 10.1016/j.blre.2019.04.005 10.1371/journal.pone.0052249 10.1007/112_2020_37 10.1074/mcp.TIR119.001646 10.1016/j.molcel.2017.10.015 10.1016/j.cell.2018.07.023 10.1016/j.trecan.2020.04.011 10.1016/j.ccell.2019.01.010 10.1038/ncomms14060 10.1371/journal.pgen.1006384 10.1038/nm.4097 10.1038/nrc.2016.51 10.1101/gad.319590.118 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2022.02.025 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 1122.e7 |
ExternalDocumentID | PMC8988922 35303483 10_1016_j_molcel_2022_02_025 S1097276522001630 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM112766 – fundername: NIGMS NIH HHS grantid: R01 GM137117 – fundername: NIDDK NIH HHS grantid: R01 DK102792 – fundername: NIDDK NIH HHS grantid: U54 DK110858 – fundername: NIDDK NIH HHS grantid: U54 DK106857 – fundername: NIDDK NIH HHS grantid: U24 DK126127 – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NCI NIH HHS grantid: U01 CA200147 – fundername: NIH HHS grantid: S10 OD023651 – fundername: NCI NIH HHS grantid: R01 CA222518 |
GroupedDBID | --- --K -DZ -~X 0R~ 0SF 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AAVLU AAXUO ABJNI ABMAC ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADMBK AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AALRI AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKBMS AKYEP APXCP CITATION EJD FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM EFKBS |
ID | FETCH-LOGICAL-c562t-bad4b8a32420caa44e20daac40b1427980bf869b0b1a56287571740c02c042fc3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 18:37:31 EDT 2025 Fri Jul 11 15:43:00 EDT 2025 Fri Jul 11 16:49:07 EDT 2025 Wed Feb 19 02:03:09 EST 2025 Thu Apr 24 22:57:45 EDT 2025 Tue Jul 01 03:21:21 EDT 2025 Sat Jun 01 15:41:42 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | AML stress response RNA stress granules U2AF1 freCLIP splicing RNA granules MDS RNA binding |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-bad4b8a32420caa44e20daac40b1427980bf869b0b1a56287571740c02c042fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceptualization: G.B., P.J., T.T. and S.H.; Methodology: G.B., P.J., H.L., J.B., M.D.S., K.M.N., T.T. and S.H.; Investigation: G.B., P.J., T.H., J.T.Z. and Y.G.; Formal Analysis: G.B., J.T.Z., M.D.L., E.C., M.M. and T.T.; Resources: H.L., J.B., M.D.S., K.M.N. and S.H.; Validation: T.H., Y.G., E.C., A.E.S.B., V.B., A.Q., R.G., A.P., Y.S., L.K., G.V. and N.N.; Writing: G.B., K.M.N., T.T. and S.H.; Visualization: G.B. and T.T.; Supervision: T.T. and S.H.; Project Administration: S.H.; Funding Acquisition: T.T. and S.H. Author contributions |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276522001630 |
PMID | 35303483 |
PQID | 2640995230 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8988922 proquest_miscellaneous_2648879715 proquest_miscellaneous_2640995230 pubmed_primary_35303483 crossref_primary_10_1016_j_molcel_2022_02_025 crossref_citationtrail_10_1016_j_molcel_2022_02_025 elsevier_sciencedirect_doi_10_1016_j_molcel_2022_02_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-17 |
PublicationDateYYYYMMDD | 2022-03-17 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Esfahani, Lee, Jeon, Flynn, Stehr, Hui, Ishisoko, Kildebeck, Newman, Bratman (bib13) 2019; 10 Fong, Pignata, Goy, Kawabata, Lee, Koh, Musiani, Massignani, Kotini, Penson (bib15) 2019; 36 Hellström-Lindberg, Tobiasson, Greenberg (bib20) 2020; 105 Kielkopf, Rodionova, Green, Burley (bib27) 2001; 106 Wu, Romfo, Nilsen, Green (bib72) 1999; 402 Brooks, Choi, de Waal, Sharifnia, Imielinski, Saksena, Pedamallu, Sivachenko, Rosenberg, Chmielecki (bib7) 2014; 9 Schofield, Duffy, Kiefer, Sullivan, Simon (bib54) 2018; 15 Zhu, Orre, Zhou Tran, Mermelekas, Johansson, Malyutina, Anders, Lehtiö (bib81) 2020; 19 Yoshida, Sanada, Shiraishi, Nowak, Nagata, Yamamoto, Sato, Sato-Otsubo, Kon, Nagasaki (bib78) 2011; 478 Nguyen, Leong, Li, Reddy, Sullivan, Walter, Zou, Graubert (bib41) 2018; 78 Saez, Walter, Graubert (bib53) 2017; 129 Shallis, Wang, Davidoff, Ma, Zeidan (bib55) 2019; 36 Anderson, Kedersha, Ivanov (bib4) 2015; 1849 Rabouw, Langereis, Anand, Visser, de Groot, Walter, van Kuppeveld (bib50) 2019; 116 Yoshida, Park, Sakashita, Nariai, Kuwasako, Muto, Urano, Obayashi (bib77) 2020; 11 Motta-Mena, Heyd, Lynch (bib39) 2010; 37 Merendino, Guth, Bilbao, Martínez, Valcárcel (bib38) 1999; 402 Palangat, Anastasakis, Fei, Lindblad, Bradley, Hourigan, Hafner, Larson (bib43) 2019; 33 Khong, Matheny, Jain, Mitchell, Wheeler, Parker (bib26) 2017; 68 Przychodzen, Jerez, Guinta, Sekeres, Padgett, Maciejewski, Makishima (bib48) 2013; 122 Pellagatti, Armstrong, Steeples, Sharma, Repapi, Singh, Sanchi, Radujkovic, Horn, Dolatshad (bib46) 2018; 132 Marmor-Kollet, Siany, Kedersha, Knafo, Rivkin, Danino, Moens, Olender, Sheban, Cohen (bib35) 2020; 80 Ivanov, Kedersha, Anderson (bib22) 2019; 11 Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager (bib19) 2021; 184 Zorio, Blumenthal (bib82) 1999; 402 Bamopoulos, Batcha, Jurinovic, Rothenberg-Thurley, Janke, Ksienzyk, Philippou-Massier, Graf, Krebs, Blum (bib5) 2020; 34 Fei, Motowski, Chatrikhi, Prasad, Yu, Gao, Kielkopf, Bradley, Varmus (bib14) 2016; 12 Shen, Park, Lu, Lin, Henry, Wu, Zhou, Xing (bib57) 2014; 111 Okeyo-Owuor, White, Chatrikhi, Mohan, Kim, Griffith, Ding, Ketkar-Kulkarni, Hundal, Laird (bib42) 2015; 29 Visconte, O Nakashima, J Rogers (bib67) 2019; 11 Van Treeck, Parker (bib65) 2018; 174 Yamaguchi, Hamanaka, Kamiya, Okabe, Kawarai, Wakiyama, Umino, Hayama, Sato, Lee (bib74) 2012; 7 Van Treeck, Protter, Matheny, Khong, Link, Parker (bib66) 2018; 115 Zheng, Terry, Belgrader, Ryvkin, Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu (bib80) 2017; 8 Dvinge, Kim, Abdel-Wahab, Bradley (bib12) 2016; 16 Zyryanova, Kashiwagi, Rato, Harding, Crespillo-Casado, Perera, Sakamoto, Nishimoto, Yonemochi, Shirouzu (bib83) 2021; 81 Martin (bib36) 2011; 17 Yoshida, Park, Oda, Akiyoshi, Sato, Shirouzu, Tsuda, Kuwasako, Unzai, Muto (bib76) 2015; 29 Kennedy, Ebert (bib25) 2017; 35 Matheny, Van Treeck, Huynh, Parker (bib37) 2021; 27 Shirai, Ley, White, Kim, Tibbitts, Shao, Ndonwi, Wadugu, Duncavage, Okeyo-Owuor (bib58) 2015; 27 Kim, Park, Jun, Lee, Jung, Kim (bib29) 2018; 41 Anczuków, Krainer (bib2) 2016; 22 Courchaine, Lu, Neugebauer (bib9) 2016; 35 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib10) 2013; 29 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib32) 2009; 25 Wang, Li, Fan, Jin, Huang (bib70) 2020; 161 Shao, Yang, Wu, Huang, Tang, Zhou, Zhou, Qiu, Jiang, Li (bib56) 2014; 21 Kedersha, Anderson (bib24) 2007; 431 Papaemmanuil, Gerstung, Malcovati, Tauro, Gundem, Van Loo, Yoon, Ellis, Wedge, Pellagatti (bib44) 2013; 122 Agrawal, Salsi, Chatrikhi, Henderson, Jenkins, Green, Ermolenko, Kielkopf (bib1) 2016; 7 Shirai, White, Tripathi, Tapia, Ley, Ndonwi, Kim, Shao, Carver, Saez (bib59) 2017; 8 Grabocka, Bar-Sagi (bib17) 2016; 167 Xu, Luo, Qian, Pang, Song, Qian, Chen, Chen (bib73) 2012; 7 Guth, Tange, Kellenberger, Valcárcel (bib84) 2001; 21 Sidrauski, Acosta-Alvear, Khoutorsky, Vedantham, Hearn, Li, Gamache, Gallagher, Ang, Wilson (bib60) 2013; 2 Song, Grabocka (bib61) 2020 Yip, Steeples, Repapi, Armstrong, Llorian, Roy, Shaw, Dolatshad, Taylor, Verma (bib75) 2017; 127 Van Nostrand, Gelboin-Burkhart, Wang, Pratt, Blue, Yeo (bib63) 2017; 118–119 Youn, Dunham, Hong, Knight, Bashkurov, Chen, Bagci, Rathod, MacLeod, Eng (bib79) 2018; 69 Gao, Jiang, Gong, Chen, Ying, Zhu, He, Yang, Cao (bib16) 2019; 176 Protter, Parker (bib47) 2016; 26 Steensma (bib62) 2015; 90 Love, Huber, Anders (bib33) 2014; 15 Quinlan, Hall (bib49) 2010; 26 Van Nostrand, Pratt, Shishkin, Gelboin-Burkhart, Fang, Sundararaman, Blue, Nguyen, Surka, Elkins (bib64) 2016; 13 Anders, Pyl, Huber (bib3) 2015; 31 Döhner, Weisdorf, Bloomfield (bib11) 2015; 373 Robinson, McCarthy, Smyth (bib52) 2010; 26 Wang, Lu, Pastore, Chen, Imig, Chun-Wei Lee, Hockemeyer, Ghebrechristos, Yoshimi, Inoue (bib69) 2019; 35 Bonnal, López-Oreja, Valcárcel (bib6) 2020; 17 Jain, Wheeler, Walters, Agrawal, Barsic, Parker (bib23) 2016; 164 Graubert, Shen, Ding, Okeyo-Owuor, Lunn, Shao, Krysiak, Harris, Koboldt, Larson (bib18) 2011; 44 Lee, Dvinge, Kim, Cho, Micol, Chung, Durham, Yoshimi, Kim, Thomas (bib31) 2016; 22 Robinson, Thorvaldsdóttir, Winckler, Guttman, Lander, Getz, Mesirov (bib51) 2011; 29 Warnasooriya, Feeney, Laird, Ermolenko, Kielkopf (bib71) 2020; 48 Kim, Paggi, Park, Bennett, Salzberg (bib28) 2019; 37 Moulos, Hatzis (bib40) 2015; 43 Markmiller, Soltanieh, Server, Mak, Jin, Fang, Luo, Krach, Yang, Sen (bib34) 2018; 172 Ilagan, Ramakrishnan, Hayes, Murphy, Zebari, Bradley, Bradley (bib21) 2015; 25 Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann (bib30) 2016; 44 Chatrikhi, Feeney, Pulvino, Alachouzos, MacRae, Falls, Rai, Brennessel, Jenkins, Walter (bib8) 2021; 28 Wang, Aifantis (bib68) 2020; 6 Shirai (10.1016/j.molcel.2022.02.025_bib59) 2017; 8 Yoshida (10.1016/j.molcel.2022.02.025_bib78) 2011; 478 Merendino (10.1016/j.molcel.2022.02.025_bib38) 1999; 402 Youn (10.1016/j.molcel.2022.02.025_bib79) 2018; 69 Fei (10.1016/j.molcel.2022.02.025_bib14) 2016; 12 Pellagatti (10.1016/j.molcel.2022.02.025_bib46) 2018; 132 Saez (10.1016/j.molcel.2022.02.025_bib53) 2017; 129 Zheng (10.1016/j.molcel.2022.02.025_bib80) 2017; 8 Döhner (10.1016/j.molcel.2022.02.025_bib11) 2015; 373 Kim (10.1016/j.molcel.2022.02.025_bib28) 2019; 37 Markmiller (10.1016/j.molcel.2022.02.025_bib34) 2018; 172 Nguyen (10.1016/j.molcel.2022.02.025_bib41) 2018; 78 Van Nostrand (10.1016/j.molcel.2022.02.025_bib64) 2016; 13 Shao (10.1016/j.molcel.2022.02.025_bib56) 2014; 21 Rabouw (10.1016/j.molcel.2022.02.025_bib50) 2019; 116 Wang (10.1016/j.molcel.2022.02.025_bib70) 2020; 161 Sidrauski (10.1016/j.molcel.2022.02.025_bib60) 2013; 2 Van Treeck (10.1016/j.molcel.2022.02.025_bib66) 2018; 115 Xu (10.1016/j.molcel.2022.02.025_bib73) 2012; 7 Matheny (10.1016/j.molcel.2022.02.025_bib37) 2021; 27 Anderson (10.1016/j.molcel.2022.02.025_bib4) 2015; 1849 Esfahani (10.1016/j.molcel.2022.02.025_bib13) 2019; 10 Ivanov (10.1016/j.molcel.2022.02.025_bib22) 2019; 11 Marmor-Kollet (10.1016/j.molcel.2022.02.025_bib35) 2020; 80 Fong (10.1016/j.molcel.2022.02.025_bib15) 2019; 36 Anders (10.1016/j.molcel.2022.02.025_bib3) 2015; 31 Jain (10.1016/j.molcel.2022.02.025_bib23) 2016; 164 Papaemmanuil (10.1016/j.molcel.2022.02.025_bib44) 2013; 122 Kedersha (10.1016/j.molcel.2022.02.025_bib24) 2007; 431 Song (10.1016/j.molcel.2022.02.025_bib61) 2020 Love (10.1016/j.molcel.2022.02.025_bib33) 2014; 15 Bamopoulos (10.1016/j.molcel.2022.02.025_bib5) 2020; 34 Kuleshov (10.1016/j.molcel.2022.02.025_bib30) 2016; 44 Shen (10.1016/j.molcel.2022.02.025_bib57) 2014; 111 Hellström-Lindberg (10.1016/j.molcel.2022.02.025_bib20) 2020; 105 Lee (10.1016/j.molcel.2022.02.025_bib31) 2016; 22 Okeyo-Owuor (10.1016/j.molcel.2022.02.025_bib42) 2015; 29 Wu (10.1016/j.molcel.2022.02.025_bib72) 1999; 402 Zhu (10.1016/j.molcel.2022.02.025_bib81) 2020; 19 Yip (10.1016/j.molcel.2022.02.025_bib75) 2017; 127 Dobin (10.1016/j.molcel.2022.02.025_bib10) 2013; 29 Ilagan (10.1016/j.molcel.2022.02.025_bib21) 2015; 25 Protter (10.1016/j.molcel.2022.02.025_bib47) 2016; 26 Kim (10.1016/j.molcel.2022.02.025_bib29) 2018; 41 Graubert (10.1016/j.molcel.2022.02.025_bib18) 2011; 44 Grabocka (10.1016/j.molcel.2022.02.025_bib17) 2016; 167 Brooks (10.1016/j.molcel.2022.02.025_bib7) 2014; 9 Khong (10.1016/j.molcel.2022.02.025_bib26) 2017; 68 Moulos (10.1016/j.molcel.2022.02.025_bib40) 2015; 43 Wang (10.1016/j.molcel.2022.02.025_bib68) 2020; 6 Zyryanova (10.1016/j.molcel.2022.02.025_bib83) 2021; 81 Quinlan (10.1016/j.molcel.2022.02.025_bib49) 2010; 26 Bonnal (10.1016/j.molcel.2022.02.025_bib6) 2020; 17 Chatrikhi (10.1016/j.molcel.2022.02.025_bib8) 2021; 28 Palangat (10.1016/j.molcel.2022.02.025_bib43) 2019; 33 Robinson (10.1016/j.molcel.2022.02.025_bib51) 2011; 29 Visconte (10.1016/j.molcel.2022.02.025_bib67) 2019; 11 Schofield (10.1016/j.molcel.2022.02.025_bib54) 2018; 15 Dvinge (10.1016/j.molcel.2022.02.025_bib12) 2016; 16 Robinson (10.1016/j.molcel.2022.02.025_bib52) 2010; 26 Kennedy (10.1016/j.molcel.2022.02.025_bib25) 2017; 35 Motta-Mena (10.1016/j.molcel.2022.02.025_bib39) 2010; 37 Steensma (10.1016/j.molcel.2022.02.025_bib62) 2015; 90 Van Nostrand (10.1016/j.molcel.2022.02.025_bib63) 2017; 118–119 Martin (10.1016/j.molcel.2022.02.025_bib36) 2011; 17 Przychodzen (10.1016/j.molcel.2022.02.025_bib48) 2013; 122 Yamaguchi (10.1016/j.molcel.2022.02.025_bib74) 2012; 7 Yoshida (10.1016/j.molcel.2022.02.025_bib76) 2015; 29 Zorio (10.1016/j.molcel.2022.02.025_bib82) 1999; 402 Gao (10.1016/j.molcel.2022.02.025_bib16) 2019; 176 Anczuków (10.1016/j.molcel.2022.02.025_bib2) 2016; 22 Guth (10.1016/j.molcel.2022.02.025_bib84) 2001; 21 Kielkopf (10.1016/j.molcel.2022.02.025_bib27) 2001; 106 Warnasooriya (10.1016/j.molcel.2022.02.025_bib71) 2020; 48 Agrawal (10.1016/j.molcel.2022.02.025_bib1) 2016; 7 Shirai (10.1016/j.molcel.2022.02.025_bib58) 2015; 27 Van Treeck (10.1016/j.molcel.2022.02.025_bib65) 2018; 174 Wang (10.1016/j.molcel.2022.02.025_bib69) 2019; 35 Hao (10.1016/j.molcel.2022.02.025_bib19) 2021; 184 Li (10.1016/j.molcel.2022.02.025_bib32) 2009; 25 Courchaine (10.1016/j.molcel.2022.02.025_bib9) 2016; 35 Shallis (10.1016/j.molcel.2022.02.025_bib55) 2019; 36 Yoshida (10.1016/j.molcel.2022.02.025_bib77) 2020; 11 |
References_xml | – volume: 80 start-page: 876 year: 2020 end-page: 891.e6 ident: bib35 article-title: Spatiotemporal proteomic analysis of stress granule disassembly using APEX reveals regulation by SUMOylation and links to ALS pathogenesis publication-title: Mol. Cell – volume: 373 start-page: 1136 year: 2015 end-page: 1152 ident: bib11 article-title: Acute myeloid leukemia publication-title: N. Engl. J. Med. – volume: 105 start-page: 1765 year: 2020 end-page: 1779 ident: bib20 article-title: Myelodysplastic syndromes: moving towards personalized management publication-title: Haematologica – volume: 16 start-page: 413 year: 2016 end-page: 430 ident: bib12 article-title: RNA splicing factors as oncoproteins and tumour suppressors publication-title: Nat. Rev. Cancer – volume: 41 start-page: 733 year: 2018 end-page: 741 ident: bib29 article-title: Integrative profiling of alternative splicing induced by U2AF1 S34F mutation in lung adenocarcinoma reveals a mechanistic Link to mitotic stress publication-title: Mol. Cell – volume: 111 start-page: E5593 year: 2014 end-page: E5601 ident: bib57 article-title: rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data publication-title: Proc. Natl. Acad. Sci. USA. – volume: 15 start-page: 550 year: 2014 ident: bib33 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol – volume: 17 start-page: 457 year: 2020 end-page: 474 ident: bib6 article-title: Roles and mechanisms of alternative splicing in cancer — implications for care publication-title: Nat. Rev. Clin. Oncol. – volume: 167 start-page: 1803 year: 2016 end-page: 1813.e12 ident: bib17 article-title: Mutant KRAS enhances tumor cell fitness by upregulating stress granules publication-title: Cell – volume: 8 start-page: 14060 year: 2017 ident: bib59 article-title: Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome publication-title: Nat. Commun. – volume: 26 start-page: 668 year: 2016 end-page: 679 ident: bib47 article-title: Principles and properties of stress granules publication-title: Trends Cell Biol. – volume: 8 start-page: 14049 year: 2017 ident: bib80 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. – volume: 9 start-page: e87361 year: 2014 ident: bib7 article-title: A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events publication-title: PLoS One – volume: 402 start-page: 838 year: 1999 end-page: 841 ident: bib38 article-title: Inhibition of msl-2 splicing by sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG publication-title: Nature – volume: 15 start-page: 221 year: 2018 end-page: 225 ident: bib54 article-title: Time Lapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding time publication-title: Nat. Methods – volume: 28 start-page: 1145 year: 2021 end-page: 1157.e6 ident: bib8 article-title: A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex publication-title: Cell Chem. Biol. – volume: 2 start-page: e00498 year: 2013 ident: bib60 article-title: Pharmacological brake-release of mRNA translation enhances cognitive memory publication-title: eLife – volume: 48 start-page: 5695 year: 2020 end-page: 5709 ident: bib71 article-title: A splice site-sensing conformational switch in U2AF2 is modulated by U2AF1 and its recurrent myelodysplasia-associated mutation publication-title: Nucleic Acids Res. – volume: 106 start-page: 595 year: 2001 end-page: 605 ident: bib27 article-title: A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer publication-title: Cell – volume: 90 start-page: 969 year: 2015 end-page: 983 ident: bib62 article-title: Myelodysplastic syndromes: diagnosis and treatment publication-title: Mayo Clin. Proc. – start-page: 1 year: 2020 end-page: 28 ident: bib61 article-title: Stress granules in cancer publication-title: Reviews of Physiology, Biochemistry and Pharmacology – volume: 172 start-page: 590 year: 2018 end-page: 604.e13 ident: bib34 article-title: Context-dependent and disease-specific diversity in protein interactions within stress granules publication-title: Cell – volume: 478 start-page: 64 year: 2011 end-page: 69 ident: bib78 article-title: Frequent pathway mutations of splicing machinery in myelodysplasia publication-title: Nature – volume: 129 start-page: 1260 year: 2017 end-page: 1269 ident: bib53 article-title: Splicing factor gene mutations in hematologic malignancies publication-title: Blood – volume: 25 start-page: 14 year: 2015 end-page: 26 ident: bib21 article-title: U2AF1 mutations alter splice site recognition in hematological malignancies publication-title: Genome Res. – volume: 402 start-page: 832 year: 1999 end-page: 835 ident: bib72 article-title: Functional recognition of the 3′ splice site AG by the splicing factor U2AF35 publication-title: Nature – volume: 35 start-page: 1603 year: 2016 end-page: 1612 ident: bib9 article-title: Droplet organelles? publication-title: EMBO J – volume: 164 start-page: 487 year: 2016 end-page: 498 ident: bib23 article-title: ATPase-modulated stress granules contain a diverse proteome and substructure publication-title: Cell – volume: 17 start-page: 10 year: 2011 ident: bib36 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J – volume: 33 start-page: 482 year: 2019 end-page: 497 ident: bib43 article-title: The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation publication-title: Genes Dev – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: bib49 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics – volume: 174 start-page: 791 year: 2018 end-page: 802 ident: bib65 article-title: Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies publication-title: Cell – volume: 69 start-page: 517 year: 2018 end-page: 532.e11 ident: bib79 article-title: High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies publication-title: Mol. Cell – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib10 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 78 start-page: 5363 year: 2018 end-page: 5374 ident: bib41 article-title: Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes publication-title: Cancer Res – volume: 34 start-page: 2621 year: 2020 end-page: 2634 ident: bib5 article-title: Clinical presentation and differential splicing of SRSF2, U2AF1 and SF3B1 mutations in patients with acute myeloid leukemia publication-title: Leukemia – volume: 176 start-page: 4421 year: 2019 end-page: 4433 ident: bib16 article-title: Stress granule: a promising target for cancer treatment publication-title: Br. J. Pharmacol. – volume: 29 start-page: 24 year: 2011 end-page: 26 ident: bib51 article-title: Integrative genomics viewer publication-title: Nat. Biotechnol. – volume: 21 year: 2001 ident: bib84 article-title: Dual function for U2AF(35) in AG-dependent pre-mRNA splicing publication-title: Mol. Cell Biol. – volume: 37 start-page: 907 year: 2019 end-page: 915 ident: bib28 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. – volume: 184 year: 2021 ident: bib19 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bib52 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 81 start-page: 88 year: 2021 end-page: 103.e6 ident: bib83 article-title: ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B publication-title: Mol. Cell – volume: 19 start-page: 1047 year: 2020 end-page: 1057 ident: bib81 article-title: DEqMS: a method for accurate variance estimation in differential protein expression analysis publication-title: Mol. Cell. Proteomics – volume: 7 start-page: 10950 year: 2016 ident: bib1 article-title: An extended U2AF65-RNA-binding domain recognizes the 3′ splice site signal publication-title: Nat. Commun. – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib32 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics – volume: 402 start-page: 835 year: 1999 end-page: 838 ident: bib82 article-title: Both subunits of U2AF recognize the 3′ splice site in publication-title: Nature – volume: 12 year: 2016 ident: bib14 article-title: Wild-type U2AF1 antagonizes the splicing program characteristic of U2AF1-mutant tumors and is required for cell survival publication-title: PLoS Genet – volume: 127 start-page: 2206 year: 2017 end-page: 2221 ident: bib75 article-title: The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes publication-title: J. Clin. Invest. – volume: 6 start-page: 631 year: 2020 end-page: 644 ident: bib68 article-title: RNA splicing and cancer publication-title: Trends Cancer – volume: 122 start-page: 999 year: 2013 end-page: 1006 ident: bib48 article-title: Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms publication-title: Blood – volume: 22 start-page: 672 year: 2016 end-page: 678 ident: bib31 article-title: Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins publication-title: Nat. Med. – volume: 7 year: 2012 ident: bib74 article-title: Development of an all-in-one inducible lentiviral vector for gene specific analysis of reprogramming publication-title: PLoS One – volume: 29 start-page: 1649 year: 2015 end-page: 1660 ident: bib76 article-title: A novel 3′ splice site recognition by the two zinc fingers in the U2AF small subunit publication-title: Genes Dev – volume: 27 start-page: 174 year: 2021 end-page: 189 ident: bib37 article-title: RNA partitioning into stress granules is based on the summation of multiple interactions publication-title: RNA – volume: 116 start-page: 2097 year: 2019 end-page: 2102 ident: bib50 article-title: Small molecule ISRIB suppresses the integrated stress response within a defined window of activation publication-title: Proc. Natl. Acad. Sci. USA. – volume: 22 start-page: 1285 year: 2016 end-page: 1301 ident: bib2 article-title: Splicing-factor alterations in cancers publication-title: RNA – volume: 36 start-page: 194 year: 2019 end-page: 209.e9 ident: bib15 article-title: Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation publication-title: Cancer Cell – volume: 431 start-page: 61 year: 2007 end-page: 81 ident: bib24 article-title: Mammalian stress granules and processing bodies publication-title: Methods Enzymol. Translation Initiation: Cell Biology, High-Throughput Methods, and Chemical-Based Approaches – volume: 36 start-page: 70 year: 2019 end-page: 87 ident: bib55 article-title: Epidemiology of acute myeloid leukemia: recent progress and enduring challenges publication-title: Blood Rev. – volume: 161 start-page: 105143 year: 2020 ident: bib70 article-title: Targeting stress granules: A novel therapeutic strategy for human diseases publication-title: Pharmacol. Res. – volume: 44 start-page: W90 year: 2016 end-page: W97 ident: bib30 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res. – volume: 132 start-page: 1225 year: 2018 end-page: 1240 ident: bib46 article-title: Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations publication-title: Blood – volume: 118–119 start-page: 50 year: 2017 end-page: 59 ident: bib63 article-title: CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins publication-title: Methods – volume: 115 start-page: 2734 year: 2018 end-page: 2739 ident: bib66 article-title: RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome publication-title: Proc. Natl. Acad. Sci. USA. – volume: 7 year: 2012 ident: bib73 article-title: FastUniq: a fast de novo duplicates removal tool for paired short reads publication-title: PLoS One – volume: 35 start-page: 968 year: 2017 end-page: 974 ident: bib25 article-title: Clinical implications of Genetic mutations in myelodysplastic syndrome publication-title: J. Clin. Oncol. – volume: 37 start-page: 223 year: 2010 end-page: 234 ident: bib39 article-title: Context-dependent regulatory mechanism of the splicing factor hnRNP L publication-title: Mol. Cell – volume: 68 start-page: 808 year: 2017 end-page: 820.e5 ident: bib26 article-title: The stress granule transcriptome reveals principles of mRNA accumulation in stress granules publication-title: Mol. Cell – volume: 11 start-page: 1844 year: 2019 ident: bib67 article-title: Mutations in splicing factor genes in myeloid malignancies: significance and impact on clinical features publication-title: Cancers (Basel) – volume: 122 start-page: 3616 year: 2013 end-page: 3627 ident: bib44 article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes publication-title: Blood – volume: 35 start-page: 369 year: 2019 end-page: 384.e7 ident: bib69 article-title: Targeting an RNA-binding protein network in acute myeloid leukemia publication-title: Cancer Cell – volume: 29 start-page: 909 year: 2015 end-page: 917 ident: bib42 article-title: U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing publication-title: Leukemia – volume: 11 start-page: a032813 year: 2019 ident: bib22 article-title: Stress granules and processing bodies in translational control publication-title: Cold Spring Harb. Perspect. Biol. – volume: 44 start-page: 53 year: 2011 end-page: 57 ident: bib18 article-title: Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes publication-title: Nat. Genet. – volume: 27 start-page: 631 year: 2015 end-page: 643 ident: bib58 article-title: Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo publication-title: Cancer Cell – volume: 10 start-page: 5712 year: 2019 ident: bib13 article-title: Functional significance of U2AF1 S34F mutations in lung adenocarcinomas publication-title: Nat. Commun. – volume: 1849 start-page: 861 year: 2015 end-page: 870 ident: bib4 article-title: Stress granules, P-bodies and cancer publication-title: Biochim. Biophys. Acta – volume: 11 start-page: 4744 year: 2020 ident: bib77 article-title: Elucidation of the aberrant 3′ splice site selection by cancer-associated mutations on the U2AF1 publication-title: Nat. Commun. – volume: 43 start-page: e25 year: 2015 ident: bib40 article-title: Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns publication-title: Nucleic Acids Res. – volume: 21 start-page: 997 year: 2014 end-page: 1005 ident: bib56 article-title: Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome publication-title: Nat. Struct. Mol. Biol. – volume: 13 start-page: 508 year: 2016 end-page: 514 ident: bib64 article-title: Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP) publication-title: Nat. Methods – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: bib3 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics – volume: 26 start-page: 841 year: 2010 ident: 10.1016/j.molcel.2022.02.025_bib49 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 111 start-page: E5593 year: 2014 ident: 10.1016/j.molcel.2022.02.025_bib57 article-title: rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1419161111 – volume: 122 start-page: 999 year: 2013 ident: 10.1016/j.molcel.2022.02.025_bib48 article-title: Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms publication-title: Blood doi: 10.1182/blood-2013-01-480970 – volume: 164 start-page: 487 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib23 article-title: ATPase-modulated stress granules contain a diverse proteome and substructure publication-title: Cell doi: 10.1016/j.cell.2015.12.038 – volume: 27 start-page: 174 year: 2021 ident: 10.1016/j.molcel.2022.02.025_bib37 article-title: RNA partitioning into stress granules is based on the summation of multiple interactions publication-title: RNA doi: 10.1261/rna.078204.120 – volume: 35 start-page: 968 year: 2017 ident: 10.1016/j.molcel.2022.02.025_bib25 article-title: Clinical implications of Genetic mutations in myelodysplastic syndrome publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2016.71.0806 – volume: 29 start-page: 24 year: 2011 ident: 10.1016/j.molcel.2022.02.025_bib51 article-title: Integrative genomics viewer publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1754 – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.molcel.2022.02.025_bib52 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 15 start-page: 221 year: 2018 ident: 10.1016/j.molcel.2022.02.025_bib54 article-title: Time Lapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding time publication-title: Nat. Methods doi: 10.1038/nmeth.4582 – volume: 11 start-page: a032813 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib22 article-title: Stress granules and processing bodies in translational control publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a032813 – volume: 29 start-page: 1649 year: 2015 ident: 10.1016/j.molcel.2022.02.025_bib76 article-title: A novel 3′ splice site recognition by the two zinc fingers in the U2AF small subunit publication-title: Genes Dev doi: 10.1101/gad.267104.115 – volume: 44 start-page: 53 year: 2011 ident: 10.1016/j.molcel.2022.02.025_bib18 article-title: Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes publication-title: Nat. Genet. doi: 10.1038/ng.1031 – volume: 115 start-page: 2734 year: 2018 ident: 10.1016/j.molcel.2022.02.025_bib66 article-title: RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1800038115 – volume: 22 start-page: 1285 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib2 article-title: Splicing-factor alterations in cancers publication-title: RNA doi: 10.1261/rna.057919.116 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.molcel.2022.02.025_bib10 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 81 start-page: 88 year: 2021 ident: 10.1016/j.molcel.2022.02.025_bib83 article-title: ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.10.031 – volume: 80 start-page: 876 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib35 article-title: Spatiotemporal proteomic analysis of stress granule disassembly using APEX reveals regulation by SUMOylation and links to ALS pathogenesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.10.032 – volume: 431 start-page: 61 year: 2007 ident: 10.1016/j.molcel.2022.02.025_bib24 article-title: Mammalian stress granules and processing bodies – volume: 402 start-page: 838 year: 1999 ident: 10.1016/j.molcel.2022.02.025_bib38 article-title: Inhibition of msl-2 splicing by sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG publication-title: Nature doi: 10.1038/45602 – volume: 48 start-page: 5695 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib71 article-title: A splice site-sensing conformational switch in U2AF2 is modulated by U2AF1 and its recurrent myelodysplasia-associated mutation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa293 – volume: 21 start-page: 997 year: 2014 ident: 10.1016/j.molcel.2022.02.025_bib56 article-title: Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2906 – volume: 167 start-page: 1803 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib17 article-title: Mutant KRAS enhances tumor cell fitness by upregulating stress granules publication-title: Cell doi: 10.1016/j.cell.2016.11.035 – volume: 373 start-page: 1136 year: 2015 ident: 10.1016/j.molcel.2022.02.025_bib11 article-title: Acute myeloid leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1406184 – volume: 29 start-page: 909 year: 2015 ident: 10.1016/j.molcel.2022.02.025_bib42 article-title: U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing publication-title: Leukemia doi: 10.1038/leu.2014.303 – volume: 129 start-page: 1260 year: 2017 ident: 10.1016/j.molcel.2022.02.025_bib53 article-title: Splicing factor gene mutations in hematologic malignancies publication-title: Blood doi: 10.1182/blood-2016-10-692400 – volume: 17 start-page: 457 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib6 article-title: Roles and mechanisms of alternative splicing in cancer — implications for care publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-0350-x – volume: 2 start-page: e00498 year: 2013 ident: 10.1016/j.molcel.2022.02.025_bib60 article-title: Pharmacological brake-release of mRNA translation enhances cognitive memory publication-title: eLife doi: 10.7554/eLife.00498 – volume: 122 start-page: 3616 year: 2013 ident: 10.1016/j.molcel.2022.02.025_bib44 article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes publication-title: Blood doi: 10.1182/blood-2013-08-518886 – volume: 1849 start-page: 861 year: 2015 ident: 10.1016/j.molcel.2022.02.025_bib4 article-title: Stress granules, P-bodies and cancer publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.11.009 – volume: 172 start-page: 590 year: 2018 ident: 10.1016/j.molcel.2022.02.025_bib34 article-title: Context-dependent and disease-specific diversity in protein interactions within stress granules publication-title: Cell doi: 10.1016/j.cell.2017.12.032 – volume: 116 start-page: 2097 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib50 article-title: Small molecule ISRIB suppresses the integrated stress response within a defined window of activation publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1815767116 – volume: 176 start-page: 4421 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib16 article-title: Stress granule: a promising target for cancer treatment publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14790 – volume: 105 start-page: 1765 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib20 article-title: Myelodysplastic syndromes: moving towards personalized management publication-title: Haematologica doi: 10.3324/haematol.2020.248955 – volume: 161 start-page: 105143 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib70 article-title: Targeting stress granules: A novel therapeutic strategy for human diseases publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2020.105143 – volume: 31 start-page: 166 year: 2015 ident: 10.1016/j.molcel.2022.02.025_bib3 article-title: HTSeq--a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 41 start-page: 733 year: 2018 ident: 10.1016/j.molcel.2022.02.025_bib29 article-title: Integrative profiling of alternative splicing induced by U2AF1 S34F mutation in lung adenocarcinoma reveals a mechanistic Link to mitotic stress publication-title: Mol. Cell – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.molcel.2022.02.025_bib33 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 11 start-page: 1844 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib67 article-title: Mutations in splicing factor genes in myeloid malignancies: significance and impact on clinical features publication-title: Cancers (Basel) doi: 10.3390/cancers11121844 – volume: 26 start-page: 668 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib47 article-title: Principles and properties of stress granules publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.05.004 – volume: 17 start-page: 10 year: 2011 ident: 10.1016/j.molcel.2022.02.025_bib36 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet J doi: 10.14806/ej.17.1.200 – volume: 118–119 start-page: 50 year: 2017 ident: 10.1016/j.molcel.2022.02.025_bib63 article-title: CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins publication-title: Methods doi: 10.1016/j.ymeth.2016.12.007 – volume: 7 start-page: 10950 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib1 article-title: An extended U2AF65-RNA-binding domain recognizes the 3′ splice site signal publication-title: Nat. Commun. doi: 10.1038/ncomms10950 – volume: 35 start-page: 1603 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib9 article-title: Droplet organelles? publication-title: EMBO J doi: 10.15252/embj.201593517 – volume: 402 start-page: 835 year: 1999 ident: 10.1016/j.molcel.2022.02.025_bib82 article-title: Both subunits of U2AF recognize the 3′ splice site in Caenorhabditis elegans publication-title: Nature doi: 10.1038/45597 – volume: 132 start-page: 1225 year: 2018 ident: 10.1016/j.molcel.2022.02.025_bib46 article-title: Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations publication-title: Blood doi: 10.1182/blood-2018-04-843771 – volume: 127 start-page: 2206 year: 2017 ident: 10.1016/j.molcel.2022.02.025_bib75 article-title: The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes publication-title: J. Clin. Invest. doi: 10.1172/JCI91363 – volume: 11 start-page: 4744 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib77 article-title: Elucidation of the aberrant 3′ splice site selection by cancer-associated mutations on the U2AF1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18559-6 – volume: 10 start-page: 5712 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib13 article-title: Functional significance of U2AF1 S34F mutations in lung adenocarcinomas publication-title: Nat. Commun. doi: 10.1038/s41467-019-13392-y – volume: 43 start-page: e25 year: 2015 ident: 10.1016/j.molcel.2022.02.025_bib40 article-title: Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1273 – volume: 478 start-page: 64 year: 2011 ident: 10.1016/j.molcel.2022.02.025_bib78 article-title: Frequent pathway mutations of splicing machinery in myelodysplasia publication-title: Nature doi: 10.1038/nature10496 – volume: 402 start-page: 832 year: 1999 ident: 10.1016/j.molcel.2022.02.025_bib72 article-title: Functional recognition of the 3′ splice site AG by the splicing factor U2AF35 publication-title: Nature doi: 10.1038/45590 – volume: 25 start-page: 14 year: 2015 ident: 10.1016/j.molcel.2022.02.025_bib21 article-title: U2AF1 mutations alter splice site recognition in hematological malignancies publication-title: Genome Res. doi: 10.1101/gr.181016.114 – volume: 44 start-page: W90 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib30 article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw377 – volume: 184 year: 2021 ident: 10.1016/j.molcel.2022.02.025_bib19 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 28 start-page: 1145 year: 2021 ident: 10.1016/j.molcel.2022.02.025_bib8 article-title: A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2021.02.007 – volume: 13 start-page: 508 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib64 article-title: Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP) publication-title: Nat. Methods doi: 10.1038/nmeth.3810 – volume: 69 start-page: 517 year: 2018 ident: 10.1016/j.molcel.2022.02.025_bib79 article-title: High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.12.020 – volume: 8 start-page: 14049 year: 2017 ident: 10.1016/j.molcel.2022.02.025_bib80 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 106 start-page: 595 year: 2001 ident: 10.1016/j.molcel.2022.02.025_bib27 article-title: A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer publication-title: Cell doi: 10.1016/S0092-8674(01)00480-9 – volume: 27 start-page: 631 year: 2015 ident: 10.1016/j.molcel.2022.02.025_bib58 article-title: Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.04.008 – volume: 34 start-page: 2621 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib5 article-title: Clinical presentation and differential splicing of SRSF2, U2AF1 and SF3B1 mutations in patients with acute myeloid leukemia publication-title: Leukemia doi: 10.1038/s41375-020-0839-4 – volume: 78 start-page: 5363 year: 2018 ident: 10.1016/j.molcel.2022.02.025_bib41 article-title: Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-3970 – volume: 9 start-page: e87361 year: 2014 ident: 10.1016/j.molcel.2022.02.025_bib7 article-title: A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events publication-title: PLoS One doi: 10.1371/journal.pone.0087361 – volume: 36 start-page: 194 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib15 article-title: Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.07.003 – volume: 90 start-page: 969 year: 2015 ident: 10.1016/j.molcel.2022.02.025_bib62 article-title: Myelodysplastic syndromes: diagnosis and treatment publication-title: Mayo Clin. Proc. doi: 10.1016/j.mayocp.2015.04.001 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.molcel.2022.02.025_bib32 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 21 year: 2001 ident: 10.1016/j.molcel.2022.02.025_bib84 article-title: Dual function for U2AF(35) in AG-dependent pre-mRNA splicing publication-title: Mol. Cell Biol. doi: 10.1128/MCB.21.22.7673-7681.2001 – volume: 37 start-page: 907 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib28 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0201-4 – volume: 37 start-page: 223 year: 2010 ident: 10.1016/j.molcel.2022.02.025_bib39 article-title: Context-dependent regulatory mechanism of the splicing factor hnRNP L publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.12.027 – volume: 7 year: 2012 ident: 10.1016/j.molcel.2022.02.025_bib74 article-title: Development of an all-in-one inducible lentiviral vector for gene specific analysis of reprogramming publication-title: PLoS One doi: 10.1371/journal.pone.0041007 – volume: 36 start-page: 70 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib55 article-title: Epidemiology of acute myeloid leukemia: recent progress and enduring challenges publication-title: Blood Rev. doi: 10.1016/j.blre.2019.04.005 – volume: 7 year: 2012 ident: 10.1016/j.molcel.2022.02.025_bib73 article-title: FastUniq: a fast de novo duplicates removal tool for paired short reads publication-title: PLoS One doi: 10.1371/journal.pone.0052249 – start-page: 1 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib61 article-title: Stress granules in cancer doi: 10.1007/112_2020_37 – volume: 19 start-page: 1047 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib81 article-title: DEqMS: a method for accurate variance estimation in differential protein expression analysis publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.TIR119.001646 – volume: 68 start-page: 808 year: 2017 ident: 10.1016/j.molcel.2022.02.025_bib26 article-title: The stress granule transcriptome reveals principles of mRNA accumulation in stress granules publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.10.015 – volume: 174 start-page: 791 year: 2018 ident: 10.1016/j.molcel.2022.02.025_bib65 article-title: Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies publication-title: Cell doi: 10.1016/j.cell.2018.07.023 – volume: 6 start-page: 631 year: 2020 ident: 10.1016/j.molcel.2022.02.025_bib68 article-title: RNA splicing and cancer publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.04.011 – volume: 35 start-page: 369 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib69 article-title: Targeting an RNA-binding protein network in acute myeloid leukemia publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.01.010 – volume: 8 start-page: 14060 year: 2017 ident: 10.1016/j.molcel.2022.02.025_bib59 article-title: Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome publication-title: Nat. Commun. doi: 10.1038/ncomms14060 – volume: 12 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib14 article-title: Wild-type U2AF1 antagonizes the splicing program characteristic of U2AF1-mutant tumors and is required for cell survival publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006384 – volume: 22 start-page: 672 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib31 article-title: Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins publication-title: Nat. Med. doi: 10.1038/nm.4097 – volume: 16 start-page: 413 year: 2016 ident: 10.1016/j.molcel.2022.02.025_bib12 article-title: RNA splicing factors as oncoproteins and tumour suppressors publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.51 – volume: 33 start-page: 482 year: 2019 ident: 10.1016/j.molcel.2022.02.025_bib43 article-title: The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation publication-title: Genes Dev doi: 10.1101/gad.319590.118 |
SSID | ssj0014589 |
Score | 2.5740309 |
Snippet | Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding... Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA binding... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1107 |
SubjectTerms | AML crosslinking exons freCLIP Humans introns Leukemia, Myeloid, Acute - genetics MDS mutants Mutation Myelodysplastic Syndromes - genetics nucleotides precipitin tests RNA RNA binding RNA granules RNA Splice Sites RNA Splicing - genetics RNA-Binding Proteins - genetics sequence analysis splicing Splicing Factor U2AF - genetics Splicing Factor U2AF - metabolism stress granules Stress Granules - metabolism stress response U2AF1 |
Title | Precision analysis of mutant U2AF1 activity reveals deployment of stress granules in myeloid malignancies |
URI | https://dx.doi.org/10.1016/j.molcel.2022.02.025 https://www.ncbi.nlm.nih.gov/pubmed/35303483 https://www.proquest.com/docview/2640995230 https://www.proquest.com/docview/2648879715 https://pubmed.ncbi.nlm.nih.gov/PMC8988922 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQE9JeJgZsAzZkpL1adRznw48dokJDmya2ir5Z_ioLahNE2wf-e-6cpKLbBNKkvDg5R058Pv9s392PkM88JIkxQjLlp4pJJwKzSiQsV8IWgUvvYlDYt-_5xVh-nWSTLXLWx8KgW2Vn-1ubHq11d2fQ_c3BXVUNfuLZqShyABCIW1Jct6eyjEF8ky_rkwSZRRo8FGYo3YfPRR-veTNzAQ8ghIiZO5Ew-9_T09_w808vyifT0miXvOnwJB22TX5LtkK9R3ZahsmHfVL9uO9IdKjp0o_QZkrnKyQPpmMxHCUUQxuQQYJiNifQRuoDsgDjtiHKttEk9AYmtdUsLGhV0_lDmDWVp3MA8Tctv-_igIxH57_OLljHrsAcYJ4ls8ZLWxoEVNwZI2UQ3BvjJMd9oUKV3E7LXFkoGqiAie9h9cIdFw4G-tSl78h23dThA6G5dMYmtiis8FI4VeaZUVJ4F02I54ck7X-qdl3qcWTAmOnex-xWt12hsSs0xys7JGxd665NvfGCfNH3l95QIQ2zwws1T_vu1TC68MjE1KFZLTTARYDQuHP-rAxYalUk8J73rUqs25tmABFAKaFtG8qyFsDs3ptP6up3zPJdqrJUQhz991cdk9dYQoe5pPhItpf3q_AJENTSnpBXw8ur68uTOFQeAezmHTo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQguiOeyPI0Ex6iO48TxgcM-qFr2ISS2Um_GdtwlqE1W21aov4s_uDOJU1FArIS0Ui5N7Mj1jGe-2DPzEfKO-Tg2hotIFRMVCcd9ZBWPo0xxKz0ThWuSwk5Os8FIfBqn4y3ys8uFwbDKYPtbm95Y63CnF2azd1GWvS94dsplBgACcUvCQmTlkV_9gO-2-YfhIQj5Pef9j2cHgyhQC0QOHP4isqYQNjeIJpgzRgjPWWGMEww3RaTKmZ3kmbLw00AHrPoO0J05xh1o-cQl8N5b5DagD4nWYDjeXx9diLTh3cPRRTi8Ll-vCSqb1VPn8cSD86ZUKDJ0_90f_ol3fw_b_MUP9h-Q-wHA0r12jh6SLV89IndaSsvVY1J-vgysPdSEeie0ntDZEtmK6Yjv9WOKuRRIWUGxfBSoPy080g7jPiW2bdNX6Dl40eXUz2lZ0dnKT-uyoDP4ajhvCYXnT8joRub8Kdmu6so_IzQTztjYSml5IbhTeZYaJXjhGptVsF2SdJOqXah1jpQbU90FtX3XrSg0ikIzvNJdEq17XbS1Pq5pLzt56Q2d1eCOrun5thOvhuWMZzSm8vVyrgGfAmbHrfp_tgHXoGQM79lpVWI93iQFTCLyBMa2oSzrBlhOfPNJVX5ryornKs8V58__-1-9IXcHZyfH-nh4evSC3MMnGK0Xy5dke3G59K8Avi3s62a5UPL1ptfnFe7mV80 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+analysis+of+mutant+U2AF1+activity+reveals+deployment+of+stress+granules+in+myeloid+malignancies&rft.jtitle=Molecular+cell&rft.au=Biancon%2C+Giulia&rft.au=Joshi%2C+Poorval&rft.au=Zimmer%2C+Joshua+T.&rft.au=Hunck%2C+Torben&rft.date=2022-03-17&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=82&rft.issue=6&rft.spage=1107&rft.epage=1122.e7&rft_id=info:doi/10.1016%2Fj.molcel.2022.02.025&rft.externalDocID=S1097276522001630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |