Precision analysis of mutant U2AF1 activity reveals deployment of stress granules in myeloid malignancies

Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3′ splice site (3′SS)...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 82; no. 6; pp. 1107 - 1122.e7
Main Authors Biancon, Giulia, Joshi, Poorval, Zimmer, Joshua T., Hunck, Torben, Gao, Yimeng, Lessard, Mark D., Courchaine, Edward, Barentine, Andrew E.S., Machyna, Martin, Botti, Valentina, Qin, Ashley, Gbyli, Rana, Patel, Amisha, Song, Yuanbin, Kiefer, Lea, Viero, Gabriella, Neuenkirchen, Nils, Lin, Haifan, Bewersdorf, Joerg, Simon, Matthew D., Neugebauer, Karla M., Tebaldi, Toma, Halene, Stephanie
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3′ splice site (3′SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3′SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3′SS contacts at −3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies. [Display omitted] •freCLIP-seq dissects in vivo U2AF1 RNA binding at single-nucleotide resolution•U2AF1 mutations create de novo 3′ splice site contacts that alter RNA splicing•Binding and splicing integration uncovers alterations in stress granule components•U2AF1-mutant MDS/AML cells exhibit enhanced stress granule response Biancon et al. unmask a stress granule signature in U2AF1 mutant myeloid malignancies via multiomics dissection of RNA binding, splicing, and turnover. They document novel mutant-specific U2AF1-RNA binding peaks at 3′ splice site positions, determining aberrant splice outcomes. U2AF1 mutant cells display enhanced stress granule formation and stress resistance.
AbstractList Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA binding motifs; yet how they affect splicing and promote cancer remains unclear. The U2AF1/U2AF2 heterodimer is critical for 3’ splice site (3’SS) definition. To specifically unmask changes in U2AF1 function in vivo , we developed a crosslinking and immunoprecipitation procedure detecting contacts between U2AF1 and the 3’SS AG at single-nucleotide resolution. Our data reveal that U2AF1 S34F and Q157R mutants establish new 3’SS contacts at −3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies. Biancon et al. unmask a stress granule signature in U2AF1 mutant myeloid malignancies, via multi-omics dissection of RNA binding, splicing and turnover. They document novel mutant-specific U2AF1-RNA binding peaks at 3’ splice site positions, determining aberrant splice outcomes. U2AF1 mutant cells display enhanced stress granule formation and stress resistance.
Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3′ splice site (3′SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3′SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3′SS contacts at −3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.
Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.
Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3′ splice site (3′SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3′SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3′SS contacts at −3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies. [Display omitted] •freCLIP-seq dissects in vivo U2AF1 RNA binding at single-nucleotide resolution•U2AF1 mutations create de novo 3′ splice site contacts that alter RNA splicing•Binding and splicing integration uncovers alterations in stress granule components•U2AF1-mutant MDS/AML cells exhibit enhanced stress granule response Biancon et al. unmask a stress granule signature in U2AF1 mutant myeloid malignancies via multiomics dissection of RNA binding, splicing, and turnover. They document novel mutant-specific U2AF1-RNA binding peaks at 3′ splice site positions, determining aberrant splice outcomes. U2AF1 mutant cells display enhanced stress granule formation and stress resistance.
Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.
Author Bewersdorf, Joerg
Machyna, Martin
Song, Yuanbin
Joshi, Poorval
Lin, Haifan
Biancon, Giulia
Hunck, Torben
Botti, Valentina
Gao, Yimeng
Simon, Matthew D.
Courchaine, Edward
Neugebauer, Karla M.
Viero, Gabriella
Tebaldi, Toma
Lessard, Mark D.
Halene, Stephanie
Zimmer, Joshua T.
Kiefer, Lea
Barentine, Andrew E.S.
Qin, Ashley
Neuenkirchen, Nils
Gbyli, Rana
Patel, Amisha
AuthorAffiliation 13 These authors contributed equally
9 Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA
3 Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
10 Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
5 Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
14 Lead contact
6 Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
1 Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
2 Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
4 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
12 Department of Pathology, Yale University
AuthorAffiliation_xml – name: 3 Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
– name: 9 Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA
– name: 6 Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
– name: 14 Lead contact
– name: 4 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
– name: 8 Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
– name: 5 Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
– name: 11 Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
– name: 12 Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
– name: 10 Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
– name: 13 These authors contributed equally
– name: 7 Institute of Biophysics, CNR, Trento, Italy
– name: 2 Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
– name: 1 Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
Author_xml – sequence: 1
  givenname: Giulia
  surname: Biancon
  fullname: Biancon, Giulia
  email: giulia.biancon@yale.edu
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
– sequence: 2
  givenname: Poorval
  surname: Joshi
  fullname: Joshi, Poorval
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
– sequence: 3
  givenname: Joshua T.
  surname: Zimmer
  fullname: Zimmer, Joshua T.
  organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
– sequence: 4
  givenname: Torben
  surname: Hunck
  fullname: Hunck, Torben
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
– sequence: 5
  givenname: Yimeng
  surname: Gao
  fullname: Gao, Yimeng
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
– sequence: 6
  givenname: Mark D.
  surname: Lessard
  fullname: Lessard, Mark D.
  organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
– sequence: 7
  givenname: Edward
  surname: Courchaine
  fullname: Courchaine, Edward
  organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
– sequence: 8
  givenname: Andrew E.S.
  surname: Barentine
  fullname: Barentine, Andrew E.S.
  organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
– sequence: 9
  givenname: Martin
  surname: Machyna
  fullname: Machyna, Martin
  organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
– sequence: 10
  givenname: Valentina
  surname: Botti
  fullname: Botti, Valentina
  organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
– sequence: 11
  givenname: Ashley
  surname: Qin
  fullname: Qin, Ashley
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
– sequence: 12
  givenname: Rana
  surname: Gbyli
  fullname: Gbyli, Rana
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
– sequence: 13
  givenname: Amisha
  surname: Patel
  fullname: Patel, Amisha
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
– sequence: 14
  givenname: Yuanbin
  surname: Song
  fullname: Song, Yuanbin
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
– sequence: 15
  givenname: Lea
  surname: Kiefer
  fullname: Kiefer, Lea
  organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
– sequence: 16
  givenname: Gabriella
  surname: Viero
  fullname: Viero, Gabriella
  organization: Institute of Biophysics, CNR, Trento, Italy
– sequence: 17
  givenname: Nils
  surname: Neuenkirchen
  fullname: Neuenkirchen, Nils
  organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
– sequence: 18
  givenname: Haifan
  surname: Lin
  fullname: Lin, Haifan
  organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
– sequence: 19
  givenname: Joerg
  surname: Bewersdorf
  fullname: Bewersdorf, Joerg
  organization: Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
– sequence: 20
  givenname: Matthew D.
  surname: Simon
  fullname: Simon, Matthew D.
  organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
– sequence: 21
  givenname: Karla M.
  surname: Neugebauer
  fullname: Neugebauer, Karla M.
  organization: Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
– sequence: 22
  givenname: Toma
  surname: Tebaldi
  fullname: Tebaldi, Toma
  email: toma.tebaldi@unitn.it
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
– sequence: 23
  givenname: Stephanie
  surname: Halene
  fullname: Halene, Stephanie
  email: stephanie.halene@yale.edu
  organization: Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35303483$$D View this record in MEDLINE/PubMed
BookMark eNqNUsGKFDEUDLLi7o7-gUiOXmZM0unutAdhWVwVFvTgnsPr9OsxQzoZk8xA_71pZlzUgwoPkpCqolKVa3Lhg0dCXnK24Yw3b3abKTiDbiOYEBu2TP2EXHHWtWvJG3lx3ou2qS_JdUo7xrisVfeMXFZ1xSqpqitiv0Q0NtngKXhwc7KJhpFOhww-0wdxc8cpmGyPNs804hHBJTrg3oV5woIo2JQjpkS3EfzBYaLW02lGF-xAJ3B268Ebi-k5eToWMr44ryvycPf-6-3H9f3nD59ub-7Xpm5EXvcwyF5BJaRgBkBKFGwAMJL1XIq2U6wfVdP15QiFoNq65a1khgnDpBhNtSLvTrr7Qz_hYIrLCE7vo50gzjqA1b_fePtNb8NRq06pTogi8PosEMP3A6asJ5tK0A48hkPSopFKtV3L6_-Bsq6rRUl7RV79auvRz88qCkCeACaGlCKOjxDO9NK43ulT43ppXLNlFgtv_6AZmyGXQsvjrPsX-ZwVlkKOFqNOpSpvcLDlW2Q9BPt3gR-jgcsD
CitedBy_id crossref_primary_10_1158_1078_0432_CCR_22_1618
crossref_primary_10_1158_0008_5472_CAN_23_2543
crossref_primary_10_1261_rna_080368_124
crossref_primary_10_7554_eLife_98524
crossref_primary_10_1016_j_stem_2023_07_012
crossref_primary_10_1016_j_molcel_2024_07_019
crossref_primary_10_1186_s10020_025_01087_8
crossref_primary_10_1016_j_mito_2025_102011
crossref_primary_10_1261_rna_079451_122
crossref_primary_10_3390_cancers14184406
crossref_primary_10_1097_HS9_0000000000000923
crossref_primary_10_1038_s41577_025_01130_z
crossref_primary_10_1007_s13577_022_00843_w
crossref_primary_10_1016_j_cca_2024_117789
crossref_primary_10_1038_s41419_023_05953_3
crossref_primary_10_1016_j_canlet_2024_217160
crossref_primary_10_1016_j_exphem_2024_104279
crossref_primary_10_1016_j_exphem_2024_104655
crossref_primary_10_1016_j_isci_2024_110359
crossref_primary_10_1016_j_sbi_2024_102907
crossref_primary_10_1038_s41568_022_00541_7
crossref_primary_10_1016_j_molcel_2022_05_014
crossref_primary_10_1093_jleuko_qiac015
crossref_primary_10_1038_s41392_024_02013_w
crossref_primary_10_1038_s41467_024_55607_x
crossref_primary_10_3724_abbs_2023117
crossref_primary_10_3390_life13030604
crossref_primary_10_1016_j_xpro_2022_101823
crossref_primary_10_1016_j_molcel_2024_08_010
crossref_primary_10_1038_s41598_024_64517_3
crossref_primary_10_1093_nar_gkac287
crossref_primary_10_1038_s41576_022_00556_8
crossref_primary_10_1080_16078454_2025_2479257
crossref_primary_10_1101_gr_276578_122
crossref_primary_10_1016_j_jbc_2024_107414
crossref_primary_10_1038_s41467_024_51979_2
crossref_primary_10_1515_labmed_2024_0175
crossref_primary_10_1080_15476286_2024_2346688
crossref_primary_10_7554_eLife_98524_3
crossref_primary_10_3390_biomedicines12092147
Cites_doi 10.1093/bioinformatics/btq033
10.1073/pnas.1419161111
10.1182/blood-2013-01-480970
10.1016/j.cell.2015.12.038
10.1261/rna.078204.120
10.1200/JCO.2016.71.0806
10.1038/nbt.1754
10.1093/bioinformatics/btp616
10.1038/nmeth.4582
10.1101/cshperspect.a032813
10.1101/gad.267104.115
10.1038/ng.1031
10.1073/pnas.1800038115
10.1261/rna.057919.116
10.1093/bioinformatics/bts635
10.1016/j.molcel.2020.10.031
10.1016/j.molcel.2020.10.032
10.1038/45602
10.1093/nar/gkaa293
10.1038/nsmb.2906
10.1016/j.cell.2016.11.035
10.1056/NEJMra1406184
10.1038/leu.2014.303
10.1182/blood-2016-10-692400
10.1038/s41571-020-0350-x
10.7554/eLife.00498
10.1182/blood-2013-08-518886
10.1016/j.bbagrm.2014.11.009
10.1016/j.cell.2017.12.032
10.1073/pnas.1815767116
10.1111/bph.14790
10.3324/haematol.2020.248955
10.1016/j.phrs.2020.105143
10.1093/bioinformatics/btu638
10.1186/s13059-014-0550-8
10.3390/cancers11121844
10.1016/j.tcb.2016.05.004
10.14806/ej.17.1.200
10.1016/j.ymeth.2016.12.007
10.1038/ncomms10950
10.15252/embj.201593517
10.1038/45597
10.1182/blood-2018-04-843771
10.1172/JCI91363
10.1038/s41467-020-18559-6
10.1038/s41467-019-13392-y
10.1093/nar/gku1273
10.1038/nature10496
10.1038/45590
10.1101/gr.181016.114
10.1093/nar/gkw377
10.1016/j.cell.2021.04.048
10.1016/j.chembiol.2021.02.007
10.1038/nmeth.3810
10.1016/j.molcel.2017.12.020
10.1038/ncomms14049
10.1016/S0092-8674(01)00480-9
10.1016/j.ccell.2015.04.008
10.1038/s41375-020-0839-4
10.1158/0008-5472.CAN-17-3970
10.1371/journal.pone.0087361
10.1016/j.ccell.2019.07.003
10.1016/j.mayocp.2015.04.001
10.1093/bioinformatics/btp352
10.1128/MCB.21.22.7673-7681.2001
10.1038/s41587-019-0201-4
10.1016/j.molcel.2009.12.027
10.1371/journal.pone.0041007
10.1016/j.blre.2019.04.005
10.1371/journal.pone.0052249
10.1007/112_2020_37
10.1074/mcp.TIR119.001646
10.1016/j.molcel.2017.10.015
10.1016/j.cell.2018.07.023
10.1016/j.trecan.2020.04.011
10.1016/j.ccell.2019.01.010
10.1038/ncomms14060
10.1371/journal.pgen.1006384
10.1038/nm.4097
10.1038/nrc.2016.51
10.1101/gad.319590.118
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.molcel.2022.02.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 1122.e7
ExternalDocumentID PMC8988922
35303483
10_1016_j_molcel_2022_02_025
S1097276522001630
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM112766
– fundername: NIGMS NIH HHS
  grantid: R01 GM137117
– fundername: NIDDK NIH HHS
  grantid: R01 DK102792
– fundername: NIDDK NIH HHS
  grantid: U54 DK110858
– fundername: NIDDK NIH HHS
  grantid: U54 DK106857
– fundername: NIDDK NIH HHS
  grantid: U24 DK126127
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NCI NIH HHS
  grantid: U01 CA200147
– fundername: NIH HHS
  grantid: S10 OD023651
– fundername: NCI NIH HHS
  grantid: R01 CA222518
GroupedDBID ---
--K
-DZ
-~X
0R~
0SF
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADMBK
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
EFKBS
ID FETCH-LOGICAL-c562t-bad4b8a32420caa44e20daac40b1427980bf869b0b1a56287571740c02c042fc3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 18:37:31 EDT 2025
Fri Jul 11 15:43:00 EDT 2025
Fri Jul 11 16:49:07 EDT 2025
Wed Feb 19 02:03:09 EST 2025
Thu Apr 24 22:57:45 EDT 2025
Tue Jul 01 03:21:21 EDT 2025
Sat Jun 01 15:41:42 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords AML
stress response
RNA
stress granules
U2AF1
freCLIP
splicing
RNA granules
MDS
RNA binding
Language English
License This article is made available under the Elsevier license.
Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-bad4b8a32420caa44e20daac40b1427980bf869b0b1a56287571740c02c042fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceptualization: G.B., P.J., T.T. and S.H.; Methodology: G.B., P.J., H.L., J.B., M.D.S., K.M.N., T.T. and S.H.; Investigation: G.B., P.J., T.H., J.T.Z. and Y.G.; Formal Analysis: G.B., J.T.Z., M.D.L., E.C., M.M. and T.T.; Resources: H.L., J.B., M.D.S., K.M.N. and S.H.; Validation: T.H., Y.G., E.C., A.E.S.B., V.B., A.Q., R.G., A.P., Y.S., L.K., G.V. and N.N.; Writing: G.B., K.M.N., T.T. and S.H.; Visualization: G.B. and T.T.; Supervision: T.T. and S.H.; Project Administration: S.H.; Funding Acquisition: T.T. and S.H.
Author contributions
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276522001630
PMID 35303483
PQID 2640995230
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8988922
proquest_miscellaneous_2648879715
proquest_miscellaneous_2640995230
pubmed_primary_35303483
crossref_primary_10_1016_j_molcel_2022_02_025
crossref_citationtrail_10_1016_j_molcel_2022_02_025
elsevier_sciencedirect_doi_10_1016_j_molcel_2022_02_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-17
PublicationDateYYYYMMDD 2022-03-17
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Esfahani, Lee, Jeon, Flynn, Stehr, Hui, Ishisoko, Kildebeck, Newman, Bratman (bib13) 2019; 10
Fong, Pignata, Goy, Kawabata, Lee, Koh, Musiani, Massignani, Kotini, Penson (bib15) 2019; 36
Hellström-Lindberg, Tobiasson, Greenberg (bib20) 2020; 105
Kielkopf, Rodionova, Green, Burley (bib27) 2001; 106
Wu, Romfo, Nilsen, Green (bib72) 1999; 402
Brooks, Choi, de Waal, Sharifnia, Imielinski, Saksena, Pedamallu, Sivachenko, Rosenberg, Chmielecki (bib7) 2014; 9
Schofield, Duffy, Kiefer, Sullivan, Simon (bib54) 2018; 15
Zhu, Orre, Zhou Tran, Mermelekas, Johansson, Malyutina, Anders, Lehtiö (bib81) 2020; 19
Yoshida, Sanada, Shiraishi, Nowak, Nagata, Yamamoto, Sato, Sato-Otsubo, Kon, Nagasaki (bib78) 2011; 478
Nguyen, Leong, Li, Reddy, Sullivan, Walter, Zou, Graubert (bib41) 2018; 78
Saez, Walter, Graubert (bib53) 2017; 129
Shallis, Wang, Davidoff, Ma, Zeidan (bib55) 2019; 36
Anderson, Kedersha, Ivanov (bib4) 2015; 1849
Rabouw, Langereis, Anand, Visser, de Groot, Walter, van Kuppeveld (bib50) 2019; 116
Yoshida, Park, Sakashita, Nariai, Kuwasako, Muto, Urano, Obayashi (bib77) 2020; 11
Motta-Mena, Heyd, Lynch (bib39) 2010; 37
Merendino, Guth, Bilbao, Martínez, Valcárcel (bib38) 1999; 402
Palangat, Anastasakis, Fei, Lindblad, Bradley, Hourigan, Hafner, Larson (bib43) 2019; 33
Khong, Matheny, Jain, Mitchell, Wheeler, Parker (bib26) 2017; 68
Przychodzen, Jerez, Guinta, Sekeres, Padgett, Maciejewski, Makishima (bib48) 2013; 122
Pellagatti, Armstrong, Steeples, Sharma, Repapi, Singh, Sanchi, Radujkovic, Horn, Dolatshad (bib46) 2018; 132
Marmor-Kollet, Siany, Kedersha, Knafo, Rivkin, Danino, Moens, Olender, Sheban, Cohen (bib35) 2020; 80
Ivanov, Kedersha, Anderson (bib22) 2019; 11
Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager (bib19) 2021; 184
Zorio, Blumenthal (bib82) 1999; 402
Bamopoulos, Batcha, Jurinovic, Rothenberg-Thurley, Janke, Ksienzyk, Philippou-Massier, Graf, Krebs, Blum (bib5) 2020; 34
Fei, Motowski, Chatrikhi, Prasad, Yu, Gao, Kielkopf, Bradley, Varmus (bib14) 2016; 12
Shen, Park, Lu, Lin, Henry, Wu, Zhou, Xing (bib57) 2014; 111
Okeyo-Owuor, White, Chatrikhi, Mohan, Kim, Griffith, Ding, Ketkar-Kulkarni, Hundal, Laird (bib42) 2015; 29
Visconte, O Nakashima, J Rogers (bib67) 2019; 11
Van Treeck, Parker (bib65) 2018; 174
Yamaguchi, Hamanaka, Kamiya, Okabe, Kawarai, Wakiyama, Umino, Hayama, Sato, Lee (bib74) 2012; 7
Van Treeck, Protter, Matheny, Khong, Link, Parker (bib66) 2018; 115
Zheng, Terry, Belgrader, Ryvkin, Bent, Wilson, Ziraldo, Wheeler, McDermott, Zhu (bib80) 2017; 8
Dvinge, Kim, Abdel-Wahab, Bradley (bib12) 2016; 16
Zyryanova, Kashiwagi, Rato, Harding, Crespillo-Casado, Perera, Sakamoto, Nishimoto, Yonemochi, Shirouzu (bib83) 2021; 81
Martin (bib36) 2011; 17
Yoshida, Park, Oda, Akiyoshi, Sato, Shirouzu, Tsuda, Kuwasako, Unzai, Muto (bib76) 2015; 29
Kennedy, Ebert (bib25) 2017; 35
Matheny, Van Treeck, Huynh, Parker (bib37) 2021; 27
Shirai, Ley, White, Kim, Tibbitts, Shao, Ndonwi, Wadugu, Duncavage, Okeyo-Owuor (bib58) 2015; 27
Kim, Park, Jun, Lee, Jung, Kim (bib29) 2018; 41
Anczuków, Krainer (bib2) 2016; 22
Courchaine, Lu, Neugebauer (bib9) 2016; 35
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib10) 2013; 29
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib32) 2009; 25
Wang, Li, Fan, Jin, Huang (bib70) 2020; 161
Shao, Yang, Wu, Huang, Tang, Zhou, Zhou, Qiu, Jiang, Li (bib56) 2014; 21
Kedersha, Anderson (bib24) 2007; 431
Papaemmanuil, Gerstung, Malcovati, Tauro, Gundem, Van Loo, Yoon, Ellis, Wedge, Pellagatti (bib44) 2013; 122
Agrawal, Salsi, Chatrikhi, Henderson, Jenkins, Green, Ermolenko, Kielkopf (bib1) 2016; 7
Shirai, White, Tripathi, Tapia, Ley, Ndonwi, Kim, Shao, Carver, Saez (bib59) 2017; 8
Grabocka, Bar-Sagi (bib17) 2016; 167
Xu, Luo, Qian, Pang, Song, Qian, Chen, Chen (bib73) 2012; 7
Guth, Tange, Kellenberger, Valcárcel (bib84) 2001; 21
Sidrauski, Acosta-Alvear, Khoutorsky, Vedantham, Hearn, Li, Gamache, Gallagher, Ang, Wilson (bib60) 2013; 2
Song, Grabocka (bib61) 2020
Yip, Steeples, Repapi, Armstrong, Llorian, Roy, Shaw, Dolatshad, Taylor, Verma (bib75) 2017; 127
Van Nostrand, Gelboin-Burkhart, Wang, Pratt, Blue, Yeo (bib63) 2017; 118–119
Youn, Dunham, Hong, Knight, Bashkurov, Chen, Bagci, Rathod, MacLeod, Eng (bib79) 2018; 69
Gao, Jiang, Gong, Chen, Ying, Zhu, He, Yang, Cao (bib16) 2019; 176
Protter, Parker (bib47) 2016; 26
Steensma (bib62) 2015; 90
Love, Huber, Anders (bib33) 2014; 15
Quinlan, Hall (bib49) 2010; 26
Van Nostrand, Pratt, Shishkin, Gelboin-Burkhart, Fang, Sundararaman, Blue, Nguyen, Surka, Elkins (bib64) 2016; 13
Anders, Pyl, Huber (bib3) 2015; 31
Döhner, Weisdorf, Bloomfield (bib11) 2015; 373
Robinson, McCarthy, Smyth (bib52) 2010; 26
Wang, Lu, Pastore, Chen, Imig, Chun-Wei Lee, Hockemeyer, Ghebrechristos, Yoshimi, Inoue (bib69) 2019; 35
Bonnal, López-Oreja, Valcárcel (bib6) 2020; 17
Jain, Wheeler, Walters, Agrawal, Barsic, Parker (bib23) 2016; 164
Graubert, Shen, Ding, Okeyo-Owuor, Lunn, Shao, Krysiak, Harris, Koboldt, Larson (bib18) 2011; 44
Lee, Dvinge, Kim, Cho, Micol, Chung, Durham, Yoshimi, Kim, Thomas (bib31) 2016; 22
Robinson, Thorvaldsdóttir, Winckler, Guttman, Lander, Getz, Mesirov (bib51) 2011; 29
Warnasooriya, Feeney, Laird, Ermolenko, Kielkopf (bib71) 2020; 48
Kim, Paggi, Park, Bennett, Salzberg (bib28) 2019; 37
Moulos, Hatzis (bib40) 2015; 43
Markmiller, Soltanieh, Server, Mak, Jin, Fang, Luo, Krach, Yang, Sen (bib34) 2018; 172
Ilagan, Ramakrishnan, Hayes, Murphy, Zebari, Bradley, Bradley (bib21) 2015; 25
Kuleshov, Jones, Rouillard, Fernandez, Duan, Wang, Koplev, Jenkins, Jagodnik, Lachmann (bib30) 2016; 44
Chatrikhi, Feeney, Pulvino, Alachouzos, MacRae, Falls, Rai, Brennessel, Jenkins, Walter (bib8) 2021; 28
Wang, Aifantis (bib68) 2020; 6
Shirai (10.1016/j.molcel.2022.02.025_bib59) 2017; 8
Yoshida (10.1016/j.molcel.2022.02.025_bib78) 2011; 478
Merendino (10.1016/j.molcel.2022.02.025_bib38) 1999; 402
Youn (10.1016/j.molcel.2022.02.025_bib79) 2018; 69
Fei (10.1016/j.molcel.2022.02.025_bib14) 2016; 12
Pellagatti (10.1016/j.molcel.2022.02.025_bib46) 2018; 132
Saez (10.1016/j.molcel.2022.02.025_bib53) 2017; 129
Zheng (10.1016/j.molcel.2022.02.025_bib80) 2017; 8
Döhner (10.1016/j.molcel.2022.02.025_bib11) 2015; 373
Kim (10.1016/j.molcel.2022.02.025_bib28) 2019; 37
Markmiller (10.1016/j.molcel.2022.02.025_bib34) 2018; 172
Nguyen (10.1016/j.molcel.2022.02.025_bib41) 2018; 78
Van Nostrand (10.1016/j.molcel.2022.02.025_bib64) 2016; 13
Shao (10.1016/j.molcel.2022.02.025_bib56) 2014; 21
Rabouw (10.1016/j.molcel.2022.02.025_bib50) 2019; 116
Wang (10.1016/j.molcel.2022.02.025_bib70) 2020; 161
Sidrauski (10.1016/j.molcel.2022.02.025_bib60) 2013; 2
Van Treeck (10.1016/j.molcel.2022.02.025_bib66) 2018; 115
Xu (10.1016/j.molcel.2022.02.025_bib73) 2012; 7
Matheny (10.1016/j.molcel.2022.02.025_bib37) 2021; 27
Anderson (10.1016/j.molcel.2022.02.025_bib4) 2015; 1849
Esfahani (10.1016/j.molcel.2022.02.025_bib13) 2019; 10
Ivanov (10.1016/j.molcel.2022.02.025_bib22) 2019; 11
Marmor-Kollet (10.1016/j.molcel.2022.02.025_bib35) 2020; 80
Fong (10.1016/j.molcel.2022.02.025_bib15) 2019; 36
Anders (10.1016/j.molcel.2022.02.025_bib3) 2015; 31
Jain (10.1016/j.molcel.2022.02.025_bib23) 2016; 164
Papaemmanuil (10.1016/j.molcel.2022.02.025_bib44) 2013; 122
Kedersha (10.1016/j.molcel.2022.02.025_bib24) 2007; 431
Song (10.1016/j.molcel.2022.02.025_bib61) 2020
Love (10.1016/j.molcel.2022.02.025_bib33) 2014; 15
Bamopoulos (10.1016/j.molcel.2022.02.025_bib5) 2020; 34
Kuleshov (10.1016/j.molcel.2022.02.025_bib30) 2016; 44
Shen (10.1016/j.molcel.2022.02.025_bib57) 2014; 111
Hellström-Lindberg (10.1016/j.molcel.2022.02.025_bib20) 2020; 105
Lee (10.1016/j.molcel.2022.02.025_bib31) 2016; 22
Okeyo-Owuor (10.1016/j.molcel.2022.02.025_bib42) 2015; 29
Wu (10.1016/j.molcel.2022.02.025_bib72) 1999; 402
Zhu (10.1016/j.molcel.2022.02.025_bib81) 2020; 19
Yip (10.1016/j.molcel.2022.02.025_bib75) 2017; 127
Dobin (10.1016/j.molcel.2022.02.025_bib10) 2013; 29
Ilagan (10.1016/j.molcel.2022.02.025_bib21) 2015; 25
Protter (10.1016/j.molcel.2022.02.025_bib47) 2016; 26
Kim (10.1016/j.molcel.2022.02.025_bib29) 2018; 41
Graubert (10.1016/j.molcel.2022.02.025_bib18) 2011; 44
Grabocka (10.1016/j.molcel.2022.02.025_bib17) 2016; 167
Brooks (10.1016/j.molcel.2022.02.025_bib7) 2014; 9
Khong (10.1016/j.molcel.2022.02.025_bib26) 2017; 68
Moulos (10.1016/j.molcel.2022.02.025_bib40) 2015; 43
Wang (10.1016/j.molcel.2022.02.025_bib68) 2020; 6
Zyryanova (10.1016/j.molcel.2022.02.025_bib83) 2021; 81
Quinlan (10.1016/j.molcel.2022.02.025_bib49) 2010; 26
Bonnal (10.1016/j.molcel.2022.02.025_bib6) 2020; 17
Chatrikhi (10.1016/j.molcel.2022.02.025_bib8) 2021; 28
Palangat (10.1016/j.molcel.2022.02.025_bib43) 2019; 33
Robinson (10.1016/j.molcel.2022.02.025_bib51) 2011; 29
Visconte (10.1016/j.molcel.2022.02.025_bib67) 2019; 11
Schofield (10.1016/j.molcel.2022.02.025_bib54) 2018; 15
Dvinge (10.1016/j.molcel.2022.02.025_bib12) 2016; 16
Robinson (10.1016/j.molcel.2022.02.025_bib52) 2010; 26
Kennedy (10.1016/j.molcel.2022.02.025_bib25) 2017; 35
Motta-Mena (10.1016/j.molcel.2022.02.025_bib39) 2010; 37
Steensma (10.1016/j.molcel.2022.02.025_bib62) 2015; 90
Van Nostrand (10.1016/j.molcel.2022.02.025_bib63) 2017; 118–119
Martin (10.1016/j.molcel.2022.02.025_bib36) 2011; 17
Przychodzen (10.1016/j.molcel.2022.02.025_bib48) 2013; 122
Yamaguchi (10.1016/j.molcel.2022.02.025_bib74) 2012; 7
Yoshida (10.1016/j.molcel.2022.02.025_bib76) 2015; 29
Zorio (10.1016/j.molcel.2022.02.025_bib82) 1999; 402
Gao (10.1016/j.molcel.2022.02.025_bib16) 2019; 176
Anczuków (10.1016/j.molcel.2022.02.025_bib2) 2016; 22
Guth (10.1016/j.molcel.2022.02.025_bib84) 2001; 21
Kielkopf (10.1016/j.molcel.2022.02.025_bib27) 2001; 106
Warnasooriya (10.1016/j.molcel.2022.02.025_bib71) 2020; 48
Agrawal (10.1016/j.molcel.2022.02.025_bib1) 2016; 7
Shirai (10.1016/j.molcel.2022.02.025_bib58) 2015; 27
Van Treeck (10.1016/j.molcel.2022.02.025_bib65) 2018; 174
Wang (10.1016/j.molcel.2022.02.025_bib69) 2019; 35
Hao (10.1016/j.molcel.2022.02.025_bib19) 2021; 184
Li (10.1016/j.molcel.2022.02.025_bib32) 2009; 25
Courchaine (10.1016/j.molcel.2022.02.025_bib9) 2016; 35
Shallis (10.1016/j.molcel.2022.02.025_bib55) 2019; 36
Yoshida (10.1016/j.molcel.2022.02.025_bib77) 2020; 11
References_xml – volume: 80
  start-page: 876
  year: 2020
  end-page: 891.e6
  ident: bib35
  article-title: Spatiotemporal proteomic analysis of stress granule disassembly using APEX reveals regulation by SUMOylation and links to ALS pathogenesis
  publication-title: Mol. Cell
– volume: 373
  start-page: 1136
  year: 2015
  end-page: 1152
  ident: bib11
  article-title: Acute myeloid leukemia
  publication-title: N. Engl. J. Med.
– volume: 105
  start-page: 1765
  year: 2020
  end-page: 1779
  ident: bib20
  article-title: Myelodysplastic syndromes: moving towards personalized management
  publication-title: Haematologica
– volume: 16
  start-page: 413
  year: 2016
  end-page: 430
  ident: bib12
  article-title: RNA splicing factors as oncoproteins and tumour suppressors
  publication-title: Nat. Rev. Cancer
– volume: 41
  start-page: 733
  year: 2018
  end-page: 741
  ident: bib29
  article-title: Integrative profiling of alternative splicing induced by U2AF1 S34F mutation in lung adenocarcinoma reveals a mechanistic Link to mitotic stress
  publication-title: Mol. Cell
– volume: 111
  start-page: E5593
  year: 2014
  end-page: E5601
  ident: bib57
  article-title: rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 15
  start-page: 550
  year: 2014
  ident: bib33
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
– volume: 17
  start-page: 457
  year: 2020
  end-page: 474
  ident: bib6
  article-title: Roles and mechanisms of alternative splicing in cancer — implications for care
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 167
  start-page: 1803
  year: 2016
  end-page: 1813.e12
  ident: bib17
  article-title: Mutant KRAS enhances tumor cell fitness by upregulating stress granules
  publication-title: Cell
– volume: 8
  start-page: 14060
  year: 2017
  ident: bib59
  article-title: Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome
  publication-title: Nat. Commun.
– volume: 26
  start-page: 668
  year: 2016
  end-page: 679
  ident: bib47
  article-title: Principles and properties of stress granules
  publication-title: Trends Cell Biol.
– volume: 8
  start-page: 14049
  year: 2017
  ident: bib80
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
– volume: 9
  start-page: e87361
  year: 2014
  ident: bib7
  article-title: A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events
  publication-title: PLoS One
– volume: 402
  start-page: 838
  year: 1999
  end-page: 841
  ident: bib38
  article-title: Inhibition of msl-2 splicing by sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG
  publication-title: Nature
– volume: 15
  start-page: 221
  year: 2018
  end-page: 225
  ident: bib54
  article-title: Time Lapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding time
  publication-title: Nat. Methods
– volume: 28
  start-page: 1145
  year: 2021
  end-page: 1157.e6
  ident: bib8
  article-title: A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex
  publication-title: Cell Chem. Biol.
– volume: 2
  start-page: e00498
  year: 2013
  ident: bib60
  article-title: Pharmacological brake-release of mRNA translation enhances cognitive memory
  publication-title: eLife
– volume: 48
  start-page: 5695
  year: 2020
  end-page: 5709
  ident: bib71
  article-title: A splice site-sensing conformational switch in U2AF2 is modulated by U2AF1 and its recurrent myelodysplasia-associated mutation
  publication-title: Nucleic Acids Res.
– volume: 106
  start-page: 595
  year: 2001
  end-page: 605
  ident: bib27
  article-title: A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer
  publication-title: Cell
– volume: 90
  start-page: 969
  year: 2015
  end-page: 983
  ident: bib62
  article-title: Myelodysplastic syndromes: diagnosis and treatment
  publication-title: Mayo Clin. Proc.
– start-page: 1
  year: 2020
  end-page: 28
  ident: bib61
  article-title: Stress granules in cancer
  publication-title: Reviews of Physiology, Biochemistry and Pharmacology
– volume: 172
  start-page: 590
  year: 2018
  end-page: 604.e13
  ident: bib34
  article-title: Context-dependent and disease-specific diversity in protein interactions within stress granules
  publication-title: Cell
– volume: 478
  start-page: 64
  year: 2011
  end-page: 69
  ident: bib78
  article-title: Frequent pathway mutations of splicing machinery in myelodysplasia
  publication-title: Nature
– volume: 129
  start-page: 1260
  year: 2017
  end-page: 1269
  ident: bib53
  article-title: Splicing factor gene mutations in hematologic malignancies
  publication-title: Blood
– volume: 25
  start-page: 14
  year: 2015
  end-page: 26
  ident: bib21
  article-title: U2AF1 mutations alter splice site recognition in hematological malignancies
  publication-title: Genome Res.
– volume: 402
  start-page: 832
  year: 1999
  end-page: 835
  ident: bib72
  article-title: Functional recognition of the 3′ splice site AG by the splicing factor U2AF35
  publication-title: Nature
– volume: 35
  start-page: 1603
  year: 2016
  end-page: 1612
  ident: bib9
  article-title: Droplet organelles?
  publication-title: EMBO J
– volume: 164
  start-page: 487
  year: 2016
  end-page: 498
  ident: bib23
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
– volume: 17
  start-page: 10
  year: 2011
  ident: bib36
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J
– volume: 33
  start-page: 482
  year: 2019
  end-page: 497
  ident: bib43
  article-title: The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation
  publication-title: Genes Dev
– volume: 26
  start-page: 841
  year: 2010
  end-page: 842
  ident: bib49
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
– volume: 174
  start-page: 791
  year: 2018
  end-page: 802
  ident: bib65
  article-title: Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies
  publication-title: Cell
– volume: 69
  start-page: 517
  year: 2018
  end-page: 532.e11
  ident: bib79
  article-title: High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies
  publication-title: Mol. Cell
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib10
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 78
  start-page: 5363
  year: 2018
  end-page: 5374
  ident: bib41
  article-title: Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes
  publication-title: Cancer Res
– volume: 34
  start-page: 2621
  year: 2020
  end-page: 2634
  ident: bib5
  article-title: Clinical presentation and differential splicing of SRSF2, U2AF1 and SF3B1 mutations in patients with acute myeloid leukemia
  publication-title: Leukemia
– volume: 176
  start-page: 4421
  year: 2019
  end-page: 4433
  ident: bib16
  article-title: Stress granule: a promising target for cancer treatment
  publication-title: Br. J. Pharmacol.
– volume: 29
  start-page: 24
  year: 2011
  end-page: 26
  ident: bib51
  article-title: Integrative genomics viewer
  publication-title: Nat. Biotechnol.
– volume: 21
  year: 2001
  ident: bib84
  article-title: Dual function for U2AF(35) in AG-dependent pre-mRNA splicing
  publication-title: Mol. Cell Biol.
– volume: 37
  start-page: 907
  year: 2019
  end-page: 915
  ident: bib28
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
– volume: 184
  year: 2021
  ident: bib19
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: bib52
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 81
  start-page: 88
  year: 2021
  end-page: 103.e6
  ident: bib83
  article-title: ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B
  publication-title: Mol. Cell
– volume: 19
  start-page: 1047
  year: 2020
  end-page: 1057
  ident: bib81
  article-title: DEqMS: a method for accurate variance estimation in differential protein expression analysis
  publication-title: Mol. Cell. Proteomics
– volume: 7
  start-page: 10950
  year: 2016
  ident: bib1
  article-title: An extended U2AF65-RNA-binding domain recognizes the 3′ splice site signal
  publication-title: Nat. Commun.
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib32
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
– volume: 402
  start-page: 835
  year: 1999
  end-page: 838
  ident: bib82
  article-title: Both subunits of U2AF recognize the 3′ splice site in
  publication-title: Nature
– volume: 12
  year: 2016
  ident: bib14
  article-title: Wild-type U2AF1 antagonizes the splicing program characteristic of U2AF1-mutant tumors and is required for cell survival
  publication-title: PLoS Genet
– volume: 127
  start-page: 2206
  year: 2017
  end-page: 2221
  ident: bib75
  article-title: The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes
  publication-title: J. Clin. Invest.
– volume: 6
  start-page: 631
  year: 2020
  end-page: 644
  ident: bib68
  article-title: RNA splicing and cancer
  publication-title: Trends Cancer
– volume: 122
  start-page: 999
  year: 2013
  end-page: 1006
  ident: bib48
  article-title: Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms
  publication-title: Blood
– volume: 22
  start-page: 672
  year: 2016
  end-page: 678
  ident: bib31
  article-title: Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins
  publication-title: Nat. Med.
– volume: 7
  year: 2012
  ident: bib74
  article-title: Development of an all-in-one inducible lentiviral vector for gene specific analysis of reprogramming
  publication-title: PLoS One
– volume: 29
  start-page: 1649
  year: 2015
  end-page: 1660
  ident: bib76
  article-title: A novel 3′ splice site recognition by the two zinc fingers in the U2AF small subunit
  publication-title: Genes Dev
– volume: 27
  start-page: 174
  year: 2021
  end-page: 189
  ident: bib37
  article-title: RNA partitioning into stress granules is based on the summation of multiple interactions
  publication-title: RNA
– volume: 116
  start-page: 2097
  year: 2019
  end-page: 2102
  ident: bib50
  article-title: Small molecule ISRIB suppresses the integrated stress response within a defined window of activation
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 22
  start-page: 1285
  year: 2016
  end-page: 1301
  ident: bib2
  article-title: Splicing-factor alterations in cancers
  publication-title: RNA
– volume: 36
  start-page: 194
  year: 2019
  end-page: 209.e9
  ident: bib15
  article-title: Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation
  publication-title: Cancer Cell
– volume: 431
  start-page: 61
  year: 2007
  end-page: 81
  ident: bib24
  article-title: Mammalian stress granules and processing bodies
  publication-title: Methods Enzymol. Translation Initiation: Cell Biology, High-Throughput Methods, and Chemical-Based Approaches
– volume: 36
  start-page: 70
  year: 2019
  end-page: 87
  ident: bib55
  article-title: Epidemiology of acute myeloid leukemia: recent progress and enduring challenges
  publication-title: Blood Rev.
– volume: 161
  start-page: 105143
  year: 2020
  ident: bib70
  article-title: Targeting stress granules: A novel therapeutic strategy for human diseases
  publication-title: Pharmacol. Res.
– volume: 44
  start-page: W90
  year: 2016
  end-page: W97
  ident: bib30
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
– volume: 132
  start-page: 1225
  year: 2018
  end-page: 1240
  ident: bib46
  article-title: Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations
  publication-title: Blood
– volume: 118–119
  start-page: 50
  year: 2017
  end-page: 59
  ident: bib63
  article-title: CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins
  publication-title: Methods
– volume: 115
  start-page: 2734
  year: 2018
  end-page: 2739
  ident: bib66
  article-title: RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 7
  year: 2012
  ident: bib73
  article-title: FastUniq: a fast de novo duplicates removal tool for paired short reads
  publication-title: PLoS One
– volume: 35
  start-page: 968
  year: 2017
  end-page: 974
  ident: bib25
  article-title: Clinical implications of Genetic mutations in myelodysplastic syndrome
  publication-title: J. Clin. Oncol.
– volume: 37
  start-page: 223
  year: 2010
  end-page: 234
  ident: bib39
  article-title: Context-dependent regulatory mechanism of the splicing factor hnRNP L
  publication-title: Mol. Cell
– volume: 68
  start-page: 808
  year: 2017
  end-page: 820.e5
  ident: bib26
  article-title: The stress granule transcriptome reveals principles of mRNA accumulation in stress granules
  publication-title: Mol. Cell
– volume: 11
  start-page: 1844
  year: 2019
  ident: bib67
  article-title: Mutations in splicing factor genes in myeloid malignancies: significance and impact on clinical features
  publication-title: Cancers (Basel)
– volume: 122
  start-page: 3616
  year: 2013
  end-page: 3627
  ident: bib44
  article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes
  publication-title: Blood
– volume: 35
  start-page: 369
  year: 2019
  end-page: 384.e7
  ident: bib69
  article-title: Targeting an RNA-binding protein network in acute myeloid leukemia
  publication-title: Cancer Cell
– volume: 29
  start-page: 909
  year: 2015
  end-page: 917
  ident: bib42
  article-title: U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing
  publication-title: Leukemia
– volume: 11
  start-page: a032813
  year: 2019
  ident: bib22
  article-title: Stress granules and processing bodies in translational control
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 44
  start-page: 53
  year: 2011
  end-page: 57
  ident: bib18
  article-title: Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes
  publication-title: Nat. Genet.
– volume: 27
  start-page: 631
  year: 2015
  end-page: 643
  ident: bib58
  article-title: Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo
  publication-title: Cancer Cell
– volume: 10
  start-page: 5712
  year: 2019
  ident: bib13
  article-title: Functional significance of U2AF1 S34F mutations in lung adenocarcinomas
  publication-title: Nat. Commun.
– volume: 1849
  start-page: 861
  year: 2015
  end-page: 870
  ident: bib4
  article-title: Stress granules, P-bodies and cancer
  publication-title: Biochim. Biophys. Acta
– volume: 11
  start-page: 4744
  year: 2020
  ident: bib77
  article-title: Elucidation of the aberrant 3′ splice site selection by cancer-associated mutations on the U2AF1
  publication-title: Nat. Commun.
– volume: 43
  start-page: e25
  year: 2015
  ident: bib40
  article-title: Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns
  publication-title: Nucleic Acids Res.
– volume: 21
  start-page: 997
  year: 2014
  end-page: 1005
  ident: bib56
  article-title: Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome
  publication-title: Nat. Struct. Mol. Biol.
– volume: 13
  start-page: 508
  year: 2016
  end-page: 514
  ident: bib64
  article-title: Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)
  publication-title: Nat. Methods
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: bib3
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
– volume: 26
  start-page: 841
  year: 2010
  ident: 10.1016/j.molcel.2022.02.025_bib49
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 111
  start-page: E5593
  year: 2014
  ident: 10.1016/j.molcel.2022.02.025_bib57
  article-title: rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1419161111
– volume: 122
  start-page: 999
  year: 2013
  ident: 10.1016/j.molcel.2022.02.025_bib48
  article-title: Patterns of missplicing due to somatic U2AF1 mutations in myeloid neoplasms
  publication-title: Blood
  doi: 10.1182/blood-2013-01-480970
– volume: 164
  start-page: 487
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib23
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 27
  start-page: 174
  year: 2021
  ident: 10.1016/j.molcel.2022.02.025_bib37
  article-title: RNA partitioning into stress granules is based on the summation of multiple interactions
  publication-title: RNA
  doi: 10.1261/rna.078204.120
– volume: 35
  start-page: 968
  year: 2017
  ident: 10.1016/j.molcel.2022.02.025_bib25
  article-title: Clinical implications of Genetic mutations in myelodysplastic syndrome
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2016.71.0806
– volume: 29
  start-page: 24
  year: 2011
  ident: 10.1016/j.molcel.2022.02.025_bib51
  article-title: Integrative genomics viewer
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1754
– volume: 26
  start-page: 139
  year: 2010
  ident: 10.1016/j.molcel.2022.02.025_bib52
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 15
  start-page: 221
  year: 2018
  ident: 10.1016/j.molcel.2022.02.025_bib54
  article-title: Time Lapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding time
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4582
– volume: 11
  start-page: a032813
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib22
  article-title: Stress granules and processing bodies in translational control
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a032813
– volume: 29
  start-page: 1649
  year: 2015
  ident: 10.1016/j.molcel.2022.02.025_bib76
  article-title: A novel 3′ splice site recognition by the two zinc fingers in the U2AF small subunit
  publication-title: Genes Dev
  doi: 10.1101/gad.267104.115
– volume: 44
  start-page: 53
  year: 2011
  ident: 10.1016/j.molcel.2022.02.025_bib18
  article-title: Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes
  publication-title: Nat. Genet.
  doi: 10.1038/ng.1031
– volume: 115
  start-page: 2734
  year: 2018
  ident: 10.1016/j.molcel.2022.02.025_bib66
  article-title: RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1800038115
– volume: 22
  start-page: 1285
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib2
  article-title: Splicing-factor alterations in cancers
  publication-title: RNA
  doi: 10.1261/rna.057919.116
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.molcel.2022.02.025_bib10
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 81
  start-page: 88
  year: 2021
  ident: 10.1016/j.molcel.2022.02.025_bib83
  article-title: ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.10.031
– volume: 80
  start-page: 876
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib35
  article-title: Spatiotemporal proteomic analysis of stress granule disassembly using APEX reveals regulation by SUMOylation and links to ALS pathogenesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.10.032
– volume: 431
  start-page: 61
  year: 2007
  ident: 10.1016/j.molcel.2022.02.025_bib24
  article-title: Mammalian stress granules and processing bodies
– volume: 402
  start-page: 838
  year: 1999
  ident: 10.1016/j.molcel.2022.02.025_bib38
  article-title: Inhibition of msl-2 splicing by sex-lethal reveals interaction between U2AF35 and the 3′ splice site AG
  publication-title: Nature
  doi: 10.1038/45602
– volume: 48
  start-page: 5695
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib71
  article-title: A splice site-sensing conformational switch in U2AF2 is modulated by U2AF1 and its recurrent myelodysplasia-associated mutation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa293
– volume: 21
  start-page: 997
  year: 2014
  ident: 10.1016/j.molcel.2022.02.025_bib56
  article-title: Mechanisms for U2AF to define 3′ splice sites and regulate alternative splicing in the human genome
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2906
– volume: 167
  start-page: 1803
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib17
  article-title: Mutant KRAS enhances tumor cell fitness by upregulating stress granules
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.035
– volume: 373
  start-page: 1136
  year: 2015
  ident: 10.1016/j.molcel.2022.02.025_bib11
  article-title: Acute myeloid leukemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1406184
– volume: 29
  start-page: 909
  year: 2015
  ident: 10.1016/j.molcel.2022.02.025_bib42
  article-title: U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing
  publication-title: Leukemia
  doi: 10.1038/leu.2014.303
– volume: 129
  start-page: 1260
  year: 2017
  ident: 10.1016/j.molcel.2022.02.025_bib53
  article-title: Splicing factor gene mutations in hematologic malignancies
  publication-title: Blood
  doi: 10.1182/blood-2016-10-692400
– volume: 17
  start-page: 457
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib6
  article-title: Roles and mechanisms of alternative splicing in cancer — implications for care
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-020-0350-x
– volume: 2
  start-page: e00498
  year: 2013
  ident: 10.1016/j.molcel.2022.02.025_bib60
  article-title: Pharmacological brake-release of mRNA translation enhances cognitive memory
  publication-title: eLife
  doi: 10.7554/eLife.00498
– volume: 122
  start-page: 3616
  year: 2013
  ident: 10.1016/j.molcel.2022.02.025_bib44
  article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes
  publication-title: Blood
  doi: 10.1182/blood-2013-08-518886
– volume: 1849
  start-page: 861
  year: 2015
  ident: 10.1016/j.molcel.2022.02.025_bib4
  article-title: Stress granules, P-bodies and cancer
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2014.11.009
– volume: 172
  start-page: 590
  year: 2018
  ident: 10.1016/j.molcel.2022.02.025_bib34
  article-title: Context-dependent and disease-specific diversity in protein interactions within stress granules
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.032
– volume: 116
  start-page: 2097
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib50
  article-title: Small molecule ISRIB suppresses the integrated stress response within a defined window of activation
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1815767116
– volume: 176
  start-page: 4421
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib16
  article-title: Stress granule: a promising target for cancer treatment
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14790
– volume: 105
  start-page: 1765
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib20
  article-title: Myelodysplastic syndromes: moving towards personalized management
  publication-title: Haematologica
  doi: 10.3324/haematol.2020.248955
– volume: 161
  start-page: 105143
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib70
  article-title: Targeting stress granules: A novel therapeutic strategy for human diseases
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.105143
– volume: 31
  start-page: 166
  year: 2015
  ident: 10.1016/j.molcel.2022.02.025_bib3
  article-title: HTSeq--a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 41
  start-page: 733
  year: 2018
  ident: 10.1016/j.molcel.2022.02.025_bib29
  article-title: Integrative profiling of alternative splicing induced by U2AF1 S34F mutation in lung adenocarcinoma reveals a mechanistic Link to mitotic stress
  publication-title: Mol. Cell
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.molcel.2022.02.025_bib33
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 11
  start-page: 1844
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib67
  article-title: Mutations in splicing factor genes in myeloid malignancies: significance and impact on clinical features
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers11121844
– volume: 26
  start-page: 668
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib47
  article-title: Principles and properties of stress granules
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.05.004
– volume: 17
  start-page: 10
  year: 2011
  ident: 10.1016/j.molcel.2022.02.025_bib36
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet J
  doi: 10.14806/ej.17.1.200
– volume: 118–119
  start-page: 50
  year: 2017
  ident: 10.1016/j.molcel.2022.02.025_bib63
  article-title: CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.12.007
– volume: 7
  start-page: 10950
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib1
  article-title: An extended U2AF65-RNA-binding domain recognizes the 3′ splice site signal
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10950
– volume: 35
  start-page: 1603
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib9
  article-title: Droplet organelles?
  publication-title: EMBO J
  doi: 10.15252/embj.201593517
– volume: 402
  start-page: 835
  year: 1999
  ident: 10.1016/j.molcel.2022.02.025_bib82
  article-title: Both subunits of U2AF recognize the 3′ splice site in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/45597
– volume: 132
  start-page: 1225
  year: 2018
  ident: 10.1016/j.molcel.2022.02.025_bib46
  article-title: Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations
  publication-title: Blood
  doi: 10.1182/blood-2018-04-843771
– volume: 127
  start-page: 2206
  year: 2017
  ident: 10.1016/j.molcel.2022.02.025_bib75
  article-title: The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI91363
– volume: 11
  start-page: 4744
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib77
  article-title: Elucidation of the aberrant 3′ splice site selection by cancer-associated mutations on the U2AF1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18559-6
– volume: 10
  start-page: 5712
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib13
  article-title: Functional significance of U2AF1 S34F mutations in lung adenocarcinomas
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13392-y
– volume: 43
  start-page: e25
  year: 2015
  ident: 10.1016/j.molcel.2022.02.025_bib40
  article-title: Systematic integration of RNA-Seq statistical algorithms for accurate detection of differential gene expression patterns
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1273
– volume: 478
  start-page: 64
  year: 2011
  ident: 10.1016/j.molcel.2022.02.025_bib78
  article-title: Frequent pathway mutations of splicing machinery in myelodysplasia
  publication-title: Nature
  doi: 10.1038/nature10496
– volume: 402
  start-page: 832
  year: 1999
  ident: 10.1016/j.molcel.2022.02.025_bib72
  article-title: Functional recognition of the 3′ splice site AG by the splicing factor U2AF35
  publication-title: Nature
  doi: 10.1038/45590
– volume: 25
  start-page: 14
  year: 2015
  ident: 10.1016/j.molcel.2022.02.025_bib21
  article-title: U2AF1 mutations alter splice site recognition in hematological malignancies
  publication-title: Genome Res.
  doi: 10.1101/gr.181016.114
– volume: 44
  start-page: W90
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib30
  article-title: Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw377
– volume: 184
  year: 2021
  ident: 10.1016/j.molcel.2022.02.025_bib19
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 28
  start-page: 1145
  year: 2021
  ident: 10.1016/j.molcel.2022.02.025_bib8
  article-title: A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2-RNA complex
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2021.02.007
– volume: 13
  start-page: 508
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib64
  article-title: Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3810
– volume: 69
  start-page: 517
  year: 2018
  ident: 10.1016/j.molcel.2022.02.025_bib79
  article-title: High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.12.020
– volume: 8
  start-page: 14049
  year: 2017
  ident: 10.1016/j.molcel.2022.02.025_bib80
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 106
  start-page: 595
  year: 2001
  ident: 10.1016/j.molcel.2022.02.025_bib27
  article-title: A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00480-9
– volume: 27
  start-page: 631
  year: 2015
  ident: 10.1016/j.molcel.2022.02.025_bib58
  article-title: Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.04.008
– volume: 34
  start-page: 2621
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib5
  article-title: Clinical presentation and differential splicing of SRSF2, U2AF1 and SF3B1 mutations in patients with acute myeloid leukemia
  publication-title: Leukemia
  doi: 10.1038/s41375-020-0839-4
– volume: 78
  start-page: 5363
  year: 2018
  ident: 10.1016/j.molcel.2022.02.025_bib41
  article-title: Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-3970
– volume: 9
  start-page: e87361
  year: 2014
  ident: 10.1016/j.molcel.2022.02.025_bib7
  article-title: A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087361
– volume: 36
  start-page: 194
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib15
  article-title: Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.07.003
– volume: 90
  start-page: 969
  year: 2015
  ident: 10.1016/j.molcel.2022.02.025_bib62
  article-title: Myelodysplastic syndromes: diagnosis and treatment
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2015.04.001
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.molcel.2022.02.025_bib32
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 21
  year: 2001
  ident: 10.1016/j.molcel.2022.02.025_bib84
  article-title: Dual function for U2AF(35) in AG-dependent pre-mRNA splicing
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.21.22.7673-7681.2001
– volume: 37
  start-page: 907
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib28
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0201-4
– volume: 37
  start-page: 223
  year: 2010
  ident: 10.1016/j.molcel.2022.02.025_bib39
  article-title: Context-dependent regulatory mechanism of the splicing factor hnRNP L
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.12.027
– volume: 7
  year: 2012
  ident: 10.1016/j.molcel.2022.02.025_bib74
  article-title: Development of an all-in-one inducible lentiviral vector for gene specific analysis of reprogramming
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041007
– volume: 36
  start-page: 70
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib55
  article-title: Epidemiology of acute myeloid leukemia: recent progress and enduring challenges
  publication-title: Blood Rev.
  doi: 10.1016/j.blre.2019.04.005
– volume: 7
  year: 2012
  ident: 10.1016/j.molcel.2022.02.025_bib73
  article-title: FastUniq: a fast de novo duplicates removal tool for paired short reads
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0052249
– start-page: 1
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib61
  article-title: Stress granules in cancer
  doi: 10.1007/112_2020_37
– volume: 19
  start-page: 1047
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib81
  article-title: DEqMS: a method for accurate variance estimation in differential protein expression analysis
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.TIR119.001646
– volume: 68
  start-page: 808
  year: 2017
  ident: 10.1016/j.molcel.2022.02.025_bib26
  article-title: The stress granule transcriptome reveals principles of mRNA accumulation in stress granules
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.10.015
– volume: 174
  start-page: 791
  year: 2018
  ident: 10.1016/j.molcel.2022.02.025_bib65
  article-title: Emerging roles for intermolecular RNA-RNA interactions in RNP assemblies
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.023
– volume: 6
  start-page: 631
  year: 2020
  ident: 10.1016/j.molcel.2022.02.025_bib68
  article-title: RNA splicing and cancer
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.04.011
– volume: 35
  start-page: 369
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib69
  article-title: Targeting an RNA-binding protein network in acute myeloid leukemia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.01.010
– volume: 8
  start-page: 14060
  year: 2017
  ident: 10.1016/j.molcel.2022.02.025_bib59
  article-title: Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14060
– volume: 12
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib14
  article-title: Wild-type U2AF1 antagonizes the splicing program characteristic of U2AF1-mutant tumors and is required for cell survival
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006384
– volume: 22
  start-page: 672
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib31
  article-title: Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins
  publication-title: Nat. Med.
  doi: 10.1038/nm.4097
– volume: 16
  start-page: 413
  year: 2016
  ident: 10.1016/j.molcel.2022.02.025_bib12
  article-title: RNA splicing factors as oncoproteins and tumour suppressors
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.51
– volume: 33
  start-page: 482
  year: 2019
  ident: 10.1016/j.molcel.2022.02.025_bib43
  article-title: The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation
  publication-title: Genes Dev
  doi: 10.1101/gad.319590.118
SSID ssj0014589
Score 2.5740309
Snippet Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding...
Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA binding...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1107
SubjectTerms AML
crosslinking
exons
freCLIP
Humans
introns
Leukemia, Myeloid, Acute - genetics
MDS
mutants
Mutation
Myelodysplastic Syndromes - genetics
nucleotides
precipitin tests
RNA
RNA binding
RNA granules
RNA Splice Sites
RNA Splicing - genetics
RNA-Binding Proteins - genetics
sequence analysis
splicing
Splicing Factor U2AF - genetics
Splicing Factor U2AF - metabolism
stress granules
Stress Granules - metabolism
stress response
U2AF1
Title Precision analysis of mutant U2AF1 activity reveals deployment of stress granules in myeloid malignancies
URI https://dx.doi.org/10.1016/j.molcel.2022.02.025
https://www.ncbi.nlm.nih.gov/pubmed/35303483
https://www.proquest.com/docview/2640995230
https://www.proquest.com/docview/2648879715
https://pubmed.ncbi.nlm.nih.gov/PMC8988922
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQE9JeJgZsAzZkpL1adRznw48dokJDmya2ir5Z_ioLahNE2wf-e-6cpKLbBNKkvDg5R058Pv9s392PkM88JIkxQjLlp4pJJwKzSiQsV8IWgUvvYlDYt-_5xVh-nWSTLXLWx8KgW2Vn-1ubHq11d2fQ_c3BXVUNfuLZqShyABCIW1Jct6eyjEF8ky_rkwSZRRo8FGYo3YfPRR-veTNzAQ8ghIiZO5Ew-9_T09_w808vyifT0miXvOnwJB22TX5LtkK9R3ZahsmHfVL9uO9IdKjp0o_QZkrnKyQPpmMxHCUUQxuQQYJiNifQRuoDsgDjtiHKttEk9AYmtdUsLGhV0_lDmDWVp3MA8Tctv-_igIxH57_OLljHrsAcYJ4ls8ZLWxoEVNwZI2UQ3BvjJMd9oUKV3E7LXFkoGqiAie9h9cIdFw4G-tSl78h23dThA6G5dMYmtiis8FI4VeaZUVJ4F02I54ck7X-qdl3qcWTAmOnex-xWt12hsSs0xys7JGxd665NvfGCfNH3l95QIQ2zwws1T_vu1TC68MjE1KFZLTTARYDQuHP-rAxYalUk8J73rUqs25tmABFAKaFtG8qyFsDs3ptP6up3zPJdqrJUQhz991cdk9dYQoe5pPhItpf3q_AJENTSnpBXw8ur68uTOFQeAezmHTo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQguiOeyPI0Ex6iO48TxgcM-qFr2ISS2Um_GdtwlqE1W21aov4s_uDOJU1FArIS0Ui5N7Mj1jGe-2DPzEfKO-Tg2hotIFRMVCcd9ZBWPo0xxKz0ThWuSwk5Os8FIfBqn4y3ys8uFwbDKYPtbm95Y63CnF2azd1GWvS94dsplBgACcUvCQmTlkV_9gO-2-YfhIQj5Pef9j2cHgyhQC0QOHP4isqYQNjeIJpgzRgjPWWGMEww3RaTKmZ3kmbLw00AHrPoO0J05xh1o-cQl8N5b5DagD4nWYDjeXx9diLTh3cPRRTi8Ll-vCSqb1VPn8cSD86ZUKDJ0_90f_ol3fw_b_MUP9h-Q-wHA0r12jh6SLV89IndaSsvVY1J-vgysPdSEeie0ntDZEtmK6Yjv9WOKuRRIWUGxfBSoPy080g7jPiW2bdNX6Dl40eXUz2lZ0dnKT-uyoDP4ajhvCYXnT8joRub8Kdmu6so_IzQTztjYSml5IbhTeZYaJXjhGptVsF2SdJOqXah1jpQbU90FtX3XrSg0ikIzvNJdEq17XbS1Pq5pLzt56Q2d1eCOrun5thOvhuWMZzSm8vVyrgGfAmbHrfp_tgHXoGQM79lpVWI93iQFTCLyBMa2oSzrBlhOfPNJVX5ryornKs8V58__-1-9IXcHZyfH-nh4evSC3MMnGK0Xy5dke3G59K8Avi3s62a5UPL1ptfnFe7mV80
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+analysis+of+mutant+U2AF1+activity+reveals+deployment+of+stress+granules+in+myeloid+malignancies&rft.jtitle=Molecular+cell&rft.au=Biancon%2C+Giulia&rft.au=Joshi%2C+Poorval&rft.au=Zimmer%2C+Joshua+T.&rft.au=Hunck%2C+Torben&rft.date=2022-03-17&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=82&rft.issue=6&rft.spage=1107&rft.epage=1122.e7&rft_id=info:doi/10.1016%2Fj.molcel.2022.02.025&rft.externalDocID=S1097276522001630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon