Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI
The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO2 change. The combination of blood oxygenation level depende...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 35; no. 1; pp. 175 - 184 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2007
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 |
DOI | 10.1016/j.neuroimage.2006.10.044 |
Cover
Loading…
Abstract | The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO2 change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO2) were measured, and these data were used to compute the BOLD scaling factor M, %CMRO2 change with activation, and the coupling index n. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF-activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO2 and n, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO2 responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain. |
---|---|
AbstractList | The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical index,n, defined as the ratio between fractional CBF change and fractional CMRO2change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuringn, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO2) were measured, and these data were used to compute the BOLD scaling factorM, %CMRO2change with activation, and the coupling indexn. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF-activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO2andn, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates ofnwere the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability ofnacross days, despite wider variability of CBF and CMRO2responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement ofnthat can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain. The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO2 change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO2) were measured, and these data were used to compute the BOLD scaling factor M, %CMRO2 change with activation, and the coupling index n. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF-activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO2 and n, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO2 responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain. The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO(2) change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO(2)) were measured, and these data were used to compute the BOLD scaling factor M, %CMRO(2) change with activation, and the coupling index n. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF-activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO(2) and n, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO(2) responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain.The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO(2) change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO(2)) were measured, and these data were used to compute the BOLD scaling factor M, %CMRO(2) change with activation, and the coupling index n. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF-activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO(2) and n, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO(2) responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain. The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) during brain activation can be characterized by an empirical index, n , defined as the ratio between fractional CBF change and fractional CMRO 2 change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n , but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO 2 ) were measured, and these data were used to compute the BOLD scaling factor M , %CMRO 2 change with activation, and the coupling index n . Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF–activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO 2 and n , intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO 2 responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain. The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation can be characterized by an empirical index, n, defined as the ratio between fractional CBF change and fractional CMRO(2) change. The combination of blood oxygenation level dependent (BOLD) imaging with CBF measurements from arterial spin labeling (ASL) provides a potentially powerful experimental approach for measuring n, but the reproducibility of the technique previously has not been assessed. In this study, inter-subject variance and intra-subject reproducibility of the method were determined. Block design %BOLD and %CBF responses to visual stimulation and mild hypercapnia (5% CO(2)) were measured, and these data were used to compute the BOLD scaling factor M, %CMRO(2) change with activation, and the coupling index n. Reproducibility was determined for three approaches to defining regions-of-interest (ROIs): 1) Visual area V1 determined from prior retinotopic maps, 2) BOLD-activated voxels from a separate functional localizer, and 3) CBF-activated voxels from a separate functional localizer. For estimates of %BOLD, %CMRO(2) and n, intra-subject reproducibility was found to be best for regions selected according to CBF activation. Among all fMRI measurements, estimates of n were the most robust and were substantially more stable within individual subjects (coefficient of variation, CV=7.4%) than across the subject pool (CV=36.9%). The stability of n across days, despite wider variability of CBF and CMRO(2) responses, suggests that the reproducibility of blood flow changes is limited by variation in the oxidative metabolic demand. We conclude that the calibrated BOLD approach provides a highly reproducible measurement of n that can serve as a useful quantitative probe of the coupling of blood flow and energy metabolism in the brain. |
Author | Leontiev, Oleg Buxton, Richard B. |
AuthorAffiliation | 2 School of Medicine, University of California, San Diego 1 Department of Radiology and Center for Functional MRI, University of California, San Diego |
AuthorAffiliation_xml | – name: 1 Department of Radiology and Center for Functional MRI, University of California, San Diego – name: 2 School of Medicine, University of California, San Diego |
Author_xml | – sequence: 1 givenname: Oleg surname: Leontiev fullname: Leontiev, Oleg organization: Department of Radiology and Center for Functional MRI, University of California, San Diego, USA – sequence: 2 givenname: Richard B. surname: Buxton fullname: Buxton, Richard B. email: rbuxton@ucsd.edu organization: Department of Radiology and Center for Functional MRI, University of California, San Diego, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17208013$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxS1URP_AV0CWkDg1y9hxEueCoEuBSluttCpny3EmrZesvdhJ0X77OmppYS_0ZMsz8_Pzez4mB847JIQymDFg5Yf1zOEYvN3oa5xxgDIdz0CIF-SIQV1kdVHxg2lf5JlkrD4kxzGuAaBmQr4ih6ziIIHlR-Rqhdvg29HYxvZ22FHf0bPl4ssp3WLoxmi9O6XatXR-uVpyukEdx4AbdEOkv-1wQ43ubRP0gG02zdHucnXxmrzsdB_xzcN6Qn58Pb-af88Wy28X88-LzBQlH7JGdlwLELnmXcE11hwBdFV2YKRouDCMtZ0RDdNYSoF11RStKQRUTOrUx_MT8vGeux2bDbYmqQq6V9uQjAk75bVV_1acvVHX_lZxyKUs6wR4_wAI_teIcVAbGw32vXbox6jKGjgvWJ4a3-01rv0YXHqcYgWUyU5WytT19m89j0L-2P0k2AQfY8BOGTvoIZmc5NleMVBTvmqtnvJVU75TJeWbAHIP8HjH_0fP7kcxJXJrMahoLDqDrQ1oBtV6-xzIpz2I6a2z6RP8xN3zEHcw3duk |
CitedBy_id | crossref_primary_10_1016_j_diii_2013_06_010 crossref_primary_10_1016_j_neuroimage_2008_01_038 crossref_primary_10_1016_j_neuroimage_2012_04_027 crossref_primary_10_1371_journal_pone_0068122 crossref_primary_10_1177_0271678X17695291 crossref_primary_10_1016_j_neuroimage_2013_05_110 crossref_primary_10_1148_radiol_2020191711 crossref_primary_10_1007_s00259_008_0962_3 crossref_primary_10_1093_cercor_bhn023 crossref_primary_10_1177_009885880703300206 crossref_primary_10_3174_ajnr_A1496 crossref_primary_10_1016_j_neuroimage_2012_11_050 crossref_primary_10_1007_s11682_011_9133_4 crossref_primary_10_1016_j_neuroimage_2015_08_047 crossref_primary_10_1038_jcbfm_2010_126 crossref_primary_10_1002_jmri_23782 crossref_primary_10_1016_j_neuroimage_2010_02_024 crossref_primary_10_1016_j_neurobiolaging_2020_10_023 crossref_primary_10_3758_s13415_013_0181_7 crossref_primary_10_1016_j_neuroimage_2017_01_041 crossref_primary_10_1152_jn_00352_2017 crossref_primary_10_1016_j_brainres_2022_148059 crossref_primary_10_1113_JP284358 crossref_primary_10_1016_j_neuroimage_2011_03_076 crossref_primary_10_1016_j_neuroimage_2011_05_077 crossref_primary_10_1002_jmri_24878 crossref_primary_10_3389_fnins_2015_00168 crossref_primary_10_1002_mrm_26952 crossref_primary_10_1371_journal_pone_0163071 crossref_primary_10_1016_j_neuroimage_2008_09_057 crossref_primary_10_1186_s12883_015_0306_4 crossref_primary_10_1016_j_neuroimage_2014_05_006 crossref_primary_10_1002_hbm_22301 crossref_primary_10_1016_j_neuroimage_2011_12_017 crossref_primary_10_1016_j_celrep_2023_113341 crossref_primary_10_1016_j_neuroimage_2012_02_022 crossref_primary_10_1024_2235_0977_a000300 crossref_primary_10_1007_s40336_017_0231_1 crossref_primary_10_1016_j_neuroimage_2010_07_059 crossref_primary_10_1042_CS20130343 crossref_primary_10_1016_j_biopsych_2013_12_017 crossref_primary_10_1111_j_1749_6632_2010_05446_x crossref_primary_10_1002_hbm_21495 crossref_primary_10_1016_j_neuroimage_2014_04_049 crossref_primary_10_1117_1_3210779 crossref_primary_10_1007_s11065_007_9028_8 crossref_primary_10_1016_j_neuroimage_2009_04_064 crossref_primary_10_1113_JP271056 crossref_primary_10_1007_s11517_020_02133_9 crossref_primary_10_1016_j_neuroimage_2011_10_046 crossref_primary_10_1016_j_neurad_2015_04_004 crossref_primary_10_1016_j_neubiorev_2019_09_005 crossref_primary_10_1109_JTEHM_2015_2389230 crossref_primary_10_1002_hbm_21242 crossref_primary_10_1093_cercor_bhq151 crossref_primary_10_6009_jjrt_66_618 crossref_primary_10_1016_j_neuroimage_2010_09_059 crossref_primary_10_1148_radiol_12120584 crossref_primary_10_1002_nbm_1392 crossref_primary_10_1016_j_neuroimage_2009_07_015 crossref_primary_10_1016_j_neuroimage_2013_09_035 crossref_primary_10_1002_mrm_21686 crossref_primary_10_1016_j_neuroimage_2011_11_085 crossref_primary_10_1016_j_neuroimage_2015_02_068 crossref_primary_10_2967_jnumed_107_045914 crossref_primary_10_1177_0271678X211056702 crossref_primary_10_1249_MSS_0000000000000717 crossref_primary_10_1098_rstb_2015_0348 crossref_primary_10_1002_hbm_22243 crossref_primary_10_1002_hbm_26047 crossref_primary_10_1002_hbm_23727 crossref_primary_10_3390_brainsci7060064 crossref_primary_10_1002_mrm_21994 crossref_primary_10_1002_hbm_20574 crossref_primary_10_3389_fnsys_2015_00107 crossref_primary_10_1016_j_neuroimage_2016_08_007 crossref_primary_10_1002_hbm_23444 crossref_primary_10_1016_j_neuroimage_2014_06_072 crossref_primary_10_1177_0271678X19869034 crossref_primary_10_1016_j_jradio_2013_04_010 crossref_primary_10_1177_0271678X221077338 crossref_primary_10_1016_j_neuroimage_2010_10_040 crossref_primary_10_1016_j_neuroimage_2018_03_018 crossref_primary_10_1111_psyp_13845 crossref_primary_10_1016_j_jradio_2011_04_016 crossref_primary_10_1016_j_neuroimage_2010_08_070 crossref_primary_10_1016_j_neuroimage_2008_12_059 crossref_primary_10_1371_journal_pone_0049416 crossref_primary_10_1093_cercor_bhs233 crossref_primary_10_1213_ANE_0000000000006891 crossref_primary_10_1002_mrm_24295 crossref_primary_10_1002_hbm_21418 crossref_primary_10_1371_journal_pone_0169253 crossref_primary_10_1002_mrm_22554 crossref_primary_10_1016_j_neulet_2014_01_027 crossref_primary_10_1038_jcbfm_2013_110 crossref_primary_10_1016_j_clon_2021_03_001 crossref_primary_10_1016_j_neuroimage_2012_08_077 crossref_primary_10_1016_j_neuroimage_2014_04_050 crossref_primary_10_1117_1_2940587 crossref_primary_10_1016_j_neuroimage_2009_07_040 crossref_primary_10_1002_jmri_22044 crossref_primary_10_1016_j_neuroimage_2013_07_015 crossref_primary_10_1016_j_neuroimage_2007_12_061 crossref_primary_10_1177_0271678X19867276 crossref_primary_10_1038_jcbfm_2011_174 crossref_primary_10_1016_j_neuroimage_2016_02_037 crossref_primary_10_1016_j_neuroimage_2007_11_015 crossref_primary_10_1016_j_neuroimage_2012_01_115 crossref_primary_10_1016_j_neuroimage_2011_06_011 crossref_primary_10_1177_0271678X16643090 crossref_primary_10_1002_nbm_4061 crossref_primary_10_1016_j_neuroimage_2014_08_052 crossref_primary_10_1016_j_mri_2017_09_001 crossref_primary_10_1016_j_neuroimage_2020_116812 crossref_primary_10_1016_j_neuroscience_2009_09_066 crossref_primary_10_1038_jcbfm_2011_191 crossref_primary_10_1002_nbm_2847 crossref_primary_10_1038_s41467_021_21970_2 crossref_primary_10_3389_fnins_2017_00276 crossref_primary_10_1016_j_drudis_2017_11_012 crossref_primary_10_1098_rsif_2016_0576 crossref_primary_10_1155_2008_628718 crossref_primary_10_1002_mrm_25603 crossref_primary_10_1002_mrm_24916 |
Cites_doi | 10.1016/j.neuroimage.2004.07.013 10.1097/01.WCB.0000071887.63724.B2 10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z 10.1002/(SICI)1522-2594(199906)41:6<1152::AID-MRM11>3.0.CO;2-T 10.1016/S0042-6989(01)00074-8 10.1097/00004647-200209000-00002 10.1016/j.neuroimage.2003.11.029 10.1002/mrm.1910390415 10.1006/cbmr.1996.0014 10.1006/nimg.1998.0369 10.1093/cercor/7.2.181 10.1002/mrm.10502 10.1016/j.neuroimage.2005.04.021 10.1016/j.neuroimage.2006.01.026 10.1016/j.neuroimage.2006.12.034 10.1073/pnas.83.4.1140 10.1016/j.neuroimage.2004.12.010 10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X 10.1073/pnas.96.16.9403 10.1016/S0730-725X(97)00253-1 10.1006/nimg.2001.0916 10.1016/j.neuroimage.2004.01.036 10.1002/mrm.1910340412 10.1073/pnas.95.4.1834 10.1162/089892900562561 10.1002/(SICI)1097-0193(1999)7:4<267::AID-HBM5>3.0.CO;2-3 10.1161/01.STR.5.5.630 10.1016/j.neuroimage.2004.09.047 10.1016/j.neuroimage.2004.05.013 10.1002/hbm.460010207 10.1016/j.neuroimage.2005.04.036 10.1002/mrm.1910390506 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Inc. Copyright Elsevier Limited Mar 1, 2007 |
Copyright_xml | – notice: 2006 Elsevier Inc. – notice: Copyright Elsevier Limited Mar 1, 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2006.10.044 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 184 |
ExternalDocumentID | PMC2038869 3244495511 17208013 10_1016_j_neuroimage_2006_10_044 S1053811906010640 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS42069-04 – fundername: NINDS NIH HHS grantid: R01 NS042069 – fundername: NINDS NIH HHS grantid: R01 NS36722-08 – fundername: NINDS NIH HHS grantid: R01 NS036722 – fundername: NCRR NIH HHS grantid: M01 RR000827 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c562t-b8f2a4043a2f52ae92e00a76f0c84b24c11dfc4b1ae684e97b5dc540718a0a723 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 |
IngestDate | Thu Aug 21 14:00:01 EDT 2025 Thu Sep 04 17:49:36 EDT 2025 Sat Aug 23 13:56:26 EDT 2025 Wed Feb 19 01:46:38 EST 2025 Tue Jul 01 00:49:57 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Fri Feb 23 02:31:39 EST 2024 Tue Aug 26 17:34:06 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cerebral metabolic rate of oxygen (CMRO2) fMRI Cerebral blood flow (CBF) Blood oxygen level dependent (BOLD) Reproducibility |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-b8f2a4043a2f52ae92e00a76f0c84b24c11dfc4b1ae684e97b5dc540718a0a723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2038869 |
PMID | 17208013 |
PQID | 1506720168 |
PQPubID | 2031077 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2038869 proquest_miscellaneous_69022513 proquest_journals_1506720168 pubmed_primary_17208013 crossref_citationtrail_10_1016_j_neuroimage_2006_10_044 crossref_primary_10_1016_j_neuroimage_2006_10_044 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2006_10_044 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2006_10_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-03-01 |
PublicationDateYYYYMMDD | 2007-03-01 |
PublicationDate_xml | – month: 03 year: 2007 text: 2007-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2007 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Handwerker, Ollinger, D'Esposito (bib13) 2004; 21 Uludag, Dubowitz, Yoder, Restom, Liu, Buxton (bib33) 2004; 23 Jones, Berwick, Hewson-Stoate, Gias, Mayhew (bib16) 2005; 27 Mandeville, Marota, Kosofsky, Keltner, Weissleder, Rosen, Weisskoff (bib22) 1998; 39 Hoge, Atkinson, Gill, Crelier, Marrett, Pike (bib15) 1999; 96 Cohen, Ugurbil, Kim (bib6) 2002; 22 Liu, Wong (bib21) 2005; 24 Hoge, Atkinson, Gill, Crelier, Marrett, Pike (bib14) 1999; 42 Wandell, Chial, Backus (bib34) 2000; 12 Wong, Buxton, Frank (bib36) 1998; 39 Roland, Eriksson, Stone-Elander, Widen (bib25) 1987; 7 Restom, Behzadi, Liu (bib24) 2006; 31 Stefanovic, Warnking, Pike (bib29) 2004; 22 Kim, Rostrup, Larsson, Ogawa, Paulson (bib18) 1999; 41 Davis, Kwong, Weisskoff, Rosen (bib8) 1998; 95 Sicard, Duong (bib27) 2005; 25 Tegeler, Strother, Anderson, Kim (bib30) 1999; 7 Grubb, Raichle, Eichling, Ter-Pogossian (bib12) 1974; 5 Friston, Jezzard, Turner (bib11) 1994; 1 Uludag, Buxton (bib32) 2004; 51 Buxton, Uludag, Dubowitz, Liu (bib5) 2004; 23 Kastrup, Kruger, Neumann-Haefelin, Glover, Moseley (bib17) 2002; 15 Press, Brewer, Dougherty, Wade, Wandell (bib23) 2001; 41 St Lawrence, Ye, Lewis, Frank, McLaughlin (bib28) 2003; 50 Fox, Raichle (bib10) 1986; 83 Wong, Buxton, Frank (bib35) 1997; 10 Rombouts, Barkhof, Hoogenraad, Sprenger, Scheltens (bib26) 1998; 16 Brown, Eyler Zorrilla, Georgy, Kindermann, Wong, Buxton (bib3) 2003; 23 Buxton (bib4) 2002 Tjandra, Brooks, Figueiredo, Wise, Matthews, Tracey (bib31) 2005; 27 Leontiev, O., Dubowitz, D.J., Buxton, R.B., in press. CBF/CMRO2 coupling measured with calibrated-BOLD fMRI: sources of bias. NeuroImage. Cox (bib7) 1996; 29 Aguirre, Zarahn, D'Esposito (bib1) 1998; 8 Engel, Glover, Wandell (bib9) 1997; 7 Boxerman, Hamberg, Rosen, Weisskoff (bib2) 1995; 34 Leontiev, Buxton (bib19) 2006 Restom (10.1016/j.neuroimage.2006.10.044_bib24) 2006; 31 Tjandra (10.1016/j.neuroimage.2006.10.044_bib31) 2005; 27 Roland (10.1016/j.neuroimage.2006.10.044_bib25) 1987; 7 Buxton (10.1016/j.neuroimage.2006.10.044_bib4) 2002 Uludag (10.1016/j.neuroimage.2006.10.044_bib32) 2004; 51 Kim (10.1016/j.neuroimage.2006.10.044_bib18) 1999; 41 Mandeville (10.1016/j.neuroimage.2006.10.044_bib22) 1998; 39 Uludag (10.1016/j.neuroimage.2006.10.044_bib33) 2004; 23 10.1016/j.neuroimage.2006.10.044_bib20 Stefanovic (10.1016/j.neuroimage.2006.10.044_bib29) 2004; 22 Wong (10.1016/j.neuroimage.2006.10.044_bib35) 1997; 10 Rombouts (10.1016/j.neuroimage.2006.10.044_bib26) 1998; 16 Press (10.1016/j.neuroimage.2006.10.044_bib23) 2001; 41 Brown (10.1016/j.neuroimage.2006.10.044_bib3) 2003; 23 Wong (10.1016/j.neuroimage.2006.10.044_bib36) 1998; 39 Grubb (10.1016/j.neuroimage.2006.10.044_bib12) 1974; 5 Davis (10.1016/j.neuroimage.2006.10.044_bib8) 1998; 95 Fox (10.1016/j.neuroimage.2006.10.044_bib10) 1986; 83 Hoge (10.1016/j.neuroimage.2006.10.044_bib14) 1999; 42 Hoge (10.1016/j.neuroimage.2006.10.044_bib15) 1999; 96 Boxerman (10.1016/j.neuroimage.2006.10.044_bib2) 1995; 34 Kastrup (10.1016/j.neuroimage.2006.10.044_bib17) 2002; 15 Wandell (10.1016/j.neuroimage.2006.10.044_bib34) 2000; 12 Sicard (10.1016/j.neuroimage.2006.10.044_bib27) 2005; 25 Aguirre (10.1016/j.neuroimage.2006.10.044_bib1) 1998; 8 Cohen (10.1016/j.neuroimage.2006.10.044_bib6) 2002; 22 Engel (10.1016/j.neuroimage.2006.10.044_bib9) 1997; 7 Jones (10.1016/j.neuroimage.2006.10.044_bib16) 2005; 27 St Lawrence (10.1016/j.neuroimage.2006.10.044_bib28) 2003; 50 Friston (10.1016/j.neuroimage.2006.10.044_bib11) 1994; 1 Liu (10.1016/j.neuroimage.2006.10.044_bib21) 2005; 24 Handwerker (10.1016/j.neuroimage.2006.10.044_bib13) 2004; 21 Tegeler (10.1016/j.neuroimage.2006.10.044_bib30) 1999; 7 Leontiev (10.1016/j.neuroimage.2006.10.044_bib19) 2006 Buxton (10.1016/j.neuroimage.2006.10.044_bib5) 2004; 23 Cox (10.1016/j.neuroimage.2006.10.044_bib7) 1996; 29 11322977 - Vision Res. 2001;41(10-11):1321-32 11054917 - J Cogn Neurosci. 2000 Sep;12(5):739-52 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9 10408770 - Hum Brain Mapp. 1999;7(4):267-83 15050587 - Neuroimage. 2004 Apr;21(4):1639-51 16533609 - Neuroimage. 2006 Jul 1;31(3):1104-15 3612246 - J Neurosci. 1987 Aug;7(8):2373-89 9508267 - Magn Reson Imaging. 1998;16(2):105-13 15808985 - Neuroimage. 2005 Apr 15;25(3):850-8 15978844 - Neuroimage. 2005 Sep;27(3):609-23 12218410 - J Cereb Blood Flow Metab. 2002 Sep;22(9):1042-53 11771975 - Neuroimage. 2002 Jan;15(1):74-82 15193606 - Neuroimage. 2004 Jun;22(2):771-8 12815684 - Magn Reson Med. 2003 Jul;50(1):99-106 12843786 - J Cereb Blood Flow Metab. 2003 Jul;23(7):829-37 9581600 - Magn Reson Med. 1998 May;39(5):702-8 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 10371447 - Magn Reson Med. 1999 Jun;41(6):1152-61 15588612 - Neuroimage. 2005 Jan 1;24(1):207-15 8524024 - Magn Reson Med. 1995 Oct;34(4):555-66 10542343 - Magn Reson Med. 1999 Nov;42(5):849-63 15122696 - Magn Reson Med. 2004 May;51(5):1088-9; author reply 1090 10430955 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9403-8 4472361 - Stroke. 1974 Sep-Oct;5(5):630-9 9811554 - Neuroimage. 1998 Nov;8(4):360-9 9430354 - NMR Biomed. 1997 Jun-Aug;10(4-5):237-49 15921936 - Neuroimage. 2005 Aug 15;27(2):393-401 3485282 - Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140-4 15325361 - Neuroimage. 2004 Sep;23(1):148-55 15501093 - Neuroimage. 2004;23 Suppl 1:S220-33 9543424 - Magn Reson Med. 1998 Apr;39(4):615-24 17524665 - Neuroimage. 2007 Jul 15;36(4):1110-22 |
References_xml | – volume: 83 start-page: 1140 year: 1986 end-page: 1144 ident: bib10 article-title: Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: 2373 year: 1987 end-page: 2389 ident: bib25 article-title: Does mental activity change the oxidative metabolism of the brain? publication-title: J. Neuroc. – volume: 23 start-page: 829 year: 2003 end-page: 837 ident: bib3 article-title: BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: differential relationship to global perfusion publication-title: J. Cereb. Blood Flow Metab. – volume: 27 start-page: 609 year: 2005 end-page: 623 ident: bib16 article-title: The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation publication-title: NeuroImage – volume: 23 start-page: 148 year: 2004 end-page: 155 ident: bib33 article-title: Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI publication-title: NeuroImage – volume: 41 start-page: 1152 year: 1999 end-page: 1161 ident: bib18 article-title: Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation publication-title: Magn. Reson. Med. – year: 2002 ident: bib4 article-title: Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques – volume: 51 start-page: 1088 year: 2004 end-page: 1089 ident: bib32 article-title: Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation publication-title: Magn. Reson. Med. – volume: 39 start-page: 702 year: 1998 end-page: 708 ident: bib36 article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) publication-title: Magn. Reson. Med. – volume: 23 start-page: S220 year: 2004 end-page: S233 ident: bib5 article-title: Modeling the hemodynamic response to brain activation publication-title: NeuroImage – volume: 25 start-page: 850 year: 2005 end-page: 858 ident: bib27 article-title: Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals publication-title: NeuroImage – volume: 12 start-page: 739 year: 2000 end-page: 752 ident: bib34 article-title: Visualization and measurement of the cortical surface publication-title: J. Cogn. Neurosci. – volume: 10 start-page: 237 year: 1997 end-page: 249 ident: bib35 article-title: Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling publication-title: NMR Biomed. – volume: 7 start-page: 181 year: 1997 end-page: 192 ident: bib9 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cereb. Cortex – volume: 41 start-page: 1321 year: 2001 end-page: 1332 ident: bib23 article-title: Visual areas and spatial summation in human visual cortex publication-title: Vision Res. – volume: 34 start-page: 555 year: 1995 end-page: 566 ident: bib2 article-title: MR contrast due to intravascular magnetic susceptibility perturbations publication-title: Magn. Reson. Med. – volume: 27 start-page: 393 year: 2005 end-page: 401 ident: bib31 article-title: Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design publication-title: NeuroImage – reference: Leontiev, O., Dubowitz, D.J., Buxton, R.B., in press. CBF/CMRO2 coupling measured with calibrated-BOLD fMRI: sources of bias. NeuroImage. – volume: 31 start-page: 1104 year: 2006 end-page: 1115 ident: bib24 article-title: Physiological noise reduction for arterial spin labeling functional MRI publication-title: NeuroImage – volume: 24 start-page: 207 year: 2005 end-page: 215 ident: bib21 article-title: A signal processing model for arterial spin labeling functional MRI publication-title: NeuroImage – start-page: 454 year: 2006 ident: bib19 article-title: CBF/CMRO2 coupling measurements with calibrated BOLD-fMRI: bias due to voxel selection publication-title: 14th Meeting, International Society for Magnetic Resonance in Medicine, Seattle – volume: 96 start-page: 9403 year: 1999 end-page: 9408 ident: bib15 article-title: Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 start-page: 267 year: 1999 end-page: 283 ident: bib30 article-title: Reproducibility of BOLD-based functional MRI obtained at 4 T publication-title: Hum. Brain Mapp. – volume: 1 start-page: 153 year: 1994 end-page: 171 ident: bib11 article-title: Analysis of functional MRI time-series publication-title: Hum. Brain Mapp. – volume: 42 start-page: 849 year: 1999 end-page: 863 ident: bib14 article-title: Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model publication-title: Magn. Reson. Med. – volume: 8 start-page: 360 year: 1998 end-page: 376 ident: bib1 article-title: The variability of human, BOLD hemodynamic responses publication-title: NeuroImage – volume: 22 start-page: 771 year: 2004 end-page: 778 ident: bib29 article-title: Hemodynamic and metabolic responses to neuronal inhibition publication-title: NeuroImage – volume: 50 start-page: 99 year: 2003 end-page: 106 ident: bib28 article-title: Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation publication-title: Magn. Reson. Med. – volume: 29 start-page: 162 year: 1996 end-page: 173 ident: bib7 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. – volume: 15 start-page: 74 year: 2002 end-page: 82 ident: bib17 article-title: Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation publication-title: NeuroImage – volume: 39 start-page: 615 year: 1998 end-page: 624 ident: bib22 article-title: Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation publication-title: Magn. Reson. Med. – volume: 22 start-page: 1042 year: 2002 end-page: 1053 ident: bib6 article-title: Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response publication-title: J. Cereb. Blood Flow Metab. – volume: 95 start-page: 1834 year: 1998 end-page: 1839 ident: bib8 article-title: Calibrated functional MRI: mapping the dynamics of oxidative metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 start-page: 1639 year: 2004 end-page: 1651 ident: bib13 article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses publication-title: NeuroImage – volume: 5 start-page: 630 year: 1974 end-page: 639 ident: bib12 article-title: The effects of changes in PaCO publication-title: Stroke – volume: 16 start-page: 105 year: 1998 end-page: 113 ident: bib26 article-title: Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging publication-title: Magn. Reson. Imaging – volume: 23 start-page: S220 issue: Suppl. 1 year: 2004 ident: 10.1016/j.neuroimage.2006.10.044_bib5 article-title: Modeling the hemodynamic response to brain activation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.013 – volume: 23 start-page: 829 year: 2003 ident: 10.1016/j.neuroimage.2006.10.044_bib3 article-title: BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: differential relationship to global perfusion publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/01.WCB.0000071887.63724.B2 – volume: 42 start-page: 849 year: 1999 ident: 10.1016/j.neuroimage.2006.10.044_bib14 article-title: Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199911)42:5<849::AID-MRM4>3.0.CO;2-Z – volume: 41 start-page: 1152 year: 1999 ident: 10.1016/j.neuroimage.2006.10.044_bib18 article-title: Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199906)41:6<1152::AID-MRM11>3.0.CO;2-T – volume: 41 start-page: 1321 year: 2001 ident: 10.1016/j.neuroimage.2006.10.044_bib23 article-title: Visual areas and spatial summation in human visual cortex publication-title: Vision Res. doi: 10.1016/S0042-6989(01)00074-8 – volume: 22 start-page: 1042 year: 2002 ident: 10.1016/j.neuroimage.2006.10.044_bib6 article-title: Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200209000-00002 – volume: 21 start-page: 1639 year: 2004 ident: 10.1016/j.neuroimage.2006.10.044_bib13 article-title: Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses publication-title: NeuroImage doi: 10.1016/j.neuroimage.2003.11.029 – volume: 39 start-page: 615 year: 1998 ident: 10.1016/j.neuroimage.2006.10.044_bib22 article-title: Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390415 – volume: 7 start-page: 2373 year: 1987 ident: 10.1016/j.neuroimage.2006.10.044_bib25 article-title: Does mental activity change the oxidative metabolism of the brain? publication-title: J. Neuroc. – volume: 29 start-page: 162 year: 1996 ident: 10.1016/j.neuroimage.2006.10.044_bib7 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Comput. Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 8 start-page: 360 year: 1998 ident: 10.1016/j.neuroimage.2006.10.044_bib1 article-title: The variability of human, BOLD hemodynamic responses publication-title: NeuroImage doi: 10.1006/nimg.1998.0369 – volume: 7 start-page: 181 year: 1997 ident: 10.1016/j.neuroimage.2006.10.044_bib9 article-title: Retinotopic organization in human visual cortex and the spatial precision of functional MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/7.2.181 – volume: 50 start-page: 99 year: 2003 ident: 10.1016/j.neuroimage.2006.10.044_bib28 article-title: Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10502 – volume: 27 start-page: 393 year: 2005 ident: 10.1016/j.neuroimage.2006.10.044_bib31 article-title: Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.04.021 – volume: 31 start-page: 1104 year: 2006 ident: 10.1016/j.neuroimage.2006.10.044_bib24 article-title: Physiological noise reduction for arterial spin labeling functional MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.026 – ident: 10.1016/j.neuroimage.2006.10.044_bib20 doi: 10.1016/j.neuroimage.2006.12.034 – volume: 83 start-page: 1140 year: 1986 ident: 10.1016/j.neuroimage.2006.10.044_bib10 article-title: Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.83.4.1140 – volume: 25 start-page: 850 year: 2005 ident: 10.1016/j.neuroimage.2006.10.044_bib27 article-title: Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.12.010 – volume: 10 start-page: 237 year: 1997 ident: 10.1016/j.neuroimage.2006.10.044_bib35 article-title: Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling publication-title: NMR Biomed. doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<237::AID-NBM475>3.0.CO;2-X – volume: 96 start-page: 9403 year: 1999 ident: 10.1016/j.neuroimage.2006.10.044_bib15 article-title: Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.16.9403 – volume: 16 start-page: 105 year: 1998 ident: 10.1016/j.neuroimage.2006.10.044_bib26 article-title: Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(97)00253-1 – volume: 15 start-page: 74 year: 2002 ident: 10.1016/j.neuroimage.2006.10.044_bib17 article-title: Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation publication-title: NeuroImage doi: 10.1006/nimg.2001.0916 – volume: 22 start-page: 771 year: 2004 ident: 10.1016/j.neuroimage.2006.10.044_bib29 article-title: Hemodynamic and metabolic responses to neuronal inhibition publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.01.036 – volume: 34 start-page: 555 year: 1995 ident: 10.1016/j.neuroimage.2006.10.044_bib2 article-title: MR contrast due to intravascular magnetic susceptibility perturbations publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910340412 – start-page: 454 year: 2006 ident: 10.1016/j.neuroimage.2006.10.044_bib19 article-title: CBF/CMRO2 coupling measurements with calibrated BOLD-fMRI: bias due to voxel selection – year: 2002 ident: 10.1016/j.neuroimage.2006.10.044_bib4 – volume: 95 start-page: 1834 year: 1998 ident: 10.1016/j.neuroimage.2006.10.044_bib8 article-title: Calibrated functional MRI: mapping the dynamics of oxidative metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.4.1834 – volume: 12 start-page: 739 year: 2000 ident: 10.1016/j.neuroimage.2006.10.044_bib34 article-title: Visualization and measurement of the cortical surface publication-title: J. Cogn. Neurosci. doi: 10.1162/089892900562561 – volume: 7 start-page: 267 year: 1999 ident: 10.1016/j.neuroimage.2006.10.044_bib30 article-title: Reproducibility of BOLD-based functional MRI obtained at 4 T publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)7:4<267::AID-HBM5>3.0.CO;2-3 – volume: 5 start-page: 630 year: 1974 ident: 10.1016/j.neuroimage.2006.10.044_bib12 article-title: The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time publication-title: Stroke doi: 10.1161/01.STR.5.5.630 – volume: 24 start-page: 207 year: 2005 ident: 10.1016/j.neuroimage.2006.10.044_bib21 article-title: A signal processing model for arterial spin labeling functional MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.09.047 – volume: 23 start-page: 148 year: 2004 ident: 10.1016/j.neuroimage.2006.10.044_bib33 article-title: Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.05.013 – volume: 51 start-page: 1088 year: 2004 ident: 10.1016/j.neuroimage.2006.10.044_bib32 article-title: Measuring the effects of indomethacin on changes in cerebral oxidative metabolism and cerebral blood flow during sensorimotor activation publication-title: Magn. Reson. Med. – volume: 1 start-page: 153 year: 1994 ident: 10.1016/j.neuroimage.2006.10.044_bib11 article-title: Analysis of functional MRI time-series publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460010207 – volume: 27 start-page: 609 year: 2005 ident: 10.1016/j.neuroimage.2006.10.044_bib16 article-title: The effect of hypercapnia on the neural and hemodynamic responses to somatosensory stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.04.036 – volume: 39 start-page: 702 year: 1998 ident: 10.1016/j.neuroimage.2006.10.044_bib36 article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390506 – reference: 10542343 - Magn Reson Med. 1999 Nov;42(5):849-63 – reference: 11322977 - Vision Res. 2001;41(10-11):1321-32 – reference: 15501093 - Neuroimage. 2004;23 Suppl 1:S220-33 – reference: 9465103 - Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1834-9 – reference: 15122696 - Magn Reson Med. 2004 May;51(5):1088-9; author reply 1090 – reference: 9811554 - Neuroimage. 1998 Nov;8(4):360-9 – reference: 12843786 - J Cereb Blood Flow Metab. 2003 Jul;23(7):829-37 – reference: 3612246 - J Neurosci. 1987 Aug;7(8):2373-89 – reference: 16533609 - Neuroimage. 2006 Jul 1;31(3):1104-15 – reference: 9581600 - Magn Reson Med. 1998 May;39(5):702-8 – reference: 17524665 - Neuroimage. 2007 Jul 15;36(4):1110-22 – reference: 12815684 - Magn Reson Med. 2003 Jul;50(1):99-106 – reference: 9087826 - Cereb Cortex. 1997 Mar;7(2):181-92 – reference: 9430354 - NMR Biomed. 1997 Jun-Aug;10(4-5):237-49 – reference: 11054917 - J Cogn Neurosci. 2000 Sep;12(5):739-52 – reference: 8524024 - Magn Reson Med. 1995 Oct;34(4):555-66 – reference: 10371447 - Magn Reson Med. 1999 Jun;41(6):1152-61 – reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 – reference: 11771975 - Neuroimage. 2002 Jan;15(1):74-82 – reference: 15050587 - Neuroimage. 2004 Apr;21(4):1639-51 – reference: 10408770 - Hum Brain Mapp. 1999;7(4):267-83 – reference: 15588612 - Neuroimage. 2005 Jan 1;24(1):207-15 – reference: 9543424 - Magn Reson Med. 1998 Apr;39(4):615-24 – reference: 3485282 - Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140-4 – reference: 15193606 - Neuroimage. 2004 Jun;22(2):771-8 – reference: 9508267 - Magn Reson Imaging. 1998;16(2):105-13 – reference: 4472361 - Stroke. 1974 Sep-Oct;5(5):630-9 – reference: 10430955 - Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9403-8 – reference: 15808985 - Neuroimage. 2005 Apr 15;25(3):850-8 – reference: 15978844 - Neuroimage. 2005 Sep;27(3):609-23 – reference: 12218410 - J Cereb Blood Flow Metab. 2002 Sep;22(9):1042-53 – reference: 15325361 - Neuroimage. 2004 Sep;23(1):148-55 – reference: 15921936 - Neuroimage. 2005 Aug 15;27(2):393-401 |
SSID | ssj0009148 |
Score | 2.2834885 |
Snippet | The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical... The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) during brain activation can be characterized by an... The coupling of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) during brain activation can be characterized by an... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 175 |
SubjectTerms | Adult Algorithms Blood oxygen level dependent (BOLD) Brain Brain Chemistry - physiology Brain Mapping Calibration Cerebral blood flow (CBF) Cerebral metabolic rate of oxygen (CMRO2) Cerebrovascular Circulation - physiology Data processing Experiments Female fMRI Humans Hypercapnia - pathology Image Processing, Computer-Assisted Magnetic Resonance Imaging - statistics & numerical data Male Mathematical models Medical imaging Middle Aged NMR Nuclear magnetic resonance Oxygen - blood Reproducibility Reproducibility of Results Studies Visual Cortex - anatomy & histology Visual Cortex - physiology |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUQh6oXVKCU8FUfemSbXcfrtdUTDUWAmiLxIXFb2Y4tgmATkeTApb-dmbU3aUBIkXrd8Ui73rHnefz8TMg3zwygbiETaS0sULi1iRLGJJm2FgMqt3Uxp_dHnN7w89v8doV0m7MwSKuMc3-Y0-vZOj5px95sjwaD9hUgA0g3kNDqrUKO63bOC4z173_nNA-V8XAcLu8k2DqyeQLHq9aMHDzCyA3bEsjz4vy9FPUWgr5mUv6Tmk4-kbWIKelReO11suKqDfKhF3fNN8k1oOxa2DUwYZ_p0NOfF7-PD-nIPfkp1ssOqa76tNu7vGD0cV42HFOs01L4j7iqBnCaoB_1vcuzz-Tm5Nd19zSJtykkFjDOJDHSM41aOpr5nGmnmEtTXQifWskN4zbL-t5yk2knJHeqMHnf1vJ8UkM71tkiq9WwctuEglUpmwrvU8cBw0lhADX2tdSwejKFaZGi6cDSRqlxvPHioWw4ZfflvOvxJkyBFuj6FslmnqMgt7GEj2r-UdkcJ4UJsIScsITvj5nvQtgt6b3XhEQZh_64RMnGAmCVkC3ydWaGQYs7Mbpyw-m4FAqgU551WuRLiJ_5x4IrgAawFAuRNWuAcuCLlmpwV8uCMxT2EWrnvz5pl3wM1Wtk2e2R1cnT1O0D7JqYg3pcvQAvxiyO priority: 102 providerName: Elsevier |
Title | Reproducibility of BOLD, perfusion, and CMRO2 measurements with calibrated-BOLD fMRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811906010640 https://dx.doi.org/10.1016/j.neuroimage.2006.10.044 https://www.ncbi.nlm.nih.gov/pubmed/17208013 https://www.proquest.com/docview/1506720168 https://www.proquest.com/docview/69022513 https://pubmed.ncbi.nlm.nih.gov/PMC2038869 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbYJiEuE-Nnx1Z84DhD4jqOIw5oK5s6WLup2qTeItuxxaYtLWt74MLfznuJ0zAQqCcfnp-U2M_25_eev0fIO88NoG6pmLIWLijCWpZJY1isrUWDSmzlzBmO5OBKfJkkk-Bwm4e0ymZPrDbqYmrRR_4BmfBSOK2k-jT7zrBqFEZXQwmNDbJVUZeBPaeTtCXdjUX9FC7pMQUdQiZPnd9V8UVe38GqrUMSmOMlxL-Op7_h559ZlL8dSydPyXbAk_SwNoAd8siVz8jjYYiYPyeXgLArUtc6C_YHnXp6dH72-YDO3L1foq_sgOqyoP3h-JzTu9ZlOKfoo6Uwh3ijBmDKUI_64fj0Bbk6Ob7sD1iopMAs4JsFM8pzjTw6mvuEa5dxF0U6lT6yShgubBwX3goTayeVcFlqksJW1HxKQz_ee0k2y2npXhMK0iyzkfQ-cgLwm5IGEGOhlYabk0lNh6TNAOY20IxjtYvbvMknu8nboccqmBIlMPQdEq80ZzXVxho6WTNHefOUFDa_HM6DNXQ_rnQD3KhhxJrae41J5GHZz_PWSDvk7UoMCxajMLp00-U8lxnApiTudcir2n7anwVVAAwgSR9Y1qoDUoE_lJTX3ypKcI6kPjLb_f9HvSFPatc0ptDtkc3F_dLtA6ZamC7ZeP8z7lbLp0u2DvvjswtsT78ORtAeHY8uxr8A8pIm6g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTgJeJr4pDOYHeFtE4jmOI4TQPtWypkNVJ-0t2I4tNrG0rK3Q_in-xt3FScNAoL7s-XxSYp_vfj6ff0fIW8c0oG4hA2kMHFC4MUEqtA4iZQwaVGyqZE42FL1T_vksPlsjv5q3MFhW2fjEylEXE4M58vfIhJdAtBLy0_RHgF2j8Ha1aaHhzeLYXv-EI9vsY_8A1vcdY0eH4_1eUHcVCAzE-nmgpWMKOWUUczFTNmU2DFUiXGgk14ybKCqc4TpSVkhu00THhalo6qSCcUh0AC5_neOL1g5Z3zscfhm1NL8R94_v4p1ARlFa1w75irKKofL8EvyEvwTBqjLO_xUQ_wa8f9Zt_hYIjx6SjRrB0l1vco_Imi0fk3tZfUf_hIwB01c0sr7u9ppOHN07GRxs06m9cgvMzm1TVRZ0PxudMHrZJilnFLPCFKwGz_AAhQPUoy4b9Z-S0zuZ5WekU05K-4JQkKapCYVzoeWAGKXQgFELJRWc1XSiuyRpJjA3NbE59tf4njcVbBd5O_XYd1OgBKa-S6Kl5tSTe6ygkzZrlDePV8Hd5hCBVtD9sNStAY4HLitqbzYmkdeOZpa326JLtpZicBF476NKO1nMcpECUIujnS557u2n_VlQBYgCkuSWZS0HIPn4bUl5_q0iIWdIIyTSl___qC1yvzfOBvmgPzx-RR74xDgW8G2SzvxqYV8DopvrN_U2ouTrXe_cGxocX2o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELcQk9BeJvZdxoYftjciEtdxbCE0bXQVHRQmBFLfMtuxNaaRFtoK8a_tr9tdnDRj06a-8Hw5KXHu4-fz-XeEvPXMAOoWMpLWwgaFWxspYUyUaGvRoFJbFXOGx-LgnH8epaMV8rO5C4NtlU1MrAJ1MbZYI99BJrwMspWQO75ui_jS67-fXEU4QQpPWptxGsFEDt3tDWzfpnuDHvzrd4z1P53tH0T1hIHIQt6fRUZ6ppFfRjOfMu0Uc3GsM-FjK7lh3CZJ4S03iXZCcqcykxa2oqyTGp5D0gMI_w-yLqAq8KVslLWEvwkP1_DSbiSTRNVdRKG3rOKqvLiEiBGOQ7C_jPN_pca_oe-fHZy_pcT-OnlUY1n6IRjfY7LiyidkbVif1j8lZ4DuK0LZ0IF7S8eefjw56m3Tibv2c6zTbVNdFnR_eHrC6GVbrpxSrA9TsB_czQMojlCP-uHp4Bk5v5c1fk5Wy3HpXhIKUqVsLLyPHQfsKIUBtFpoqWHXZjLTIVmzgLmtKc5x0saPvOll-563S48TOAVKYOk7JFloTgLNxxI6qvlHeXONFQJvDrloCd3dhW4NdQKEWVJ7szGJvA4507x1kA7ZWoghWOAJkC7deD7NhQLIlibdDnkR7Kf9WFAFsAKS7I5lLR5AGvK7kvLiW0VHzpBQSKiN_7_UFlkDf82PBseHr8jDUCHHTr5Nsjq7nrvXAO1m5k3lQ5R8vW-n_QVWamIx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reproducibility+of+BOLD%2C+perfusion%2C+and+CMRO2+measurements+with+calibrated-BOLD+fMRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Leontiev%2C+Oleg&rft.au=Buxton%2C+Richard+B.&rft.date=2007-03-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=35&rft.issue=1&rft.spage=175&rft.epage=184&rft_id=info:doi/10.1016%2Fj.neuroimage.2006.10.044&rft.externalDocID=S1053811906010640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |