CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin
Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 46; no. 2; pp. 287 - 300 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.02.2017
Elsevier Limited Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a− Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a– Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.
[Display omitted]
•CD49a expression marks CD8+ Trm cells poised for IFN-γ production in human skin•IL-15 drives potent cytotoxic capacity in CD49a+ Trm cells•IL-17 is preferentially produced by CD49a− CD8+ Trm cells in the skin•CD49a+ versus CD49- Trm cell functional dichotomy is preserved in vitiligo and psoriasis
Tissue-resident memory T (Trm) cells provide localized adaptive immunity in peripheral tissues. Cheuk et al. identify cytotoxic CD49a+CD8+ Trm cells and IL-17-producing CD49a−CD8+ Trm cells in healthy human skin. The functional dichotomy of pathogenic Trm cells based on CD49a expression is preserved in focal skin diseases vitiligo and psoriasis. |
---|---|
AbstractList | Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a− Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a– Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.
[Display omitted]
•CD49a expression marks CD8+ Trm cells poised for IFN-γ production in human skin•IL-15 drives potent cytotoxic capacity in CD49a+ Trm cells•IL-17 is preferentially produced by CD49a− CD8+ Trm cells in the skin•CD49a+ versus CD49- Trm cell functional dichotomy is preserved in vitiligo and psoriasis
Tissue-resident memory T (Trm) cells provide localized adaptive immunity in peripheral tissues. Cheuk et al. identify cytotoxic CD49a+CD8+ Trm cells and IL-17-producing CD49a−CD8+ Trm cells in healthy human skin. The functional dichotomy of pathogenic Trm cells based on CD49a expression is preserved in focal skin diseases vitiligo and psoriasis. Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8 + Trm cells on a compartmental and functional basis. In human skin epithelia, CD8 + CD49a + Trm cells produced interferon-γ, whereas CD8 + CD49a − Trm cells produced interleukin-17 (IL-17). In addition, CD8 + CD49a + Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8 + CD49a + Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8 + CD49a – Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8 + Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases. • CD49a expression marks CD8 + Trm cells poised for IFN-γ production in human skin • IL-15 drives potent cytotoxic capacity in CD49a + Trm cells • IL-17 is preferentially produced by CD49a − CD8 + Trm cells in the skin • CD49a + versus CD49 - Trm cell functional dichotomy is preserved in vitiligo and psoriasis Tissue-resident memory T (Trm) cells provide localized adaptive immunity in peripheral tissues. Cheuk et al. identify cytotoxic CD49a + CD8 + Trm cells and IL-17-producing CD49a − CD8 + Trm cells in healthy human skin. The functional dichotomy of pathogenic Trm cells based on CD49a expression is preserved in focal skin diseases vitiligo and psoriasis. Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+Trm cells produced interferon-γ, whereas CD8+CD49a-Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a-Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases. Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon- gamma , whereas CD8+CD49a- Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a- Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases. Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8 Trm cells on a compartmental and functional basis. In human skin epithelia, CD8 CD49a Trm cells produced interferon-γ, whereas CD8 CD49a Trm cells produced interleukin-17 (IL-17). In addition, CD8 CD49a Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8 CD49a Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8 CD49a Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8 Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases. Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a- Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a- Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a- Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a- Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases. |
Author | Schlums, Heinrich Gallais Sérézal, Irène Michaëlsson, Jakob Blomqvist, Lennart Eidsmo, Liv Folkersen, Lasse Martini, Elisa Marquardt, Nicole Mjösberg, Jenny Introini, Andrea Ståhle, Mona Forkel, Marianne Gibbs, Anna Cheuk, Stanley Chiang, Samuel C. Bryceson, Yenan T. Tjernlund, Annelie Höög, Charlotte Ehrström, Marcus Detlofsson, Ebba |
AuthorAffiliation | 8 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen 5021, Norway 1 Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden 3 Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden 5 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby 2800, Denmark 6 Unit for Endocrinology and Diabetes, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden 2 Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden 4 Unit for Inflammation, Gastroenterology and Rheumatology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden 7 Department of Reconstructive Plastic Surgery, Karolinska University Hospital Solna, Stockholm 171 76, Sweden |
AuthorAffiliation_xml | – name: 1 Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden – name: 6 Unit for Endocrinology and Diabetes, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden – name: 3 Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden – name: 7 Department of Reconstructive Plastic Surgery, Karolinska University Hospital Solna, Stockholm 171 76, Sweden – name: 2 Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden – name: 5 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby 2800, Denmark – name: 8 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen 5021, Norway – name: 4 Unit for Inflammation, Gastroenterology and Rheumatology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden |
Author_xml | – sequence: 1 givenname: Stanley surname: Cheuk fullname: Cheuk, Stanley organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 2 givenname: Heinrich surname: Schlums fullname: Schlums, Heinrich organization: Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 3 givenname: Irène surname: Gallais Sérézal fullname: Gallais Sérézal, Irène organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 4 givenname: Elisa surname: Martini fullname: Martini, Elisa organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 5 givenname: Samuel C. surname: Chiang fullname: Chiang, Samuel C. organization: Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 6 givenname: Nicole surname: Marquardt fullname: Marquardt, Nicole organization: Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden – sequence: 7 givenname: Anna surname: Gibbs fullname: Gibbs, Anna organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 8 givenname: Ebba surname: Detlofsson fullname: Detlofsson, Ebba organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 9 givenname: Andrea surname: Introini fullname: Introini, Andrea organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 10 givenname: Marianne surname: Forkel fullname: Forkel, Marianne organization: Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden – sequence: 11 givenname: Charlotte surname: Höög fullname: Höög, Charlotte organization: Unit for Inflammation, Gastroenterology and Rheumatology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 12 givenname: Annelie surname: Tjernlund fullname: Tjernlund, Annelie organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 13 givenname: Jakob surname: Michaëlsson fullname: Michaëlsson, Jakob organization: Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden – sequence: 14 givenname: Lasse surname: Folkersen fullname: Folkersen, Lasse organization: Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby 2800, Denmark – sequence: 15 givenname: Jenny surname: Mjösberg fullname: Mjösberg, Jenny organization: Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden – sequence: 16 givenname: Lennart surname: Blomqvist fullname: Blomqvist, Lennart organization: Unit for Endocrinology and Diabetes, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 17 givenname: Marcus surname: Ehrström fullname: Ehrström, Marcus organization: Department of Reconstructive Plastic Surgery, Karolinska University Hospital Solna, Stockholm 171 76, Sweden – sequence: 18 givenname: Mona surname: Ståhle fullname: Ståhle, Mona organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 19 givenname: Yenan T. surname: Bryceson fullname: Bryceson, Yenan T. email: yenan.bryceson@ki.se organization: Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden – sequence: 20 givenname: Liv surname: Eidsmo fullname: Eidsmo, Liv email: liv.eidsmo@ki.se organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28214226$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:135255884$$DView record from Swedish Publication Index |
BookMark | eNqNUl1v1DAQtFAR_YB_gJAlXpBQgp04dswDEsq1FKkSCI5ny3E24GtiX-2ktP8eR3dUtA_Ak1femdHu7ByjA-cdIPSckpwSyt9scjuOs7N5QajICc0JkY_QESVSZIzW5GCpBcsEp-UhOo5xQwhllSRP0GFRF5QVBT9CulkxqfHpzTZAjNY7vILeOoh4bWOcIfsC0XbgJtys6td4jRsYhog_exuhw70PuLmd_ORvrMFnszPTImEdPp9H7fDXS-ueose9HiI8278n6NvZ6bo5zy4-ffjYvL_ITMWLKWt52wlWmrKlmpNe1KIA1rakpVDUjAGXEmoBfUcrWhjdQysNGM4Z0a3uSFWeoGynG3_Cdm7VNthRh1vltVX7r8tUgWKyljVN-Hc7fOqM0Jm0Y9DDPdr9jrM_1Hd_raqyTJ7KJPBqLxD81QxxUqONJtmjHfg5KloLUZfJffYf0LQe57xa1nj5ALrxc3DJuUWQkbKStEyoF38Ofzf178MmANsBTPAxBujvIJSoJT9qo3b5UUt-FKEq5SfR3j6gGTvp5ajJAjv8i7x3FNKZry0EFY0FZ6CzAcykOm__LvALLRrjYg |
CitedBy_id | crossref_primary_10_1016_j_jid_2022_11_022 crossref_primary_10_1101_cshperspect_a037960 crossref_primary_10_1038_s41385_021_00406_6 crossref_primary_10_1016_j_autrev_2021_102760 crossref_primary_10_1111_pcmr_12949 crossref_primary_10_3389_froh_2024_1408255 crossref_primary_10_1111_exd_13677 crossref_primary_10_3389_fimmu_2020_615402 crossref_primary_10_1016_j_xcrm_2020_100127 crossref_primary_10_1007_s12016_024_08982_8 crossref_primary_10_1136_annrheumdis_2019_215349 crossref_primary_10_3389_fonc_2021_819505 crossref_primary_10_1016_j_jid_2019_11_013 crossref_primary_10_1126_sciimmunol_aas9673 crossref_primary_10_1016_j_xjidi_2022_100155 crossref_primary_10_3389_fimmu_2023_1286344 crossref_primary_10_1038_s41385_019_0186_9 crossref_primary_10_1080_17512433_2023_2285011 crossref_primary_10_3390_ijms19051379 crossref_primary_10_1146_annurev_immunol_101220_032117 crossref_primary_10_1016_j_jid_2018_02_030 crossref_primary_10_3389_fimmu_2024_1291556 crossref_primary_10_1136_annrheumdis_2019_215356 crossref_primary_10_3390_ijms21103552 crossref_primary_10_1016_j_jid_2021_01_030 crossref_primary_10_1038_s41590_020_0758_6 crossref_primary_10_1080_14728222_2023_2193329 crossref_primary_10_1172_JCI171797 crossref_primary_10_1016_j_immuni_2022_12_008 crossref_primary_10_1016_j_immuni_2022_12_007 crossref_primary_10_1016_j_autrev_2021_102868 crossref_primary_10_1111_1346_8138_15743 crossref_primary_10_1126_sciadv_abo5871 crossref_primary_10_3389_fimmu_2022_931761 crossref_primary_10_3389_fimmu_2020_624144 crossref_primary_10_1016_j_jid_2020_06_013 crossref_primary_10_1016_j_isci_2020_101954 crossref_primary_10_1080_2162402X_2025_2455176 crossref_primary_10_1126_scitranslmed_abl6058 crossref_primary_10_1111_exd_14982 crossref_primary_10_1136_jitc_2021_002642 crossref_primary_10_1136_ard_2023_224092 crossref_primary_10_1038_s41392_023_01471_y crossref_primary_10_1111_exd_14500 crossref_primary_10_1016_j_immuni_2023_06_025 crossref_primary_10_1016_j_phrs_2020_104876 crossref_primary_10_2174_0118715206321574240821112747 crossref_primary_10_3389_fimmu_2021_654190 crossref_primary_10_1097_BS9_0000000000000194 crossref_primary_10_1016_j_intimp_2021_108402 crossref_primary_10_1002_hep_30594 crossref_primary_10_1038_s41584_018_0044_2 crossref_primary_10_1038_s41467_023_38946_z crossref_primary_10_1016_j_jid_2018_10_032 crossref_primary_10_1111_all_15764 crossref_primary_10_3389_fimmu_2022_949299 crossref_primary_10_1038_s41590_018_0114_2 crossref_primary_10_1038_s41587_020_0601_5 crossref_primary_10_3389_fimmu_2020_595707 crossref_primary_10_1111_exd_14732 crossref_primary_10_1016_j_jid_2021_01_005 crossref_primary_10_3389_fimmu_2019_00400 crossref_primary_10_1056_NEJMe2211886 crossref_primary_10_1111_exd_13879 crossref_primary_10_1016_j_jaci_2020_11_028 crossref_primary_10_12688_f1000research_25234_1 crossref_primary_10_1101_cshperspect_a037762 crossref_primary_10_1111_sji_13332 crossref_primary_10_1136_bmjopen_2021_049822 crossref_primary_10_1053_j_gastro_2021_06_025 crossref_primary_10_3389_fimmu_2020_623072 crossref_primary_10_1007_s00281_022_00970_4 crossref_primary_10_1126_science_adi8885 crossref_primary_10_3390_ijms25116086 crossref_primary_10_1111_sji_13326 crossref_primary_10_1136_jitc_2023_008739 crossref_primary_10_1007_s00011_020_01320_6 crossref_primary_10_1016_j_immuni_2023_05_003 crossref_primary_10_3390_antiox11010047 crossref_primary_10_1016_j_xjidi_2022_100116 crossref_primary_10_1172_JCI185785 crossref_primary_10_1111_exd_14549 crossref_primary_10_1126_sciimmunol_abe2634 crossref_primary_10_1146_annurev_immunol_101320_020220 crossref_primary_10_3389_fimmu_2018_02104 crossref_primary_10_1016_j_immuni_2018_02_010 crossref_primary_10_1097_COH_0000000000000523 crossref_primary_10_1111_imr_12650 crossref_primary_10_3390_jcm10173822 crossref_primary_10_1016_j_jaci_2023_01_016 crossref_primary_10_1038_s41577_019_0191_y crossref_primary_10_3389_fgene_2021_627092 crossref_primary_10_1111_jdv_15970 crossref_primary_10_1002_ctm2_70218 crossref_primary_10_1038_s41467_024_53104_9 crossref_primary_10_3390_ijms21228565 crossref_primary_10_1080_14760584_2021_1881485 crossref_primary_10_3389_fimmu_2022_962167 crossref_primary_10_1038_s41385_021_00382_x crossref_primary_10_3389_fimmu_2023_1081256 crossref_primary_10_1111_pcmr_12803 crossref_primary_10_1038_s42003_020_01551_7 crossref_primary_10_1111_imr_12644 crossref_primary_10_1126_scitranslmed_abb3107 crossref_primary_10_1038_s41596_020_00435_8 crossref_primary_10_3390_pathogens8030147 crossref_primary_10_1111_imr_12762 crossref_primary_10_3389_fendo_2020_00569 crossref_primary_10_1002_path_6073 crossref_primary_10_1016_j_trim_2024_102104 crossref_primary_10_1007_s00403_020_02117_7 crossref_primary_10_1016_j_smim_2020_101415 crossref_primary_10_1038_s41392_024_02017_6 crossref_primary_10_1016_j_berh_2021_101694 crossref_primary_10_1016_j_jid_2019_04_020 crossref_primary_10_3389_fimmu_2020_00775 crossref_primary_10_3389_fimmu_2020_00896 crossref_primary_10_3390_v14020329 crossref_primary_10_3389_fimmu_2018_01390 crossref_primary_10_12677_ACM_2024_142525 crossref_primary_10_21518_2079_701X_2021_21_2_94_101 crossref_primary_10_3389_fmed_2023_1191057 crossref_primary_10_1073_pnas_2016580118 crossref_primary_10_1038_s41577_019_0162_3 crossref_primary_10_1136_jitc_2021_003472 crossref_primary_10_1016_j_jid_2019_05_016 crossref_primary_10_3389_fimmu_2020_00242 crossref_primary_10_1016_j_isci_2019_10_005 crossref_primary_10_1146_annurev_immunol_042617_053214 crossref_primary_10_1007_s00401_021_02299_y crossref_primary_10_4049_jimmunol_2300399 crossref_primary_10_1016_j_cyto_2020_155258 crossref_primary_10_1126_sciimmunol_aaz6894 crossref_primary_10_1371_journal_ppat_1010611 crossref_primary_10_1111_sji_12953 crossref_primary_10_4049_jimmunol_2300153 crossref_primary_10_1016_j_jid_2023_11_015 crossref_primary_10_1172_jci_insight_142205 crossref_primary_10_3390_cells10020409 crossref_primary_10_1080_2162402X_2018_1463946 crossref_primary_10_1089_vim_2017_0016 crossref_primary_10_3390_ijms21197228 crossref_primary_10_1155_2023_8466545 crossref_primary_10_1002_ijc_34940 crossref_primary_10_1016_j_molimm_2019_11_011 crossref_primary_10_1084_jem_20190249 crossref_primary_10_1016_S0151_9638_20_31082_6 crossref_primary_10_3389_fimmu_2020_590558 crossref_primary_10_1007_s12016_017_8622_7 crossref_primary_10_1016_j_immuni_2024_06_017 crossref_primary_10_1038_s41598_017_07513_0 crossref_primary_10_3389_fimmu_2018_01214 crossref_primary_10_23203_JKSP_2024_21_1_1 crossref_primary_10_1073_pnas_2323052121 crossref_primary_10_3390_biom14050548 crossref_primary_10_1016_j_celrep_2025_115247 crossref_primary_10_1016_j_nbd_2023_106308 crossref_primary_10_3389_fimmu_2025_1468665 crossref_primary_10_1016_j_immuni_2024_11_007 crossref_primary_10_1111_cei_13413 crossref_primary_10_3389_fimmu_2019_01582 crossref_primary_10_1038_s41467_024_52990_3 crossref_primary_10_1038_s41467_021_24734_0 crossref_primary_10_1038_s41467_024_51807_7 crossref_primary_10_3390_vaccines12040419 crossref_primary_10_1002_jvc2_104 crossref_primary_10_1016_j_jaci_2018_11_048 crossref_primary_10_1016_j_celrep_2023_112514 crossref_primary_10_1016_j_jhepr_2025_101381 crossref_primary_10_1111_jdv_20311 crossref_primary_10_1016_j_oraloncology_2023_106570 crossref_primary_10_3389_fimmu_2025_1518339 crossref_primary_10_3233_CBM_230036 crossref_primary_10_1016_j_jhepr_2023_100812 crossref_primary_10_1038_s41590_021_00949_7 crossref_primary_10_2340_actadv_v101_545 crossref_primary_10_1038_s41416_023_02202_4 crossref_primary_10_3389_fcell_2020_00402 crossref_primary_10_3389_fimmu_2022_1039194 crossref_primary_10_1038_s41586_021_04221_8 crossref_primary_10_3389_fimmu_2018_01304 crossref_primary_10_1016_j_jaci_2023_11_017 crossref_primary_10_3389_fimmu_2019_01764 crossref_primary_10_3389_fimmu_2021_652191 crossref_primary_10_1158_2326_6066_CIR_20_0427 crossref_primary_10_1016_j_coi_2020_01_001 crossref_primary_10_1093_cei_uxab002 crossref_primary_10_1002_eji_201970107 crossref_primary_10_1111_all_15819 crossref_primary_10_1146_annurev_immunol_083122_043836 crossref_primary_10_1038_s41467_018_07053_9 crossref_primary_10_3390_vaccines9010024 crossref_primary_10_5009_gnl240366 crossref_primary_10_3389_fimmu_2022_866703 crossref_primary_10_1001_jamadermatol_2024_5737 crossref_primary_10_3389_fimmu_2021_728669 crossref_primary_10_1002_cti2_1334 crossref_primary_10_1007_s12016_020_08793_7 crossref_primary_10_1016_j_clim_2022_109183 crossref_primary_10_1038_s41598_017_07975_2 crossref_primary_10_1126_sciimmunol_abb4432 crossref_primary_10_1161_ATVBAHA_123_320511 crossref_primary_10_23736_S2784_8671_23_07583_7 crossref_primary_10_3389_fimmu_2018_01770 crossref_primary_10_1158_2326_6066_CIR_19_0855 crossref_primary_10_1146_annurev_immunol_093019_112809 crossref_primary_10_3390_pharmaceutics13071044 crossref_primary_10_3389_fimmu_2022_884148 crossref_primary_10_1016_j_celrep_2018_09_006 crossref_primary_10_1177_12034754241227623 crossref_primary_10_1016_j_jid_2020_07_011 crossref_primary_10_1111_imr_13212 crossref_primary_10_1016_j_reval_2020_10_003 crossref_primary_10_1111_imr_13213 crossref_primary_10_3390_vaccines12091022 crossref_primary_10_1111_imr_13210 crossref_primary_10_1016_j_jaci_2024_05_008 crossref_primary_10_1016_j_crimmu_2022_08_001 crossref_primary_10_3390_ijms26072858 crossref_primary_10_1038_s41598_024_67494_9 crossref_primary_10_1089_vim_2018_0084 crossref_primary_10_1146_annurev_immunol_100919_023531 crossref_primary_10_1038_mi_2017_94 crossref_primary_10_1016_j_celrep_2021_109902 crossref_primary_10_1016_j_canlet_2023_216485 crossref_primary_10_1016_j_jid_2021_09_015 crossref_primary_10_1111_imr_13201 crossref_primary_10_3389_fimmu_2021_624517 crossref_primary_10_3390_ijms222312933 crossref_primary_10_1016_j_jid_2023_08_006 crossref_primary_10_3389_fimmu_2023_1130009 crossref_primary_10_3390_cells10081882 crossref_primary_10_4049_jimmunol_1900027 crossref_primary_10_1016_j_jaad_2022_11_005 crossref_primary_10_1111_imr_13036 crossref_primary_10_3390_ijerph182111251 crossref_primary_10_7554_eLife_68662 crossref_primary_10_1016_j_cellimm_2022_104502 crossref_primary_10_3390_ijms21176144 crossref_primary_10_4049_jimmunol_2400279 crossref_primary_10_1111_1346_8138_17011 crossref_primary_10_1038_s41467_019_11049_4 crossref_primary_10_3389_fimmu_2018_02707 crossref_primary_10_3389_fimmu_2019_02003 crossref_primary_10_3389_fimmu_2018_02827 crossref_primary_10_1136_jitc_2024_009440 crossref_primary_10_1002_cti2_1140 crossref_primary_10_1038_icb_2017_32 crossref_primary_10_3389_fimmu_2021_592031 crossref_primary_10_3389_fimmu_2022_1038744 crossref_primary_10_3389_fimmu_2021_613056 crossref_primary_10_1016_j_celrep_2019_11_056 crossref_primary_10_3389_fmolb_2022_965730 crossref_primary_10_1155_2023_4711236 crossref_primary_10_3390_ijms22010232 crossref_primary_10_1016_j_coviro_2020_09_006 crossref_primary_10_3389_fimmu_2020_02125 crossref_primary_10_3390_ijms21051690 crossref_primary_10_1016_j_it_2019_01_002 crossref_primary_10_1016_j_celrep_2017_08_078 crossref_primary_10_1084_jem_20210923 crossref_primary_10_1007_s10238_022_00855_8 crossref_primary_10_1016_j_molmed_2024_04_009 crossref_primary_10_1038_s41467_023_41364_w crossref_primary_10_1101_cshperspect_a038117 crossref_primary_10_3892_etm_2022_11124 crossref_primary_10_1016_j_molimm_2020_05_016 crossref_primary_10_1002_eji_202049062 crossref_primary_10_1038_s41467_021_21413_y crossref_primary_10_1002_eji_202149608 crossref_primary_10_1038_s41385_021_00456_w crossref_primary_10_3389_fimmu_2021_616309 crossref_primary_10_3389_fimmu_2018_01751 crossref_primary_10_3389_fimmu_2018_00300 crossref_primary_10_3390_ijms25084409 crossref_primary_10_3389_fimmu_2024_1374581 crossref_primary_10_3390_ijms232112849 crossref_primary_10_1007_s40257_022_00752_6 crossref_primary_10_1016_j_jid_2020_12_028 crossref_primary_10_3389_fimmu_2018_01829 crossref_primary_10_1016_j_coi_2024_102499 crossref_primary_10_1002_med_21754 crossref_primary_10_1016_j_banm_2024_11_026 crossref_primary_10_1007_s12016_021_08868_z crossref_primary_10_1016_j_imlet_2022_02_009 crossref_primary_10_1016_j_cytogfr_2018_08_001 crossref_primary_10_1093_infdis_jix661 crossref_primary_10_3389_fimmu_2019_01247 crossref_primary_10_1038_s41467_019_12319_x crossref_primary_10_1038_s41590_023_01710_y crossref_primary_10_1111_dom_13144 crossref_primary_10_4110_in_2021_21_e33 crossref_primary_10_1136_jitc_2020_001807 crossref_primary_10_7554_eLife_83981 crossref_primary_10_3390_ijerph19148345 crossref_primary_10_1038_s41423_019_0359_1 crossref_primary_10_1186_s41232_024_00334_5 crossref_primary_10_1038_s41423_019_0291_4 crossref_primary_10_3389_fimmu_2023_1340677 crossref_primary_10_3390_cimb47030191 crossref_primary_10_1016_j_xjidi_2021_100014 crossref_primary_10_3389_fimmu_2023_1199671 crossref_primary_10_3389_fmed_2018_00166 crossref_primary_10_1073_pnas_2403054121 crossref_primary_10_1038_s41590_019_0494_y crossref_primary_10_3390_ijms21020625 crossref_primary_10_4049_jimmunol_2400020 crossref_primary_10_1016_j_clim_2024_110242 crossref_primary_10_3389_fimmu_2022_967055 crossref_primary_10_1002_eji_202149759 crossref_primary_10_3389_fimmu_2018_00515 crossref_primary_10_3389_fimmu_2018_01722 crossref_primary_10_3389_fimmu_2018_01602 crossref_primary_10_2147_ITT_S439969 crossref_primary_10_3389_fimmu_2018_02810 crossref_primary_10_1097_ACI_0000000000000763 crossref_primary_10_1136_ard_2024_225942 crossref_primary_10_3390_biomedicines10071639 crossref_primary_10_1007_s00281_022_00932_w crossref_primary_10_1016_j_jaci_2020_05_009 crossref_primary_10_1080_08820139_2024_2302823 crossref_primary_10_1126_scitranslmed_abb7028 crossref_primary_10_3389_fimmu_2022_1048758 crossref_primary_10_1016_j_cellimm_2020_104099 crossref_primary_10_1002_art_41652 crossref_primary_10_1016_j_freeradbiomed_2019_05_011 crossref_primary_10_1097_DAD_0000000000002184 crossref_primary_10_2147_ITT_S259126 crossref_primary_10_1038_s41590_024_01819_8 crossref_primary_10_1126_scitranslmed_adc9778 crossref_primary_10_12677_acm_2024_1441321 crossref_primary_10_1016_j_jaci_2018_08_048 crossref_primary_10_1016_j_pt_2023_07_005 crossref_primary_10_1016_j_chemosphere_2021_133496 crossref_primary_10_1126_sciimmunol_add8454 crossref_primary_10_1002_mco2_70053 crossref_primary_10_1016_j_it_2022_02_007 crossref_primary_10_1038_s41423_018_0192_y crossref_primary_10_1158_2326_6066_CIR_18_0757 crossref_primary_10_1164_rccm_202006_2403OC crossref_primary_10_1126_scitranslmed_aam7710 crossref_primary_10_1016_j_immuni_2018_01_007 crossref_primary_10_1007_s00401_024_02725_x crossref_primary_10_1007_s12016_025_09039_0 crossref_primary_10_1016_j_jid_2019_09_027 crossref_primary_10_1038_s41590_019_0404_3 crossref_primary_10_1111_1346_8138_16680 crossref_primary_10_1111_cei_13189 crossref_primary_10_3389_fimmu_2020_624199 crossref_primary_10_1084_jem_20162115 crossref_primary_10_1101_cshperspect_a037796 crossref_primary_10_1016_j_xcrm_2021_100381 crossref_primary_10_1016_j_jid_2021_03_011 crossref_primary_10_1111_all_15104 crossref_primary_10_1016_j_jid_2024_01_007 crossref_primary_10_1038_s43018_021_00180_1 crossref_primary_10_3390_cells10050989 crossref_primary_10_1016_j_it_2019_06_002 crossref_primary_10_1016_j_coi_2017_08_002 crossref_primary_10_3389_fimmu_2021_636118 crossref_primary_10_1016_j_it_2022_10_001 crossref_primary_10_1038_s41423_020_00565_9 crossref_primary_10_1097_CM9_0000000000002083 crossref_primary_10_1038_s41590_024_01918_6 crossref_primary_10_1111_cei_13183 crossref_primary_10_3389_fimmu_2017_01941 crossref_primary_10_3389_fimmu_2023_1303724 crossref_primary_10_3390_cells10010164 crossref_primary_10_1038_s41467_019_12464_3 crossref_primary_10_1016_j_jid_2019_09_014 crossref_primary_10_1016_j_biomaterials_2025_123120 crossref_primary_10_4049_jimmunol_1900767 crossref_primary_10_1038_s41598_022_08585_3 crossref_primary_10_3390_cancers15133362 crossref_primary_10_1016_j_jaut_2022_102950 crossref_primary_10_1016_j_jaut_2021_102634 crossref_primary_10_2336_nishinihonhifu_83_177 crossref_primary_10_3389_fimmu_2020_618897 crossref_primary_10_1016_j_jconrel_2017_10_026 crossref_primary_10_3389_fgene_2022_988703 crossref_primary_10_1002_eji_202170126 crossref_primary_10_1016_j_it_2021_08_002 crossref_primary_10_1038_s41385_021_00473_9 crossref_primary_10_1126_sciimmunol_aav5581 crossref_primary_10_3389_fimmu_2020_584521 crossref_primary_10_3389_fimmu_2023_1205984 crossref_primary_10_3389_fmed_2022_908047 crossref_primary_10_1111_pcmr_13094 crossref_primary_10_1111_aji_13101 crossref_primary_10_5021_ad_24_038 crossref_primary_10_1093_bjd_ljad303 crossref_primary_10_2139_ssrn_3155546 crossref_primary_10_1016_j_jid_2020_02_024 crossref_primary_10_1007_s12026_024_09545_x crossref_primary_10_1007_s10875_018_0519_6 crossref_primary_10_1111_bjd_17748 crossref_primary_10_1016_j_celrep_2020_108085 crossref_primary_10_1002_mco2_70132 crossref_primary_10_3390_ijms221910661 crossref_primary_10_5021_ad_23_065 crossref_primary_10_1016_j_jaci_2017_07_011 crossref_primary_10_1097_TP_0000000000004000 crossref_primary_10_1001_jamadermatol_2021_3492 crossref_primary_10_1111_bjd_20963 crossref_primary_10_1172_jci_insight_123568 crossref_primary_10_3389_fimmu_2022_801579 crossref_primary_10_1016_j_jdermsci_2022_02_008 crossref_primary_10_1093_oxfimm_iqae006 crossref_primary_10_3389_fimmu_2020_579022 crossref_primary_10_1007_s00011_022_01677_w crossref_primary_10_1007_s00281_019_00742_7 crossref_primary_10_1016_j_jid_2020_04_027 crossref_primary_10_3390_cells10092215 crossref_primary_10_1007_s00281_019_00766_z crossref_primary_10_1080_08830185_2021_1985116 crossref_primary_10_1093_discim_kyad024 crossref_primary_10_3389_fmed_2024_1346757 crossref_primary_10_1038_s41467_020_18513_6 crossref_primary_10_1097_TP_0000000000003169 crossref_primary_10_3389_fimmu_2021_693055 crossref_primary_10_1016_j_jdermsci_2019_06_001 crossref_primary_10_1038_s41392_024_02050_5 crossref_primary_10_3390_ijms24021564 crossref_primary_10_1016_j_jdermsci_2019_06_002 crossref_primary_10_1016_j_autrev_2018_03_014 crossref_primary_10_1002_art_41156 crossref_primary_10_3389_fimmu_2019_01198 crossref_primary_10_3390_biom13010020 crossref_primary_10_1038_s41584_025_01218_9 crossref_primary_10_4049_jimmunol_1701377 crossref_primary_10_1016_j_jid_2021_06_040 crossref_primary_10_3389_fimmu_2024_1405215 crossref_primary_10_1084_jem_20210417 crossref_primary_10_1097_CM9_0000000000003499 crossref_primary_10_1002_ski2_64 crossref_primary_10_1093_discim_kyad010 crossref_primary_10_1016_j_immuni_2017_12_003 crossref_primary_10_3389_fimmu_2024_1347767 crossref_primary_10_1111_imm_13843 crossref_primary_10_1136_jitc_2022_004592 crossref_primary_10_1038_s41467_019_11632_9 crossref_primary_10_1080_2162402X_2025_2457793 crossref_primary_10_1002_eji_202048627 crossref_primary_10_3389_fimmu_2024_1378359 crossref_primary_10_1002_path_5384 crossref_primary_10_1172_jci_insight_138970 crossref_primary_10_1016_j_crimmu_2023_100067 crossref_primary_10_1093_jleuko_qiae254 crossref_primary_10_3390_cells10092234 crossref_primary_10_1016_j_coi_2019_04_008 crossref_primary_10_1371_journal_ppat_1008036 crossref_primary_10_1038_s41590_017_0027_5 crossref_primary_10_3390_ijms22169004 crossref_primary_10_1016_j_jdermsci_2023_03_003 crossref_primary_10_3389_fimmu_2023_1125605 crossref_primary_10_1016_j_jid_2017_08_038 crossref_primary_10_3390_v16071019 crossref_primary_10_1016_j_cell_2019_08_008 crossref_primary_10_1002_eji_202048857 crossref_primary_10_1007_s13238_019_0647_7 crossref_primary_10_1038_s41467_024_52689_5 crossref_primary_10_1038_s41590_020_0711_8 crossref_primary_10_1084_jem_20192291 crossref_primary_10_1038_s41467_020_19002_6 crossref_primary_10_3389_fcell_2019_00068 crossref_primary_10_1080_2162402X_2018_1538440 |
Cites_doi | 10.1038/jid.2011.463 10.4049/jimmunol.1402256 10.1016/S0140-6736(14)61909-7 10.1126/scitranslmed.3007828 10.1038/ni.2525 10.1038/ni.2745 10.1038/nm.3860 10.1126/scitranslmed.3010641 10.1016/j.immuni.2013.08.019 10.1126/scitranslmed.3001107 10.4049/jimmunol.1302313 10.1016/j.immuni.2014.12.007 10.1038/nbt.2282 10.1038/jid.2009.32 10.1016/j.immuni.2004.06.020 10.1038/nm.3645 10.1073/pnas.1322292111 10.1182/blood-2010-08-303339 10.1126/science.1069639 10.1002/eji.200324785 10.12688/f1000research.6756.1 10.1038/nature14052 10.4049/jimmunol.176.7.4431 10.1038/ni.1718 10.1016/j.immuni.2015.11.004 10.1126/scitranslmed.aaa9122 10.1038/nri3919 10.1016/S0140-6736(08)60725-4 10.1016/S1074-7613(04)00021-4 10.1038/ni.2744 10.1126/scitranslmed.3010302 10.1038/nri.2015.3 10.1126/science.1225152 10.1126/scitranslmed.3007811 10.1038/jid.2014.261 10.1016/j.cell.2014.10.026 10.1038/nm.3962 10.1084/jem.20142101 10.1126/science.1254536 10.1371/journal.pone.0016245 10.4049/jimmunol.176.4.2105 10.1016/S0140-6736(14)60763-7 10.1126/science.1260144 10.1038/nature10851 10.1038/nri3646 10.1172/JCI72932 10.1182/blood-2012-07-442558 10.1038/nm.3883 10.1001/jamadermatol.2015.1520 10.1126/science.1254803 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited Feb 21, 2017 2017 The Authors 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Feb 21, 2017 – notice: 2017 The Authors 2017 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM ADTPV AOWAS D8T ZZAVC |
DOI | 10.1016/j.immuni.2017.01.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 300 |
ExternalDocumentID | oai_swepub_ki_se_498981 PMC5337619 4317436641 28214226 10_1016_j_immuni_2017_01_009 S1074761317300316 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ 0R~ 1RT 1~5 2WC 3V. 4.4 457 4G. 53G 5GY 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDW AAFTH AAIAV AAKRW AAUCE AAVLU AAXJY AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HCIFZ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A NCXOZ O-L O9- OK1 OVD P2P PQQKQ PROAC RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 WQ6 ZA5 .55 .GJ 29I 5VS AAEDT AAIKJ AALRI AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF HZ~ OHT OZT R2- UHS X7M Y6R ZGI CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 5PM ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c562t-b6bd743c3b1a60f7872e4bb0b1e2844e699e87efd1512cafeb9cec6640abad053 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Mon Aug 25 03:30:46 EDT 2025 Thu Aug 21 18:32:38 EDT 2025 Thu Jul 10 20:49:39 EDT 2025 Mon Jul 21 11:43:44 EDT 2025 Fri Jul 25 11:19:19 EDT 2025 Thu Apr 03 07:02:28 EDT 2025 Thu Apr 24 22:55:59 EDT 2025 Tue Jul 01 01:58:38 EDT 2025 Fri Feb 23 02:28:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | granzyme B perforin immunopathology CD49a tissue resident T cells psoriasis vitiligo IL-15 Skin cytotoxicity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-b6bd743c3b1a60f7872e4bb0b1e2844e699e87efd1512cafeb9cec6640abad053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Lead Contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761317300316 |
PMID | 28214226 |
PQID | 1874035913 |
PQPubID | 2031079 |
PageCount | 14 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_498981 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5337619 proquest_miscellaneous_1877836134 proquest_miscellaneous_1869966655 proquest_journals_1874035913 pubmed_primary_28214226 crossref_primary_10_1016_j_immuni_2017_01_009 crossref_citationtrail_10_1016_j_immuni_2017_01_009 elsevier_sciencedirect_doi_10_1016_j_immuni_2017_01_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-21 |
PublicationDateYYYYMMDD | 2017-02-21 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Cell Press |
References | Naik, Bouladoux, Linehan, Han, Harrison, Wilhelm, Conlan, Himmelfarb, Byrd, Deming (bib30) 2015; 520 Loser, Mehling, Apelt, Ständer, Andres, Reinecker, Eing, Skryabin, Varga, Schwarz, Beissert (bib24) 2004; 34 Watanabe, Gehad, Yang, Scott, Teague, Schlapbach, Elco, Huang, Matos, Kupper, Clark (bib47) 2015; 7 Ariotti, Hogenbirk, Dijkgraaf, Visser, Hoekstra, Song, Jacobs, Haanen, Schumacher (bib2) 2014; 346 Jiang, Clark, Liu, Wagers, Fuhlbrigge, Kupper (bib21) 2012; 483 Cheuk, Wikén, Blomqvist, Nylén, Talme, Ståhle, Eidsmo (bib5) 2014; 192 Craiglow, King (bib9) 2015; 151 Mueller, Mackay (bib28) 2016; 16 Ray, Franki, Pierce, Dimitrova, Koteliansky, Sprague, Doherty, de Fougerolles, Topham (bib36) 2004; 20 Mackay, Rahimpour, Ma, Collins, Stock, Hafon, Vega-Ramos, Lauzurica, Mueller, Stefanovic (bib25) 2013; 14 Naik, Bouladoux, Wilhelm, Molloy, Salcedo, Kastenmuller, Deming, Quinones, Koo, Conlan (bib29) 2012; 337 Purwar, Campbell, Murphy, Richards, Clark, Kupper (bib33) 2011; 6 Gaide, Emerson, Jiang, Gulati, Nizza, Desmarais, Robins, Krueger, Clark, Kupper (bib12) 2015; 21 Ramsköld, Luo, Wang, Li, Deng, Faridani, Daniels, Khrebtukova, Loring, Laurent (bib34) 2012; 30 Wakim, Gupta, Mintern, Villadangos (bib45) 2013; 14 van den Boorn, Konijnenberg, Dellemijn, van der Veen, Bos, Melief, Vyth-Dreese, Luiten (bib44) 2009; 129 Thome, Yudanin, Ohmura, Kubota, Grinshpun, Sathaliyawala, Kato, Lerner, Shen, Farber (bib43) 2014; 159 Adachi, Kobayashi, Sugihara, Yamada, Ikuta, Pittaluga, Saya, Amagai, Nagao (bib1) 2015; 21 Schlapbach, Gehad, Yang, Watanabe, Guenova, Teague, Campbell, Yawalkar, Kupper, Clark (bib40) 2014; 6 Belkaid, Segre (bib3) 2014; 346 Harden, Hamm, Gulati, Lowes, Krueger (bib15) 2015; 4 Clark, Chong, Mirchandani, Brinster, Yamanaka, Dowgiert, Kupper (bib8) 2006; 176 Xing, Dai, Jabbari, Cerise, Higgins, Gong, de Jong, Harel, DeStefano, Rothman (bib48) 2014; 20 Harris, Harris, Weninger, Wherry, Hunter, Turka (bib16) 2012; 132 Skon, Lee, Anderson, Masopust, Hogquist, Jameson (bib41) 2013; 14 Gebhardt, Wakim, Eidsmo, Reading, Heath, Carbone (bib13) 2009; 10 Jameson, Ugarte, Chen, Yachi, Fuchs, Boismenu, Havran (bib20) 2002; 296 Schenkel, Masopust (bib38) 2014; 41 Boehncke, Schön (bib4) 2015; 386 Hondowicz, An, Schenkel, Kim, Steach, Krishnamurty, Keitany, Garza, Fraser, Moon (bib17) 2016; 44 Ezzedine, Eleftheriadou, Whitton, van Geel (bib11) 2015; 386 Glennie, Yeramilli, Beiting, Volk, Weaver, Scott (bib14) 2015; 212 Hueber, Patel, Dryja, Wright, Koroleva, Bruin, Antoni, Draelos, Gold, Durez (bib18) 2010; 2 Zaid, Mackay, Rahimpour, Braun, Veldhoen, Carbone, Manton, Heath, Mueller (bib49) 2014; 111 Chiang, Theorell, Entesarian, Meeths, Mastafa, Al-Herz, Frisk, Gilmour, Ifversen, Langenskiöld (bib6) 2013; 121 Mackay, Braun, Macleod, Collins, Tebartz, Bedoui, Carbone, Gebhardt (bib26) 2015; 194 Clark (bib7) 2015; 7 Kirsch, Watanabe, O’Malley, Williamson, Scott, Elco, Teague, Gehad, Lowry, LeBoeuf (bib22) 2015; 7 Rashighi, Agarwal, Richmond, Harris, Dresser, Su, Zhou, Deng, Hunter, Luster, Harris (bib35) 2014; 6 Jabri, Abadie (bib19) 2015; 15 Sanchez Rodriguez, Pauli, Neuhaus, Yu, Arron, Harris, Yang, Anthony, Sverdrup, Krow-Lucal (bib37) 2014; 124 Schenkel, Fraser, Beura, Pauken, Vezys, Masopust (bib39) 2014; 346 Zhang, Bevan (bib50) 2013; 39 Wang, Collinge, Ramgolam, Ayalon, Fan, Pardi, Bender (bib46) 2006; 176 Park, Kupper (bib31) 2015; 21 Dusseaux, Martin, Serriari, Péguillet, Premel, Louis, Milder, Le Bourhis, Soudais, Treiner, Lantz (bib10) 2011; 117 Teunissen, Yeremenko, Baeten, Chielie, Spuls, de Rie, Lantz, Res (bib42) 2014; 134 Meresse, Chen, Ciszewski, Tretiakova, Bhagat, Krausz, Raulet, Lanier, Groh, Spies (bib27) 2004; 21 Leonardi, Kimball, Papp, Yeilding, Guzzo, Wang, Li, Dooley, Gordon (bib23) 2008; 371 Pasparakis, Haase, Nestle (bib32) 2014; 14 Ray (10.1016/j.immuni.2017.01.009_bib36) 2004; 20 van den Boorn (10.1016/j.immuni.2017.01.009_bib44) 2009; 129 Skon (10.1016/j.immuni.2017.01.009_bib41) 2013; 14 Purwar (10.1016/j.immuni.2017.01.009_bib33) 2011; 6 Thome (10.1016/j.immuni.2017.01.009_bib43) 2014; 159 Sanchez Rodriguez (10.1016/j.immuni.2017.01.009_bib37) 2014; 124 Mackay (10.1016/j.immuni.2017.01.009_bib26) 2015; 194 Meresse (10.1016/j.immuni.2017.01.009_bib27) 2004; 21 Chiang (10.1016/j.immuni.2017.01.009_bib6) 2013; 121 Kirsch (10.1016/j.immuni.2017.01.009_bib22) 2015; 7 Watanabe (10.1016/j.immuni.2017.01.009_bib47) 2015; 7 Gaide (10.1016/j.immuni.2017.01.009_bib12) 2015; 21 Schlapbach (10.1016/j.immuni.2017.01.009_bib40) 2014; 6 Zaid (10.1016/j.immuni.2017.01.009_bib49) 2014; 111 Naik (10.1016/j.immuni.2017.01.009_bib30) 2015; 520 Schenkel (10.1016/j.immuni.2017.01.009_bib38) 2014; 41 Belkaid (10.1016/j.immuni.2017.01.009_bib3) 2014; 346 Clark (10.1016/j.immuni.2017.01.009_bib8) 2006; 176 Glennie (10.1016/j.immuni.2017.01.009_bib14) 2015; 212 Harden (10.1016/j.immuni.2017.01.009_bib15) 2015; 4 Xing (10.1016/j.immuni.2017.01.009_bib48) 2014; 20 Wakim (10.1016/j.immuni.2017.01.009_bib45) 2013; 14 Ariotti (10.1016/j.immuni.2017.01.009_bib2) 2014; 346 Park (10.1016/j.immuni.2017.01.009_bib31) 2015; 21 Zhang (10.1016/j.immuni.2017.01.009_bib50) 2013; 39 Adachi (10.1016/j.immuni.2017.01.009_bib1) 2015; 21 Dusseaux (10.1016/j.immuni.2017.01.009_bib10) 2011; 117 Teunissen (10.1016/j.immuni.2017.01.009_bib42) 2014; 134 Schenkel (10.1016/j.immuni.2017.01.009_bib39) 2014; 346 Rashighi (10.1016/j.immuni.2017.01.009_bib35) 2014; 6 Hueber (10.1016/j.immuni.2017.01.009_bib18) 2010; 2 Ramsköld (10.1016/j.immuni.2017.01.009_bib34) 2012; 30 Harris (10.1016/j.immuni.2017.01.009_bib16) 2012; 132 Wang (10.1016/j.immuni.2017.01.009_bib46) 2006; 176 Ezzedine (10.1016/j.immuni.2017.01.009_bib11) 2015; 386 Cheuk (10.1016/j.immuni.2017.01.009_bib5) 2014; 192 Mackay (10.1016/j.immuni.2017.01.009_bib25) 2013; 14 Clark (10.1016/j.immuni.2017.01.009_bib7) 2015; 7 Jameson (10.1016/j.immuni.2017.01.009_bib20) 2002; 296 Mueller (10.1016/j.immuni.2017.01.009_bib28) 2016; 16 Jabri (10.1016/j.immuni.2017.01.009_bib19) 2015; 15 Boehncke (10.1016/j.immuni.2017.01.009_bib4) 2015; 386 Pasparakis (10.1016/j.immuni.2017.01.009_bib32) 2014; 14 Hondowicz (10.1016/j.immuni.2017.01.009_bib17) 2016; 44 Jiang (10.1016/j.immuni.2017.01.009_bib21) 2012; 483 Craiglow (10.1016/j.immuni.2017.01.009_bib9) 2015; 151 Naik (10.1016/j.immuni.2017.01.009_bib29) 2012; 337 Gebhardt (10.1016/j.immuni.2017.01.009_bib13) 2009; 10 Leonardi (10.1016/j.immuni.2017.01.009_bib23) 2008; 371 Loser (10.1016/j.immuni.2017.01.009_bib24) 2004; 34 24162776 - Nat Immunol. 2013 Dec;14(12):1294-301 26446955 - Sci Transl Med. 2015 Oct 7;7(308):308ra158 21298112 - PLoS One. 2011 Jan 26;6(1):e16245 19305395 - Nat Immunol. 2009 May;10(5):524-30 24706879 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5307-12 20926833 - Sci Transl Med. 2010 Oct 6;2(52):52ra72 26216123 - J Exp Med. 2015 Aug 24;212(9):1405-14 11976459 - Science. 2002 Apr 26;296(5568):747-9 25539086 - Nature. 2015 Apr 2;520(7545):104-8 24162775 - Nat Immunol. 2013 Dec;14(12):1285-93 26025581 - Lancet. 2015 Sep 5;386(9997):983-94 16547281 - J Immunol. 2006 Apr 1;176(7):4431-9 22388819 - Nature. 2012 Feb 29;483(7388):227-31 18486739 - Lancet. 2008 May 17;371(9625):1665-74 24076049 - Immunity. 2013 Oct 17;39(4):687-96 25624457 - J Immunol. 2015 Mar 1;194(5):2059-63 22820318 - Nat Biotechnol. 2012 Aug;30(8):777-82 25414304 - Science. 2014 Nov 21;346(6212):954-9 23354485 - Nat Immunol. 2013 Mar;14(3):238-45 19242513 - J Invest Dermatol. 2009 Sep;129(9):2220-32 15214050 - Eur J Immunol. 2004 Jul;34(7):2022-31 25170049 - Science. 2014 Oct 3;346(6205):98-101 26688350 - Nat Rev Immunol. 2016 Feb;16(2):79-89 14975239 - Immunity. 2004 Feb;20(2):167-79 21084709 - Blood. 2011 Jan 27;117(4):1250-9 24523323 - Sci Transl Med. 2014 Feb 12;6(223):223ra23 15357947 - Immunity. 2004 Sep;21(3):357-66 22837383 - Science. 2012 Aug 31;337(6098):1115-9 25417158 - Cell. 2014 Nov 6;159(4):814-28 26121195 - Nat Med. 2015 Jul;21(7):688-97 25568072 - Sci Transl Med. 2015 Jan 7;7(269):269rv1 24431112 - Sci Transl Med. 2014 Jan 15;6(219):219ra8 16455966 - J Immunol. 2006 Feb 15;176(4):2105-13 24945094 - J Invest Dermatol. 2014 Dec;134(12):2898-907 25278612 - Science. 2014 Oct 3;346(6205):101-5 26594339 - F1000Res. 2015 Aug 03;4:460 25129481 - Nat Med. 2014 Sep;20(9):1043-9 26750312 - Immunity. 2016 Jan 19;44(1):155-66 24509084 - J Clin Invest. 2014 Mar;124(3):1027-36 25962122 - Nat Med. 2015 Jun;21(6):647-53 24722477 - Nat Rev Immunol. 2014 May;14(5):289-301 22297636 - J Invest Dermatol. 2012 Jul;132(7):1869-76 26479922 - Nat Med. 2015 Nov;21(11):1272-9 24610014 - J Immunol. 2014 Apr 1;192(7):3111-20 26107994 - JAMA Dermatol. 2015 Oct;151(10):1110-2 26567920 - Nat Rev Immunol. 2015 Dec;15(12 ):771-83 25526304 - Immunity. 2014 Dec 18;41(6):886-97 23287865 - Blood. 2013 Feb 21;121(8):1345-56 25787765 - Sci Transl Med. 2015 Mar 18;7(279):279ra39 25596811 - Lancet. 2015 Jul 4;386(9988):74-84 |
References_xml | – volume: 151 start-page: 1110 year: 2015 end-page: 1112 ident: bib9 article-title: Tofacitinib Citrate for the Treatment of Vitiligo: A Pathogenesis-Directed Therapy publication-title: JAMA Dermatol. – volume: 124 start-page: 1027 year: 2014 end-page: 1036 ident: bib37 article-title: Memory regulatory T cells reside in human skin publication-title: J. Clin. Invest. – volume: 7 start-page: 308ra158 year: 2015 ident: bib22 article-title: TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL publication-title: Sci. Transl. Med. – volume: 129 start-page: 2220 year: 2009 end-page: 2232 ident: bib44 article-title: Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients publication-title: J. Invest. Dermatol. – volume: 10 start-page: 524 year: 2009 end-page: 530 ident: bib13 article-title: Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus publication-title: Nat. Immunol. – volume: 296 start-page: 747 year: 2002 end-page: 749 ident: bib20 article-title: A role for skin gammadelta T cells in wound repair publication-title: Science – volume: 14 start-page: 289 year: 2014 end-page: 301 ident: bib32 article-title: Mechanisms regulating skin immunity and inflammation publication-title: Nat. Rev. Immunol. – volume: 159 start-page: 814 year: 2014 end-page: 828 ident: bib43 article-title: Spatial map of human T cell compartmentalization and maintenance over decades of life publication-title: Cell – volume: 134 start-page: 2898 year: 2014 end-page: 2907 ident: bib42 article-title: The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells publication-title: J. Invest. Dermatol. – volume: 21 start-page: 1272 year: 2015 end-page: 1279 ident: bib1 article-title: Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma publication-title: Nat. Med. – volume: 371 start-page: 1665 year: 2008 end-page: 1674 ident: bib23 article-title: Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1) publication-title: Lancet – volume: 346 start-page: 954 year: 2014 end-page: 959 ident: bib3 article-title: Dialogue between skin microbiota and immunity publication-title: Science – volume: 176 start-page: 4431 year: 2006 end-page: 4439 ident: bib8 article-title: The vast majority of CLA+ T cells are resident in normal skin publication-title: J. Immunol. – volume: 4 start-page: 460 year: 2015 ident: bib15 article-title: Deep Sequencing of the T-cell Receptor Repertoire Demonstrates Polyclonal T-cell Infiltrates in Psoriasis publication-title: F1000Res. – volume: 520 start-page: 104 year: 2015 end-page: 108 ident: bib30 article-title: Commensal-dendritic-cell interaction specifies a unique protective skin immune signature publication-title: Nature – volume: 14 start-page: 1294 year: 2013 end-page: 1301 ident: bib25 article-title: The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin publication-title: Nat. Immunol. – volume: 41 start-page: 886 year: 2014 end-page: 897 ident: bib38 article-title: Tissue-resident memory T cells publication-title: Immunity – volume: 7 start-page: 279ra39 year: 2015 ident: bib47 article-title: Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells publication-title: Sci. Transl. Med. – volume: 14 start-page: 1285 year: 2013 end-page: 1293 ident: bib41 article-title: Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells publication-title: Nat. Immunol. – volume: 121 start-page: 1345 year: 2013 end-page: 1356 ident: bib6 article-title: Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production publication-title: Blood – volume: 194 start-page: 2059 year: 2015 end-page: 2063 ident: bib26 article-title: Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention publication-title: J. Immunol. – volume: 34 start-page: 2022 year: 2004 end-page: 2031 ident: bib24 article-title: Enhanced contact hypersensitivity and antiviral immune responses in vivo by keratinocyte-targeted overexpression of IL-15 publication-title: Eur. J. Immunol. – volume: 39 start-page: 687 year: 2013 end-page: 696 ident: bib50 article-title: Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention publication-title: Immunity – volume: 386 start-page: 983 year: 2015 end-page: 994 ident: bib4 article-title: Psoriasis publication-title: Lancet – volume: 176 start-page: 2105 year: 2006 end-page: 2113 ident: bib46 article-title: LFA-1-dependent HuR nuclear export and cytokine mRNA stabilization in T cell activation publication-title: J. Immunol. – volume: 346 start-page: 98 year: 2014 end-page: 101 ident: bib39 article-title: T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses publication-title: Science – volume: 14 start-page: 238 year: 2013 end-page: 245 ident: bib45 article-title: Enhanced survival of lung tissue-resident memory CD8 publication-title: Nat. Immunol. – volume: 117 start-page: 1250 year: 2011 end-page: 1259 ident: bib10 article-title: Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells publication-title: Blood – volume: 7 start-page: 269rv1 year: 2015 ident: bib7 article-title: Resident memory T cells in human health and disease publication-title: Sci. Transl. Med. – volume: 44 start-page: 155 year: 2016 end-page: 166 ident: bib17 article-title: Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma publication-title: Immunity – volume: 192 start-page: 3111 year: 2014 end-page: 3120 ident: bib5 article-title: Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis publication-title: J. Immunol. – volume: 20 start-page: 1043 year: 2014 end-page: 1049 ident: bib48 article-title: Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition publication-title: Nat. Med. – volume: 21 start-page: 647 year: 2015 end-page: 653 ident: bib12 article-title: Common clonal origin of central and resident memory T cells following skin immunization publication-title: Nat. Med. – volume: 386 start-page: 74 year: 2015 end-page: 84 ident: bib11 article-title: Vitiligo publication-title: Lancet – volume: 111 start-page: 5307 year: 2014 end-page: 5312 ident: bib49 article-title: Persistence of skin-resident memory T cells within an epidermal niche publication-title: Proc. Natl. Acad. Sci. USA – volume: 346 start-page: 101 year: 2014 end-page: 105 ident: bib2 article-title: T cell memory. Skin-resident memory CD8 publication-title: Science – volume: 6 start-page: 219ra8 year: 2014 ident: bib40 article-title: Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity publication-title: Sci. Transl. Med. – volume: 6 start-page: e16245 year: 2011 ident: bib33 article-title: Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity publication-title: PLoS ONE – volume: 2 start-page: 52ra72 year: 2010 ident: bib18 article-title: Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis publication-title: Sci. Transl. Med. – volume: 16 start-page: 79 year: 2016 end-page: 89 ident: bib28 article-title: Tissue-resident memory T cells: local specialists in immune defence publication-title: Nat. Rev. Immunol. – volume: 132 start-page: 1869 year: 2012 end-page: 1876 ident: bib16 article-title: A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8 publication-title: J. Invest. Dermatol. – volume: 6 start-page: 223ra23 year: 2014 ident: bib35 article-title: CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo publication-title: Sci. Transl. Med. – volume: 20 start-page: 167 year: 2004 end-page: 179 ident: bib36 article-title: The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection publication-title: Immunity – volume: 21 start-page: 357 year: 2004 end-page: 366 ident: bib27 article-title: Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease publication-title: Immunity – volume: 212 start-page: 1405 year: 2015 end-page: 1414 ident: bib14 article-title: Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection publication-title: J. Exp. Med. – volume: 15 start-page: 771 year: 2015 end-page: 783 ident: bib19 article-title: IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction publication-title: Nat. Rev. Immunol. – volume: 21 start-page: 688 year: 2015 end-page: 697 ident: bib31 article-title: The emerging role of resident memory T cells in protective immunity and inflammatory disease publication-title: Nat. Med. – volume: 337 start-page: 1115 year: 2012 end-page: 1119 ident: bib29 article-title: Compartmentalized control of skin immunity by resident commensals publication-title: Science – volume: 30 start-page: 777 year: 2012 end-page: 782 ident: bib34 article-title: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells publication-title: Nat. Biotechnol. – volume: 483 start-page: 227 year: 2012 end-page: 231 ident: bib21 article-title: Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity publication-title: Nature – volume: 132 start-page: 1869 year: 2012 ident: 10.1016/j.immuni.2017.01.009_bib16 article-title: A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2011.463 – volume: 194 start-page: 2059 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib26 article-title: Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention publication-title: J. Immunol. doi: 10.4049/jimmunol.1402256 – volume: 386 start-page: 983 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib4 article-title: Psoriasis publication-title: Lancet doi: 10.1016/S0140-6736(14)61909-7 – volume: 6 start-page: 219ra8 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib40 article-title: Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007828 – volume: 14 start-page: 238 year: 2013 ident: 10.1016/j.immuni.2017.01.009_bib45 article-title: Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3 publication-title: Nat. Immunol. doi: 10.1038/ni.2525 – volume: 14 start-page: 1285 year: 2013 ident: 10.1016/j.immuni.2017.01.009_bib41 article-title: Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells publication-title: Nat. Immunol. doi: 10.1038/ni.2745 – volume: 21 start-page: 647 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib12 article-title: Common clonal origin of central and resident memory T cells following skin immunization publication-title: Nat. Med. doi: 10.1038/nm.3860 – volume: 7 start-page: 269rv1 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib7 article-title: Resident memory T cells in human health and disease publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3010641 – volume: 39 start-page: 687 year: 2013 ident: 10.1016/j.immuni.2017.01.009_bib50 article-title: Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention publication-title: Immunity doi: 10.1016/j.immuni.2013.08.019 – volume: 2 start-page: 52ra72 year: 2010 ident: 10.1016/j.immuni.2017.01.009_bib18 article-title: Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3001107 – volume: 192 start-page: 3111 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib5 article-title: Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis publication-title: J. Immunol. doi: 10.4049/jimmunol.1302313 – volume: 41 start-page: 886 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib38 article-title: Tissue-resident memory T cells publication-title: Immunity doi: 10.1016/j.immuni.2014.12.007 – volume: 30 start-page: 777 year: 2012 ident: 10.1016/j.immuni.2017.01.009_bib34 article-title: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2282 – volume: 129 start-page: 2220 year: 2009 ident: 10.1016/j.immuni.2017.01.009_bib44 article-title: Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2009.32 – volume: 21 start-page: 357 year: 2004 ident: 10.1016/j.immuni.2017.01.009_bib27 article-title: Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease publication-title: Immunity doi: 10.1016/j.immuni.2004.06.020 – volume: 20 start-page: 1043 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib48 article-title: Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition publication-title: Nat. Med. doi: 10.1038/nm.3645 – volume: 111 start-page: 5307 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib49 article-title: Persistence of skin-resident memory T cells within an epidermal niche publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1322292111 – volume: 117 start-page: 1250 year: 2011 ident: 10.1016/j.immuni.2017.01.009_bib10 article-title: Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells publication-title: Blood doi: 10.1182/blood-2010-08-303339 – volume: 296 start-page: 747 year: 2002 ident: 10.1016/j.immuni.2017.01.009_bib20 article-title: A role for skin gammadelta T cells in wound repair publication-title: Science doi: 10.1126/science.1069639 – volume: 34 start-page: 2022 year: 2004 ident: 10.1016/j.immuni.2017.01.009_bib24 article-title: Enhanced contact hypersensitivity and antiviral immune responses in vivo by keratinocyte-targeted overexpression of IL-15 publication-title: Eur. J. Immunol. doi: 10.1002/eji.200324785 – volume: 4 start-page: 460 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib15 article-title: Deep Sequencing of the T-cell Receptor Repertoire Demonstrates Polyclonal T-cell Infiltrates in Psoriasis publication-title: F1000Res. doi: 10.12688/f1000research.6756.1 – volume: 520 start-page: 104 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib30 article-title: Commensal-dendritic-cell interaction specifies a unique protective skin immune signature publication-title: Nature doi: 10.1038/nature14052 – volume: 176 start-page: 4431 year: 2006 ident: 10.1016/j.immuni.2017.01.009_bib8 article-title: The vast majority of CLA+ T cells are resident in normal skin publication-title: J. Immunol. doi: 10.4049/jimmunol.176.7.4431 – volume: 10 start-page: 524 year: 2009 ident: 10.1016/j.immuni.2017.01.009_bib13 article-title: Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus publication-title: Nat. Immunol. doi: 10.1038/ni.1718 – volume: 44 start-page: 155 year: 2016 ident: 10.1016/j.immuni.2017.01.009_bib17 article-title: Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma publication-title: Immunity doi: 10.1016/j.immuni.2015.11.004 – volume: 7 start-page: 308ra158 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib22 article-title: TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa9122 – volume: 15 start-page: 771 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib19 article-title: IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3919 – volume: 371 start-page: 1665 year: 2008 ident: 10.1016/j.immuni.2017.01.009_bib23 article-title: Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1) publication-title: Lancet doi: 10.1016/S0140-6736(08)60725-4 – volume: 20 start-page: 167 year: 2004 ident: 10.1016/j.immuni.2017.01.009_bib36 article-title: The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection publication-title: Immunity doi: 10.1016/S1074-7613(04)00021-4 – volume: 14 start-page: 1294 year: 2013 ident: 10.1016/j.immuni.2017.01.009_bib25 article-title: The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin publication-title: Nat. Immunol. doi: 10.1038/ni.2744 – volume: 7 start-page: 279ra39 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib47 article-title: Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3010302 – volume: 16 start-page: 79 year: 2016 ident: 10.1016/j.immuni.2017.01.009_bib28 article-title: Tissue-resident memory T cells: local specialists in immune defence publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2015.3 – volume: 337 start-page: 1115 year: 2012 ident: 10.1016/j.immuni.2017.01.009_bib29 article-title: Compartmentalized control of skin immunity by resident commensals publication-title: Science doi: 10.1126/science.1225152 – volume: 6 start-page: 223ra23 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib35 article-title: CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007811 – volume: 134 start-page: 2898 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib42 article-title: The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2014.261 – volume: 159 start-page: 814 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib43 article-title: Spatial map of human T cell compartmentalization and maintenance over decades of life publication-title: Cell doi: 10.1016/j.cell.2014.10.026 – volume: 21 start-page: 1272 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib1 article-title: Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma publication-title: Nat. Med. doi: 10.1038/nm.3962 – volume: 212 start-page: 1405 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib14 article-title: Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection publication-title: J. Exp. Med. doi: 10.1084/jem.20142101 – volume: 346 start-page: 98 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib39 article-title: T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses publication-title: Science doi: 10.1126/science.1254536 – volume: 6 start-page: e16245 year: 2011 ident: 10.1016/j.immuni.2017.01.009_bib33 article-title: Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity publication-title: PLoS ONE doi: 10.1371/journal.pone.0016245 – volume: 176 start-page: 2105 year: 2006 ident: 10.1016/j.immuni.2017.01.009_bib46 article-title: LFA-1-dependent HuR nuclear export and cytokine mRNA stabilization in T cell activation publication-title: J. Immunol. doi: 10.4049/jimmunol.176.4.2105 – volume: 386 start-page: 74 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib11 article-title: Vitiligo publication-title: Lancet doi: 10.1016/S0140-6736(14)60763-7 – volume: 346 start-page: 954 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib3 article-title: Dialogue between skin microbiota and immunity publication-title: Science doi: 10.1126/science.1260144 – volume: 483 start-page: 227 year: 2012 ident: 10.1016/j.immuni.2017.01.009_bib21 article-title: Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity publication-title: Nature doi: 10.1038/nature10851 – volume: 14 start-page: 289 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib32 article-title: Mechanisms regulating skin immunity and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3646 – volume: 124 start-page: 1027 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib37 article-title: Memory regulatory T cells reside in human skin publication-title: J. Clin. Invest. doi: 10.1172/JCI72932 – volume: 121 start-page: 1345 year: 2013 ident: 10.1016/j.immuni.2017.01.009_bib6 article-title: Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production publication-title: Blood doi: 10.1182/blood-2012-07-442558 – volume: 21 start-page: 688 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib31 article-title: The emerging role of resident memory T cells in protective immunity and inflammatory disease publication-title: Nat. Med. doi: 10.1038/nm.3883 – volume: 151 start-page: 1110 year: 2015 ident: 10.1016/j.immuni.2017.01.009_bib9 article-title: Tofacitinib Citrate for the Treatment of Vitiligo: A Pathogenesis-Directed Therapy publication-title: JAMA Dermatol. doi: 10.1001/jamadermatol.2015.1520 – volume: 346 start-page: 101 year: 2014 ident: 10.1016/j.immuni.2017.01.009_bib2 article-title: T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert publication-title: Science doi: 10.1126/science.1254803 – reference: 15214050 - Eur J Immunol. 2004 Jul;34(7):2022-31 – reference: 26479922 - Nat Med. 2015 Nov;21(11):1272-9 – reference: 25596811 - Lancet. 2015 Jul 4;386(9988):74-84 – reference: 25624457 - J Immunol. 2015 Mar 1;194(5):2059-63 – reference: 25170049 - Science. 2014 Oct 3;346(6205):98-101 – reference: 26567920 - Nat Rev Immunol. 2015 Dec;15(12 ):771-83 – reference: 24722477 - Nat Rev Immunol. 2014 May;14(5):289-301 – reference: 26688350 - Nat Rev Immunol. 2016 Feb;16(2):79-89 – reference: 24523323 - Sci Transl Med. 2014 Feb 12;6(223):223ra23 – reference: 26216123 - J Exp Med. 2015 Aug 24;212(9):1405-14 – reference: 15357947 - Immunity. 2004 Sep;21(3):357-66 – reference: 22388819 - Nature. 2012 Feb 29;483(7388):227-31 – reference: 24431112 - Sci Transl Med. 2014 Jan 15;6(219):219ra8 – reference: 24509084 - J Clin Invest. 2014 Mar;124(3):1027-36 – reference: 26107994 - JAMA Dermatol. 2015 Oct;151(10):1110-2 – reference: 26446955 - Sci Transl Med. 2015 Oct 7;7(308):308ra158 – reference: 23287865 - Blood. 2013 Feb 21;121(8):1345-56 – reference: 16455966 - J Immunol. 2006 Feb 15;176(4):2105-13 – reference: 23354485 - Nat Immunol. 2013 Mar;14(3):238-45 – reference: 19242513 - J Invest Dermatol. 2009 Sep;129(9):2220-32 – reference: 22297636 - J Invest Dermatol. 2012 Jul;132(7):1869-76 – reference: 11976459 - Science. 2002 Apr 26;296(5568):747-9 – reference: 26121195 - Nat Med. 2015 Jul;21(7):688-97 – reference: 21084709 - Blood. 2011 Jan 27;117(4):1250-9 – reference: 14975239 - Immunity. 2004 Feb;20(2):167-79 – reference: 26025581 - Lancet. 2015 Sep 5;386(9997):983-94 – reference: 25539086 - Nature. 2015 Apr 2;520(7545):104-8 – reference: 16547281 - J Immunol. 2006 Apr 1;176(7):4431-9 – reference: 26750312 - Immunity. 2016 Jan 19;44(1):155-66 – reference: 25278612 - Science. 2014 Oct 3;346(6205):101-5 – reference: 25417158 - Cell. 2014 Nov 6;159(4):814-28 – reference: 24706879 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5307-12 – reference: 25962122 - Nat Med. 2015 Jun;21(6):647-53 – reference: 24076049 - Immunity. 2013 Oct 17;39(4):687-96 – reference: 26594339 - F1000Res. 2015 Aug 03;4:460 – reference: 24945094 - J Invest Dermatol. 2014 Dec;134(12):2898-907 – reference: 22837383 - Science. 2012 Aug 31;337(6098):1115-9 – reference: 18486739 - Lancet. 2008 May 17;371(9625):1665-74 – reference: 25526304 - Immunity. 2014 Dec 18;41(6):886-97 – reference: 24162775 - Nat Immunol. 2013 Dec;14(12):1285-93 – reference: 20926833 - Sci Transl Med. 2010 Oct 6;2(52):52ra72 – reference: 25787765 - Sci Transl Med. 2015 Mar 18;7(279):279ra39 – reference: 21298112 - PLoS One. 2011 Jan 26;6(1):e16245 – reference: 25414304 - Science. 2014 Nov 21;346(6212):954-9 – reference: 19305395 - Nat Immunol. 2009 May;10(5):524-30 – reference: 22820318 - Nat Biotechnol. 2012 Aug;30(8):777-82 – reference: 25129481 - Nat Med. 2014 Sep;20(9):1043-9 – reference: 25568072 - Sci Transl Med. 2015 Jan 7;7(269):269rv1 – reference: 24610014 - J Immunol. 2014 Apr 1;192(7):3111-20 – reference: 24162776 - Nat Immunol. 2013 Dec;14(12):1294-301 |
SSID | ssj0014590 |
Score | 2.6582587 |
Snippet | Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker... Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker... |
SourceID | swepub pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 287 |
SubjectTerms | Biopsy CD49a CD8-Positive T-Lymphocytes - immunology Cell Separation Councils Cytotoxicity Cytotoxicity, Immunologic - immunology Deoxyribonucleic acid DNA Experiments Flow Cytometry granzyme B Humans IL-15 Immunologic Memory - immunology immunopathology Integrin alpha1 - biosynthesis Integrin alpha1 - immunology Localization Lymphocyte Activation - immunology Lymphocytes Microscopy, Confocal perforin Psoriasis Psoriasis - immunology Skin Skin - immunology T cell receptors T-Lymphocyte Subsets - immunology tissue resident T cells Vitiligo Vitiligo - immunology |
Title | CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin |
URI | https://dx.doi.org/10.1016/j.immuni.2017.01.009 https://www.ncbi.nlm.nih.gov/pubmed/28214226 https://www.proquest.com/docview/1874035913 https://www.proquest.com/docview/1869966655 https://www.proquest.com/docview/1877836134 https://pubmed.ncbi.nlm.nih.gov/PMC5337619 http://kipublications.ki.se/Default.aspx?queryparsed=id:135255884 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDelY2MvY-u-0nXFg7GXES5OHOfy2OV6lJWO0V3ZvRnbcWi2Iym9FNr_fpLjBELHCnvLhwyJJVmS_ZNEyEeIeTJjKhuWKYSrvAJezGPDwjKPFYtKzjK3oX_2TZxc8K_rdL1DiiEXBmGVfu3v13S3WvsnMz-bs6u6nv1AKCEE4WAAExRNLLud8LlL4lt_GU8SeJpHI-4QqIf0OYfxql0OBgK8Mle8E2GJfzdP993P-yjKSa1RZ5-Wz8kz71jSo_7bX5Ad2-yRx32rybs98uTMH6K_JKpY8FzR41uPgW3owlaIfqcrx4Xw3GIPz6ajxWL-ma5oYTebLf3e1ltbUnByaXHXtV17Wxu6BLOIrKV1Q915AMVuXq_IxfJ4VZyEvtNCaMD_6UItdAmuhEk0UyKqQIljy7WONLNgvrgVeW7nma1K9A-MqqzOjTVC8EhpVYIevya7TdvYt4RqzsskVrkqOUTduVWcVQxL3GgTC2VEQJJhgqXxZcixG8ZGDnizX7Jni0S2yIhJYEtAwnHUVV-G4wH6bOCdnIiTBEvxwMiDgdXSq_NWusaFSZqzJCAfxtegiHi6ohrb3iCNwNhRpOm_aDLMmmEJD8ibXnrG34HY16U1w6dP5GokwELg0zdNfekKgoPLjrtRAfnUS-BkiH_0G66s5NgulO3_9-y8I0_xzuX0swOy213f2PfglXX6kDw6Oj3_eXro1O8P1dY38w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_niR8voufX6qkRxBcp27Rpun3U7i17enuI7sG-hSRNsbq0h9uDu__emTQtlBMPfCvNBNrMTGYm-c0MIe8g5kmNKW1QJBCu8hJ4MYsMC4osUiwsOEvdgf7qVCzP-OdNstkjeZ8Lg7BKv_d3e7rbrf2bqV_N6XlVTb8jlBCCcDCAMYqmuEVugzeQonYebz4NVwk8ycIBeAjkff6cA3lVLgkDEV6pq96JuMS_26fr_ud1GOWo2KgzUIuH5IH3LOnH7uMfkT1bH5A7Xa_JqwNyd-Vv0R8Tlc95pujRpQfB1nRuS4S_07VjQ_DNYhPPuqX5fPaBrmlut9sd_dpUO1tQ8HJpftU2bXNZGboAu4i8pVVN3YUAxXZeT8jZ4midLwPfaiEw4AC1gRa6AF_CxJopEZagxZHlWoeaWbBf3Ioss7PUlgU6CEaVVmfGGiF4qLQqQJGfkv26qe1zQjXnRRypTBUcwu7MKs5KhjVutImEMmJC4n6BpfF1yLEdxlb2gLOfsmOLRLbIkElgy4QEw6zzrg7HDfRpzzs5kicJpuKGmYc9q6XX5510nQvjJGPxhLwdhkET8XpF1ba5QBqBwaNIkn_RpJg2w2I-Ic866Rl-B4Jfl9cMnz6Sq4EAK4GPR-rqh6sIDj47HkdNyPtOAkdT_Ktf8GQlx36h7MV_r84bcm-5Xp3Ik-PTLy_JfRxxCf7skOy3vy_sK3DRWv3aqeAfq145cA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD49a+Expression+Defines+Tissue-Resident+CD8+%2B+T+Cells+Poised+for+Cytotoxic+Function+in+Human+Skin&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Cheuk%2C+Stanley&rft.au=Schlums%2C+Heinrich&rft.au=Gallais+S%C3%A9r%C3%A9zal%2C+Ir%C3%A8ne&rft.au=Martini%2C+Elisa&rft.date=2017-02-21&rft.eissn=1097-4180&rft.volume=46&rft.issue=2&rft.spage=287&rft_id=info:doi/10.1016%2Fj.immuni.2017.01.009&rft_id=info%3Apmid%2F28214226&rft.externalDocID=28214226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |