CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin

Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 46; no. 2; pp. 287 - 300
Main Authors Cheuk, Stanley, Schlums, Heinrich, Gallais Sérézal, Irène, Martini, Elisa, Chiang, Samuel C., Marquardt, Nicole, Gibbs, Anna, Detlofsson, Ebba, Introini, Andrea, Forkel, Marianne, Höög, Charlotte, Tjernlund, Annelie, Michaëlsson, Jakob, Folkersen, Lasse, Mjösberg, Jenny, Blomqvist, Lennart, Ehrström, Marcus, Ståhle, Mona, Bryceson, Yenan T., Eidsmo, Liv
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.02.2017
Elsevier Limited
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a− Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a– Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases. [Display omitted] •CD49a expression marks CD8+ Trm cells poised for IFN-γ production in human skin•IL-15 drives potent cytotoxic capacity in CD49a+ Trm cells•IL-17 is preferentially produced by CD49a− CD8+ Trm cells in the skin•CD49a+ versus CD49- Trm cell functional dichotomy is preserved in vitiligo and psoriasis Tissue-resident memory T (Trm) cells provide localized adaptive immunity in peripheral tissues. Cheuk et al. identify cytotoxic CD49a+CD8+ Trm cells and IL-17-producing CD49a−CD8+ Trm cells in healthy human skin. The functional dichotomy of pathogenic Trm cells based on CD49a expression is preserved in focal skin diseases vitiligo and psoriasis.
AbstractList Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a− Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a– Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases. [Display omitted] •CD49a expression marks CD8+ Trm cells poised for IFN-γ production in human skin•IL-15 drives potent cytotoxic capacity in CD49a+ Trm cells•IL-17 is preferentially produced by CD49a− CD8+ Trm cells in the skin•CD49a+ versus CD49- Trm cell functional dichotomy is preserved in vitiligo and psoriasis Tissue-resident memory T (Trm) cells provide localized adaptive immunity in peripheral tissues. Cheuk et al. identify cytotoxic CD49a+CD8+ Trm cells and IL-17-producing CD49a−CD8+ Trm cells in healthy human skin. The functional dichotomy of pathogenic Trm cells based on CD49a expression is preserved in focal skin diseases vitiligo and psoriasis.
Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8 + Trm cells on a compartmental and functional basis. In human skin epithelia, CD8 + CD49a + Trm cells produced interferon-γ, whereas CD8 + CD49a − Trm cells produced interleukin-17 (IL-17). In addition, CD8 + CD49a + Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8 + CD49a + Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8 + CD49a – Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8 + Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases. • CD49a expression marks CD8 + Trm cells poised for IFN-γ production in human skin • IL-15 drives potent cytotoxic capacity in CD49a + Trm cells • IL-17 is preferentially produced by CD49a − CD8 + Trm cells in the skin • CD49a + versus CD49 - Trm cell functional dichotomy is preserved in vitiligo and psoriasis Tissue-resident memory T (Trm) cells provide localized adaptive immunity in peripheral tissues. Cheuk et al. identify cytotoxic CD49a + CD8 + Trm cells and IL-17-producing CD49a − CD8 + Trm cells in healthy human skin. The functional dichotomy of pathogenic Trm cells based on CD49a expression is preserved in focal skin diseases vitiligo and psoriasis.
Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+Trm cells produced interferon-γ, whereas CD8+CD49a-Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a-Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.
Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon- gamma , whereas CD8+CD49a- Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a- Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.
Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8 Trm cells on a compartmental and functional basis. In human skin epithelia, CD8 CD49a Trm cells produced interferon-γ, whereas CD8 CD49a Trm cells produced interleukin-17 (IL-17). In addition, CD8 CD49a Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8 CD49a Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8 CD49a Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8 Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.
Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a- Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a- Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a- Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a- Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.
Author Schlums, Heinrich
Gallais Sérézal, Irène
Michaëlsson, Jakob
Blomqvist, Lennart
Eidsmo, Liv
Folkersen, Lasse
Martini, Elisa
Marquardt, Nicole
Mjösberg, Jenny
Introini, Andrea
Ståhle, Mona
Forkel, Marianne
Gibbs, Anna
Cheuk, Stanley
Chiang, Samuel C.
Bryceson, Yenan T.
Tjernlund, Annelie
Höög, Charlotte
Ehrström, Marcus
Detlofsson, Ebba
AuthorAffiliation 8 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
1 Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
3 Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden
5 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby 2800, Denmark
6 Unit for Endocrinology and Diabetes, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
2 Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
4 Unit for Inflammation, Gastroenterology and Rheumatology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
7 Department of Reconstructive Plastic Surgery, Karolinska University Hospital Solna, Stockholm 171 76, Sweden
AuthorAffiliation_xml – name: 1 Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
– name: 6 Unit for Endocrinology and Diabetes, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
– name: 3 Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden
– name: 7 Department of Reconstructive Plastic Surgery, Karolinska University Hospital Solna, Stockholm 171 76, Sweden
– name: 2 Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
– name: 5 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby 2800, Denmark
– name: 8 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
– name: 4 Unit for Inflammation, Gastroenterology and Rheumatology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
Author_xml – sequence: 1
  givenname: Stanley
  surname: Cheuk
  fullname: Cheuk, Stanley
  organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 2
  givenname: Heinrich
  surname: Schlums
  fullname: Schlums, Heinrich
  organization: Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 3
  givenname: Irène
  surname: Gallais Sérézal
  fullname: Gallais Sérézal, Irène
  organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 4
  givenname: Elisa
  surname: Martini
  fullname: Martini, Elisa
  organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 5
  givenname: Samuel C.
  surname: Chiang
  fullname: Chiang, Samuel C.
  organization: Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 6
  givenname: Nicole
  surname: Marquardt
  fullname: Marquardt, Nicole
  organization: Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden
– sequence: 7
  givenname: Anna
  surname: Gibbs
  fullname: Gibbs, Anna
  organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 8
  givenname: Ebba
  surname: Detlofsson
  fullname: Detlofsson, Ebba
  organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 9
  givenname: Andrea
  surname: Introini
  fullname: Introini, Andrea
  organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 10
  givenname: Marianne
  surname: Forkel
  fullname: Forkel, Marianne
  organization: Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden
– sequence: 11
  givenname: Charlotte
  surname: Höög
  fullname: Höög, Charlotte
  organization: Unit for Inflammation, Gastroenterology and Rheumatology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 12
  givenname: Annelie
  surname: Tjernlund
  fullname: Tjernlund, Annelie
  organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 13
  givenname: Jakob
  surname: Michaëlsson
  fullname: Michaëlsson, Jakob
  organization: Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden
– sequence: 14
  givenname: Lasse
  surname: Folkersen
  fullname: Folkersen, Lasse
  organization: Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Building 208, DK-2800 Kongens Lyngby 2800, Denmark
– sequence: 15
  givenname: Jenny
  surname: Mjösberg
  fullname: Mjösberg, Jenny
  organization: Dermatology Department, Karolinska University Hospital, Stockholm 141 86, Sweden
– sequence: 16
  givenname: Lennart
  surname: Blomqvist
  fullname: Blomqvist, Lennart
  organization: Unit for Endocrinology and Diabetes, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 17
  givenname: Marcus
  surname: Ehrström
  fullname: Ehrström, Marcus
  organization: Department of Reconstructive Plastic Surgery, Karolinska University Hospital Solna, Stockholm 171 76, Sweden
– sequence: 18
  givenname: Mona
  surname: Ståhle
  fullname: Ståhle, Mona
  organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 19
  givenname: Yenan T.
  surname: Bryceson
  fullname: Bryceson, Yenan T.
  email: yenan.bryceson@ki.se
  organization: Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm 171 77, Sweden
– sequence: 20
  givenname: Liv
  surname: Eidsmo
  fullname: Eidsmo, Liv
  email: liv.eidsmo@ki.se
  organization: Department of Medicine Solna, Karolinska Institutet, Stockholm 171 77, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28214226$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:135255884$$DView record from Swedish Publication Index
BookMark eNqNUl1v1DAQtFAR_YB_gJAlXpBQgp04dswDEsq1FKkSCI5ny3E24GtiX-2ktP8eR3dUtA_Ak1femdHu7ByjA-cdIPSckpwSyt9scjuOs7N5QajICc0JkY_QESVSZIzW5GCpBcsEp-UhOo5xQwhllSRP0GFRF5QVBT9CulkxqfHpzTZAjNY7vILeOoh4bWOcIfsC0XbgJtys6td4jRsYhog_exuhw70PuLmd_ORvrMFnszPTImEdPp9H7fDXS-ueose9HiI8278n6NvZ6bo5zy4-ffjYvL_ITMWLKWt52wlWmrKlmpNe1KIA1rakpVDUjAGXEmoBfUcrWhjdQysNGM4Z0a3uSFWeoGynG3_Cdm7VNthRh1vltVX7r8tUgWKyljVN-Hc7fOqM0Jm0Y9DDPdr9jrM_1Hd_raqyTJ7KJPBqLxD81QxxUqONJtmjHfg5KloLUZfJffYf0LQe57xa1nj5ALrxc3DJuUWQkbKStEyoF38Ofzf178MmANsBTPAxBujvIJSoJT9qo3b5UUt-FKEq5SfR3j6gGTvp5ajJAjv8i7x3FNKZry0EFY0FZ6CzAcykOm__LvALLRrjYg
CitedBy_id crossref_primary_10_1016_j_jid_2022_11_022
crossref_primary_10_1101_cshperspect_a037960
crossref_primary_10_1038_s41385_021_00406_6
crossref_primary_10_1016_j_autrev_2021_102760
crossref_primary_10_1111_pcmr_12949
crossref_primary_10_3389_froh_2024_1408255
crossref_primary_10_1111_exd_13677
crossref_primary_10_3389_fimmu_2020_615402
crossref_primary_10_1016_j_xcrm_2020_100127
crossref_primary_10_1007_s12016_024_08982_8
crossref_primary_10_1136_annrheumdis_2019_215349
crossref_primary_10_3389_fonc_2021_819505
crossref_primary_10_1016_j_jid_2019_11_013
crossref_primary_10_1126_sciimmunol_aas9673
crossref_primary_10_1016_j_xjidi_2022_100155
crossref_primary_10_3389_fimmu_2023_1286344
crossref_primary_10_1038_s41385_019_0186_9
crossref_primary_10_1080_17512433_2023_2285011
crossref_primary_10_3390_ijms19051379
crossref_primary_10_1146_annurev_immunol_101220_032117
crossref_primary_10_1016_j_jid_2018_02_030
crossref_primary_10_3389_fimmu_2024_1291556
crossref_primary_10_1136_annrheumdis_2019_215356
crossref_primary_10_3390_ijms21103552
crossref_primary_10_1016_j_jid_2021_01_030
crossref_primary_10_1038_s41590_020_0758_6
crossref_primary_10_1080_14728222_2023_2193329
crossref_primary_10_1172_JCI171797
crossref_primary_10_1016_j_immuni_2022_12_008
crossref_primary_10_1016_j_immuni_2022_12_007
crossref_primary_10_1016_j_autrev_2021_102868
crossref_primary_10_1111_1346_8138_15743
crossref_primary_10_1126_sciadv_abo5871
crossref_primary_10_3389_fimmu_2022_931761
crossref_primary_10_3389_fimmu_2020_624144
crossref_primary_10_1016_j_jid_2020_06_013
crossref_primary_10_1016_j_isci_2020_101954
crossref_primary_10_1080_2162402X_2025_2455176
crossref_primary_10_1126_scitranslmed_abl6058
crossref_primary_10_1111_exd_14982
crossref_primary_10_1136_jitc_2021_002642
crossref_primary_10_1136_ard_2023_224092
crossref_primary_10_1038_s41392_023_01471_y
crossref_primary_10_1111_exd_14500
crossref_primary_10_1016_j_immuni_2023_06_025
crossref_primary_10_1016_j_phrs_2020_104876
crossref_primary_10_2174_0118715206321574240821112747
crossref_primary_10_3389_fimmu_2021_654190
crossref_primary_10_1097_BS9_0000000000000194
crossref_primary_10_1016_j_intimp_2021_108402
crossref_primary_10_1002_hep_30594
crossref_primary_10_1038_s41584_018_0044_2
crossref_primary_10_1038_s41467_023_38946_z
crossref_primary_10_1016_j_jid_2018_10_032
crossref_primary_10_1111_all_15764
crossref_primary_10_3389_fimmu_2022_949299
crossref_primary_10_1038_s41590_018_0114_2
crossref_primary_10_1038_s41587_020_0601_5
crossref_primary_10_3389_fimmu_2020_595707
crossref_primary_10_1111_exd_14732
crossref_primary_10_1016_j_jid_2021_01_005
crossref_primary_10_3389_fimmu_2019_00400
crossref_primary_10_1056_NEJMe2211886
crossref_primary_10_1111_exd_13879
crossref_primary_10_1016_j_jaci_2020_11_028
crossref_primary_10_12688_f1000research_25234_1
crossref_primary_10_1101_cshperspect_a037762
crossref_primary_10_1111_sji_13332
crossref_primary_10_1136_bmjopen_2021_049822
crossref_primary_10_1053_j_gastro_2021_06_025
crossref_primary_10_3389_fimmu_2020_623072
crossref_primary_10_1007_s00281_022_00970_4
crossref_primary_10_1126_science_adi8885
crossref_primary_10_3390_ijms25116086
crossref_primary_10_1111_sji_13326
crossref_primary_10_1136_jitc_2023_008739
crossref_primary_10_1007_s00011_020_01320_6
crossref_primary_10_1016_j_immuni_2023_05_003
crossref_primary_10_3390_antiox11010047
crossref_primary_10_1016_j_xjidi_2022_100116
crossref_primary_10_1172_JCI185785
crossref_primary_10_1111_exd_14549
crossref_primary_10_1126_sciimmunol_abe2634
crossref_primary_10_1146_annurev_immunol_101320_020220
crossref_primary_10_3389_fimmu_2018_02104
crossref_primary_10_1016_j_immuni_2018_02_010
crossref_primary_10_1097_COH_0000000000000523
crossref_primary_10_1111_imr_12650
crossref_primary_10_3390_jcm10173822
crossref_primary_10_1016_j_jaci_2023_01_016
crossref_primary_10_1038_s41577_019_0191_y
crossref_primary_10_3389_fgene_2021_627092
crossref_primary_10_1111_jdv_15970
crossref_primary_10_1002_ctm2_70218
crossref_primary_10_1038_s41467_024_53104_9
crossref_primary_10_3390_ijms21228565
crossref_primary_10_1080_14760584_2021_1881485
crossref_primary_10_3389_fimmu_2022_962167
crossref_primary_10_1038_s41385_021_00382_x
crossref_primary_10_3389_fimmu_2023_1081256
crossref_primary_10_1111_pcmr_12803
crossref_primary_10_1038_s42003_020_01551_7
crossref_primary_10_1111_imr_12644
crossref_primary_10_1126_scitranslmed_abb3107
crossref_primary_10_1038_s41596_020_00435_8
crossref_primary_10_3390_pathogens8030147
crossref_primary_10_1111_imr_12762
crossref_primary_10_3389_fendo_2020_00569
crossref_primary_10_1002_path_6073
crossref_primary_10_1016_j_trim_2024_102104
crossref_primary_10_1007_s00403_020_02117_7
crossref_primary_10_1016_j_smim_2020_101415
crossref_primary_10_1038_s41392_024_02017_6
crossref_primary_10_1016_j_berh_2021_101694
crossref_primary_10_1016_j_jid_2019_04_020
crossref_primary_10_3389_fimmu_2020_00775
crossref_primary_10_3389_fimmu_2020_00896
crossref_primary_10_3390_v14020329
crossref_primary_10_3389_fimmu_2018_01390
crossref_primary_10_12677_ACM_2024_142525
crossref_primary_10_21518_2079_701X_2021_21_2_94_101
crossref_primary_10_3389_fmed_2023_1191057
crossref_primary_10_1073_pnas_2016580118
crossref_primary_10_1038_s41577_019_0162_3
crossref_primary_10_1136_jitc_2021_003472
crossref_primary_10_1016_j_jid_2019_05_016
crossref_primary_10_3389_fimmu_2020_00242
crossref_primary_10_1016_j_isci_2019_10_005
crossref_primary_10_1146_annurev_immunol_042617_053214
crossref_primary_10_1007_s00401_021_02299_y
crossref_primary_10_4049_jimmunol_2300399
crossref_primary_10_1016_j_cyto_2020_155258
crossref_primary_10_1126_sciimmunol_aaz6894
crossref_primary_10_1371_journal_ppat_1010611
crossref_primary_10_1111_sji_12953
crossref_primary_10_4049_jimmunol_2300153
crossref_primary_10_1016_j_jid_2023_11_015
crossref_primary_10_1172_jci_insight_142205
crossref_primary_10_3390_cells10020409
crossref_primary_10_1080_2162402X_2018_1463946
crossref_primary_10_1089_vim_2017_0016
crossref_primary_10_3390_ijms21197228
crossref_primary_10_1155_2023_8466545
crossref_primary_10_1002_ijc_34940
crossref_primary_10_1016_j_molimm_2019_11_011
crossref_primary_10_1084_jem_20190249
crossref_primary_10_1016_S0151_9638_20_31082_6
crossref_primary_10_3389_fimmu_2020_590558
crossref_primary_10_1007_s12016_017_8622_7
crossref_primary_10_1016_j_immuni_2024_06_017
crossref_primary_10_1038_s41598_017_07513_0
crossref_primary_10_3389_fimmu_2018_01214
crossref_primary_10_23203_JKSP_2024_21_1_1
crossref_primary_10_1073_pnas_2323052121
crossref_primary_10_3390_biom14050548
crossref_primary_10_1016_j_celrep_2025_115247
crossref_primary_10_1016_j_nbd_2023_106308
crossref_primary_10_3389_fimmu_2025_1468665
crossref_primary_10_1016_j_immuni_2024_11_007
crossref_primary_10_1111_cei_13413
crossref_primary_10_3389_fimmu_2019_01582
crossref_primary_10_1038_s41467_024_52990_3
crossref_primary_10_1038_s41467_021_24734_0
crossref_primary_10_1038_s41467_024_51807_7
crossref_primary_10_3390_vaccines12040419
crossref_primary_10_1002_jvc2_104
crossref_primary_10_1016_j_jaci_2018_11_048
crossref_primary_10_1016_j_celrep_2023_112514
crossref_primary_10_1016_j_jhepr_2025_101381
crossref_primary_10_1111_jdv_20311
crossref_primary_10_1016_j_oraloncology_2023_106570
crossref_primary_10_3389_fimmu_2025_1518339
crossref_primary_10_3233_CBM_230036
crossref_primary_10_1016_j_jhepr_2023_100812
crossref_primary_10_1038_s41590_021_00949_7
crossref_primary_10_2340_actadv_v101_545
crossref_primary_10_1038_s41416_023_02202_4
crossref_primary_10_3389_fcell_2020_00402
crossref_primary_10_3389_fimmu_2022_1039194
crossref_primary_10_1038_s41586_021_04221_8
crossref_primary_10_3389_fimmu_2018_01304
crossref_primary_10_1016_j_jaci_2023_11_017
crossref_primary_10_3389_fimmu_2019_01764
crossref_primary_10_3389_fimmu_2021_652191
crossref_primary_10_1158_2326_6066_CIR_20_0427
crossref_primary_10_1016_j_coi_2020_01_001
crossref_primary_10_1093_cei_uxab002
crossref_primary_10_1002_eji_201970107
crossref_primary_10_1111_all_15819
crossref_primary_10_1146_annurev_immunol_083122_043836
crossref_primary_10_1038_s41467_018_07053_9
crossref_primary_10_3390_vaccines9010024
crossref_primary_10_5009_gnl240366
crossref_primary_10_3389_fimmu_2022_866703
crossref_primary_10_1001_jamadermatol_2024_5737
crossref_primary_10_3389_fimmu_2021_728669
crossref_primary_10_1002_cti2_1334
crossref_primary_10_1007_s12016_020_08793_7
crossref_primary_10_1016_j_clim_2022_109183
crossref_primary_10_1038_s41598_017_07975_2
crossref_primary_10_1126_sciimmunol_abb4432
crossref_primary_10_1161_ATVBAHA_123_320511
crossref_primary_10_23736_S2784_8671_23_07583_7
crossref_primary_10_3389_fimmu_2018_01770
crossref_primary_10_1158_2326_6066_CIR_19_0855
crossref_primary_10_1146_annurev_immunol_093019_112809
crossref_primary_10_3390_pharmaceutics13071044
crossref_primary_10_3389_fimmu_2022_884148
crossref_primary_10_1016_j_celrep_2018_09_006
crossref_primary_10_1177_12034754241227623
crossref_primary_10_1016_j_jid_2020_07_011
crossref_primary_10_1111_imr_13212
crossref_primary_10_1016_j_reval_2020_10_003
crossref_primary_10_1111_imr_13213
crossref_primary_10_3390_vaccines12091022
crossref_primary_10_1111_imr_13210
crossref_primary_10_1016_j_jaci_2024_05_008
crossref_primary_10_1016_j_crimmu_2022_08_001
crossref_primary_10_3390_ijms26072858
crossref_primary_10_1038_s41598_024_67494_9
crossref_primary_10_1089_vim_2018_0084
crossref_primary_10_1146_annurev_immunol_100919_023531
crossref_primary_10_1038_mi_2017_94
crossref_primary_10_1016_j_celrep_2021_109902
crossref_primary_10_1016_j_canlet_2023_216485
crossref_primary_10_1016_j_jid_2021_09_015
crossref_primary_10_1111_imr_13201
crossref_primary_10_3389_fimmu_2021_624517
crossref_primary_10_3390_ijms222312933
crossref_primary_10_1016_j_jid_2023_08_006
crossref_primary_10_3389_fimmu_2023_1130009
crossref_primary_10_3390_cells10081882
crossref_primary_10_4049_jimmunol_1900027
crossref_primary_10_1016_j_jaad_2022_11_005
crossref_primary_10_1111_imr_13036
crossref_primary_10_3390_ijerph182111251
crossref_primary_10_7554_eLife_68662
crossref_primary_10_1016_j_cellimm_2022_104502
crossref_primary_10_3390_ijms21176144
crossref_primary_10_4049_jimmunol_2400279
crossref_primary_10_1111_1346_8138_17011
crossref_primary_10_1038_s41467_019_11049_4
crossref_primary_10_3389_fimmu_2018_02707
crossref_primary_10_3389_fimmu_2019_02003
crossref_primary_10_3389_fimmu_2018_02827
crossref_primary_10_1136_jitc_2024_009440
crossref_primary_10_1002_cti2_1140
crossref_primary_10_1038_icb_2017_32
crossref_primary_10_3389_fimmu_2021_592031
crossref_primary_10_3389_fimmu_2022_1038744
crossref_primary_10_3389_fimmu_2021_613056
crossref_primary_10_1016_j_celrep_2019_11_056
crossref_primary_10_3389_fmolb_2022_965730
crossref_primary_10_1155_2023_4711236
crossref_primary_10_3390_ijms22010232
crossref_primary_10_1016_j_coviro_2020_09_006
crossref_primary_10_3389_fimmu_2020_02125
crossref_primary_10_3390_ijms21051690
crossref_primary_10_1016_j_it_2019_01_002
crossref_primary_10_1016_j_celrep_2017_08_078
crossref_primary_10_1084_jem_20210923
crossref_primary_10_1007_s10238_022_00855_8
crossref_primary_10_1016_j_molmed_2024_04_009
crossref_primary_10_1038_s41467_023_41364_w
crossref_primary_10_1101_cshperspect_a038117
crossref_primary_10_3892_etm_2022_11124
crossref_primary_10_1016_j_molimm_2020_05_016
crossref_primary_10_1002_eji_202049062
crossref_primary_10_1038_s41467_021_21413_y
crossref_primary_10_1002_eji_202149608
crossref_primary_10_1038_s41385_021_00456_w
crossref_primary_10_3389_fimmu_2021_616309
crossref_primary_10_3389_fimmu_2018_01751
crossref_primary_10_3389_fimmu_2018_00300
crossref_primary_10_3390_ijms25084409
crossref_primary_10_3389_fimmu_2024_1374581
crossref_primary_10_3390_ijms232112849
crossref_primary_10_1007_s40257_022_00752_6
crossref_primary_10_1016_j_jid_2020_12_028
crossref_primary_10_3389_fimmu_2018_01829
crossref_primary_10_1016_j_coi_2024_102499
crossref_primary_10_1002_med_21754
crossref_primary_10_1016_j_banm_2024_11_026
crossref_primary_10_1007_s12016_021_08868_z
crossref_primary_10_1016_j_imlet_2022_02_009
crossref_primary_10_1016_j_cytogfr_2018_08_001
crossref_primary_10_1093_infdis_jix661
crossref_primary_10_3389_fimmu_2019_01247
crossref_primary_10_1038_s41467_019_12319_x
crossref_primary_10_1038_s41590_023_01710_y
crossref_primary_10_1111_dom_13144
crossref_primary_10_4110_in_2021_21_e33
crossref_primary_10_1136_jitc_2020_001807
crossref_primary_10_7554_eLife_83981
crossref_primary_10_3390_ijerph19148345
crossref_primary_10_1038_s41423_019_0359_1
crossref_primary_10_1186_s41232_024_00334_5
crossref_primary_10_1038_s41423_019_0291_4
crossref_primary_10_3389_fimmu_2023_1340677
crossref_primary_10_3390_cimb47030191
crossref_primary_10_1016_j_xjidi_2021_100014
crossref_primary_10_3389_fimmu_2023_1199671
crossref_primary_10_3389_fmed_2018_00166
crossref_primary_10_1073_pnas_2403054121
crossref_primary_10_1038_s41590_019_0494_y
crossref_primary_10_3390_ijms21020625
crossref_primary_10_4049_jimmunol_2400020
crossref_primary_10_1016_j_clim_2024_110242
crossref_primary_10_3389_fimmu_2022_967055
crossref_primary_10_1002_eji_202149759
crossref_primary_10_3389_fimmu_2018_00515
crossref_primary_10_3389_fimmu_2018_01722
crossref_primary_10_3389_fimmu_2018_01602
crossref_primary_10_2147_ITT_S439969
crossref_primary_10_3389_fimmu_2018_02810
crossref_primary_10_1097_ACI_0000000000000763
crossref_primary_10_1136_ard_2024_225942
crossref_primary_10_3390_biomedicines10071639
crossref_primary_10_1007_s00281_022_00932_w
crossref_primary_10_1016_j_jaci_2020_05_009
crossref_primary_10_1080_08820139_2024_2302823
crossref_primary_10_1126_scitranslmed_abb7028
crossref_primary_10_3389_fimmu_2022_1048758
crossref_primary_10_1016_j_cellimm_2020_104099
crossref_primary_10_1002_art_41652
crossref_primary_10_1016_j_freeradbiomed_2019_05_011
crossref_primary_10_1097_DAD_0000000000002184
crossref_primary_10_2147_ITT_S259126
crossref_primary_10_1038_s41590_024_01819_8
crossref_primary_10_1126_scitranslmed_adc9778
crossref_primary_10_12677_acm_2024_1441321
crossref_primary_10_1016_j_jaci_2018_08_048
crossref_primary_10_1016_j_pt_2023_07_005
crossref_primary_10_1016_j_chemosphere_2021_133496
crossref_primary_10_1126_sciimmunol_add8454
crossref_primary_10_1002_mco2_70053
crossref_primary_10_1016_j_it_2022_02_007
crossref_primary_10_1038_s41423_018_0192_y
crossref_primary_10_1158_2326_6066_CIR_18_0757
crossref_primary_10_1164_rccm_202006_2403OC
crossref_primary_10_1126_scitranslmed_aam7710
crossref_primary_10_1016_j_immuni_2018_01_007
crossref_primary_10_1007_s00401_024_02725_x
crossref_primary_10_1007_s12016_025_09039_0
crossref_primary_10_1016_j_jid_2019_09_027
crossref_primary_10_1038_s41590_019_0404_3
crossref_primary_10_1111_1346_8138_16680
crossref_primary_10_1111_cei_13189
crossref_primary_10_3389_fimmu_2020_624199
crossref_primary_10_1084_jem_20162115
crossref_primary_10_1101_cshperspect_a037796
crossref_primary_10_1016_j_xcrm_2021_100381
crossref_primary_10_1016_j_jid_2021_03_011
crossref_primary_10_1111_all_15104
crossref_primary_10_1016_j_jid_2024_01_007
crossref_primary_10_1038_s43018_021_00180_1
crossref_primary_10_3390_cells10050989
crossref_primary_10_1016_j_it_2019_06_002
crossref_primary_10_1016_j_coi_2017_08_002
crossref_primary_10_3389_fimmu_2021_636118
crossref_primary_10_1016_j_it_2022_10_001
crossref_primary_10_1038_s41423_020_00565_9
crossref_primary_10_1097_CM9_0000000000002083
crossref_primary_10_1038_s41590_024_01918_6
crossref_primary_10_1111_cei_13183
crossref_primary_10_3389_fimmu_2017_01941
crossref_primary_10_3389_fimmu_2023_1303724
crossref_primary_10_3390_cells10010164
crossref_primary_10_1038_s41467_019_12464_3
crossref_primary_10_1016_j_jid_2019_09_014
crossref_primary_10_1016_j_biomaterials_2025_123120
crossref_primary_10_4049_jimmunol_1900767
crossref_primary_10_1038_s41598_022_08585_3
crossref_primary_10_3390_cancers15133362
crossref_primary_10_1016_j_jaut_2022_102950
crossref_primary_10_1016_j_jaut_2021_102634
crossref_primary_10_2336_nishinihonhifu_83_177
crossref_primary_10_3389_fimmu_2020_618897
crossref_primary_10_1016_j_jconrel_2017_10_026
crossref_primary_10_3389_fgene_2022_988703
crossref_primary_10_1002_eji_202170126
crossref_primary_10_1016_j_it_2021_08_002
crossref_primary_10_1038_s41385_021_00473_9
crossref_primary_10_1126_sciimmunol_aav5581
crossref_primary_10_3389_fimmu_2020_584521
crossref_primary_10_3389_fimmu_2023_1205984
crossref_primary_10_3389_fmed_2022_908047
crossref_primary_10_1111_pcmr_13094
crossref_primary_10_1111_aji_13101
crossref_primary_10_5021_ad_24_038
crossref_primary_10_1093_bjd_ljad303
crossref_primary_10_2139_ssrn_3155546
crossref_primary_10_1016_j_jid_2020_02_024
crossref_primary_10_1007_s12026_024_09545_x
crossref_primary_10_1007_s10875_018_0519_6
crossref_primary_10_1111_bjd_17748
crossref_primary_10_1016_j_celrep_2020_108085
crossref_primary_10_1002_mco2_70132
crossref_primary_10_3390_ijms221910661
crossref_primary_10_5021_ad_23_065
crossref_primary_10_1016_j_jaci_2017_07_011
crossref_primary_10_1097_TP_0000000000004000
crossref_primary_10_1001_jamadermatol_2021_3492
crossref_primary_10_1111_bjd_20963
crossref_primary_10_1172_jci_insight_123568
crossref_primary_10_3389_fimmu_2022_801579
crossref_primary_10_1016_j_jdermsci_2022_02_008
crossref_primary_10_1093_oxfimm_iqae006
crossref_primary_10_3389_fimmu_2020_579022
crossref_primary_10_1007_s00011_022_01677_w
crossref_primary_10_1007_s00281_019_00742_7
crossref_primary_10_1016_j_jid_2020_04_027
crossref_primary_10_3390_cells10092215
crossref_primary_10_1007_s00281_019_00766_z
crossref_primary_10_1080_08830185_2021_1985116
crossref_primary_10_1093_discim_kyad024
crossref_primary_10_3389_fmed_2024_1346757
crossref_primary_10_1038_s41467_020_18513_6
crossref_primary_10_1097_TP_0000000000003169
crossref_primary_10_3389_fimmu_2021_693055
crossref_primary_10_1016_j_jdermsci_2019_06_001
crossref_primary_10_1038_s41392_024_02050_5
crossref_primary_10_3390_ijms24021564
crossref_primary_10_1016_j_jdermsci_2019_06_002
crossref_primary_10_1016_j_autrev_2018_03_014
crossref_primary_10_1002_art_41156
crossref_primary_10_3389_fimmu_2019_01198
crossref_primary_10_3390_biom13010020
crossref_primary_10_1038_s41584_025_01218_9
crossref_primary_10_4049_jimmunol_1701377
crossref_primary_10_1016_j_jid_2021_06_040
crossref_primary_10_3389_fimmu_2024_1405215
crossref_primary_10_1084_jem_20210417
crossref_primary_10_1097_CM9_0000000000003499
crossref_primary_10_1002_ski2_64
crossref_primary_10_1093_discim_kyad010
crossref_primary_10_1016_j_immuni_2017_12_003
crossref_primary_10_3389_fimmu_2024_1347767
crossref_primary_10_1111_imm_13843
crossref_primary_10_1136_jitc_2022_004592
crossref_primary_10_1038_s41467_019_11632_9
crossref_primary_10_1080_2162402X_2025_2457793
crossref_primary_10_1002_eji_202048627
crossref_primary_10_3389_fimmu_2024_1378359
crossref_primary_10_1002_path_5384
crossref_primary_10_1172_jci_insight_138970
crossref_primary_10_1016_j_crimmu_2023_100067
crossref_primary_10_1093_jleuko_qiae254
crossref_primary_10_3390_cells10092234
crossref_primary_10_1016_j_coi_2019_04_008
crossref_primary_10_1371_journal_ppat_1008036
crossref_primary_10_1038_s41590_017_0027_5
crossref_primary_10_3390_ijms22169004
crossref_primary_10_1016_j_jdermsci_2023_03_003
crossref_primary_10_3389_fimmu_2023_1125605
crossref_primary_10_1016_j_jid_2017_08_038
crossref_primary_10_3390_v16071019
crossref_primary_10_1016_j_cell_2019_08_008
crossref_primary_10_1002_eji_202048857
crossref_primary_10_1007_s13238_019_0647_7
crossref_primary_10_1038_s41467_024_52689_5
crossref_primary_10_1038_s41590_020_0711_8
crossref_primary_10_1084_jem_20192291
crossref_primary_10_1038_s41467_020_19002_6
crossref_primary_10_3389_fcell_2019_00068
crossref_primary_10_1080_2162402X_2018_1538440
Cites_doi 10.1038/jid.2011.463
10.4049/jimmunol.1402256
10.1016/S0140-6736(14)61909-7
10.1126/scitranslmed.3007828
10.1038/ni.2525
10.1038/ni.2745
10.1038/nm.3860
10.1126/scitranslmed.3010641
10.1016/j.immuni.2013.08.019
10.1126/scitranslmed.3001107
10.4049/jimmunol.1302313
10.1016/j.immuni.2014.12.007
10.1038/nbt.2282
10.1038/jid.2009.32
10.1016/j.immuni.2004.06.020
10.1038/nm.3645
10.1073/pnas.1322292111
10.1182/blood-2010-08-303339
10.1126/science.1069639
10.1002/eji.200324785
10.12688/f1000research.6756.1
10.1038/nature14052
10.4049/jimmunol.176.7.4431
10.1038/ni.1718
10.1016/j.immuni.2015.11.004
10.1126/scitranslmed.aaa9122
10.1038/nri3919
10.1016/S0140-6736(08)60725-4
10.1016/S1074-7613(04)00021-4
10.1038/ni.2744
10.1126/scitranslmed.3010302
10.1038/nri.2015.3
10.1126/science.1225152
10.1126/scitranslmed.3007811
10.1038/jid.2014.261
10.1016/j.cell.2014.10.026
10.1038/nm.3962
10.1084/jem.20142101
10.1126/science.1254536
10.1371/journal.pone.0016245
10.4049/jimmunol.176.4.2105
10.1016/S0140-6736(14)60763-7
10.1126/science.1260144
10.1038/nature10851
10.1038/nri3646
10.1172/JCI72932
10.1182/blood-2012-07-442558
10.1038/nm.3883
10.1001/jamadermatol.2015.1520
10.1126/science.1254803
ContentType Journal Article
Copyright 2017 The Authors
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Feb 21, 2017
2017 The Authors 2017
Copyright_xml – notice: 2017 The Authors
– notice: Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Feb 21, 2017
– notice: 2017 The Authors 2017
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1016/j.immuni.2017.01.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 300
ExternalDocumentID oai_swepub_ki_se_498981
PMC5337619
4317436641
28214226
10_1016_j_immuni_2017_01_009
S1074761317300316
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
0R~
1RT
1~5
2WC
3V.
4.4
457
4G.
53G
5GY
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAUCE
AAVLU
AAXJY
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGKMS
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HCIFZ
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OK1
OVD
P2P
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
WQ6
ZA5
.55
.GJ
29I
5VS
AAEDT
AAIKJ
AALRI
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AHHHB
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
OHT
OZT
R2-
UHS
X7M
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c562t-b6bd743c3b1a60f7872e4bb0b1e2844e699e87efd1512cafeb9cec6640abad053
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Mon Aug 25 03:30:46 EDT 2025
Thu Aug 21 18:32:38 EDT 2025
Thu Jul 10 20:49:39 EDT 2025
Mon Jul 21 11:43:44 EDT 2025
Fri Jul 25 11:19:19 EDT 2025
Thu Apr 03 07:02:28 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
Tue Jul 01 01:58:38 EDT 2025
Fri Feb 23 02:28:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords granzyme B
perforin
immunopathology
CD49a
tissue resident T cells
psoriasis
vitiligo
IL-15
Skin
cytotoxicity
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-b6bd743c3b1a60f7872e4bb0b1e2844e699e87efd1512cafeb9cec6640abad053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Lead Contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1074761317300316
PMID 28214226
PQID 1874035913
PQPubID 2031079
PageCount 14
ParticipantIDs swepub_primary_oai_swepub_ki_se_498981
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5337619
proquest_miscellaneous_1877836134
proquest_miscellaneous_1869966655
proquest_journals_1874035913
pubmed_primary_28214226
crossref_primary_10_1016_j_immuni_2017_01_009
crossref_citationtrail_10_1016_j_immuni_2017_01_009
elsevier_sciencedirect_doi_10_1016_j_immuni_2017_01_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-21
PublicationDateYYYYMMDD 2017-02-21
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Cell Press
References Naik, Bouladoux, Linehan, Han, Harrison, Wilhelm, Conlan, Himmelfarb, Byrd, Deming (bib30) 2015; 520
Loser, Mehling, Apelt, Ständer, Andres, Reinecker, Eing, Skryabin, Varga, Schwarz, Beissert (bib24) 2004; 34
Watanabe, Gehad, Yang, Scott, Teague, Schlapbach, Elco, Huang, Matos, Kupper, Clark (bib47) 2015; 7
Ariotti, Hogenbirk, Dijkgraaf, Visser, Hoekstra, Song, Jacobs, Haanen, Schumacher (bib2) 2014; 346
Jiang, Clark, Liu, Wagers, Fuhlbrigge, Kupper (bib21) 2012; 483
Cheuk, Wikén, Blomqvist, Nylén, Talme, Ståhle, Eidsmo (bib5) 2014; 192
Craiglow, King (bib9) 2015; 151
Mueller, Mackay (bib28) 2016; 16
Ray, Franki, Pierce, Dimitrova, Koteliansky, Sprague, Doherty, de Fougerolles, Topham (bib36) 2004; 20
Mackay, Rahimpour, Ma, Collins, Stock, Hafon, Vega-Ramos, Lauzurica, Mueller, Stefanovic (bib25) 2013; 14
Naik, Bouladoux, Wilhelm, Molloy, Salcedo, Kastenmuller, Deming, Quinones, Koo, Conlan (bib29) 2012; 337
Purwar, Campbell, Murphy, Richards, Clark, Kupper (bib33) 2011; 6
Gaide, Emerson, Jiang, Gulati, Nizza, Desmarais, Robins, Krueger, Clark, Kupper (bib12) 2015; 21
Ramsköld, Luo, Wang, Li, Deng, Faridani, Daniels, Khrebtukova, Loring, Laurent (bib34) 2012; 30
Wakim, Gupta, Mintern, Villadangos (bib45) 2013; 14
van den Boorn, Konijnenberg, Dellemijn, van der Veen, Bos, Melief, Vyth-Dreese, Luiten (bib44) 2009; 129
Thome, Yudanin, Ohmura, Kubota, Grinshpun, Sathaliyawala, Kato, Lerner, Shen, Farber (bib43) 2014; 159
Adachi, Kobayashi, Sugihara, Yamada, Ikuta, Pittaluga, Saya, Amagai, Nagao (bib1) 2015; 21
Schlapbach, Gehad, Yang, Watanabe, Guenova, Teague, Campbell, Yawalkar, Kupper, Clark (bib40) 2014; 6
Belkaid, Segre (bib3) 2014; 346
Harden, Hamm, Gulati, Lowes, Krueger (bib15) 2015; 4
Clark, Chong, Mirchandani, Brinster, Yamanaka, Dowgiert, Kupper (bib8) 2006; 176
Xing, Dai, Jabbari, Cerise, Higgins, Gong, de Jong, Harel, DeStefano, Rothman (bib48) 2014; 20
Harris, Harris, Weninger, Wherry, Hunter, Turka (bib16) 2012; 132
Skon, Lee, Anderson, Masopust, Hogquist, Jameson (bib41) 2013; 14
Gebhardt, Wakim, Eidsmo, Reading, Heath, Carbone (bib13) 2009; 10
Jameson, Ugarte, Chen, Yachi, Fuchs, Boismenu, Havran (bib20) 2002; 296
Schenkel, Masopust (bib38) 2014; 41
Boehncke, Schön (bib4) 2015; 386
Hondowicz, An, Schenkel, Kim, Steach, Krishnamurty, Keitany, Garza, Fraser, Moon (bib17) 2016; 44
Ezzedine, Eleftheriadou, Whitton, van Geel (bib11) 2015; 386
Glennie, Yeramilli, Beiting, Volk, Weaver, Scott (bib14) 2015; 212
Hueber, Patel, Dryja, Wright, Koroleva, Bruin, Antoni, Draelos, Gold, Durez (bib18) 2010; 2
Zaid, Mackay, Rahimpour, Braun, Veldhoen, Carbone, Manton, Heath, Mueller (bib49) 2014; 111
Chiang, Theorell, Entesarian, Meeths, Mastafa, Al-Herz, Frisk, Gilmour, Ifversen, Langenskiöld (bib6) 2013; 121
Mackay, Braun, Macleod, Collins, Tebartz, Bedoui, Carbone, Gebhardt (bib26) 2015; 194
Clark (bib7) 2015; 7
Kirsch, Watanabe, O’Malley, Williamson, Scott, Elco, Teague, Gehad, Lowry, LeBoeuf (bib22) 2015; 7
Rashighi, Agarwal, Richmond, Harris, Dresser, Su, Zhou, Deng, Hunter, Luster, Harris (bib35) 2014; 6
Jabri, Abadie (bib19) 2015; 15
Sanchez Rodriguez, Pauli, Neuhaus, Yu, Arron, Harris, Yang, Anthony, Sverdrup, Krow-Lucal (bib37) 2014; 124
Schenkel, Fraser, Beura, Pauken, Vezys, Masopust (bib39) 2014; 346
Zhang, Bevan (bib50) 2013; 39
Wang, Collinge, Ramgolam, Ayalon, Fan, Pardi, Bender (bib46) 2006; 176
Park, Kupper (bib31) 2015; 21
Dusseaux, Martin, Serriari, Péguillet, Premel, Louis, Milder, Le Bourhis, Soudais, Treiner, Lantz (bib10) 2011; 117
Teunissen, Yeremenko, Baeten, Chielie, Spuls, de Rie, Lantz, Res (bib42) 2014; 134
Meresse, Chen, Ciszewski, Tretiakova, Bhagat, Krausz, Raulet, Lanier, Groh, Spies (bib27) 2004; 21
Leonardi, Kimball, Papp, Yeilding, Guzzo, Wang, Li, Dooley, Gordon (bib23) 2008; 371
Pasparakis, Haase, Nestle (bib32) 2014; 14
Ray (10.1016/j.immuni.2017.01.009_bib36) 2004; 20
van den Boorn (10.1016/j.immuni.2017.01.009_bib44) 2009; 129
Skon (10.1016/j.immuni.2017.01.009_bib41) 2013; 14
Purwar (10.1016/j.immuni.2017.01.009_bib33) 2011; 6
Thome (10.1016/j.immuni.2017.01.009_bib43) 2014; 159
Sanchez Rodriguez (10.1016/j.immuni.2017.01.009_bib37) 2014; 124
Mackay (10.1016/j.immuni.2017.01.009_bib26) 2015; 194
Meresse (10.1016/j.immuni.2017.01.009_bib27) 2004; 21
Chiang (10.1016/j.immuni.2017.01.009_bib6) 2013; 121
Kirsch (10.1016/j.immuni.2017.01.009_bib22) 2015; 7
Watanabe (10.1016/j.immuni.2017.01.009_bib47) 2015; 7
Gaide (10.1016/j.immuni.2017.01.009_bib12) 2015; 21
Schlapbach (10.1016/j.immuni.2017.01.009_bib40) 2014; 6
Zaid (10.1016/j.immuni.2017.01.009_bib49) 2014; 111
Naik (10.1016/j.immuni.2017.01.009_bib30) 2015; 520
Schenkel (10.1016/j.immuni.2017.01.009_bib38) 2014; 41
Belkaid (10.1016/j.immuni.2017.01.009_bib3) 2014; 346
Clark (10.1016/j.immuni.2017.01.009_bib8) 2006; 176
Glennie (10.1016/j.immuni.2017.01.009_bib14) 2015; 212
Harden (10.1016/j.immuni.2017.01.009_bib15) 2015; 4
Xing (10.1016/j.immuni.2017.01.009_bib48) 2014; 20
Wakim (10.1016/j.immuni.2017.01.009_bib45) 2013; 14
Ariotti (10.1016/j.immuni.2017.01.009_bib2) 2014; 346
Park (10.1016/j.immuni.2017.01.009_bib31) 2015; 21
Zhang (10.1016/j.immuni.2017.01.009_bib50) 2013; 39
Adachi (10.1016/j.immuni.2017.01.009_bib1) 2015; 21
Dusseaux (10.1016/j.immuni.2017.01.009_bib10) 2011; 117
Teunissen (10.1016/j.immuni.2017.01.009_bib42) 2014; 134
Schenkel (10.1016/j.immuni.2017.01.009_bib39) 2014; 346
Rashighi (10.1016/j.immuni.2017.01.009_bib35) 2014; 6
Hueber (10.1016/j.immuni.2017.01.009_bib18) 2010; 2
Ramsköld (10.1016/j.immuni.2017.01.009_bib34) 2012; 30
Harris (10.1016/j.immuni.2017.01.009_bib16) 2012; 132
Wang (10.1016/j.immuni.2017.01.009_bib46) 2006; 176
Ezzedine (10.1016/j.immuni.2017.01.009_bib11) 2015; 386
Cheuk (10.1016/j.immuni.2017.01.009_bib5) 2014; 192
Mackay (10.1016/j.immuni.2017.01.009_bib25) 2013; 14
Clark (10.1016/j.immuni.2017.01.009_bib7) 2015; 7
Jameson (10.1016/j.immuni.2017.01.009_bib20) 2002; 296
Mueller (10.1016/j.immuni.2017.01.009_bib28) 2016; 16
Jabri (10.1016/j.immuni.2017.01.009_bib19) 2015; 15
Boehncke (10.1016/j.immuni.2017.01.009_bib4) 2015; 386
Pasparakis (10.1016/j.immuni.2017.01.009_bib32) 2014; 14
Hondowicz (10.1016/j.immuni.2017.01.009_bib17) 2016; 44
Jiang (10.1016/j.immuni.2017.01.009_bib21) 2012; 483
Craiglow (10.1016/j.immuni.2017.01.009_bib9) 2015; 151
Naik (10.1016/j.immuni.2017.01.009_bib29) 2012; 337
Gebhardt (10.1016/j.immuni.2017.01.009_bib13) 2009; 10
Leonardi (10.1016/j.immuni.2017.01.009_bib23) 2008; 371
Loser (10.1016/j.immuni.2017.01.009_bib24) 2004; 34
24162776 - Nat Immunol. 2013 Dec;14(12):1294-301
26446955 - Sci Transl Med. 2015 Oct 7;7(308):308ra158
21298112 - PLoS One. 2011 Jan 26;6(1):e16245
19305395 - Nat Immunol. 2009 May;10(5):524-30
24706879 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5307-12
20926833 - Sci Transl Med. 2010 Oct 6;2(52):52ra72
26216123 - J Exp Med. 2015 Aug 24;212(9):1405-14
11976459 - Science. 2002 Apr 26;296(5568):747-9
25539086 - Nature. 2015 Apr 2;520(7545):104-8
24162775 - Nat Immunol. 2013 Dec;14(12):1285-93
26025581 - Lancet. 2015 Sep 5;386(9997):983-94
16547281 - J Immunol. 2006 Apr 1;176(7):4431-9
22388819 - Nature. 2012 Feb 29;483(7388):227-31
18486739 - Lancet. 2008 May 17;371(9625):1665-74
24076049 - Immunity. 2013 Oct 17;39(4):687-96
25624457 - J Immunol. 2015 Mar 1;194(5):2059-63
22820318 - Nat Biotechnol. 2012 Aug;30(8):777-82
25414304 - Science. 2014 Nov 21;346(6212):954-9
23354485 - Nat Immunol. 2013 Mar;14(3):238-45
19242513 - J Invest Dermatol. 2009 Sep;129(9):2220-32
15214050 - Eur J Immunol. 2004 Jul;34(7):2022-31
25170049 - Science. 2014 Oct 3;346(6205):98-101
26688350 - Nat Rev Immunol. 2016 Feb;16(2):79-89
14975239 - Immunity. 2004 Feb;20(2):167-79
21084709 - Blood. 2011 Jan 27;117(4):1250-9
24523323 - Sci Transl Med. 2014 Feb 12;6(223):223ra23
15357947 - Immunity. 2004 Sep;21(3):357-66
22837383 - Science. 2012 Aug 31;337(6098):1115-9
25417158 - Cell. 2014 Nov 6;159(4):814-28
26121195 - Nat Med. 2015 Jul;21(7):688-97
25568072 - Sci Transl Med. 2015 Jan 7;7(269):269rv1
24431112 - Sci Transl Med. 2014 Jan 15;6(219):219ra8
16455966 - J Immunol. 2006 Feb 15;176(4):2105-13
24945094 - J Invest Dermatol. 2014 Dec;134(12):2898-907
25278612 - Science. 2014 Oct 3;346(6205):101-5
26594339 - F1000Res. 2015 Aug 03;4:460
25129481 - Nat Med. 2014 Sep;20(9):1043-9
26750312 - Immunity. 2016 Jan 19;44(1):155-66
24509084 - J Clin Invest. 2014 Mar;124(3):1027-36
25962122 - Nat Med. 2015 Jun;21(6):647-53
24722477 - Nat Rev Immunol. 2014 May;14(5):289-301
22297636 - J Invest Dermatol. 2012 Jul;132(7):1869-76
26479922 - Nat Med. 2015 Nov;21(11):1272-9
24610014 - J Immunol. 2014 Apr 1;192(7):3111-20
26107994 - JAMA Dermatol. 2015 Oct;151(10):1110-2
26567920 - Nat Rev Immunol. 2015 Dec;15(12 ):771-83
25526304 - Immunity. 2014 Dec 18;41(6):886-97
23287865 - Blood. 2013 Feb 21;121(8):1345-56
25787765 - Sci Transl Med. 2015 Mar 18;7(279):279ra39
25596811 - Lancet. 2015 Jul 4;386(9988):74-84
References_xml – volume: 151
  start-page: 1110
  year: 2015
  end-page: 1112
  ident: bib9
  article-title: Tofacitinib Citrate for the Treatment of Vitiligo: A Pathogenesis-Directed Therapy
  publication-title: JAMA Dermatol.
– volume: 124
  start-page: 1027
  year: 2014
  end-page: 1036
  ident: bib37
  article-title: Memory regulatory T cells reside in human skin
  publication-title: J. Clin. Invest.
– volume: 7
  start-page: 308ra158
  year: 2015
  ident: bib22
  article-title: TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL
  publication-title: Sci. Transl. Med.
– volume: 129
  start-page: 2220
  year: 2009
  end-page: 2232
  ident: bib44
  article-title: Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients
  publication-title: J. Invest. Dermatol.
– volume: 10
  start-page: 524
  year: 2009
  end-page: 530
  ident: bib13
  article-title: Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus
  publication-title: Nat. Immunol.
– volume: 296
  start-page: 747
  year: 2002
  end-page: 749
  ident: bib20
  article-title: A role for skin gammadelta T cells in wound repair
  publication-title: Science
– volume: 14
  start-page: 289
  year: 2014
  end-page: 301
  ident: bib32
  article-title: Mechanisms regulating skin immunity and inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 159
  start-page: 814
  year: 2014
  end-page: 828
  ident: bib43
  article-title: Spatial map of human T cell compartmentalization and maintenance over decades of life
  publication-title: Cell
– volume: 134
  start-page: 2898
  year: 2014
  end-page: 2907
  ident: bib42
  article-title: The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells
  publication-title: J. Invest. Dermatol.
– volume: 21
  start-page: 1272
  year: 2015
  end-page: 1279
  ident: bib1
  article-title: Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma
  publication-title: Nat. Med.
– volume: 371
  start-page: 1665
  year: 2008
  end-page: 1674
  ident: bib23
  article-title: Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1)
  publication-title: Lancet
– volume: 346
  start-page: 954
  year: 2014
  end-page: 959
  ident: bib3
  article-title: Dialogue between skin microbiota and immunity
  publication-title: Science
– volume: 176
  start-page: 4431
  year: 2006
  end-page: 4439
  ident: bib8
  article-title: The vast majority of CLA+ T cells are resident in normal skin
  publication-title: J. Immunol.
– volume: 4
  start-page: 460
  year: 2015
  ident: bib15
  article-title: Deep Sequencing of the T-cell Receptor Repertoire Demonstrates Polyclonal T-cell Infiltrates in Psoriasis
  publication-title: F1000Res.
– volume: 520
  start-page: 104
  year: 2015
  end-page: 108
  ident: bib30
  article-title: Commensal-dendritic-cell interaction specifies a unique protective skin immune signature
  publication-title: Nature
– volume: 14
  start-page: 1294
  year: 2013
  end-page: 1301
  ident: bib25
  article-title: The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin
  publication-title: Nat. Immunol.
– volume: 41
  start-page: 886
  year: 2014
  end-page: 897
  ident: bib38
  article-title: Tissue-resident memory T cells
  publication-title: Immunity
– volume: 7
  start-page: 279ra39
  year: 2015
  ident: bib47
  article-title: Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells
  publication-title: Sci. Transl. Med.
– volume: 14
  start-page: 1285
  year: 2013
  end-page: 1293
  ident: bib41
  article-title: Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells
  publication-title: Nat. Immunol.
– volume: 121
  start-page: 1345
  year: 2013
  end-page: 1356
  ident: bib6
  article-title: Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production
  publication-title: Blood
– volume: 194
  start-page: 2059
  year: 2015
  end-page: 2063
  ident: bib26
  article-title: Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention
  publication-title: J. Immunol.
– volume: 34
  start-page: 2022
  year: 2004
  end-page: 2031
  ident: bib24
  article-title: Enhanced contact hypersensitivity and antiviral immune responses in vivo by keratinocyte-targeted overexpression of IL-15
  publication-title: Eur. J. Immunol.
– volume: 39
  start-page: 687
  year: 2013
  end-page: 696
  ident: bib50
  article-title: Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention
  publication-title: Immunity
– volume: 386
  start-page: 983
  year: 2015
  end-page: 994
  ident: bib4
  article-title: Psoriasis
  publication-title: Lancet
– volume: 176
  start-page: 2105
  year: 2006
  end-page: 2113
  ident: bib46
  article-title: LFA-1-dependent HuR nuclear export and cytokine mRNA stabilization in T cell activation
  publication-title: J. Immunol.
– volume: 346
  start-page: 98
  year: 2014
  end-page: 101
  ident: bib39
  article-title: T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses
  publication-title: Science
– volume: 14
  start-page: 238
  year: 2013
  end-page: 245
  ident: bib45
  article-title: Enhanced survival of lung tissue-resident memory CD8
  publication-title: Nat. Immunol.
– volume: 117
  start-page: 1250
  year: 2011
  end-page: 1259
  ident: bib10
  article-title: Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells
  publication-title: Blood
– volume: 7
  start-page: 269rv1
  year: 2015
  ident: bib7
  article-title: Resident memory T cells in human health and disease
  publication-title: Sci. Transl. Med.
– volume: 44
  start-page: 155
  year: 2016
  end-page: 166
  ident: bib17
  article-title: Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma
  publication-title: Immunity
– volume: 192
  start-page: 3111
  year: 2014
  end-page: 3120
  ident: bib5
  article-title: Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis
  publication-title: J. Immunol.
– volume: 20
  start-page: 1043
  year: 2014
  end-page: 1049
  ident: bib48
  article-title: Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition
  publication-title: Nat. Med.
– volume: 21
  start-page: 647
  year: 2015
  end-page: 653
  ident: bib12
  article-title: Common clonal origin of central and resident memory T cells following skin immunization
  publication-title: Nat. Med.
– volume: 386
  start-page: 74
  year: 2015
  end-page: 84
  ident: bib11
  article-title: Vitiligo
  publication-title: Lancet
– volume: 111
  start-page: 5307
  year: 2014
  end-page: 5312
  ident: bib49
  article-title: Persistence of skin-resident memory T cells within an epidermal niche
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 346
  start-page: 101
  year: 2014
  end-page: 105
  ident: bib2
  article-title: T cell memory. Skin-resident memory CD8
  publication-title: Science
– volume: 6
  start-page: 219ra8
  year: 2014
  ident: bib40
  article-title: Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity
  publication-title: Sci. Transl. Med.
– volume: 6
  start-page: e16245
  year: 2011
  ident: bib33
  article-title: Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity
  publication-title: PLoS ONE
– volume: 2
  start-page: 52ra72
  year: 2010
  ident: bib18
  article-title: Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis
  publication-title: Sci. Transl. Med.
– volume: 16
  start-page: 79
  year: 2016
  end-page: 89
  ident: bib28
  article-title: Tissue-resident memory T cells: local specialists in immune defence
  publication-title: Nat. Rev. Immunol.
– volume: 132
  start-page: 1869
  year: 2012
  end-page: 1876
  ident: bib16
  article-title: A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8
  publication-title: J. Invest. Dermatol.
– volume: 6
  start-page: 223ra23
  year: 2014
  ident: bib35
  article-title: CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo
  publication-title: Sci. Transl. Med.
– volume: 20
  start-page: 167
  year: 2004
  end-page: 179
  ident: bib36
  article-title: The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection
  publication-title: Immunity
– volume: 21
  start-page: 357
  year: 2004
  end-page: 366
  ident: bib27
  article-title: Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease
  publication-title: Immunity
– volume: 212
  start-page: 1405
  year: 2015
  end-page: 1414
  ident: bib14
  article-title: Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection
  publication-title: J. Exp. Med.
– volume: 15
  start-page: 771
  year: 2015
  end-page: 783
  ident: bib19
  article-title: IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction
  publication-title: Nat. Rev. Immunol.
– volume: 21
  start-page: 688
  year: 2015
  end-page: 697
  ident: bib31
  article-title: The emerging role of resident memory T cells in protective immunity and inflammatory disease
  publication-title: Nat. Med.
– volume: 337
  start-page: 1115
  year: 2012
  end-page: 1119
  ident: bib29
  article-title: Compartmentalized control of skin immunity by resident commensals
  publication-title: Science
– volume: 30
  start-page: 777
  year: 2012
  end-page: 782
  ident: bib34
  article-title: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
  publication-title: Nat. Biotechnol.
– volume: 483
  start-page: 227
  year: 2012
  end-page: 231
  ident: bib21
  article-title: Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity
  publication-title: Nature
– volume: 132
  start-page: 1869
  year: 2012
  ident: 10.1016/j.immuni.2017.01.009_bib16
  article-title: A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2011.463
– volume: 194
  start-page: 2059
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib26
  article-title: Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402256
– volume: 386
  start-page: 983
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib4
  article-title: Psoriasis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61909-7
– volume: 6
  start-page: 219ra8
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib40
  article-title: Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3007828
– volume: 14
  start-page: 238
  year: 2013
  ident: 10.1016/j.immuni.2017.01.009_bib45
  article-title: Enhanced survival of lung tissue-resident memory CD8+ T cells during infection with influenza virus due to selective expression of IFITM3
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2525
– volume: 14
  start-page: 1285
  year: 2013
  ident: 10.1016/j.immuni.2017.01.009_bib41
  article-title: Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2745
– volume: 21
  start-page: 647
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib12
  article-title: Common clonal origin of central and resident memory T cells following skin immunization
  publication-title: Nat. Med.
  doi: 10.1038/nm.3860
– volume: 7
  start-page: 269rv1
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib7
  article-title: Resident memory T cells in human health and disease
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3010641
– volume: 39
  start-page: 687
  year: 2013
  ident: 10.1016/j.immuni.2017.01.009_bib50
  article-title: Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.08.019
– volume: 2
  start-page: 52ra72
  year: 2010
  ident: 10.1016/j.immuni.2017.01.009_bib18
  article-title: Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3001107
– volume: 192
  start-page: 3111
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib5
  article-title: Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1302313
– volume: 41
  start-page: 886
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib38
  article-title: Tissue-resident memory T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.12.007
– volume: 30
  start-page: 777
  year: 2012
  ident: 10.1016/j.immuni.2017.01.009_bib34
  article-title: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2282
– volume: 129
  start-page: 2220
  year: 2009
  ident: 10.1016/j.immuni.2017.01.009_bib44
  article-title: Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2009.32
– volume: 21
  start-page: 357
  year: 2004
  ident: 10.1016/j.immuni.2017.01.009_bib27
  article-title: Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease
  publication-title: Immunity
  doi: 10.1016/j.immuni.2004.06.020
– volume: 20
  start-page: 1043
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib48
  article-title: Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition
  publication-title: Nat. Med.
  doi: 10.1038/nm.3645
– volume: 111
  start-page: 5307
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib49
  article-title: Persistence of skin-resident memory T cells within an epidermal niche
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1322292111
– volume: 117
  start-page: 1250
  year: 2011
  ident: 10.1016/j.immuni.2017.01.009_bib10
  article-title: Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells
  publication-title: Blood
  doi: 10.1182/blood-2010-08-303339
– volume: 296
  start-page: 747
  year: 2002
  ident: 10.1016/j.immuni.2017.01.009_bib20
  article-title: A role for skin gammadelta T cells in wound repair
  publication-title: Science
  doi: 10.1126/science.1069639
– volume: 34
  start-page: 2022
  year: 2004
  ident: 10.1016/j.immuni.2017.01.009_bib24
  article-title: Enhanced contact hypersensitivity and antiviral immune responses in vivo by keratinocyte-targeted overexpression of IL-15
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200324785
– volume: 4
  start-page: 460
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib15
  article-title: Deep Sequencing of the T-cell Receptor Repertoire Demonstrates Polyclonal T-cell Infiltrates in Psoriasis
  publication-title: F1000Res.
  doi: 10.12688/f1000research.6756.1
– volume: 520
  start-page: 104
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib30
  article-title: Commensal-dendritic-cell interaction specifies a unique protective skin immune signature
  publication-title: Nature
  doi: 10.1038/nature14052
– volume: 176
  start-page: 4431
  year: 2006
  ident: 10.1016/j.immuni.2017.01.009_bib8
  article-title: The vast majority of CLA+ T cells are resident in normal skin
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.7.4431
– volume: 10
  start-page: 524
  year: 2009
  ident: 10.1016/j.immuni.2017.01.009_bib13
  article-title: Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1718
– volume: 44
  start-page: 155
  year: 2016
  ident: 10.1016/j.immuni.2017.01.009_bib17
  article-title: Interleukin-2-Dependent Allergen-Specific Tissue-Resident Memory Cells Drive Asthma
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.11.004
– volume: 7
  start-page: 308ra158
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib22
  article-title: TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa9122
– volume: 15
  start-page: 771
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib19
  article-title: IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3919
– volume: 371
  start-page: 1665
  year: 2008
  ident: 10.1016/j.immuni.2017.01.009_bib23
  article-title: Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1)
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)60725-4
– volume: 20
  start-page: 167
  year: 2004
  ident: 10.1016/j.immuni.2017.01.009_bib36
  article-title: The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection
  publication-title: Immunity
  doi: 10.1016/S1074-7613(04)00021-4
– volume: 14
  start-page: 1294
  year: 2013
  ident: 10.1016/j.immuni.2017.01.009_bib25
  article-title: The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2744
– volume: 7
  start-page: 279ra39
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib47
  article-title: Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3010302
– volume: 16
  start-page: 79
  year: 2016
  ident: 10.1016/j.immuni.2017.01.009_bib28
  article-title: Tissue-resident memory T cells: local specialists in immune defence
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2015.3
– volume: 337
  start-page: 1115
  year: 2012
  ident: 10.1016/j.immuni.2017.01.009_bib29
  article-title: Compartmentalized control of skin immunity by resident commensals
  publication-title: Science
  doi: 10.1126/science.1225152
– volume: 6
  start-page: 223ra23
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib35
  article-title: CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3007811
– volume: 134
  start-page: 2898
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib42
  article-title: The IL-17A-producing CD8+ T-cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2014.261
– volume: 159
  start-page: 814
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib43
  article-title: Spatial map of human T cell compartmentalization and maintenance over decades of life
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.026
– volume: 21
  start-page: 1272
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib1
  article-title: Hair follicle-derived IL-7 and IL-15 mediate skin-resident memory T cell homeostasis and lymphoma
  publication-title: Nat. Med.
  doi: 10.1038/nm.3962
– volume: 212
  start-page: 1405
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib14
  article-title: Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20142101
– volume: 346
  start-page: 98
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib39
  article-title: T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses
  publication-title: Science
  doi: 10.1126/science.1254536
– volume: 6
  start-page: e16245
  year: 2011
  ident: 10.1016/j.immuni.2017.01.009_bib33
  article-title: Resident memory T cells (T(RM)) are abundant in human lung: diversity, function, and antigen specificity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016245
– volume: 176
  start-page: 2105
  year: 2006
  ident: 10.1016/j.immuni.2017.01.009_bib46
  article-title: LFA-1-dependent HuR nuclear export and cytokine mRNA stabilization in T cell activation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.4.2105
– volume: 386
  start-page: 74
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib11
  article-title: Vitiligo
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)60763-7
– volume: 346
  start-page: 954
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib3
  article-title: Dialogue between skin microbiota and immunity
  publication-title: Science
  doi: 10.1126/science.1260144
– volume: 483
  start-page: 227
  year: 2012
  ident: 10.1016/j.immuni.2017.01.009_bib21
  article-title: Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity
  publication-title: Nature
  doi: 10.1038/nature10851
– volume: 14
  start-page: 289
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib32
  article-title: Mechanisms regulating skin immunity and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3646
– volume: 124
  start-page: 1027
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib37
  article-title: Memory regulatory T cells reside in human skin
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI72932
– volume: 121
  start-page: 1345
  year: 2013
  ident: 10.1016/j.immuni.2017.01.009_bib6
  article-title: Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production
  publication-title: Blood
  doi: 10.1182/blood-2012-07-442558
– volume: 21
  start-page: 688
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib31
  article-title: The emerging role of resident memory T cells in protective immunity and inflammatory disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.3883
– volume: 151
  start-page: 1110
  year: 2015
  ident: 10.1016/j.immuni.2017.01.009_bib9
  article-title: Tofacitinib Citrate for the Treatment of Vitiligo: A Pathogenesis-Directed Therapy
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2015.1520
– volume: 346
  start-page: 101
  year: 2014
  ident: 10.1016/j.immuni.2017.01.009_bib2
  article-title: T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert
  publication-title: Science
  doi: 10.1126/science.1254803
– reference: 15214050 - Eur J Immunol. 2004 Jul;34(7):2022-31
– reference: 26479922 - Nat Med. 2015 Nov;21(11):1272-9
– reference: 25596811 - Lancet. 2015 Jul 4;386(9988):74-84
– reference: 25624457 - J Immunol. 2015 Mar 1;194(5):2059-63
– reference: 25170049 - Science. 2014 Oct 3;346(6205):98-101
– reference: 26567920 - Nat Rev Immunol. 2015 Dec;15(12 ):771-83
– reference: 24722477 - Nat Rev Immunol. 2014 May;14(5):289-301
– reference: 26688350 - Nat Rev Immunol. 2016 Feb;16(2):79-89
– reference: 24523323 - Sci Transl Med. 2014 Feb 12;6(223):223ra23
– reference: 26216123 - J Exp Med. 2015 Aug 24;212(9):1405-14
– reference: 15357947 - Immunity. 2004 Sep;21(3):357-66
– reference: 22388819 - Nature. 2012 Feb 29;483(7388):227-31
– reference: 24431112 - Sci Transl Med. 2014 Jan 15;6(219):219ra8
– reference: 24509084 - J Clin Invest. 2014 Mar;124(3):1027-36
– reference: 26107994 - JAMA Dermatol. 2015 Oct;151(10):1110-2
– reference: 26446955 - Sci Transl Med. 2015 Oct 7;7(308):308ra158
– reference: 23287865 - Blood. 2013 Feb 21;121(8):1345-56
– reference: 16455966 - J Immunol. 2006 Feb 15;176(4):2105-13
– reference: 23354485 - Nat Immunol. 2013 Mar;14(3):238-45
– reference: 19242513 - J Invest Dermatol. 2009 Sep;129(9):2220-32
– reference: 22297636 - J Invest Dermatol. 2012 Jul;132(7):1869-76
– reference: 11976459 - Science. 2002 Apr 26;296(5568):747-9
– reference: 26121195 - Nat Med. 2015 Jul;21(7):688-97
– reference: 21084709 - Blood. 2011 Jan 27;117(4):1250-9
– reference: 14975239 - Immunity. 2004 Feb;20(2):167-79
– reference: 26025581 - Lancet. 2015 Sep 5;386(9997):983-94
– reference: 25539086 - Nature. 2015 Apr 2;520(7545):104-8
– reference: 16547281 - J Immunol. 2006 Apr 1;176(7):4431-9
– reference: 26750312 - Immunity. 2016 Jan 19;44(1):155-66
– reference: 25278612 - Science. 2014 Oct 3;346(6205):101-5
– reference: 25417158 - Cell. 2014 Nov 6;159(4):814-28
– reference: 24706879 - Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5307-12
– reference: 25962122 - Nat Med. 2015 Jun;21(6):647-53
– reference: 24076049 - Immunity. 2013 Oct 17;39(4):687-96
– reference: 26594339 - F1000Res. 2015 Aug 03;4:460
– reference: 24945094 - J Invest Dermatol. 2014 Dec;134(12):2898-907
– reference: 22837383 - Science. 2012 Aug 31;337(6098):1115-9
– reference: 18486739 - Lancet. 2008 May 17;371(9625):1665-74
– reference: 25526304 - Immunity. 2014 Dec 18;41(6):886-97
– reference: 24162775 - Nat Immunol. 2013 Dec;14(12):1285-93
– reference: 20926833 - Sci Transl Med. 2010 Oct 6;2(52):52ra72
– reference: 25787765 - Sci Transl Med. 2015 Mar 18;7(279):279ra39
– reference: 21298112 - PLoS One. 2011 Jan 26;6(1):e16245
– reference: 25414304 - Science. 2014 Nov 21;346(6212):954-9
– reference: 19305395 - Nat Immunol. 2009 May;10(5):524-30
– reference: 22820318 - Nat Biotechnol. 2012 Aug;30(8):777-82
– reference: 25129481 - Nat Med. 2014 Sep;20(9):1043-9
– reference: 25568072 - Sci Transl Med. 2015 Jan 7;7(269):269rv1
– reference: 24610014 - J Immunol. 2014 Apr 1;192(7):3111-20
– reference: 24162776 - Nat Immunol. 2013 Dec;14(12):1294-301
SSID ssj0014590
Score 2.6582587
Snippet Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker...
Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 287
SubjectTerms Biopsy
CD49a
CD8-Positive T-Lymphocytes - immunology
Cell Separation
Councils
Cytotoxicity
Cytotoxicity, Immunologic - immunology
Deoxyribonucleic acid
DNA
Experiments
Flow Cytometry
granzyme B
Humans
IL-15
Immunologic Memory - immunology
immunopathology
Integrin alpha1 - biosynthesis
Integrin alpha1 - immunology
Localization
Lymphocyte Activation - immunology
Lymphocytes
Microscopy, Confocal
perforin
Psoriasis
Psoriasis - immunology
Skin
Skin - immunology
T cell receptors
T-Lymphocyte Subsets - immunology
tissue resident T cells
Vitiligo
Vitiligo - immunology
Title CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin
URI https://dx.doi.org/10.1016/j.immuni.2017.01.009
https://www.ncbi.nlm.nih.gov/pubmed/28214226
https://www.proquest.com/docview/1874035913
https://www.proquest.com/docview/1869966655
https://www.proquest.com/docview/1877836134
https://pubmed.ncbi.nlm.nih.gov/PMC5337619
http://kipublications.ki.se/Default.aspx?queryparsed=id:135255884
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9wwDDelY2MvY-u-0nXFg7GXES5OHOfy2OV6lJWO0V3ZvRnbcWi2Iym9FNr_fpLjBELHCnvLhwyJJVmS_ZNEyEeIeTJjKhuWKYSrvAJezGPDwjKPFYtKzjK3oX_2TZxc8K_rdL1DiiEXBmGVfu3v13S3WvsnMz-bs6u6nv1AKCEE4WAAExRNLLud8LlL4lt_GU8SeJpHI-4QqIf0OYfxql0OBgK8Mle8E2GJfzdP993P-yjKSa1RZ5-Wz8kz71jSo_7bX5Ad2-yRx32rybs98uTMH6K_JKpY8FzR41uPgW3owlaIfqcrx4Xw3GIPz6ajxWL-ma5oYTebLf3e1ltbUnByaXHXtV17Wxu6BLOIrKV1Q915AMVuXq_IxfJ4VZyEvtNCaMD_6UItdAmuhEk0UyKqQIljy7WONLNgvrgVeW7nma1K9A-MqqzOjTVC8EhpVYIevya7TdvYt4RqzsskVrkqOUTduVWcVQxL3GgTC2VEQJJhgqXxZcixG8ZGDnizX7Jni0S2yIhJYEtAwnHUVV-G4wH6bOCdnIiTBEvxwMiDgdXSq_NWusaFSZqzJCAfxtegiHi6ohrb3iCNwNhRpOm_aDLMmmEJD8ibXnrG34HY16U1w6dP5GokwELg0zdNfekKgoPLjrtRAfnUS-BkiH_0G66s5NgulO3_9-y8I0_xzuX0swOy213f2PfglXX6kDw6Oj3_eXro1O8P1dY38w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_niR8voufX6qkRxBcp27Rpun3U7i17enuI7sG-hSRNsbq0h9uDu__emTQtlBMPfCvNBNrMTGYm-c0MIe8g5kmNKW1QJBCu8hJ4MYsMC4osUiwsOEvdgf7qVCzP-OdNstkjeZ8Lg7BKv_d3e7rbrf2bqV_N6XlVTb8jlBCCcDCAMYqmuEVugzeQonYebz4NVwk8ycIBeAjkff6cA3lVLgkDEV6pq96JuMS_26fr_ud1GOWo2KgzUIuH5IH3LOnH7uMfkT1bH5A7Xa_JqwNyd-Vv0R8Tlc95pujRpQfB1nRuS4S_07VjQ_DNYhPPuqX5fPaBrmlut9sd_dpUO1tQ8HJpftU2bXNZGboAu4i8pVVN3YUAxXZeT8jZ4midLwPfaiEw4AC1gRa6AF_CxJopEZagxZHlWoeaWbBf3Ioss7PUlgU6CEaVVmfGGiF4qLQqQJGfkv26qe1zQjXnRRypTBUcwu7MKs5KhjVutImEMmJC4n6BpfF1yLEdxlb2gLOfsmOLRLbIkElgy4QEw6zzrg7HDfRpzzs5kicJpuKGmYc9q6XX5510nQvjJGPxhLwdhkET8XpF1ba5QBqBwaNIkn_RpJg2w2I-Ic866Rl-B4Jfl9cMnz6Sq4EAK4GPR-rqh6sIDj47HkdNyPtOAkdT_Ktf8GQlx36h7MV_r84bcm-5Xp3Ik-PTLy_JfRxxCf7skOy3vy_sK3DRWv3aqeAfq145cA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD49a+Expression+Defines+Tissue-Resident+CD8+%2B+T+Cells+Poised+for+Cytotoxic+Function+in+Human+Skin&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Cheuk%2C+Stanley&rft.au=Schlums%2C+Heinrich&rft.au=Gallais+S%C3%A9r%C3%A9zal%2C+Ir%C3%A8ne&rft.au=Martini%2C+Elisa&rft.date=2017-02-21&rft.eissn=1097-4180&rft.volume=46&rft.issue=2&rft.spage=287&rft_id=info:doi/10.1016%2Fj.immuni.2017.01.009&rft_id=info%3Apmid%2F28214226&rft.externalDocID=28214226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon