Regression Analysis of Doubly Truncated Data

Doubly truncated data are found in astronomy, econometrics, and survival analysis literature. They arise when each observation is confined to an interval, that is, only those which fall within their respective intervals are observed along with the intervals. Unlike the one-sided truncation that can...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 115; no. 530; pp. 810 - 821
Main Authors Ying, Zhiliang, Yu, Wen, Zhao, Ziqiang, Zheng, Ming
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.04.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Doubly truncated data are found in astronomy, econometrics, and survival analysis literature. They arise when each observation is confined to an interval, that is, only those which fall within their respective intervals are observed along with the intervals. Unlike the one-sided truncation that can be handled by counting process-based approach, doubly truncated data are much more difficult to handle. In their analysis of an astronomical dataset, Efron and Petrosian proposed some nonparametric methods for doubly truncated data. Motivated by their approach, as well as by the work of Bhattacharya et al. for right truncated data, we propose a general method for estimating the regression parameter when the dependent variable is subject to the double truncation. It extends the Mann-Whitney-type rank estimator and can be computed easily by existing software packages. Weighted rank estimation is also considered for improving estimation efficiency. We show that the resulting estimators are consistent and asymptotically normal. Resampling schemes are proposed with large sample justification for approximating the limiting distributions. The quasar data in Efron and Petrosian and an AIDS incubation data are analyzed by the new method. Simulation results show that the proposed method works well.
AbstractList Doubly truncated data are found in astronomy, econometrics and survival analysis literature. They arise when each observation is confined to an interval, i.e., only those which fall within their respective intervals are observed along with the intervals. Unlike the one-sided truncation that can be handled by counting process-based approach, doubly truncated data are much more difficult to handle. In their analysis of an astronomical data set, Efron and Petrosian (1999) proposed some nonparametric methods for doubly truncated data. Motivated by their approach, as well as by the work of Bhattacharya et al. (1983) for right truncated data, we propose a general method for estimating the regression parameter when the dependent variable is subject to the double truncation. It extends the Mann-Whitney-type rank estimator and can be computed easily by existing software packages. Weighted rank estimation are also considered for improving estimation efficiency. We show that the resulting estimators are consistent and asymptotically normal. Resampling schemes are proposed with large sample justification for approximating the limiting distributions. The quasar data in Efron and Petrosian (1999) and an AIDS incubation data are analyzed by the new method. Simulation results show that the proposed method works well.
Doubly truncated data are found in astronomy, econometrics, and survival analysis literature. They arise when each observation is confined to an interval, that is, only those which fall within their respective intervals are observed along with the intervals. Unlike the one-sided truncation that can be handled by counting process-based approach, doubly truncated data are much more difficult to handle. In their analysis of an astronomical dataset, Efron and Petrosian proposed some nonparametric methods for doubly truncated data. Motivated by their approach, as well as by the work of Bhattacharya et al. for right truncated data, we propose a general method for estimating the regression parameter when the dependent variable is subject to the double truncation. It extends the Mann-Whitney-type rank estimator and can be computed easily by existing software packages. Weighted rank estimation is also considered for improving estimation efficiency. We show that the resulting estimators are consistent and asymptotically normal. Resampling schemes are proposed with large sample justification for approximating the limiting distributions. The quasar data in Efron and Petrosian and an AIDS incubation data are analyzed by the new method. Simulation results show that the proposed method works well.
Doubly truncated data are found in astronomy, econometrics, and survival analysis literature. They arise when each observation is confined to an interval, that is, only those which fall within their respective intervals are observed along with the intervals. Unlike the one-sided truncation that can be handled by counting process-based approach, doubly truncated data are much more difficult to handle. In their analysis of an astronomical dataset, Efron and Petrosian proposed some nonparametric methods for doubly truncated data. Motivated by their approach, as well as by the work of Bhattacharya et al. for right truncated data, we propose a general method for estimating the regression parameter when the dependent variable is subject to the double truncation. It extends the Mann–Whitney-type rank estimator and can be computed easily by existing software packages. Weighted rank estimation is also considered for improving estimation efficiency. We show that the resulting estimators are consistent and asymptotically normal. Resampling schemes are proposed with large sample justification for approximating the limiting distributions. The quasar data in Efron and Petrosian and an AIDS incubation data are analyzed by the new method. Simulation results show that the proposed method works well.
Doubly truncated data are found in astronomy, econometrics and survival analysis literature. They arise when each observation is confined to an interval, i.e., only those which fall within their respective intervals are observed along with the intervals. Unlike the one-sided truncation that can be handled by counting process-based approach, doubly truncated data are much more difficult to handle. In their analysis of an astronomical data set, Efron and Petrosian (1999) proposed some nonparametric methods for doubly truncated data. Motivated by their approach, as well as by the work of Bhattacharya et al. (1983) for right truncated data, we propose a general method for estimating the regression parameter when the dependent variable is subject to the double truncation. It extends the Mann-Whitney-type rank estimator and can be computed easily by existing software packages. Weighted rank estimation are also considered for improving estimation efficiency. We show that the resulting estimators are consistent and asymptotically normal. Resampling schemes are proposed with large sample justification for approximating the limiting distributions. The quasar data in Efron and Petrosian (1999) and an AIDS incubation data are analyzed by the new method. Simulation results show that the proposed method works well.
Doubly truncated data are found in astronomy, econometrics and survival analysis literature. They arise when each observation is confined to an interval, i.e., only those which fall within their respective intervals are observed along with the intervals. Unlike the one-sided truncation that can be handled by counting process-based approach, doubly truncated data are much more difficult to handle. In their analysis of an astronomical data set, Efron and Petrosian (1999) proposed some nonparametric methods for doubly truncated data. Motivated by their approach, as well as by the work of Bhattacharya et al. (1983) for right truncated data, we propose a general method for estimating the regression parameter when the dependent variable is subject to the double truncation. It extends the Mann-Whitney-type rank estimator and can be computed easily by existing software packages. Weighted rank estimation are also considered for improving estimation efficiency. We show that the resulting estimators are consistent and asymptotically normal. Resampling schemes are proposed with large sample justification for approximating the limiting distributions. The quasar data in Efron and Petrosian (1999) and an AIDS incubation data are analyzed by the new method. Simulation results show that the proposed method works well.Doubly truncated data are found in astronomy, econometrics and survival analysis literature. They arise when each observation is confined to an interval, i.e., only those which fall within their respective intervals are observed along with the intervals. Unlike the one-sided truncation that can be handled by counting process-based approach, doubly truncated data are much more difficult to handle. In their analysis of an astronomical data set, Efron and Petrosian (1999) proposed some nonparametric methods for doubly truncated data. Motivated by their approach, as well as by the work of Bhattacharya et al. (1983) for right truncated data, we propose a general method for estimating the regression parameter when the dependent variable is subject to the double truncation. It extends the Mann-Whitney-type rank estimator and can be computed easily by existing software packages. Weighted rank estimation are also considered for improving estimation efficiency. We show that the resulting estimators are consistent and asymptotically normal. Resampling schemes are proposed with large sample justification for approximating the limiting distributions. The quasar data in Efron and Petrosian (1999) and an AIDS incubation data are analyzed by the new method. Simulation results show that the proposed method works well.
Author Zhao, Ziqiang
Zheng, Ming
Yu, Wen
Ying, Zhiliang
Author_xml – sequence: 1
  givenname: Zhiliang
  surname: Ying
  fullname: Ying, Zhiliang
  email: zying@stat.columbia.edu
  organization: Department of Statistics, Columbia University
– sequence: 2
  givenname: Wen
  surname: Yu
  fullname: Yu, Wen
  organization: Department of Statistics, School of Management, Fudan University
– sequence: 3
  givenname: Ziqiang
  surname: Zhao
  fullname: Zhao, Ziqiang
  organization: Novartis Pharmaceuticals
– sequence: 4
  givenname: Ming
  surname: Zheng
  fullname: Zheng, Ming
  organization: Department of Statistics, School of Management, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32952237$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1LHDEUhkOx6Gr9CS0D3vTCWXPyMZlBKBXtFwhCsdC7kEkyNpJNbDLTsv_eDLtbWi9qCOTiPO97Ts57iPZCDBah14CXgFt8hqEhwHi3JBi6JfCWE05eoAVwKmoi2Pc9tJiZeoYO0GHO97gc0bb76ICSjhNCxQKdfrV3yebsYqgugvLr7HIVh-oqTr1fV7dpClqN1lRXalSv0MtB-WyPt-8R-vbxw-3l5_r65tOXy4vrWvOGjHXfMNVogg2l2uKWArHYcAOiMxpTUmqCs3I5NGDEwEirDACw3hBh-7anR-jdxvdh6lfWaBvGpLx8SG6l0lpG5eS_leB-yLv4SwrWCdG0xeDt1iDFn5PNo1y5rK33Ktg4ZVlWVbpiRuF5lDHWYMaAFfTkCXofp1SWNlPAAZpiW6g3fw__Z-rdzgtwvgF0ijknO0jtRjWWBMpfnJeA5Zyw3CUs54TlNuGi5k_UuwbP6d5vdC4MMa3U75i8kaNa-5iGpIJ2WdL_WzwCsde53A
CitedBy_id crossref_primary_10_1007_s10182_020_00374_5
crossref_primary_10_1007_s11113_023_09785_z
crossref_primary_10_1360_SCM_2021_0158
crossref_primary_10_1002_sim_9828
crossref_primary_10_1007_s42952_020_00057_6
crossref_primary_10_1111_insr_12480
crossref_primary_10_12677_AAM_2021_1012464
crossref_primary_10_3390_math12121782
crossref_primary_10_3150_20_BEJ1236
crossref_primary_10_1007_s42952_021_00113_9
crossref_primary_10_1002_bimj_70022
crossref_primary_10_1080_02331888_2020_1772788
crossref_primary_10_3390_galaxies12010004
Cites_doi 10.1080/01621459.1989.10478780
10.1214/aos/1176348110
10.1214/aos/1176350608
10.1214/aos/1030741089
10.1214/aos/1176347991
10.1080/01621459.2012.746073
10.1093/biomet/88.2.381
10.2307/1913643
10.2307/2533140
10.1214/aos/1176349140
10.1093/biomet/65.1.167
10.1214/aos/1176350180
10.1214/12-EJS683
10.1093/mnras/155.1.95
10.1007/s10463-008-0192-2
10.1214/aos/1176346584
10.1093/biomet/69.3.553
10.1080/01621459.1999.10474187
10.1093/biomet/77.1.169
10.1007/s00180-012-0318-0
10.1111/j.2517-6161.1976.tb01597.x
10.1016/j.csda.2014.03.017
10.1214/aos/1176346157
10.1080/01621459.1988.10478664
10.1214/aos/1176347617
10.1093/biomet/90.2.341
10.2307/2951780
10.1007/s11749-012-0295-1
10.1214/aos/1176325377
ContentType Journal Article
Copyright 2019 American Statistical Association 2019
2019 American Statistical Association
Copyright_xml – notice: 2019 American Statistical Association 2019
– notice: 2019 American Statistical Association
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
DOI 10.1080/01621459.2019.1585252
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

International Bibliography of the Social Sciences (IBSS)
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 821
ExternalDocumentID PMC7497768
32952237
10_1080_01621459_2019_1585252
1585252
Genre Research Article
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM047845
– fundername: NIGMS NIH HHS
  grantid: R37 GM047845
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFRVT
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
JAS
JMS
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADXHL
AMPGV
AMVHM
CITATION
.-4
.GJ
07G
1OL
2AX
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAWIL
ABAWQ
ABBHK
ABEFU
ABJCF
ABPQH
ABUWG
ABXSQ
ACAGQ
ACGEE
ACHJO
ACUBG
ADBBV
ADODI
ADULT
AEUMN
AEUPB
AFKRA
AFQQW
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AI.
AIHAF
ALCKM
ALRMG
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DQDLB
DSRWC
DWIFK
DWQXO
E.L
ECEWR
EJD
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HQ6
HVGLF
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NPM
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SA0
SJN
TAQ
TASJS
TFMCV
TOXWX
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZUP
ZXP
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c562t-b64a6c20d33ce08312e0d5d179dc032a6c7547545161d7f428ad1114bd27eb8b3
ISSN 0162-1459
1537-274X
IngestDate Thu Aug 21 18:11:39 EDT 2025
Wed Jul 02 04:56:33 EDT 2025
Fri Jul 11 01:54:03 EDT 2025
Wed Aug 13 07:28:49 EDT 2025
Mon Jul 21 05:50:58 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Tue Jul 01 02:39:32 EDT 2025
Wed Apr 16 06:52:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 530
Keywords Empirical process
Wilcoxon-Mann-Whitney Statistic
Linear programming
L1 method
Resampling
U-process
Confidence interval
Rank estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c562t-b64a6c20d33ce08312e0d5d179dc032a6c7547545161d7f428ad1114bd27eb8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7497768
PMID 32952237
PQID 2415116524
PQPubID 41715
PageCount 12
ParticipantIDs proquest_miscellaneous_2444604414
proquest_journals_2415116524
pubmed_primary_32952237
crossref_primary_10_1080_01621459_2019_1585252
crossref_citationtrail_10_1080_01621459_2019_1585252
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497768
proquest_miscellaneous_2524280431
informaworld_taylorfrancis_310_1080_01621459_2019_1585252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-02
PublicationDateYYYYMMDD 2020-04-02
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Greene W. H (CIT0006) 2012
CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0014
CIT0013
CIT0016
CIT0015
CIT0017
CIT0019
Hajek J. (CIT0008) 1967
CIT0021
CIT0020
CIT0023
Amemiya T (CIT0001) 1985
CIT0022
Liu H. (CIT0018) 2016
Weinberg S (CIT0033) 1972
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0028
CIT0009
References_xml – ident: CIT0012
  doi: 10.1080/01621459.1989.10478780
– ident: CIT0017
  doi: 10.1214/aos/1176348110
– ident: CIT0004
  doi: 10.1214/aos/1176350608
– ident: CIT0023
  doi: 10.1214/aos/1030741089
– ident: CIT0016
  doi: 10.1214/aos/1176347991
– ident: CIT0014
  doi: 10.1080/01621459.2012.746073
– volume-title: Gravitation and Cosmology
  year: 1972
  ident: CIT0033
– ident: CIT0011
  doi: 10.1093/biomet/88.2.381
– ident: CIT0015
  doi: 10.2307/1913643
– ident: CIT0003
  doi: 10.2307/2533140
– volume-title: Advanced Econometrics
  year: 1985
  ident: CIT0001
– ident: CIT0007
  doi: 10.1214/aos/1176349140
– ident: CIT0022
  doi: 10.1093/biomet/65.1.167
– ident: CIT0032
  doi: 10.1214/aos/1176350180
– ident: CIT0020
  doi: 10.1214/12-EJS683
– ident: CIT0019
  doi: 10.1093/mnras/155.1.95
– ident: CIT0024
  doi: 10.1007/s10463-008-0192-2
– start-page: 1087
  year: 2016
  ident: CIT0018
  publication-title: Statistica Sinica, 26
– ident: CIT0034
  doi: 10.1214/aos/1176346584
– ident: CIT0009
  doi: 10.1093/biomet/69.3.553
– ident: CIT0005
  doi: 10.1080/01621459.1999.10474187
– ident: CIT0029
  doi: 10.1093/biomet/77.1.169
– ident: CIT0026
  doi: 10.1007/s00180-012-0318-0
– ident: CIT0031
  doi: 10.1111/j.2517-6161.1976.tb01597.x
– ident: CIT0021
  doi: 10.1016/j.csda.2014.03.017
– ident: CIT0002
  doi: 10.1214/aos/1176346157
– ident: CIT0030
  doi: 10.1080/01621459.1988.10478664
– ident: CIT0013
  doi: 10.1214/aos/1176347617
– volume-title: Econometric Analysis
  year: 2012
  ident: CIT0006
– ident: CIT0010
  doi: 10.1093/biomet/90.2.341
– ident: CIT0027
  doi: 10.2307/2951780
– ident: CIT0025
  doi: 10.1007/s11749-012-0295-1
– ident: CIT0028
  doi: 10.1214/aos/1176325377
– volume-title: Theory of Rank Tests
  year: 1967
  ident: CIT0008
SSID ssj0000788
Score 2.3916948
Snippet Doubly truncated data are found in astronomy, econometrics, and survival analysis literature. They arise when each observation is confined to an interval, that...
Doubly truncated data are found in astronomy, econometrics and survival analysis literature. They arise when each observation is confined to an interval, i.e.,...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 810
SubjectTerms Acquired immune deficiency syndrome
AIDS
Astronomy
Computer simulation
computer software
Counting
data collection
Dependent variables
Econometrics
Empirical process
Intervals
Justification
Mann-Whitney U test
Parameter estimation
Quasars
Rank estimation
Regression analysis
Resampling
Simulation
Statistical methods
Statistics
Survival analysis
U-process
Wilcoxon-Mann-Whitney statistic
Title Regression Analysis of Doubly Truncated Data
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2019.1585252
https://www.ncbi.nlm.nih.gov/pubmed/32952237
https://www.proquest.com/docview/2415116524
https://www.proquest.com/docview/2444604414
https://www.proquest.com/docview/2524280431
https://pubmed.ncbi.nlm.nih.gov/PMC7497768
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXHpBvAktKEjcIKus47yOCFpVqF0klJVWe7Hs2GErVVloswf49Z2xnReNWkBaRavYcWLPZB7OzDeEvMuUSEAz5EEiWRQwKbJAZjSH9wqUfakScLrwi-7ZIjlZsi-reNWHFZnskkbOyt-TeSX_Q1U4B3TFLNl_oGw3KJyA_0BfOAKF4fhXNP6mv9sw1noELgJGsbz49b643CHiK1iUn20C2pQVOsgsMbV8GwPcPEE3lAyu_skaN2GEU3mmqJeJ1OuTytYbYXZg1-c_h_3WG20HOGv1pdtuoKGJUumd0-JG5Y9B-JHZoExoMGcO5Vu3QjUNwPtdjaSuzeJ07BW7jzNWimYu0tUpZJtCfUPWu-BIuCHeD6P08tkcvB9qIXHH2NqLr_x4eXrKi6NVcZ88oOBUYL2LKFz0ejs1VUq7GbT5XojEPnWTkSUzwrmd8lb-DLodWDHFI_LQEd7_aHnpMbmn6ydkv6P71VPyoWcqv2Uqf1v5lqn8jql8ZKpnZHl8VHw6CVxJjaAEQ7cJZMJEUtJQRVGpscgc1aGKFUhlVYYRhbY0ZvCLwRFQaQW-qVCgDZlUNNUyk9Fzsldva_2S-HPwvat5LPK4TJkSVIRYzg7sax1pUcWVR1i7PLx0ePNY9uSCz1tYWreqHFeVu1X1yKy77IcFXLnrgny49rwxHFpZ5uTRHdcetoTi7r2-4mjTIigVZR552zWD1MVPaaLW2x32YSwJYb639YERaIbgVR55YWnfzSiiOcjCKPVIOuKKrgOivo9b6vONQX9PGbhsSfbq9kc_IPv923tI9prLnX4N5nMj3xiuvwbGxbuD
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hOMClUOgjLW1TiWOzTfyIkyOiRVsKe0CLxM3yK7QqyiKaPbS_vjN5bHcRLQek3OyJNLZn_I09_gbgoPAmx52hTHIreCKsKRJbsBLtCjd753MMuuhG92ySjy_EyaW8XHoLQ2mVFENXHVFE66vJuOkwekiJ-4gwhQi26Z1JVo4yRLxMohvekGWuqIoBTyd_vbFqa0-SSEIywyuef_1mZX9aYS-9D4PeTaVc2puOt8ENWnUpKT9G88aO3O87hI-PU3sHnvTQNT7s1tpTWAv1LmwRWu3Invfgw3m46vJq63hgO4lnVYwo3V7_iqe3c6KgDT7-ZBrzDC6OP0-PxklfjiFxCJKaxObC5I6lnnMXqEAZC6mXHi3au5QzbFNS4CcRRHpVYVxjPHpSYT1TwRaWP4f1elaHlxBnGLdVmTSldEp4w0xKpdAQmwUeTCWrCMQwCdr1XOVUMuNaZwOlaT8WmsZC92MRwWghdtORdTwkUC7PsG7aU5KqK2mi-QOy-8Ny0L3d_9SEh4jQiIkI3i-a0WLpGsbUYTanPhiCp6jv__rgH1hBxEcRvOhW2EIjzkq0I64iUCtrb9GBGMNXW-rv31rmcCUQ7ufFq0eo_Q42x9OzU336ZfL1NWwxOn6gRCa2D-vN7Ty8QYzW2LetEf4B61sqDA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaGDBhyWdd13dy1nQf0WKe2JL-Ow7IgewVFkQC7CZIlb0MLJ0idQ_vrS_qRJcHaHAL4JlEAJVL6aFEfAc4SoyI8GVIv0oJ7QqvE0wlL0a_wsM9MhEEX3ej-HEXDifj2K2yzCW-btEqKofOaKKLaq8m5ZyZvM-IuEKUQvzY9MwnSXoCAl4W4Cz-PiDycXnH4o3-bcVyVniQRj2TaRzyPDbN2PK2Rl_4Pgm5mUq4cTYM90K1SdUbKdW9R6l52v8H3uJPWr-BlA1zdT7Wl7cMzW7yGLmHVmur5AM6v7O86q7ZwW64Td5q7iNH1zZ07ni-IgNYat69K9QYmgy_jz0OvKcbgZQiRSk9HQkUZ8w3nmaXyZMz6JjTozybzOcO2OBT4hQghTZxjVKMM7qNCGxZbnWh-CJ1iWth34AYYteVBqNIwi4VRTPlUCA2RmeVW5WHugGjXQGYNUzkVzLiRQUto2syFpLmQzVw40FuKzWqqjm0C6eoCy7L6R5LXBU0k3yJ73FqDbLz-VhIaIjojJhz4uGxGf6VLGFXY6YL6YADuo75P9cERWEK0Rw68rQ1sqRFnKXoRjx2I10xv2YH4wtdbir9_Kt7wWCDYj5KjHdT-AC8u-wP54-vo-3voMvr3QFlM7Bg65XxhTxCglfq0csEHDbwosA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regression+Analysis+of+Doubly+Truncated+Data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Ying%2C+Zhiliang&rft.au=Yu%2C+Wen&rft.au=Zhao%2C+Ziqiang&rft.au=Zheng%2C+Ming&rft.date=2020-04-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=115&rft.issue=530&rft.spage=810&rft.epage=821&rft_id=info:doi/10.1080%2F01621459.2019.1585252&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon