Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI
EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI. Fi...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 35; no. 2; pp. 598 - 608 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2007
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI.
Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA with Lp-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum Lp-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum Lp-norm) and L1-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex.
The CCD distributions estimated by the Lp-norm and LORETA-Lp methods were smoother when the p values were high. The LORETA based on the L1-norm performed better than the LORETA-L2 method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum Lp-norm (with p equal to 1), L1-norm (the Linear programming) and LORETA-Lp (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with Lp-norm (p equal to 1.5 and 2.0), sLORETA and the minimum Lp-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively.
The present experimental study suggests that L1-norm-based algorithms provide better performance than L2 and L1.5-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist. |
---|---|
AbstractList | EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI.
Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA with Lp-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum Lp-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum Lp-norm) and L1-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex.
The CCD distributions estimated by the Lp-norm and LORETA-Lp methods were smoother when the p values were high. The LORETA based on the L1-norm performed better than the LORETA-L2 method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum Lp-norm (with p equal to 1), L1-norm (the Linear programming) and LORETA-Lp (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with Lp-norm (p equal to 1.5 and 2.0), sLORETA and the minimum Lp-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively.
The present experimental study suggests that L1-norm-based algorithms provide better performance than L2 and L1.5-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist. Objective: EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI. Methods: Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA withLp-norm (pequal to 1, 1.5 and 2), sLORETA, the minimumLp-norm (pequal to 1 and 1.5; whenp=2, the MNLS method is mathematically equivalent to the minimumLp-norm) andL1-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex. Results: The CCD distributions estimated by theLp-norm and LORETA-Lpmethods were smoother when thepvalues were high. The LORETA based on theL1-norm performed better than the LORETA-L2method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimumLp-norm (withpequal to 1),L1-norm (the Linear programming) and LORETA-Lp(withpequal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA withLp-norm (pequal to 1.5 and 2.0), sLORETA and the minimumLp-norm (pequal to 1.5) methods, were over 11 mm and 6 mm, respectively. Conclusions: The present experimental study suggests thatL1-norm-based algorithms provide better performance thanL2andL1.5-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist. EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI.OBJECTIVEEEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI.Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA with L(p)-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum L(p)-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum L(p)-norm) and L(1)-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex.METHODSFive source imaging algorithms, including the minimum norm least square (MNLS), LORETA with L(p)-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum L(p)-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum L(p)-norm) and L(1)-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex.The CCD distributions estimated by the L(p)-norm and LORETA-L(p) methods were smoother when the p values were high. The LORETA based on the L(1)-norm performed better than the LORETA-L(2) method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum L(p)-norm (with p equal to 1), L(1)-norm (the Linear programming) and LORETA-L(p) (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with L(p)-norm (p equal to 1.5 and 2.0), sLORETA and the minimum L(p)-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively.RESULTSThe CCD distributions estimated by the L(p)-norm and LORETA-L(p) methods were smoother when the p values were high. The LORETA based on the L(1)-norm performed better than the LORETA-L(2) method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum L(p)-norm (with p equal to 1), L(1)-norm (the Linear programming) and LORETA-L(p) (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with L(p)-norm (p equal to 1.5 and 2.0), sLORETA and the minimum L(p)-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively.The present experimental study suggests that L(1)-norm-based algorithms provide better performance than L(2) and L(1.5)-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist.CONCLUSIONSThe present experimental study suggests that L(1)-norm-based algorithms provide better performance than L(2) and L(1.5)-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist. EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI. Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA with L(p)-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum L(p)-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum L(p)-norm) and L(1)-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex. The CCD distributions estimated by the L(p)-norm and LORETA-L(p) methods were smoother when the p values were high. The LORETA based on the L(1)-norm performed better than the LORETA-L(2) method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum L(p)-norm (with p equal to 1), L(1)-norm (the Linear programming) and LORETA-L(p) (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with L(p)-norm (p equal to 1.5 and 2.0), sLORETA and the minimum L(p)-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively. The present experimental study suggests that L(1)-norm-based algorithms provide better performance than L(2) and L(1.5)-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist. |
Author | He, Bin He, Eric J. Bai, Xiaoxiao Towle, Vernon L. |
AuthorAffiliation | 1 University of Minnesota, Department of Biomedical Engineering 2 University of Chicago, Department of Neurology |
AuthorAffiliation_xml | – name: 1 University of Minnesota, Department of Biomedical Engineering – name: 2 University of Chicago, Department of Neurology |
Author_xml | – sequence: 1 givenname: Xiaoxiao surname: Bai fullname: Bai, Xiaoxiao organization: University of Minnesota, Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, Minneapolis, MN 55455, USA – sequence: 2 givenname: Vernon L. surname: Towle fullname: Towle, Vernon L. organization: University of Chicago, Department of Neurology, USA – sequence: 3 givenname: Eric J. surname: He fullname: He, Eric J. organization: University of Minnesota, Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, Minneapolis, MN 55455, USA – sequence: 4 givenname: Bin surname: He fullname: He, Bin email: binhe@umn.edu organization: University of Minnesota, Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, Minneapolis, MN 55455, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17303438$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktv1DAURi1URB_wF5AlJHZJ_UicZIOAqtBKRUgI1pZj30w9JPZgOyPNv8dhSge6mpVt-bvH9-r4HJ047wAhTElJCRWX69LBHLyd1ApKRogoKSsJE8_QGSVdXXR1w06Wfc2LltLuFJ3HuCaEdLRqX6BT2nDCK96eoc31Vo2zStY77AesfUhWqxHrOQRwCRtw0aYdXp6yboUnSPfeRDzH5WRdCkoH5WwugRF0Cn6P8KugpoiVM3iYnV74OfLl2-1L9HxQY4RXD-sF-vHp-vvVTXH39fPt1Ye7QteCpaKvBCdAKWe1EU1T1aIzfdcbLjStKkF64IYZ4LwbTNsw01M6KCCmUrxWfa35BXq3527mfgKjYWl1lJuQJwk76ZWV_984ey9Xfitp19VCiAx4-wAI_tcMMcnJRg3jqBz4OcqGsKYhFc_BN0-Caz-HPG6UtCaiqQhhJKde_9vPYyN_VeRAuw_o4GMMMBwiRC7W5VoerMvFuqRMZuuHWR9LtU1_nObJ7HgM4OMeANnI1kKQUVtwGowNWao03h4Def8Eokfrlt_0E3bHIX4DUbzpRA |
CitedBy_id | crossref_primary_10_1007_s10548_023_00994_5 crossref_primary_10_1109_TNSRE_2009_2015196 crossref_primary_10_1007_s10439_009_9665_6 crossref_primary_10_3389_fpsyg_2015_01893 crossref_primary_10_1016_j_neuroimage_2012_11_013 crossref_primary_10_5812_archneurosci_18781 crossref_primary_10_3389_fphys_2018_01708 crossref_primary_10_1109_TNSRE_2021_3064665 crossref_primary_10_1523_JNEUROSCI_1174_12_2012 crossref_primary_10_1109_MPUL_2012_2189166 crossref_primary_10_1155_2014_434296 crossref_primary_10_1016_j_bbr_2015_06_025 crossref_primary_10_1155_2009_652078 crossref_primary_10_1111_j_1469_8986_2009_00787_x crossref_primary_10_1371_journal_pone_0025146 crossref_primary_10_1371_journal_pone_0105041 crossref_primary_10_1155_2011_643489 crossref_primary_10_1007_s11042_019_07763_2 crossref_primary_10_1007_s00521_020_05603_1 crossref_primary_10_1016_j_nicl_2013_10_001 crossref_primary_10_1088_0031_9155_56_13_027 crossref_primary_10_1523_JNEUROSCI_3795_10_2011 crossref_primary_10_1109_TBME_2019_2913928 crossref_primary_10_3389_fnhum_2018_00340 crossref_primary_10_1002_hbm_25578 crossref_primary_10_1249_MSS_0b013e3181b76ac8 crossref_primary_10_1016_j_neucom_2020_01_038 crossref_primary_10_1111_j_1460_9568_2011_07617_x crossref_primary_10_1371_journal_pone_0112103 crossref_primary_10_1016_j_clinph_2009_04_024 crossref_primary_10_1016_j_neuroimage_2018_09_070 crossref_primary_10_1177_1550059412449780 crossref_primary_10_1016_j_neuroscience_2014_06_044 crossref_primary_10_1109_TBME_2018_2890291 crossref_primary_10_1088_0031_9155_58_11_3897 crossref_primary_10_1016_j_neucom_2018_06_004 crossref_primary_10_1016_j_neuroscience_2016_05_044 crossref_primary_10_1113_JP274968 crossref_primary_10_1016_j_nicl_2015_01_010 crossref_primary_10_1109_TNSRE_2008_2009784 crossref_primary_10_1088_0031_9155_56_19_009 crossref_primary_10_1007_s10548_011_0173_2 crossref_primary_10_5298_1081_5937_44_2_03 crossref_primary_10_1038_s41597_020_0467_x crossref_primary_10_1109_TBME_2011_2139210 crossref_primary_10_1016_j_neuroimage_2015_12_030 crossref_primary_10_1007_s10548_010_0155_9 crossref_primary_10_1109_RBME_2008_2008233 crossref_primary_10_1371_journal_pone_0147266 crossref_primary_10_1109_TBME_2023_3265376 crossref_primary_10_1109_TMI_2017_2679756 crossref_primary_10_1016_j_bbr_2012_08_022 crossref_primary_10_1097_JNR_0b013e3181a53f1b crossref_primary_10_1109_MSP_2013_2296790 crossref_primary_10_1016_j_neuroscience_2012_10_037 crossref_primary_10_1159_000486281 crossref_primary_10_1007_s10548_012_0259_5 crossref_primary_10_1007_s00421_014_2927_5 crossref_primary_10_1142_S0129065715500161 |
Cites_doi | 10.1002/1097-0193(200011)11:3<178::AID-HBM40>3.0.CO;2-0 10.1006/nimg.2002.1127 10.1073/pnas.89.12.5675 10.1109/10.387200 10.1109/TBME.1987.326056 10.1109/10.790505 10.1162/jocn.1993.5.2.162 10.1109/10.486287 10.1109/TBME.2000.880100 10.1109/10.16463 10.1016/0013-4694(94)90112-0 10.1006/nimg.2002.1151 10.1109/10.991155 10.1109/10.553710 10.1016/j.neuroimage.2006.01.029 10.1016/S1053-8119(03)00147-2 10.1097/00004691-199905000-00006 10.1109/10.704867 10.1016/j.neuroimage.2004.11.036 10.1016/0013-4694(94)90050-7 10.1109/10.142641 10.1063/1.2398883 10.1137/0714044 10.1016/0013-4694(95)00107-A 10.1007/BF02576202 10.1002/1097-0193(200102)12:2<120::AID-HBM1009>3.0.CO;2-V 10.1006/nimg.2002.1175 10.1016/0168-5597(85)90033-4 10.1023/A:1007807203163 10.1103/RevModPhys.65.413 10.1073/pnas.89.13.5951 10.1007/BF01129049 10.1016/j.neuroimage.2004.09.036 10.1002/ana.410280613 10.1016/S1053-8119(03)00052-1 10.1093/brain/120.1.141 10.1137/0911028 10.1006/nimg.1999.0454 10.1016/j.clinph.2004.08.017 10.1016/j.neuroimage.2005.08.053 10.1006/nimg.2002.1222 10.1016/0167-8760(84)90014-X 10.1023/B:BRAT.0000032865.58382.62 10.1118/1.596401 10.1097/00004728-198901000-00004 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Inc. Copyright Elsevier Limited Apr 1, 2007 |
Copyright_xml | – notice: 2006 Elsevier Inc. – notice: Copyright Elsevier Limited Apr 1, 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2006.12.026 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 608 |
ExternalDocumentID | PMC1995666 3244587111 17303438 10_1016_j_neuroimage_2006_12_026 S1053811906012080 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB000178 – fundername: PHS HHS grantid: R013001A2 – fundername: NIBIB NIH HHS grantid: R01EB00178 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 GBLVA HDW HEI HMK HMO HVGLF OK1 P-8 R2- SEW WUQ XPP Z5R ZMT 0SF CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c562t-b4630e11325d6774569db9bd36c14460be3d2de339fd872db11fae0d4a35ab5c3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 |
IngestDate | Thu Aug 21 18:01:50 EDT 2025 Tue Aug 05 10:12:21 EDT 2025 Sun Aug 17 23:53:34 EDT 2025 Wed Feb 19 01:43:44 EST 2025 Tue Jul 01 00:49:57 EDT 2025 Thu Apr 24 23:00:17 EDT 2025 Fri Feb 23 02:31:40 EST 2024 Tue Aug 26 16:31:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Source imaging Sensory cortex Brain imaging Cortical current density High resolution EEG Somatosensory evoked potentials Inverse Problem Central sulcus |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-b4630e11325d6774569db9bd36c14460be3d2de339fd872db11fae0d4a35ab5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.neuroimage.2006.12.026 |
PMID | 17303438 |
PQID | 1506740020 |
PQPubID | 2031077 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1995666 proquest_miscellaneous_70277043 proquest_journals_1506740020 pubmed_primary_17303438 crossref_primary_10_1016_j_neuroimage_2006_12_026 crossref_citationtrail_10_1016_j_neuroimage_2006_12_026 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2006_12_026 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2006_12_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-04-01 |
PublicationDateYYYYMMDD | 2007-04-01 |
PublicationDate_xml | – month: 04 year: 2007 text: 2007-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2007 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Gevins, Martin, Brickett, Desmond, Reutter (bib11) 1994; 90 Babiloni, Babiloni, Carducci, Romani, Rossini, Angelone, Cincotti (bib1) 2003; 19 Yousry, Schmid, Jassoy, Schmidt, Eisner, Reulen, Reiser, Lissner (bib53) 1995; 195 He, Yao, Lian, Wu (bib22) 2002; 49 Morozov (bib31) 1984 Waberski, Gobbele, Darvas, Schmitz, Buchner (bib46) 2002; 17 Nunez, Srinivasan (bib33) 2005 Hann, Streb, Bien, Rosler (bib16) 2000; 11 Lian, He (bib29) 2001; 13 He, Lian, Spencer, Dien, Donchin (bib20) 2001; 12 Babiloni, Babiloni, Carducci, Cincotti, Astolfi, Basilisco, Rossini, Ding, Ni, Cheng, Christine, Sweeney, He (bib2) 2005; 24 Ogawa, Tank, Menon, Ellermann, Kim, Merkle, Ugurbil (bib35) 1992; 89 Pascual-Marqui, Michel, Lehmann (bib39) 1994; 18 Clarke, Goubau, Ketchen (bib4) 1989 He, Musha, Okamoto, Homma, Nakajima, Sato (bib18) 1987; 34 Cuffin (bib7) 1995; 43 Cohen, Cuffin, Yunokuchi, Maniewski, Purcell, Cosgrove, Ives, Kennedy, Schomer (bib5) 1990; 28 Nunez, Silibertein, Cdush, Wijesinghe, Westdrop, Srinivasan (bib34) 1994; 90 Phillips, Rugg, Friston (bib41) 2002; 17 He (bib23) 2004 Metz, Fencil (bib56) 1989; 16 Pascual-Marqui (bib37) 2002; 24D Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib15) 1993; 65 Dale, Sereno (bib8) 1993; 5 Zhang, van Drongelen, He (bib57) 2006; 89 Wang, Williamson, Kaufman (bib50) 1992; 39 Hansen (bib17) 1990; 11 Kwong, Belliveau, Chesler, Goldberg, Weisskoff, Poncelet, Kennedy, Hoppel, Cohen, Turner, Cheng, Brady, Rosen (bib27) 1992; 89 Gorodnitsky, George, Rao (bib12) 1995; 95 Pascual-Marqui, Michel (bib38) 1994; 5 Uutela, Hämäläinen, Somersalo (bib45) 1999; 10 Yao, Dewald (bib52) 2005; 25 Lai, Van Drongelen, Ding, Hecox, Towle, Frim, He (bib28) 2005; 116 Fuchs, Wagner, Kohler, Wischmann (bib10) 1999; 16 He, Zhang, Lian, Sasaki, Wu, Towle (bib21) 2002; 16 NeuroScan (bib32) 2004 He (bib24) 2005 Matsuura, Okabe (bib30) 1995; 42 norm solutions of the biomagnetic inverse problem. Technical Report KFA-ZAM-IB-9614. 7: 1–13. Scherg, von Cramon (bib42) 1985; 62 He, Wang, Wu (bib19) 1999; 46 Yousry, Schmid, Alkadhi, Schmidt, Peraud, Buettner, Winkler (bib54) 1997; 120 Hämäläinen, Sarvas (bib55) 1989; 36 Waberski, Gobbele, Herrendorf, Steinhoff, Kolle, Fuchs, Paulus, Buchner (bib47) 2002; 41 Pelizzari, Chen, Spelbring, Weichselbaum, Chen (bib40) 1989; 13 Wischmann, Fuchs, Dössel (bib51) 1992; 5 Grova, Daunizeau, Lina, Bénar, Benali, Gotman (bib13) 2006; 29 Stenbacka, Vanni, Uutela, Hari (bib43) 2002; 16 Wagner, Fuchs, Kadtner (bib49) 2004; 16 Hämäläinen, M.S., Ilmoniemi, R.J., 1984. Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki Univ Technol Helsinki Finland. Tech Rep TKK-F-A559. Wahba (bib48) 1977; 14 Colli Franzone, Guerri, Taccardi, Viganotti (bib6) 1985; XXII Beucker, R., Schlitt, H.A., 1996. On minimal l Fuchs, Drenckhahn, Wischmann, Wagner (bib9) 1998; 45 Huang, Dale, Song, Halgren, Harrington, Podgorny, Canive, Lewis, Lee (bib25) 2006; 31 Towle, Khorasani, Uftring, Pelizzari, Erickson, Spire, Hoffmann, Chu, Scherg (bib44) 2003; 19 Johnston, Gulrajani (bib26) 1997; 44 Oostendorp, Delbeke, Stegeman (bib36) 2000; 47 Oostendorp (10.1016/j.neuroimage.2006.12.026_bib36) 2000; 47 Waberski (10.1016/j.neuroimage.2006.12.026_bib46) 2002; 17 Wagner (10.1016/j.neuroimage.2006.12.026_bib49) 2004; 16 Towle (10.1016/j.neuroimage.2006.12.026_bib44) 2003; 19 Cohen (10.1016/j.neuroimage.2006.12.026_bib5) 1990; 28 Gorodnitsky (10.1016/j.neuroimage.2006.12.026_bib12) 1995; 95 Babiloni (10.1016/j.neuroimage.2006.12.026_bib1) 2003; 19 Lian (10.1016/j.neuroimage.2006.12.026_bib29) 2001; 13 Lai (10.1016/j.neuroimage.2006.12.026_bib28) 2005; 116 Metz (10.1016/j.neuroimage.2006.12.026_bib56) 1989; 16 Wahba (10.1016/j.neuroimage.2006.12.026_bib48) 1977; 14 Clarke (10.1016/j.neuroimage.2006.12.026_bib4) 1989 Morozov (10.1016/j.neuroimage.2006.12.026_bib31) 1984 Cuffin (10.1016/j.neuroimage.2006.12.026_bib7) 1995; 43 Nunez (10.1016/j.neuroimage.2006.12.026_bib33) 2005 Nunez (10.1016/j.neuroimage.2006.12.026_bib34) 1994; 90 Scherg (10.1016/j.neuroimage.2006.12.026_bib42) 1985; 62 He (10.1016/j.neuroimage.2006.12.026_bib19) 1999; 46 He (10.1016/j.neuroimage.2006.12.026_bib21) 2002; 16 He (10.1016/j.neuroimage.2006.12.026_bib24) 2005 Kwong (10.1016/j.neuroimage.2006.12.026_bib27) 1992; 89 Fuchs (10.1016/j.neuroimage.2006.12.026_bib10) 1999; 16 Hann (10.1016/j.neuroimage.2006.12.026_bib16) 2000; 11 He (10.1016/j.neuroimage.2006.12.026_bib22) 2002; 49 Yousry (10.1016/j.neuroimage.2006.12.026_bib54) 1997; 120 Pascual-Marqui (10.1016/j.neuroimage.2006.12.026_bib37) 2002; 24D Grova (10.1016/j.neuroimage.2006.12.026_bib13) 2006; 29 Fuchs (10.1016/j.neuroimage.2006.12.026_bib9) 1998; 45 Uutela (10.1016/j.neuroimage.2006.12.026_bib45) 1999; 10 Matsuura (10.1016/j.neuroimage.2006.12.026_bib30) 1995; 42 Stenbacka (10.1016/j.neuroimage.2006.12.026_bib43) 2002; 16 Dale (10.1016/j.neuroimage.2006.12.026_bib8) 1993; 5 Hämäläinen (10.1016/j.neuroimage.2006.12.026_bib15) 1993; 65 Colli Franzone (10.1016/j.neuroimage.2006.12.026_bib6) 1985; XXII Waberski (10.1016/j.neuroimage.2006.12.026_bib47) 2002; 41 Pelizzari (10.1016/j.neuroimage.2006.12.026_bib40) 1989; 13 Zhang (10.1016/j.neuroimage.2006.12.026_bib57) 2006; 89 Johnston (10.1016/j.neuroimage.2006.12.026_bib26) 1997; 44 Pascual-Marqui (10.1016/j.neuroimage.2006.12.026_bib39) 1994; 18 Hansen (10.1016/j.neuroimage.2006.12.026_bib17) 1990; 11 Wischmann (10.1016/j.neuroimage.2006.12.026_bib51) 1992; 5 Ogawa (10.1016/j.neuroimage.2006.12.026_bib35) 1992; 89 Wang (10.1016/j.neuroimage.2006.12.026_bib50) 1992; 39 He (10.1016/j.neuroimage.2006.12.026_bib18) 1987; 34 10.1016/j.neuroimage.2006.12.026_bib3 10.1016/j.neuroimage.2006.12.026_bib14 NeuroScan (10.1016/j.neuroimage.2006.12.026_bib32) 2004 Babiloni (10.1016/j.neuroimage.2006.12.026_bib2) 2005; 24 Huang (10.1016/j.neuroimage.2006.12.026_bib25) 2006; 31 Phillips (10.1016/j.neuroimage.2006.12.026_bib41) 2002; 17 Hämäläinen (10.1016/j.neuroimage.2006.12.026_bib55) 1989; 36 He (10.1016/j.neuroimage.2006.12.026_bib23) 2004 Yao (10.1016/j.neuroimage.2006.12.026_bib52) 2005; 25 He (10.1016/j.neuroimage.2006.12.026_bib20) 2001; 12 Yousry (10.1016/j.neuroimage.2006.12.026_bib53) 1995; 195 Gevins (10.1016/j.neuroimage.2006.12.026_bib11) 1994; 90 Pascual-Marqui (10.1016/j.neuroimage.2006.12.026_bib38) 1994; 5 12169243 - Neuroimage. 2002 Jul;16(3 Pt 1):564-76 2578376 - Electroencephalogr Clin Neurophysiol. 1985 Jan;62(1):32-44 7514981 - Electroencephalogr Clin Neurophysiol. 1994 May;90(5):337-58 12880799 - Neuroimage. 2003 Jul;19(3):684-97 15588603 - Neuroimage. 2005 Jan 1;24(1):118-31 2492038 - J Comput Assist Tomogr. 1989 Jan-Feb;13(1):20-6 8529554 - Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231-51 1489649 - Brain Topogr. 1992 Winter;5(2):189-94 11169876 - Hum Brain Mapp. 2001 Feb;12(2):120-30 15784415 - Neuroimage. 2005 Apr 1;25(2):369-82 7509273 - Electroencephalogr Clin Neurophysiol. 1994 Jan;90(1):40-57 12202081 - Neuroimage. 2002 Aug;16(4):936-43 9055804 - Brain. 1997 Jan;120 ( Pt 1):141-57 7892475 - Radiology. 1995 Apr;195(1):23-9 1631079 - Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951-5 1608978 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5675-9 10513133 - IEEE Trans Biomed Eng. 1999 Oct;46(10):1264-8 23972151 - J Cogn Neurosci. 1993 Spring;5(2):162-76 12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12 11114216 - Epilepsia. 2000 Dec;41(12):1574-83 1516933 - IEEE Trans Biomed Eng. 1992 Jul;39(7):665-75 12414274 - Neuroimage. 2002 Nov;17(3):1347-57 7851932 - IEEE Trans Biomed Eng. 1995 Jan;42(1):68-71 15661122 - Clin Neurophysiol. 2005 Feb;116(2):456-65 15379227 - Brain Topogr. 2004 Summer;16(4):277-80 16542857 - Neuroimage. 2006 Jul 1;31(3):1025-37 9691573 - IEEE Trans Biomed Eng. 1998 Aug;45(8):980-97 16271483 - Neuroimage. 2006 Feb 1;29(3):734-53 10426408 - J Clin Neurophysiol. 1999 May;16(3):267-95 12482084 - Neuroimage. 2002 Sep;17(1):287-301 2285267 - Ann Neurol. 1990 Dec;28(6):811-7 7790017 - IEEE Trans Biomed Eng. 1995 Jun;42(6):608-15 11098796 - Hum Brain Mapp. 2000 Nov;11(3):178-92 12781723 - Neuroimage. 2003 May;19(1):1-15 7876038 - Int J Psychophysiol. 1994 Oct;18(1):49-65 11077742 - IEEE Trans Biomed Eng. 2000 Nov;47(11):1487-92 11302399 - Brain Topogr. 2001 Spring;13(3):209-17 3610187 - IEEE Trans Biomed Eng. 1987 Jun;34(6):406-14 11942719 - IEEE Trans Biomed Eng. 2002 Apr;49(4):277-88 10417249 - Neuroimage. 1999 Aug;10(2):173-80 9214781 - IEEE Trans Biomed Eng. 1997 Jan;44(1):19-39 |
References_xml | – volume: 46 start-page: 1264 year: 1999 end-page: 1268 ident: bib19 article-title: Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model publication-title: IEEE Trans. Biomed. Eng. – volume: 16 start-page: 936 year: 2002 end-page: 943 ident: bib43 article-title: Comparison of minimum current estimate and dipole modeling in the analysis of simulated activity in the human visual cortices publication-title: NeuroImage – volume: 11 start-page: 178 year: 2000 end-page: 192 ident: bib16 article-title: Individual cortical current density reconstructions of the semantic N400 effect: using a generalized minimum norm model with different constraints (L1 and L2 norm) publication-title: Hum. Brain Mapp. – volume: 5 start-page: 189 year: 1992 end-page: 194 ident: bib51 article-title: Effect of the singal-to-noise ratio on the quality of linear estimation reconstructions of distributed current sources publication-title: Brain Topogr. – reference: Beucker, R., Schlitt, H.A., 1996. On minimal l – start-page: 144 year: 2004 end-page: 154 ident: bib32 publication-title: Curry 5.0™ User Guide – year: 1984 ident: bib31 article-title: Methods for Solving Incorrectly Posed Problems – volume: 16 start-page: 564 year: 2002 end-page: 576 ident: bib21 article-title: Boundary element method-based cortical potential imaging of somatosensory evoked potentials using subjects's magnetic resonance images publication-title: NeuroImage – volume: 16 start-page: 277 year: 2004 end-page: 280 ident: bib49 article-title: Evaluation of sLORETA in the presence of noise and multiple sources publication-title: Brain Topogr. – volume: XXII start-page: 91 year: 1985 end-page: 186 ident: bib6 article-title: Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data publication-title: Calcolo – volume: 116 start-page: 456 year: 2005 end-page: 465 ident: bib28 article-title: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings publication-title: Clin. Neurophysiol. – volume: 45 start-page: 980 year: 1998 end-page: 997 ident: bib9 article-title: An improved boundary element method for realistic volume–conductor modeling publication-title: IEEE Trans. Biomed. Eng. – year: 2005 ident: bib24 article-title: Neural Engineering – volume: 16 start-page: 267 year: 1999 end-page: 295 ident: bib10 article-title: Linear and nonlinear current density reconstructions publication-title: J. Clin. Neurophysiol. – volume: 28 start-page: 811 year: 1990 end-page: 817 ident: bib5 article-title: MEG versus EEG localization test using implanted sources in the human brain publication-title: Ann. Neurol. – volume: 5 start-page: 162 year: 1993 end-page: 176 ident: bib8 article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach publication-title: J. Cogn. Neurosci – volume: 120 start-page: 141 year: 1997 end-page: 157 ident: bib54 article-title: Localization of motor hand area to knob on the precentral gyrus: a new landwark publication-title: Brain – volume: 11 start-page: 503 year: 1990 end-page: 518 ident: bib17 article-title: Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank publication-title: SIAM J. Sci. Stat. Comput. – volume: 90 start-page: 40 year: 1994 end-page: 57 ident: bib34 article-title: A theoretical and experimental study of high resolution EEG based on surface Laplacian and cortical imaging publication-title: Electroencephalogr. Clin. Neurophysiol. – reference: Hämäläinen, M.S., Ilmoniemi, R.J., 1984. Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki Univ Technol Helsinki Finland. Tech Rep TKK-F-A559. – volume: 19 start-page: 1 year: 2003 end-page: 15 ident: bib1 article-title: Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study publication-title: NeuroImage – volume: 62 start-page: 32 year: 1985 end-page: 44 ident: bib42 article-title: Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 29 start-page: 734 year: 2006 end-page: 753 ident: bib13 article-title: Evaluation of EEG localization methods using realistic simulations of interictal spikes publication-title: NeuroImage – volume: 49 start-page: 277 year: 2002 end-page: 288 ident: bib22 article-title: An equivalent current source model and Laplacian weighted minimum norm current estimates of brain electrical activity publication-title: IEEE Trans. Biomed. Eng. – volume: 47 start-page: 1487 year: 2000 end-page: 1492 ident: bib36 article-title: The conductivity of the human skull: results of in vivo and in vitro measurements publication-title: IEEE Trans. Biomed. Eng. – reference: -norm solutions of the biomagnetic inverse problem. Technical Report KFA-ZAM-IB-9614. 7: 1–13. – volume: 95 start-page: 231 year: 1995 end-page: 251 ident: bib12 article-title: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 36 start-page: 165 year: 1989 end-page: 171 ident: bib55 article-title: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data publication-title: IEEE Trans. Biomed. Eng. – volume: 34 start-page: 406 year: 1987 end-page: 414 ident: bib18 article-title: Electric dipoles tracing in the brain by means of the boundary element method and its accuracy publication-title: IEEE Trans. Biomed. Eng. – volume: 10 start-page: 173 year: 1999 end-page: 180 ident: bib45 article-title: Visualization of magnetoencephalographic data using minimum current estimates publication-title: NeuroImage – volume: 24 start-page: 118 year: 2005 end-page: 131 ident: bib2 article-title: Assessing time-varying cortical functional connectivity with the multimodal integration of high resolution EEG and fMRI data by directed transfer function publication-title: NeuroImage – volume: 90 start-page: 337 year: 1994 end-page: 358 ident: bib11 article-title: High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 18 start-page: 49 year: 1994 end-page: 65 ident: bib39 article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain publication-title: Int. J. Psychophysiol. – volume: 14 start-page: 651 year: 1977 end-page: 667 ident: bib48 article-title: Practical approximate solutions to linear operator equations when the data are noisy publication-title: SIAM J. Num. Anal. – volume: 195 start-page: 23 year: 1995 end-page: 29 ident: bib53 article-title: Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery publication-title: Neuroradiology – start-page: 587 year: 1989 end-page: 590 ident: bib4 article-title: Localized and distributed source solutions for the biomagnetic inverse problem I publication-title: Advances in Biomagnetism – volume: 42 start-page: 608 year: 1995 end-page: 615 ident: bib30 article-title: Selective minimum-norm solution of the biomagnetic inverse problem publication-title: IEEE Trans. Biomed. Eng. – volume: 31 start-page: 1025 year: 2006 end-page: 1037 ident: bib25 article-title: Vector-based spatial–temporal minimum L1-norm solution for MEG publication-title: NeuroImage – volume: 24D start-page: 5 year: 2002 end-page: 12 ident: bib37 article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): technical detail publication-title: Methods Find. Exp. Clin. Pharmacol. – year: 2004 ident: bib23 article-title: Modeling and Imaging of Bioelectric Activity: Principles and Applications – volume: 19 start-page: 684 year: 2003 end-page: 697 ident: bib44 article-title: Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping publication-title: NeuroImage – volume: 43 start-page: 299 year: 1995 end-page: 303 ident: bib7 article-title: A Method for localizing EEG sources in realistic head model IEEE publication-title: Trans. Biomed. Eng. – volume: 5 start-page: 4 year: 1994 end-page: 8 ident: bib38 article-title: LORETA (low resolution brain electromagnetic tomography): new authentic 3D functional images of the brain publication-title: ISBET Newsl. – volume: 39 start-page: 665 year: 1992 end-page: 675 ident: bib50 article-title: Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation publication-title: IEEE Trans. Biomed. Eng. – volume: 89 start-page: 223903 year: 2006 ident: bib57 article-title: Estimation of in vivo human brain-to-skull conductivity ratio with the aid of intracranial electrical simulation publication-title: Appl. Phys. Lett. – volume: 16 start-page: 45 year: 1989 end-page: 51 ident: bib56 article-title: Determination of three-dimensional structure in biplane radiography without prior knowledge of the relationship between the two views: theory publication-title: Med. Phys. – volume: 89 start-page: 5675 year: 1992 end-page: 5679 ident: bib27 article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 44 start-page: 19 year: 1997 end-page: 39 ident: bib26 article-title: A new method for regularization parameter determination in the inverse problem of electrocardiography publication-title: IEEE Trans. Biomed. Eng. – volume: 17 start-page: 1347 year: 2002 end-page: 1357 ident: bib46 article-title: Spatiotemporal imaging of electrical activity related to attention to somatosensory stimulation publication-title: NeuroImage – volume: 25 start-page: 369 year: 2005 end-page: 382 ident: bib52 article-title: Evaluation of different cortical source localization methods using simulation and experimental EEG data publication-title: NeuroImage – volume: 41 start-page: 1574 year: 2002 end-page: 1583 ident: bib47 article-title: Source reconstruction of mesial–temporal epileptiform activity: comparison of inverse techniques publication-title: Epilepsia – volume: 13 start-page: 20 year: 1989 end-page: 26 ident: bib40 article-title: Accurate three-dimensional registration of CT, PET and/or MRI images of the brain publication-title: J. Comput. Assist. Tomogr. – volume: 89 start-page: 5951 year: 1992 end-page: 5955 ident: bib35 article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 120 year: 2001 end-page: 130 ident: bib20 article-title: A cortical potential imaging analysis of the P300 and novelty P3 components publication-title: Hum. Brain Mapp. – volume: 13 start-page: 209 year: 2001 end-page: 217 ident: bib29 article-title: A minimal product method and its application to cortical imaging publication-title: Brain Topogr. – year: 2005 ident: bib33 article-title: Electric Fields of the Brain: The Neurophysics of EEG – volume: 17 start-page: 287 year: 2002 end-page: 301 ident: bib41 article-title: Systematic regularization of linear inverse solutions of the EEG source localization problem publication-title: NeuroImage – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bib15 article-title: Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. – volume: 11 start-page: 178 year: 2000 ident: 10.1016/j.neuroimage.2006.12.026_bib16 article-title: Individual cortical current density reconstructions of the semantic N400 effect: using a generalized minimum norm model with different constraints (L1 and L2 norm) publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200011)11:3<178::AID-HBM40>3.0.CO;2-0 – volume: 41 start-page: 1574 year: 2002 ident: 10.1016/j.neuroimage.2006.12.026_bib47 article-title: Source reconstruction of mesial–temporal epileptiform activity: comparison of inverse techniques publication-title: Epilepsia – volume: 16 start-page: 564 year: 2002 ident: 10.1016/j.neuroimage.2006.12.026_bib21 article-title: Boundary element method-based cortical potential imaging of somatosensory evoked potentials using subjects's magnetic resonance images publication-title: NeuroImage doi: 10.1006/nimg.2002.1127 – volume: 89 start-page: 5675 year: 1992 ident: 10.1016/j.neuroimage.2006.12.026_bib27 article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.12.5675 – volume: 42 start-page: 608 year: 1995 ident: 10.1016/j.neuroimage.2006.12.026_bib30 article-title: Selective minimum-norm solution of the biomagnetic inverse problem publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.387200 – volume: 34 start-page: 406 year: 1987 ident: 10.1016/j.neuroimage.2006.12.026_bib18 article-title: Electric dipoles tracing in the brain by means of the boundary element method and its accuracy publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1987.326056 – volume: 46 start-page: 1264 year: 1999 ident: 10.1016/j.neuroimage.2006.12.026_bib19 article-title: Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.790505 – year: 1984 ident: 10.1016/j.neuroimage.2006.12.026_bib31 – volume: 5 start-page: 162 year: 1993 ident: 10.1016/j.neuroimage.2006.12.026_bib8 article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1993.5.2.162 – ident: 10.1016/j.neuroimage.2006.12.026_bib14 – volume: 43 start-page: 299 year: 1995 ident: 10.1016/j.neuroimage.2006.12.026_bib7 article-title: A Method for localizing EEG sources in realistic head model IEEE publication-title: Trans. Biomed. Eng. doi: 10.1109/10.486287 – volume: 47 start-page: 1487 year: 2000 ident: 10.1016/j.neuroimage.2006.12.026_bib36 article-title: The conductivity of the human skull: results of in vivo and in vitro measurements publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2000.880100 – volume: 36 start-page: 165 year: 1989 ident: 10.1016/j.neuroimage.2006.12.026_bib55 article-title: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.16463 – volume: 90 start-page: 40 year: 1994 ident: 10.1016/j.neuroimage.2006.12.026_bib34 article-title: A theoretical and experimental study of high resolution EEG based on surface Laplacian and cortical imaging publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(94)90112-0 – volume: 16 start-page: 936 year: 2002 ident: 10.1016/j.neuroimage.2006.12.026_bib43 article-title: Comparison of minimum current estimate and dipole modeling in the analysis of simulated activity in the human visual cortices publication-title: NeuroImage doi: 10.1006/nimg.2002.1151 – volume: 49 start-page: 277 year: 2002 ident: 10.1016/j.neuroimage.2006.12.026_bib22 article-title: An equivalent current source model and Laplacian weighted minimum norm current estimates of brain electrical activity publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.991155 – volume: 44 start-page: 19 year: 1997 ident: 10.1016/j.neuroimage.2006.12.026_bib26 article-title: A new method for regularization parameter determination in the inverse problem of electrocardiography publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.553710 – volume: 31 start-page: 1025 year: 2006 ident: 10.1016/j.neuroimage.2006.12.026_bib25 article-title: Vector-based spatial–temporal minimum L1-norm solution for MEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.029 – volume: 19 start-page: 684 year: 2003 ident: 10.1016/j.neuroimage.2006.12.026_bib44 article-title: Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00147-2 – ident: 10.1016/j.neuroimage.2006.12.026_bib3 – volume: 16 start-page: 267 year: 1999 ident: 10.1016/j.neuroimage.2006.12.026_bib10 article-title: Linear and nonlinear current density reconstructions publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-199905000-00006 – volume: 45 start-page: 980 year: 1998 ident: 10.1016/j.neuroimage.2006.12.026_bib9 article-title: An improved boundary element method for realistic volume–conductor modeling publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.704867 – volume: 25 start-page: 369 year: 2005 ident: 10.1016/j.neuroimage.2006.12.026_bib52 article-title: Evaluation of different cortical source localization methods using simulation and experimental EEG data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.11.036 – volume: 90 start-page: 337 year: 1994 ident: 10.1016/j.neuroimage.2006.12.026_bib11 article-title: High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(94)90050-7 – volume: 39 start-page: 665 year: 1992 ident: 10.1016/j.neuroimage.2006.12.026_bib50 article-title: Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.142641 – volume: 89 start-page: 223903 year: 2006 ident: 10.1016/j.neuroimage.2006.12.026_bib57 article-title: Estimation of in vivo human brain-to-skull conductivity ratio with the aid of intracranial electrical simulation publication-title: Appl. Phys. Lett. doi: 10.1063/1.2398883 – volume: 14 start-page: 651 year: 1977 ident: 10.1016/j.neuroimage.2006.12.026_bib48 article-title: Practical approximate solutions to linear operator equations when the data are noisy publication-title: SIAM J. Num. Anal. doi: 10.1137/0714044 – volume: 95 start-page: 231 year: 1995 ident: 10.1016/j.neuroimage.2006.12.026_bib12 article-title: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(95)00107-A – volume: XXII start-page: 91 year: 1985 ident: 10.1016/j.neuroimage.2006.12.026_bib6 article-title: Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data publication-title: Calcolo doi: 10.1007/BF02576202 – year: 2004 ident: 10.1016/j.neuroimage.2006.12.026_bib23 – volume: 12 start-page: 120 year: 2001 ident: 10.1016/j.neuroimage.2006.12.026_bib20 article-title: A cortical potential imaging analysis of the P300 and novelty P3 components publication-title: Hum. Brain Mapp. doi: 10.1002/1097-0193(200102)12:2<120::AID-HBM1009>3.0.CO;2-V – volume: 17 start-page: 287 year: 2002 ident: 10.1016/j.neuroimage.2006.12.026_bib41 article-title: Systematic regularization of linear inverse solutions of the EEG source localization problem publication-title: NeuroImage doi: 10.1006/nimg.2002.1175 – volume: 62 start-page: 32 year: 1985 ident: 10.1016/j.neuroimage.2006.12.026_bib42 article-title: Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0168-5597(85)90033-4 – volume: 13 start-page: 209 year: 2001 ident: 10.1016/j.neuroimage.2006.12.026_bib29 article-title: A minimal product method and its application to cortical imaging publication-title: Brain Topogr. doi: 10.1023/A:1007807203163 – start-page: 144 year: 2004 ident: 10.1016/j.neuroimage.2006.12.026_bib32 – year: 2005 ident: 10.1016/j.neuroimage.2006.12.026_bib24 – volume: 65 start-page: 413 year: 1993 ident: 10.1016/j.neuroimage.2006.12.026_bib15 article-title: Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 24D start-page: 5 year: 2002 ident: 10.1016/j.neuroimage.2006.12.026_bib37 article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): technical detail publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 195 start-page: 23 year: 1995 ident: 10.1016/j.neuroimage.2006.12.026_bib53 article-title: Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery publication-title: Neuroradiology – volume: 89 start-page: 5951 year: 1992 ident: 10.1016/j.neuroimage.2006.12.026_bib35 article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.89.13.5951 – volume: 5 start-page: 189 year: 1992 ident: 10.1016/j.neuroimage.2006.12.026_bib51 article-title: Effect of the singal-to-noise ratio on the quality of linear estimation reconstructions of distributed current sources publication-title: Brain Topogr. doi: 10.1007/BF01129049 – volume: 24 start-page: 118 year: 2005 ident: 10.1016/j.neuroimage.2006.12.026_bib2 article-title: Assessing time-varying cortical functional connectivity with the multimodal integration of high resolution EEG and fMRI data by directed transfer function publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.09.036 – volume: 28 start-page: 811 year: 1990 ident: 10.1016/j.neuroimage.2006.12.026_bib5 article-title: MEG versus EEG localization test using implanted sources in the human brain publication-title: Ann. Neurol. doi: 10.1002/ana.410280613 – volume: 19 start-page: 1 year: 2003 ident: 10.1016/j.neuroimage.2006.12.026_bib1 article-title: Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00052-1 – start-page: 587 year: 1989 ident: 10.1016/j.neuroimage.2006.12.026_bib4 article-title: Localized and distributed source solutions for the biomagnetic inverse problem I – volume: 120 start-page: 141 year: 1997 ident: 10.1016/j.neuroimage.2006.12.026_bib54 article-title: Localization of motor hand area to knob on the precentral gyrus: a new landwark publication-title: Brain doi: 10.1093/brain/120.1.141 – volume: 11 start-page: 503 year: 1990 ident: 10.1016/j.neuroimage.2006.12.026_bib17 article-title: Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0911028 – year: 2005 ident: 10.1016/j.neuroimage.2006.12.026_bib33 article-title: Electric Fields of the Brain: The Neurophysics of EEG – volume: 10 start-page: 173 year: 1999 ident: 10.1016/j.neuroimage.2006.12.026_bib45 article-title: Visualization of magnetoencephalographic data using minimum current estimates publication-title: NeuroImage doi: 10.1006/nimg.1999.0454 – volume: 116 start-page: 456 year: 2005 ident: 10.1016/j.neuroimage.2006.12.026_bib28 article-title: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2004.08.017 – volume: 5 start-page: 4 year: 1994 ident: 10.1016/j.neuroimage.2006.12.026_bib38 article-title: LORETA (low resolution brain electromagnetic tomography): new authentic 3D functional images of the brain publication-title: ISBET Newsl. – volume: 29 start-page: 734 year: 2006 ident: 10.1016/j.neuroimage.2006.12.026_bib13 article-title: Evaluation of EEG localization methods using realistic simulations of interictal spikes publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.08.053 – volume: 17 start-page: 1347 year: 2002 ident: 10.1016/j.neuroimage.2006.12.026_bib46 article-title: Spatiotemporal imaging of electrical activity related to attention to somatosensory stimulation publication-title: NeuroImage doi: 10.1006/nimg.2002.1222 – volume: 18 start-page: 49 year: 1994 ident: 10.1016/j.neuroimage.2006.12.026_bib39 article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(84)90014-X – volume: 16 start-page: 277 year: 2004 ident: 10.1016/j.neuroimage.2006.12.026_bib49 article-title: Evaluation of sLORETA in the presence of noise and multiple sources publication-title: Brain Topogr. doi: 10.1023/B:BRAT.0000032865.58382.62 – volume: 16 start-page: 45 year: 1989 ident: 10.1016/j.neuroimage.2006.12.026_bib56 article-title: Determination of three-dimensional structure in biplane radiography without prior knowledge of the relationship between the two views: theory publication-title: Med. Phys. doi: 10.1118/1.596401 – volume: 13 start-page: 20 year: 1989 ident: 10.1016/j.neuroimage.2006.12.026_bib40 article-title: Accurate three-dimensional registration of CT, PET and/or MRI images of the brain publication-title: J. Comput. Assist. Tomogr. doi: 10.1097/00004728-198901000-00004 – reference: 12169243 - Neuroimage. 2002 Jul;16(3 Pt 1):564-76 – reference: 1516933 - IEEE Trans Biomed Eng. 1992 Jul;39(7):665-75 – reference: 11169876 - Hum Brain Mapp. 2001 Feb;12(2):120-30 – reference: 9691573 - IEEE Trans Biomed Eng. 1998 Aug;45(8):980-97 – reference: 7509273 - Electroencephalogr Clin Neurophysiol. 1994 Jan;90(1):40-57 – reference: 7790017 - IEEE Trans Biomed Eng. 1995 Jun;42(6):608-15 – reference: 16542857 - Neuroimage. 2006 Jul 1;31(3):1025-37 – reference: 15588603 - Neuroimage. 2005 Jan 1;24(1):118-31 – reference: 15661122 - Clin Neurophysiol. 2005 Feb;116(2):456-65 – reference: 7892475 - Radiology. 1995 Apr;195(1):23-9 – reference: 11302399 - Brain Topogr. 2001 Spring;13(3):209-17 – reference: 11098796 - Hum Brain Mapp. 2000 Nov;11(3):178-92 – reference: 2492038 - J Comput Assist Tomogr. 1989 Jan-Feb;13(1):20-6 – reference: 23972151 - J Cogn Neurosci. 1993 Spring;5(2):162-76 – reference: 12781723 - Neuroimage. 2003 May;19(1):1-15 – reference: 7876038 - Int J Psychophysiol. 1994 Oct;18(1):49-65 – reference: 9214781 - IEEE Trans Biomed Eng. 1997 Jan;44(1):19-39 – reference: 15379227 - Brain Topogr. 2004 Summer;16(4):277-80 – reference: 2578376 - Electroencephalogr Clin Neurophysiol. 1985 Jan;62(1):32-44 – reference: 7514981 - Electroencephalogr Clin Neurophysiol. 1994 May;90(5):337-58 – reference: 12414274 - Neuroimage. 2002 Nov;17(3):1347-57 – reference: 1631079 - Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951-5 – reference: 12482084 - Neuroimage. 2002 Sep;17(1):287-301 – reference: 11077742 - IEEE Trans Biomed Eng. 2000 Nov;47(11):1487-92 – reference: 3610187 - IEEE Trans Biomed Eng. 1987 Jun;34(6):406-14 – reference: 8529554 - Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231-51 – reference: 9055804 - Brain. 1997 Jan;120 ( Pt 1):141-57 – reference: 10426408 - J Clin Neurophysiol. 1999 May;16(3):267-95 – reference: 12202081 - Neuroimage. 2002 Aug;16(4):936-43 – reference: 10417249 - Neuroimage. 1999 Aug;10(2):173-80 – reference: 11942719 - IEEE Trans Biomed Eng. 2002 Apr;49(4):277-88 – reference: 15784415 - Neuroimage. 2005 Apr 1;25(2):369-82 – reference: 2285267 - Ann Neurol. 1990 Dec;28(6):811-7 – reference: 7851932 - IEEE Trans Biomed Eng. 1995 Jan;42(1):68-71 – reference: 12880799 - Neuroimage. 2003 Jul;19(3):684-97 – reference: 1608978 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5675-9 – reference: 10513133 - IEEE Trans Biomed Eng. 1999 Oct;46(10):1264-8 – reference: 1489649 - Brain Topogr. 1992 Winter;5(2):189-94 – reference: 11114216 - Epilepsia. 2000 Dec;41(12):1574-83 – reference: 12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12 – reference: 16271483 - Neuroimage. 2006 Feb 1;29(3):734-53 |
SSID | ssj0009148 |
Score | 2.1711802 |
Snippet | EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the... Objective: EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 598 |
SubjectTerms | Accuracy Algorithms Brain imaging Central sulcus Cerebral Cortex - physiology Computer simulation Cortical current density Electroencephalography Electroencephalography - methods Electrophysiology Evoked Potentials, Somatosensory High resolution EEG Human subjects Humans Inverse Problem Inverse problems Linear programming Magnetic Resonance Imaging NMR Nuclear magnetic resonance Regularization methods Sensory cortex Somatosensory evoked potentials Source imaging Studies Tomography |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4SBWXqlBKt-XhQ68WSWznoR6qCoEAaTkgkPZm-ZWyqM1um-XQf9-Z2MlCQWjPyeRhj2c-z4y_IeSLKaWupE4ZbJYtE8IlTGcmYS6xAP_rSpsUzw6Pr_LzW3E5kZMYcGtjWWVvEztD7WYWY-THyIRXCEQ33-a_GXaNwuxqbKGxTjaRugy1upgUS9LdVISjcJKzEm6IlTyhvqvji5z-glUbUhIYFESKhZfd03P4-X8V5SO3dPaOvI14kn4PCrBN1nyzQ96MY8b8PZmfDnTedFZT2Gt2wWtqAy8TdVjAvvhL8RPBi9HQUbqlWA__g07xnRbcGWgpjR1zwiO6qq6W6sZRdI0hokjH1xe75Pbs9ObknMUuC8wC9lkwI3KeeGw4L10OYFDmlTOVcTy3uFdMjOcuc57zqnZlkTmTprX2iROaS22k5R_IRjNr_EdCwfWbojIpYA4tMluWOc6ArTJvrBO1HJGiH1xlIwU5dsL4qfpas3u1nBbskJmrNFMwLSOSDpLzQMOxgkzVz5_qj5mCYVTgK1aQ_TrIRigSIMaK0vu9uqhoElq1VOARORouw2LGDI1u_OyhVQVm1BPBR2Qv6NbyZ8ESc8FLGMInWjfcgDThT68007uOLhwP4cMm9dPrH_WZbIWwNRYl7ZONxZ8HfwB4a2EOu0X1Dww9Lo0 priority: 102 providerName: ProQuest |
Title | Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811906012080 https://dx.doi.org/10.1016/j.neuroimage.2006.12.026 https://www.ncbi.nlm.nih.gov/pubmed/17303438 https://www.proquest.com/docview/1506740020 https://www.proquest.com/docview/70277043 https://pubmed.ncbi.nlm.nih.gov/PMC1995666 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi4S4oOVdWBYfuIYmsZ3E4rSsuuqCWqGFlXqz_AobBGm17R648NuZiZ2UAodKXBIpzuRhj-dhfzNDyGtTCS2FzhJwlm3CuUsTnZs0cakF87-W2mQYOzybF9Mr_n4hFgfkrI-FQVhllP1BpnfSOl4Zx94cr5pm_AksA1A3oNAKDACt0G_nvEQuf_NzC_OQGQ_hcIIleHdE8wSMV5czsvkOMzdsS-DCIKZZ-LeK-tsE_RNJ-ZtqOj8i96NNSU_DZz8gB759SO7O4q75I7KaDCm96bKm4G92C9jUhtxM1CGIffOD4ieCJqOhqvSaIib-C23wnRZUGnAqjVVzwiM6ZNea6tZRVI9hVZHOLi8ek6vzyeezaRIrLSQW7J9NYnjBUo9F54UrwCAUhXRGGscKi_5iajxzufOMydpVZe5MltXap45rJrQRlj0hh-2y9c8IBfVvSmkysDs0z21VFTgCVubeWMdrMSJl37nKxjTkWA3jm-rxZl_VdliwSmahslzBsIxINlCuQiqOPWhkP36qDzUF4ahAX-xB-3ag3WHJPamPe3ZRUSysFaZzLDma6CPyamiGCY27NLr1y9u1KnFXPeVsRJ4G3tr-LEhjxlkFXbjDdcMNmCp8t6VtrruU4RiID47q8__6pRfkXljZRtzSMTnc3Nz6l2CSbcxJN-fgWC7KE3Ln9OLDdA7nd5P5x8tfZgA-EQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxJtAoXuAo4XXu34JIYSgVUKbHlAr5bbsyyUInIBTof4pfiMzXtuhgFAuPdvjx87szDc7L4Bnpkh1mWoeobNsIyldHOnExJGLLcL_qtSGU-3w9Cgbn8j3s3S2BT_7WhhKq-x1Yquo3cLSGfkL6oSXS0I3r5ffIpoaRdHVfoRGEIsDf_4DXbbm1eQd8vd5kuzvHb8dR91UgciirV9FRmYi9jRgPXUZgp80K50pjROZJd8oNl64xHkhysoVeeIM55X2sZNapNqkVuBzr8BVNLwxOXv5LF83-eUylN6lIio4L7vMoZBP1vannH9FLRFCIHQISS0d_m0O_4a7f2Zt_mYG92_BzQ6_sjdB4G7Dlq_vwLVpF6G_C8u9oX04W1QMfdv2sJzZ0AeKOUqYX50z-kS0mixMsG4Y5d-fsjm906L5xF3Bugk94RFtFlnDdO0YmeJwgsmmHyb34ORS1v8-bNeL2j8EhlDD5KXhiHG0TGxRZMQBWybeWCerdAR5v7jKdi3PafLGF9Xntn1Wa7bQRM5M8UQhW0bAB8plaPuxAU3Z80_1Za2oiBXapg1oXw60HfQJkGZD6p1eXFSnghq13jAj2B0uo_KgiJCu_eKsUTlF8GMpRvAgyNb6Z1HzCykKXMILUjfcQG3JL16p55_a9uRU9I9O8aP_f9QuXB8fTw_V4eTo4DHcCEfmlBC1A9ur72f-CWK9lXnabjAGHy97R_8Cgy9rag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVKq4IHYChc4BjlY9nvEmhBDQRA0lUVVRqbdhNkMQOAGnQv1r_Dre84wdCgjl0rPzbMdvX-Z7hDzVRarKVLEIkmUTCWHjSCU6jmxsIPyvSqUZnh2ezrLDU_H2LD3bIj-7szA4VtnZxNZQ24XBGvk-IuHlAqOb_SqMRRwfjF8uv0W4QQo7rd06DS8iR-7iB6RvzYvJAfD6WZKMR-_fHEZhw0BkwO-vIi0yHjtctp7aDAKhNCutLrXlmcE8KdaO28Q6zsvKFnliNWOVcrEViqdKp4bDfa-R7RyzogHZfj2aHZ-sIX-Z8AfxUh4VjJVhjshPl7VolfOvYDN8QwRLkgjw8G_n-Hfw--cM529OcXyT3AjRLH3lxe8W2XL1bbIzDf36O2Q56sHE6aKikOm2pXNqPCoUtTg-v7qg-IrgQ6nfZ91QnMb_SOf4TAPOFHSEhn09_hbtTFlDVW0pOmZfz6TTk8ldcnolHLhHBvWidg8IhcBD56VmEPEokZiiyJADpkycNlZU6ZDk3ceVJgCg4x6OL7KbdPss12zB_ZyZZIkEtgwJ6ymXHgRkA5qy45_sDrmCWZbgqTagfd7ThkDIBzgbUu924iKDQWrkWn2GZK-_DKYE-0OqdovzRubYz48FH5L7XrbWfxb8ABe8gE94Ser6HyBI-eUr9fxTC1aOEACQIj_8_0vtkR3QZvluMjt6RK77-jlOR-2Swer7uXsMgd9KPwkaRsmHq1bqX2IjcQU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+cortical+current+density+imaging+methods+using+intracranial+electrocorticograms+and+functional+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Bai%2C+Xiaoxiao&rft.au=Towle%2C+Vernon+L.&rft.au=He%2C+Eric+J.&rft.au=He%2C+Bin&rft.date=2007-04-01&rft.issn=1053-8119&rft.volume=35&rft.issue=2&rft.spage=598&rft.epage=608&rft_id=info:doi/10.1016%2Fj.neuroimage.2006.12.026&rft_id=info%3Apmid%2F17303438&rft.externalDocID=PMC1995666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |