Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI

EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI. Fi...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 35; no. 2; pp. 598 - 608
Main Authors Bai, Xiaoxiao, Towle, Vernon L., He, Eric J., He, Bin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2007
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI. Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA with Lp-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum Lp-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum Lp-norm) and L1-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex. The CCD distributions estimated by the Lp-norm and LORETA-Lp methods were smoother when the p values were high. The LORETA based on the L1-norm performed better than the LORETA-L2 method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum Lp-norm (with p equal to 1), L1-norm (the Linear programming) and LORETA-Lp (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with Lp-norm (p equal to 1.5 and 2.0), sLORETA and the minimum Lp-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively. The present experimental study suggests that L1-norm-based algorithms provide better performance than L2 and L1.5-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist.
AbstractList EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI. Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA with Lp-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum Lp-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum Lp-norm) and L1-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex. The CCD distributions estimated by the Lp-norm and LORETA-Lp methods were smoother when the p values were high. The LORETA based on the L1-norm performed better than the LORETA-L2 method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum Lp-norm (with p equal to 1), L1-norm (the Linear programming) and LORETA-Lp (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with Lp-norm (p equal to 1.5 and 2.0), sLORETA and the minimum Lp-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively. The present experimental study suggests that L1-norm-based algorithms provide better performance than L2 and L1.5-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist.
Objective: EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI. Methods: Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA withLp-norm (pequal to 1, 1.5 and 2), sLORETA, the minimumLp-norm (pequal to 1 and 1.5; whenp=2, the MNLS method is mathematically equivalent to the minimumLp-norm) andL1-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex. Results: The CCD distributions estimated by theLp-norm and LORETA-Lpmethods were smoother when thepvalues were high. The LORETA based on theL1-norm performed better than the LORETA-L2method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimumLp-norm (withpequal to 1),L1-norm (the Linear programming) and LORETA-Lp(withpequal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA withLp-norm (pequal to 1.5 and 2.0), sLORETA and the minimumLp-norm (pequal to 1.5) methods, were over 11 mm and 6 mm, respectively. Conclusions: The present experimental study suggests thatL1-norm-based algorithms provide better performance thanL2andL1.5-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist.
EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI.OBJECTIVEEEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI.Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA with L(p)-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum L(p)-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum L(p)-norm) and L(1)-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex.METHODSFive source imaging algorithms, including the minimum norm least square (MNLS), LORETA with L(p)-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum L(p)-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum L(p)-norm) and L(1)-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex.The CCD distributions estimated by the L(p)-norm and LORETA-L(p) methods were smoother when the p values were high. The LORETA based on the L(1)-norm performed better than the LORETA-L(2) method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum L(p)-norm (with p equal to 1), L(1)-norm (the Linear programming) and LORETA-L(p) (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with L(p)-norm (p equal to 1.5 and 2.0), sLORETA and the minimum L(p)-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively.RESULTSThe CCD distributions estimated by the L(p)-norm and LORETA-L(p) methods were smoother when the p values were high. The LORETA based on the L(1)-norm performed better than the LORETA-L(2) method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum L(p)-norm (with p equal to 1), L(1)-norm (the Linear programming) and LORETA-L(p) (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with L(p)-norm (p equal to 1.5 and 2.0), sLORETA and the minimum L(p)-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively.The present experimental study suggests that L(1)-norm-based algorithms provide better performance than L(2) and L(1.5)-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist.CONCLUSIONSThe present experimental study suggests that L(1)-norm-based algorithms provide better performance than L(2) and L(1.5)-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist.
EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the present study was to evaluate source reconstruction techniques by means of the intracranial electrocorticograms (ECoGs) and functional MRI. Five source imaging algorithms, including the minimum norm least square (MNLS), LORETA with L(p)-norm (p equal to 1, 1.5 and 2), sLORETA, the minimum L(p)-norm (p equal to 1 and 1.5; when p=2, the MNLS method is mathematically equivalent to the minimum L(p)-norm) and L(1)-norm (the linear programming) methods, were evaluated in a group of 10 human subjects, in a paradigm with somatosensory stimulation. Cortical current density (CCD) distributions were estimated from the scalp somatosensory evoked potentials (SEPs), at approximately 30 ms following electrical stimulation of median nerve at the wrist. Realistic geometry boundary element head models were constructed from the MRIs of each subject and used in the CCD analysis. Functional MRI results obtained from a motor task and sensory stimulation in all subjects were used to identify the central sulcus, motor and sensory areas. In three patients undergoing neurosurgical evaluation, ECoGs were recorded in response to the somatosensory stimulation, and were used to help determine the central sulcus and the sensory cortex. The CCD distributions estimated by the L(p)-norm and LORETA-L(p) methods were smoother when the p values were high. The LORETA based on the L(1)-norm performed better than the LORETA-L(2) method for imaging well localized sources such as the P30 component of the SEP. The mean and standard deviation of the distance between the location of maximum CCD value and the central sulcus, estimated by the minimum L(p)-norm (with p equal to 1), L(1)-norm (the Linear programming) and LORETA-L(p) (with p equal to 1) methods, were 4, 7, 7 mm and 3, 4, 2 mm, respectively (after converting into Talairach coordinates). The mean and standard deviation of the aforementioned distance, estimated by the MNLS, LORETA with L(p)-norm (p equal to 1.5 and 2.0), sLORETA and the minimum L(p)-norm (p equal to 1.5) methods, were over 11 mm and 6 mm, respectively. The present experimental study suggests that L(1)-norm-based algorithms provide better performance than L(2) and L(1.5)-norm-based algorithms, in the context of CCD imaging of well localized sources induced by somatosensory electrical stimulation of median nerve at the wrist.
Author He, Bin
He, Eric J.
Bai, Xiaoxiao
Towle, Vernon L.
AuthorAffiliation 1 University of Minnesota, Department of Biomedical Engineering
2 University of Chicago, Department of Neurology
AuthorAffiliation_xml – name: 1 University of Minnesota, Department of Biomedical Engineering
– name: 2 University of Chicago, Department of Neurology
Author_xml – sequence: 1
  givenname: Xiaoxiao
  surname: Bai
  fullname: Bai, Xiaoxiao
  organization: University of Minnesota, Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, Minneapolis, MN 55455, USA
– sequence: 2
  givenname: Vernon L.
  surname: Towle
  fullname: Towle, Vernon L.
  organization: University of Chicago, Department of Neurology, USA
– sequence: 3
  givenname: Eric J.
  surname: He
  fullname: He, Eric J.
  organization: University of Minnesota, Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, Minneapolis, MN 55455, USA
– sequence: 4
  givenname: Bin
  surname: He
  fullname: He, Bin
  email: binhe@umn.edu
  organization: University of Minnesota, Department of Biomedical Engineering, 7-105 NHH, 312 Church Street, Minneapolis, MN 55455, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17303438$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAURi1URB_wF5AlJHZJ_UicZIOAqtBKRUgI1pZj30w9JPZgOyPNv8dhSge6mpVt-bvH9-r4HJ047wAhTElJCRWX69LBHLyd1ApKRogoKSsJE8_QGSVdXXR1w06Wfc2LltLuFJ3HuCaEdLRqX6BT2nDCK96eoc31Vo2zStY77AesfUhWqxHrOQRwCRtw0aYdXp6yboUnSPfeRDzH5WRdCkoH5WwugRF0Cn6P8KugpoiVM3iYnV74OfLl2-1L9HxQY4RXD-sF-vHp-vvVTXH39fPt1Ye7QteCpaKvBCdAKWe1EU1T1aIzfdcbLjStKkF64IYZ4LwbTNsw01M6KCCmUrxWfa35BXq3527mfgKjYWl1lJuQJwk76ZWV_984ey9Xfitp19VCiAx4-wAI_tcMMcnJRg3jqBz4OcqGsKYhFc_BN0-Caz-HPG6UtCaiqQhhJKde_9vPYyN_VeRAuw_o4GMMMBwiRC7W5VoerMvFuqRMZuuHWR9LtU1_nObJ7HgM4OMeANnI1kKQUVtwGowNWao03h4Def8Eokfrlt_0E3bHIX4DUbzpRA
CitedBy_id crossref_primary_10_1007_s10548_023_00994_5
crossref_primary_10_1109_TNSRE_2009_2015196
crossref_primary_10_1007_s10439_009_9665_6
crossref_primary_10_3389_fpsyg_2015_01893
crossref_primary_10_1016_j_neuroimage_2012_11_013
crossref_primary_10_5812_archneurosci_18781
crossref_primary_10_3389_fphys_2018_01708
crossref_primary_10_1109_TNSRE_2021_3064665
crossref_primary_10_1523_JNEUROSCI_1174_12_2012
crossref_primary_10_1109_MPUL_2012_2189166
crossref_primary_10_1155_2014_434296
crossref_primary_10_1016_j_bbr_2015_06_025
crossref_primary_10_1155_2009_652078
crossref_primary_10_1111_j_1469_8986_2009_00787_x
crossref_primary_10_1371_journal_pone_0025146
crossref_primary_10_1371_journal_pone_0105041
crossref_primary_10_1155_2011_643489
crossref_primary_10_1007_s11042_019_07763_2
crossref_primary_10_1007_s00521_020_05603_1
crossref_primary_10_1016_j_nicl_2013_10_001
crossref_primary_10_1088_0031_9155_56_13_027
crossref_primary_10_1523_JNEUROSCI_3795_10_2011
crossref_primary_10_1109_TBME_2019_2913928
crossref_primary_10_3389_fnhum_2018_00340
crossref_primary_10_1002_hbm_25578
crossref_primary_10_1249_MSS_0b013e3181b76ac8
crossref_primary_10_1016_j_neucom_2020_01_038
crossref_primary_10_1111_j_1460_9568_2011_07617_x
crossref_primary_10_1371_journal_pone_0112103
crossref_primary_10_1016_j_clinph_2009_04_024
crossref_primary_10_1016_j_neuroimage_2018_09_070
crossref_primary_10_1177_1550059412449780
crossref_primary_10_1016_j_neuroscience_2014_06_044
crossref_primary_10_1109_TBME_2018_2890291
crossref_primary_10_1088_0031_9155_58_11_3897
crossref_primary_10_1016_j_neucom_2018_06_004
crossref_primary_10_1016_j_neuroscience_2016_05_044
crossref_primary_10_1113_JP274968
crossref_primary_10_1016_j_nicl_2015_01_010
crossref_primary_10_1109_TNSRE_2008_2009784
crossref_primary_10_1088_0031_9155_56_19_009
crossref_primary_10_1007_s10548_011_0173_2
crossref_primary_10_5298_1081_5937_44_2_03
crossref_primary_10_1038_s41597_020_0467_x
crossref_primary_10_1109_TBME_2011_2139210
crossref_primary_10_1016_j_neuroimage_2015_12_030
crossref_primary_10_1007_s10548_010_0155_9
crossref_primary_10_1109_RBME_2008_2008233
crossref_primary_10_1371_journal_pone_0147266
crossref_primary_10_1109_TBME_2023_3265376
crossref_primary_10_1109_TMI_2017_2679756
crossref_primary_10_1016_j_bbr_2012_08_022
crossref_primary_10_1097_JNR_0b013e3181a53f1b
crossref_primary_10_1109_MSP_2013_2296790
crossref_primary_10_1016_j_neuroscience_2012_10_037
crossref_primary_10_1159_000486281
crossref_primary_10_1007_s10548_012_0259_5
crossref_primary_10_1007_s00421_014_2927_5
crossref_primary_10_1142_S0129065715500161
Cites_doi 10.1002/1097-0193(200011)11:3<178::AID-HBM40>3.0.CO;2-0
10.1006/nimg.2002.1127
10.1073/pnas.89.12.5675
10.1109/10.387200
10.1109/TBME.1987.326056
10.1109/10.790505
10.1162/jocn.1993.5.2.162
10.1109/10.486287
10.1109/TBME.2000.880100
10.1109/10.16463
10.1016/0013-4694(94)90112-0
10.1006/nimg.2002.1151
10.1109/10.991155
10.1109/10.553710
10.1016/j.neuroimage.2006.01.029
10.1016/S1053-8119(03)00147-2
10.1097/00004691-199905000-00006
10.1109/10.704867
10.1016/j.neuroimage.2004.11.036
10.1016/0013-4694(94)90050-7
10.1109/10.142641
10.1063/1.2398883
10.1137/0714044
10.1016/0013-4694(95)00107-A
10.1007/BF02576202
10.1002/1097-0193(200102)12:2<120::AID-HBM1009>3.0.CO;2-V
10.1006/nimg.2002.1175
10.1016/0168-5597(85)90033-4
10.1023/A:1007807203163
10.1103/RevModPhys.65.413
10.1073/pnas.89.13.5951
10.1007/BF01129049
10.1016/j.neuroimage.2004.09.036
10.1002/ana.410280613
10.1016/S1053-8119(03)00052-1
10.1093/brain/120.1.141
10.1137/0911028
10.1006/nimg.1999.0454
10.1016/j.clinph.2004.08.017
10.1016/j.neuroimage.2005.08.053
10.1006/nimg.2002.1222
10.1016/0167-8760(84)90014-X
10.1023/B:BRAT.0000032865.58382.62
10.1118/1.596401
10.1097/00004728-198901000-00004
ContentType Journal Article
Copyright 2006 Elsevier Inc.
Copyright Elsevier Limited Apr 1, 2007
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: Copyright Elsevier Limited Apr 1, 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2006.12.026
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 608
ExternalDocumentID PMC1995666
3244587111
17303438
10_1016_j_neuroimage_2006_12_026
S1053811906012080
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB000178
– fundername: PHS HHS
  grantid: R013001A2
– fundername: NIBIB NIH HHS
  grantid: R01EB00178
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
P-8
R2-
SEW
WUQ
XPP
Z5R
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c562t-b4630e11325d6774569db9bd36c14460be3d2de339fd872db11fae0d4a35ab5c3
IEDL.DBID .~1
ISSN 1053-8119
IngestDate Thu Aug 21 18:01:50 EDT 2025
Tue Aug 05 10:12:21 EDT 2025
Sun Aug 17 23:53:34 EDT 2025
Wed Feb 19 01:43:44 EST 2025
Tue Jul 01 00:49:57 EDT 2025
Thu Apr 24 23:00:17 EDT 2025
Fri Feb 23 02:31:40 EST 2024
Tue Aug 26 16:31:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Source imaging
Sensory cortex
Brain imaging
Cortical current density
High resolution EEG
Somatosensory evoked potentials
Inverse Problem
Central sulcus
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-b4630e11325d6774569db9bd36c14460be3d2de339fd872db11fae0d4a35ab5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1016/j.neuroimage.2006.12.026
PMID 17303438
PQID 1506740020
PQPubID 2031077
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1995666
proquest_miscellaneous_70277043
proquest_journals_1506740020
pubmed_primary_17303438
crossref_primary_10_1016_j_neuroimage_2006_12_026
crossref_citationtrail_10_1016_j_neuroimage_2006_12_026
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2006_12_026
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2006_12_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-04-01
PublicationDateYYYYMMDD 2007-04-01
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2007
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Gevins, Martin, Brickett, Desmond, Reutter (bib11) 1994; 90
Babiloni, Babiloni, Carducci, Romani, Rossini, Angelone, Cincotti (bib1) 2003; 19
Yousry, Schmid, Jassoy, Schmidt, Eisner, Reulen, Reiser, Lissner (bib53) 1995; 195
He, Yao, Lian, Wu (bib22) 2002; 49
Morozov (bib31) 1984
Waberski, Gobbele, Darvas, Schmitz, Buchner (bib46) 2002; 17
Nunez, Srinivasan (bib33) 2005
Hann, Streb, Bien, Rosler (bib16) 2000; 11
Lian, He (bib29) 2001; 13
He, Lian, Spencer, Dien, Donchin (bib20) 2001; 12
Babiloni, Babiloni, Carducci, Cincotti, Astolfi, Basilisco, Rossini, Ding, Ni, Cheng, Christine, Sweeney, He (bib2) 2005; 24
Ogawa, Tank, Menon, Ellermann, Kim, Merkle, Ugurbil (bib35) 1992; 89
Pascual-Marqui, Michel, Lehmann (bib39) 1994; 18
Clarke, Goubau, Ketchen (bib4) 1989
He, Musha, Okamoto, Homma, Nakajima, Sato (bib18) 1987; 34
Cuffin (bib7) 1995; 43
Cohen, Cuffin, Yunokuchi, Maniewski, Purcell, Cosgrove, Ives, Kennedy, Schomer (bib5) 1990; 28
Nunez, Silibertein, Cdush, Wijesinghe, Westdrop, Srinivasan (bib34) 1994; 90
Phillips, Rugg, Friston (bib41) 2002; 17
He (bib23) 2004
Metz, Fencil (bib56) 1989; 16
Pascual-Marqui (bib37) 2002; 24D
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib15) 1993; 65
Dale, Sereno (bib8) 1993; 5
Zhang, van Drongelen, He (bib57) 2006; 89
Wang, Williamson, Kaufman (bib50) 1992; 39
Hansen (bib17) 1990; 11
Kwong, Belliveau, Chesler, Goldberg, Weisskoff, Poncelet, Kennedy, Hoppel, Cohen, Turner, Cheng, Brady, Rosen (bib27) 1992; 89
Gorodnitsky, George, Rao (bib12) 1995; 95
Pascual-Marqui, Michel (bib38) 1994; 5
Uutela, Hämäläinen, Somersalo (bib45) 1999; 10
Yao, Dewald (bib52) 2005; 25
Lai, Van Drongelen, Ding, Hecox, Towle, Frim, He (bib28) 2005; 116
Fuchs, Wagner, Kohler, Wischmann (bib10) 1999; 16
He, Zhang, Lian, Sasaki, Wu, Towle (bib21) 2002; 16
NeuroScan (bib32) 2004
He (bib24) 2005
Matsuura, Okabe (bib30) 1995; 42
norm solutions of the biomagnetic inverse problem. Technical Report KFA-ZAM-IB-9614. 7: 1–13.
Scherg, von Cramon (bib42) 1985; 62
He, Wang, Wu (bib19) 1999; 46
Yousry, Schmid, Alkadhi, Schmidt, Peraud, Buettner, Winkler (bib54) 1997; 120
Hämäläinen, Sarvas (bib55) 1989; 36
Waberski, Gobbele, Herrendorf, Steinhoff, Kolle, Fuchs, Paulus, Buchner (bib47) 2002; 41
Pelizzari, Chen, Spelbring, Weichselbaum, Chen (bib40) 1989; 13
Wischmann, Fuchs, Dössel (bib51) 1992; 5
Grova, Daunizeau, Lina, Bénar, Benali, Gotman (bib13) 2006; 29
Stenbacka, Vanni, Uutela, Hari (bib43) 2002; 16
Wagner, Fuchs, Kadtner (bib49) 2004; 16
Hämäläinen, M.S., Ilmoniemi, R.J., 1984. Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki Univ Technol Helsinki Finland. Tech Rep TKK-F-A559.
Wahba (bib48) 1977; 14
Colli Franzone, Guerri, Taccardi, Viganotti (bib6) 1985; XXII
Beucker, R., Schlitt, H.A., 1996. On minimal l
Fuchs, Drenckhahn, Wischmann, Wagner (bib9) 1998; 45
Huang, Dale, Song, Halgren, Harrington, Podgorny, Canive, Lewis, Lee (bib25) 2006; 31
Towle, Khorasani, Uftring, Pelizzari, Erickson, Spire, Hoffmann, Chu, Scherg (bib44) 2003; 19
Johnston, Gulrajani (bib26) 1997; 44
Oostendorp, Delbeke, Stegeman (bib36) 2000; 47
Oostendorp (10.1016/j.neuroimage.2006.12.026_bib36) 2000; 47
Waberski (10.1016/j.neuroimage.2006.12.026_bib46) 2002; 17
Wagner (10.1016/j.neuroimage.2006.12.026_bib49) 2004; 16
Towle (10.1016/j.neuroimage.2006.12.026_bib44) 2003; 19
Cohen (10.1016/j.neuroimage.2006.12.026_bib5) 1990; 28
Gorodnitsky (10.1016/j.neuroimage.2006.12.026_bib12) 1995; 95
Babiloni (10.1016/j.neuroimage.2006.12.026_bib1) 2003; 19
Lian (10.1016/j.neuroimage.2006.12.026_bib29) 2001; 13
Lai (10.1016/j.neuroimage.2006.12.026_bib28) 2005; 116
Metz (10.1016/j.neuroimage.2006.12.026_bib56) 1989; 16
Wahba (10.1016/j.neuroimage.2006.12.026_bib48) 1977; 14
Clarke (10.1016/j.neuroimage.2006.12.026_bib4) 1989
Morozov (10.1016/j.neuroimage.2006.12.026_bib31) 1984
Cuffin (10.1016/j.neuroimage.2006.12.026_bib7) 1995; 43
Nunez (10.1016/j.neuroimage.2006.12.026_bib33) 2005
Nunez (10.1016/j.neuroimage.2006.12.026_bib34) 1994; 90
Scherg (10.1016/j.neuroimage.2006.12.026_bib42) 1985; 62
He (10.1016/j.neuroimage.2006.12.026_bib19) 1999; 46
He (10.1016/j.neuroimage.2006.12.026_bib21) 2002; 16
He (10.1016/j.neuroimage.2006.12.026_bib24) 2005
Kwong (10.1016/j.neuroimage.2006.12.026_bib27) 1992; 89
Fuchs (10.1016/j.neuroimage.2006.12.026_bib10) 1999; 16
Hann (10.1016/j.neuroimage.2006.12.026_bib16) 2000; 11
He (10.1016/j.neuroimage.2006.12.026_bib22) 2002; 49
Yousry (10.1016/j.neuroimage.2006.12.026_bib54) 1997; 120
Pascual-Marqui (10.1016/j.neuroimage.2006.12.026_bib37) 2002; 24D
Grova (10.1016/j.neuroimage.2006.12.026_bib13) 2006; 29
Fuchs (10.1016/j.neuroimage.2006.12.026_bib9) 1998; 45
Uutela (10.1016/j.neuroimage.2006.12.026_bib45) 1999; 10
Matsuura (10.1016/j.neuroimage.2006.12.026_bib30) 1995; 42
Stenbacka (10.1016/j.neuroimage.2006.12.026_bib43) 2002; 16
Dale (10.1016/j.neuroimage.2006.12.026_bib8) 1993; 5
Hämäläinen (10.1016/j.neuroimage.2006.12.026_bib15) 1993; 65
Colli Franzone (10.1016/j.neuroimage.2006.12.026_bib6) 1985; XXII
Waberski (10.1016/j.neuroimage.2006.12.026_bib47) 2002; 41
Pelizzari (10.1016/j.neuroimage.2006.12.026_bib40) 1989; 13
Zhang (10.1016/j.neuroimage.2006.12.026_bib57) 2006; 89
Johnston (10.1016/j.neuroimage.2006.12.026_bib26) 1997; 44
Pascual-Marqui (10.1016/j.neuroimage.2006.12.026_bib39) 1994; 18
Hansen (10.1016/j.neuroimage.2006.12.026_bib17) 1990; 11
Wischmann (10.1016/j.neuroimage.2006.12.026_bib51) 1992; 5
Ogawa (10.1016/j.neuroimage.2006.12.026_bib35) 1992; 89
Wang (10.1016/j.neuroimage.2006.12.026_bib50) 1992; 39
He (10.1016/j.neuroimage.2006.12.026_bib18) 1987; 34
10.1016/j.neuroimage.2006.12.026_bib3
10.1016/j.neuroimage.2006.12.026_bib14
NeuroScan (10.1016/j.neuroimage.2006.12.026_bib32) 2004
Babiloni (10.1016/j.neuroimage.2006.12.026_bib2) 2005; 24
Huang (10.1016/j.neuroimage.2006.12.026_bib25) 2006; 31
Phillips (10.1016/j.neuroimage.2006.12.026_bib41) 2002; 17
Hämäläinen (10.1016/j.neuroimage.2006.12.026_bib55) 1989; 36
He (10.1016/j.neuroimage.2006.12.026_bib23) 2004
Yao (10.1016/j.neuroimage.2006.12.026_bib52) 2005; 25
He (10.1016/j.neuroimage.2006.12.026_bib20) 2001; 12
Yousry (10.1016/j.neuroimage.2006.12.026_bib53) 1995; 195
Gevins (10.1016/j.neuroimage.2006.12.026_bib11) 1994; 90
Pascual-Marqui (10.1016/j.neuroimage.2006.12.026_bib38) 1994; 5
12169243 - Neuroimage. 2002 Jul;16(3 Pt 1):564-76
2578376 - Electroencephalogr Clin Neurophysiol. 1985 Jan;62(1):32-44
7514981 - Electroencephalogr Clin Neurophysiol. 1994 May;90(5):337-58
12880799 - Neuroimage. 2003 Jul;19(3):684-97
15588603 - Neuroimage. 2005 Jan 1;24(1):118-31
2492038 - J Comput Assist Tomogr. 1989 Jan-Feb;13(1):20-6
8529554 - Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231-51
1489649 - Brain Topogr. 1992 Winter;5(2):189-94
11169876 - Hum Brain Mapp. 2001 Feb;12(2):120-30
15784415 - Neuroimage. 2005 Apr 1;25(2):369-82
7509273 - Electroencephalogr Clin Neurophysiol. 1994 Jan;90(1):40-57
12202081 - Neuroimage. 2002 Aug;16(4):936-43
9055804 - Brain. 1997 Jan;120 ( Pt 1):141-57
7892475 - Radiology. 1995 Apr;195(1):23-9
1631079 - Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951-5
1608978 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5675-9
10513133 - IEEE Trans Biomed Eng. 1999 Oct;46(10):1264-8
23972151 - J Cogn Neurosci. 1993 Spring;5(2):162-76
12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12
11114216 - Epilepsia. 2000 Dec;41(12):1574-83
1516933 - IEEE Trans Biomed Eng. 1992 Jul;39(7):665-75
12414274 - Neuroimage. 2002 Nov;17(3):1347-57
7851932 - IEEE Trans Biomed Eng. 1995 Jan;42(1):68-71
15661122 - Clin Neurophysiol. 2005 Feb;116(2):456-65
15379227 - Brain Topogr. 2004 Summer;16(4):277-80
16542857 - Neuroimage. 2006 Jul 1;31(3):1025-37
9691573 - IEEE Trans Biomed Eng. 1998 Aug;45(8):980-97
16271483 - Neuroimage. 2006 Feb 1;29(3):734-53
10426408 - J Clin Neurophysiol. 1999 May;16(3):267-95
12482084 - Neuroimage. 2002 Sep;17(1):287-301
2285267 - Ann Neurol. 1990 Dec;28(6):811-7
7790017 - IEEE Trans Biomed Eng. 1995 Jun;42(6):608-15
11098796 - Hum Brain Mapp. 2000 Nov;11(3):178-92
12781723 - Neuroimage. 2003 May;19(1):1-15
7876038 - Int J Psychophysiol. 1994 Oct;18(1):49-65
11077742 - IEEE Trans Biomed Eng. 2000 Nov;47(11):1487-92
11302399 - Brain Topogr. 2001 Spring;13(3):209-17
3610187 - IEEE Trans Biomed Eng. 1987 Jun;34(6):406-14
11942719 - IEEE Trans Biomed Eng. 2002 Apr;49(4):277-88
10417249 - Neuroimage. 1999 Aug;10(2):173-80
9214781 - IEEE Trans Biomed Eng. 1997 Jan;44(1):19-39
References_xml – volume: 46
  start-page: 1264
  year: 1999
  end-page: 1268
  ident: bib19
  article-title: Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 16
  start-page: 936
  year: 2002
  end-page: 943
  ident: bib43
  article-title: Comparison of minimum current estimate and dipole modeling in the analysis of simulated activity in the human visual cortices
  publication-title: NeuroImage
– volume: 11
  start-page: 178
  year: 2000
  end-page: 192
  ident: bib16
  article-title: Individual cortical current density reconstructions of the semantic N400 effect: using a generalized minimum norm model with different constraints (L1 and L2 norm)
  publication-title: Hum. Brain Mapp.
– volume: 5
  start-page: 189
  year: 1992
  end-page: 194
  ident: bib51
  article-title: Effect of the singal-to-noise ratio on the quality of linear estimation reconstructions of distributed current sources
  publication-title: Brain Topogr.
– reference: Beucker, R., Schlitt, H.A., 1996. On minimal l
– start-page: 144
  year: 2004
  end-page: 154
  ident: bib32
  publication-title: Curry 5.0™ User Guide
– year: 1984
  ident: bib31
  article-title: Methods for Solving Incorrectly Posed Problems
– volume: 16
  start-page: 564
  year: 2002
  end-page: 576
  ident: bib21
  article-title: Boundary element method-based cortical potential imaging of somatosensory evoked potentials using subjects's magnetic resonance images
  publication-title: NeuroImage
– volume: 16
  start-page: 277
  year: 2004
  end-page: 280
  ident: bib49
  article-title: Evaluation of sLORETA in the presence of noise and multiple sources
  publication-title: Brain Topogr.
– volume: XXII
  start-page: 91
  year: 1985
  end-page: 186
  ident: bib6
  article-title: Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data
  publication-title: Calcolo
– volume: 116
  start-page: 456
  year: 2005
  end-page: 465
  ident: bib28
  article-title: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings
  publication-title: Clin. Neurophysiol.
– volume: 45
  start-page: 980
  year: 1998
  end-page: 997
  ident: bib9
  article-title: An improved boundary element method for realistic volume–conductor modeling
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2005
  ident: bib24
  article-title: Neural Engineering
– volume: 16
  start-page: 267
  year: 1999
  end-page: 295
  ident: bib10
  article-title: Linear and nonlinear current density reconstructions
  publication-title: J. Clin. Neurophysiol.
– volume: 28
  start-page: 811
  year: 1990
  end-page: 817
  ident: bib5
  article-title: MEG versus EEG localization test using implanted sources in the human brain
  publication-title: Ann. Neurol.
– volume: 5
  start-page: 162
  year: 1993
  end-page: 176
  ident: bib8
  article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach
  publication-title: J. Cogn. Neurosci
– volume: 120
  start-page: 141
  year: 1997
  end-page: 157
  ident: bib54
  article-title: Localization of motor hand area to knob on the precentral gyrus: a new landwark
  publication-title: Brain
– volume: 11
  start-page: 503
  year: 1990
  end-page: 518
  ident: bib17
  article-title: Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 90
  start-page: 40
  year: 1994
  end-page: 57
  ident: bib34
  article-title: A theoretical and experimental study of high resolution EEG based on surface Laplacian and cortical imaging
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– reference: Hämäläinen, M.S., Ilmoniemi, R.J., 1984. Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki Univ Technol Helsinki Finland. Tech Rep TKK-F-A559.
– volume: 19
  start-page: 1
  year: 2003
  end-page: 15
  ident: bib1
  article-title: Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study
  publication-title: NeuroImage
– volume: 62
  start-page: 32
  year: 1985
  end-page: 44
  ident: bib42
  article-title: Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 29
  start-page: 734
  year: 2006
  end-page: 753
  ident: bib13
  article-title: Evaluation of EEG localization methods using realistic simulations of interictal spikes
  publication-title: NeuroImage
– volume: 49
  start-page: 277
  year: 2002
  end-page: 288
  ident: bib22
  article-title: An equivalent current source model and Laplacian weighted minimum norm current estimates of brain electrical activity
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 47
  start-page: 1487
  year: 2000
  end-page: 1492
  ident: bib36
  article-title: The conductivity of the human skull: results of in vivo and in vitro measurements
  publication-title: IEEE Trans. Biomed. Eng.
– reference: -norm solutions of the biomagnetic inverse problem. Technical Report KFA-ZAM-IB-9614. 7: 1–13.
– volume: 95
  start-page: 231
  year: 1995
  end-page: 251
  ident: bib12
  article-title: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 36
  start-page: 165
  year: 1989
  end-page: 171
  ident: bib55
  article-title: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 34
  start-page: 406
  year: 1987
  end-page: 414
  ident: bib18
  article-title: Electric dipoles tracing in the brain by means of the boundary element method and its accuracy
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 10
  start-page: 173
  year: 1999
  end-page: 180
  ident: bib45
  article-title: Visualization of magnetoencephalographic data using minimum current estimates
  publication-title: NeuroImage
– volume: 24
  start-page: 118
  year: 2005
  end-page: 131
  ident: bib2
  article-title: Assessing time-varying cortical functional connectivity with the multimodal integration of high resolution EEG and fMRI data by directed transfer function
  publication-title: NeuroImage
– volume: 90
  start-page: 337
  year: 1994
  end-page: 358
  ident: bib11
  article-title: High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 18
  start-page: 49
  year: 1994
  end-page: 65
  ident: bib39
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int. J. Psychophysiol.
– volume: 14
  start-page: 651
  year: 1977
  end-page: 667
  ident: bib48
  article-title: Practical approximate solutions to linear operator equations when the data are noisy
  publication-title: SIAM J. Num. Anal.
– volume: 195
  start-page: 23
  year: 1995
  end-page: 29
  ident: bib53
  article-title: Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery
  publication-title: Neuroradiology
– start-page: 587
  year: 1989
  end-page: 590
  ident: bib4
  article-title: Localized and distributed source solutions for the biomagnetic inverse problem I
  publication-title: Advances in Biomagnetism
– volume: 42
  start-page: 608
  year: 1995
  end-page: 615
  ident: bib30
  article-title: Selective minimum-norm solution of the biomagnetic inverse problem
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 31
  start-page: 1025
  year: 2006
  end-page: 1037
  ident: bib25
  article-title: Vector-based spatial–temporal minimum L1-norm solution for MEG
  publication-title: NeuroImage
– volume: 24D
  start-page: 5
  year: 2002
  end-page: 12
  ident: bib37
  article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): technical detail
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– year: 2004
  ident: bib23
  article-title: Modeling and Imaging of Bioelectric Activity: Principles and Applications
– volume: 19
  start-page: 684
  year: 2003
  end-page: 697
  ident: bib44
  article-title: Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping
  publication-title: NeuroImage
– volume: 43
  start-page: 299
  year: 1995
  end-page: 303
  ident: bib7
  article-title: A Method for localizing EEG sources in realistic head model IEEE
  publication-title: Trans. Biomed. Eng.
– volume: 5
  start-page: 4
  year: 1994
  end-page: 8
  ident: bib38
  article-title: LORETA (low resolution brain electromagnetic tomography): new authentic 3D functional images of the brain
  publication-title: ISBET Newsl.
– volume: 39
  start-page: 665
  year: 1992
  end-page: 675
  ident: bib50
  article-title: Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 89
  start-page: 223903
  year: 2006
  ident: bib57
  article-title: Estimation of in vivo human brain-to-skull conductivity ratio with the aid of intracranial electrical simulation
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 45
  year: 1989
  end-page: 51
  ident: bib56
  article-title: Determination of three-dimensional structure in biplane radiography without prior knowledge of the relationship between the two views: theory
  publication-title: Med. Phys.
– volume: 89
  start-page: 5675
  year: 1992
  end-page: 5679
  ident: bib27
  article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 44
  start-page: 19
  year: 1997
  end-page: 39
  ident: bib26
  article-title: A new method for regularization parameter determination in the inverse problem of electrocardiography
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 17
  start-page: 1347
  year: 2002
  end-page: 1357
  ident: bib46
  article-title: Spatiotemporal imaging of electrical activity related to attention to somatosensory stimulation
  publication-title: NeuroImage
– volume: 25
  start-page: 369
  year: 2005
  end-page: 382
  ident: bib52
  article-title: Evaluation of different cortical source localization methods using simulation and experimental EEG data
  publication-title: NeuroImage
– volume: 41
  start-page: 1574
  year: 2002
  end-page: 1583
  ident: bib47
  article-title: Source reconstruction of mesial–temporal epileptiform activity: comparison of inverse techniques
  publication-title: Epilepsia
– volume: 13
  start-page: 20
  year: 1989
  end-page: 26
  ident: bib40
  article-title: Accurate three-dimensional registration of CT, PET and/or MRI images of the brain
  publication-title: J. Comput. Assist. Tomogr.
– volume: 89
  start-page: 5951
  year: 1992
  end-page: 5955
  ident: bib35
  article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  start-page: 120
  year: 2001
  end-page: 130
  ident: bib20
  article-title: A cortical potential imaging analysis of the P300 and novelty P3 components
  publication-title: Hum. Brain Mapp.
– volume: 13
  start-page: 209
  year: 2001
  end-page: 217
  ident: bib29
  article-title: A minimal product method and its application to cortical imaging
  publication-title: Brain Topogr.
– year: 2005
  ident: bib33
  article-title: Electric Fields of the Brain: The Neurophysics of EEG
– volume: 17
  start-page: 287
  year: 2002
  end-page: 301
  ident: bib41
  article-title: Systematic regularization of linear inverse solutions of the EEG source localization problem
  publication-title: NeuroImage
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bib15
  article-title: Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
– volume: 11
  start-page: 178
  year: 2000
  ident: 10.1016/j.neuroimage.2006.12.026_bib16
  article-title: Individual cortical current density reconstructions of the semantic N400 effect: using a generalized minimum norm model with different constraints (L1 and L2 norm)
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200011)11:3<178::AID-HBM40>3.0.CO;2-0
– volume: 41
  start-page: 1574
  year: 2002
  ident: 10.1016/j.neuroimage.2006.12.026_bib47
  article-title: Source reconstruction of mesial–temporal epileptiform activity: comparison of inverse techniques
  publication-title: Epilepsia
– volume: 16
  start-page: 564
  year: 2002
  ident: 10.1016/j.neuroimage.2006.12.026_bib21
  article-title: Boundary element method-based cortical potential imaging of somatosensory evoked potentials using subjects's magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1127
– volume: 89
  start-page: 5675
  year: 1992
  ident: 10.1016/j.neuroimage.2006.12.026_bib27
  article-title: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.12.5675
– volume: 42
  start-page: 608
  year: 1995
  ident: 10.1016/j.neuroimage.2006.12.026_bib30
  article-title: Selective minimum-norm solution of the biomagnetic inverse problem
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.387200
– volume: 34
  start-page: 406
  year: 1987
  ident: 10.1016/j.neuroimage.2006.12.026_bib18
  article-title: Electric dipoles tracing in the brain by means of the boundary element method and its accuracy
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1987.326056
– volume: 46
  start-page: 1264
  year: 1999
  ident: 10.1016/j.neuroimage.2006.12.026_bib19
  article-title: Estimating cortical potentials from scalp EEG's in a realistically shaped inhomogeneous head model
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.790505
– year: 1984
  ident: 10.1016/j.neuroimage.2006.12.026_bib31
– volume: 5
  start-page: 162
  year: 1993
  ident: 10.1016/j.neuroimage.2006.12.026_bib8
  article-title: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1993.5.2.162
– ident: 10.1016/j.neuroimage.2006.12.026_bib14
– volume: 43
  start-page: 299
  year: 1995
  ident: 10.1016/j.neuroimage.2006.12.026_bib7
  article-title: A Method for localizing EEG sources in realistic head model IEEE
  publication-title: Trans. Biomed. Eng.
  doi: 10.1109/10.486287
– volume: 47
  start-page: 1487
  year: 2000
  ident: 10.1016/j.neuroimage.2006.12.026_bib36
  article-title: The conductivity of the human skull: results of in vivo and in vitro measurements
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2000.880100
– volume: 36
  start-page: 165
  year: 1989
  ident: 10.1016/j.neuroimage.2006.12.026_bib55
  article-title: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.16463
– volume: 90
  start-page: 40
  year: 1994
  ident: 10.1016/j.neuroimage.2006.12.026_bib34
  article-title: A theoretical and experimental study of high resolution EEG based on surface Laplacian and cortical imaging
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(94)90112-0
– volume: 16
  start-page: 936
  year: 2002
  ident: 10.1016/j.neuroimage.2006.12.026_bib43
  article-title: Comparison of minimum current estimate and dipole modeling in the analysis of simulated activity in the human visual cortices
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1151
– volume: 49
  start-page: 277
  year: 2002
  ident: 10.1016/j.neuroimage.2006.12.026_bib22
  article-title: An equivalent current source model and Laplacian weighted minimum norm current estimates of brain electrical activity
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.991155
– volume: 44
  start-page: 19
  year: 1997
  ident: 10.1016/j.neuroimage.2006.12.026_bib26
  article-title: A new method for regularization parameter determination in the inverse problem of electrocardiography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.553710
– volume: 31
  start-page: 1025
  year: 2006
  ident: 10.1016/j.neuroimage.2006.12.026_bib25
  article-title: Vector-based spatial–temporal minimum L1-norm solution for MEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.029
– volume: 19
  start-page: 684
  year: 2003
  ident: 10.1016/j.neuroimage.2006.12.026_bib44
  article-title: Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00147-2
– ident: 10.1016/j.neuroimage.2006.12.026_bib3
– volume: 16
  start-page: 267
  year: 1999
  ident: 10.1016/j.neuroimage.2006.12.026_bib10
  article-title: Linear and nonlinear current density reconstructions
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-199905000-00006
– volume: 45
  start-page: 980
  year: 1998
  ident: 10.1016/j.neuroimage.2006.12.026_bib9
  article-title: An improved boundary element method for realistic volume–conductor modeling
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.704867
– volume: 25
  start-page: 369
  year: 2005
  ident: 10.1016/j.neuroimage.2006.12.026_bib52
  article-title: Evaluation of different cortical source localization methods using simulation and experimental EEG data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.11.036
– volume: 90
  start-page: 337
  year: 1994
  ident: 10.1016/j.neuroimage.2006.12.026_bib11
  article-title: High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(94)90050-7
– volume: 39
  start-page: 665
  year: 1992
  ident: 10.1016/j.neuroimage.2006.12.026_bib50
  article-title: Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.142641
– volume: 89
  start-page: 223903
  year: 2006
  ident: 10.1016/j.neuroimage.2006.12.026_bib57
  article-title: Estimation of in vivo human brain-to-skull conductivity ratio with the aid of intracranial electrical simulation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2398883
– volume: 14
  start-page: 651
  year: 1977
  ident: 10.1016/j.neuroimage.2006.12.026_bib48
  article-title: Practical approximate solutions to linear operator equations when the data are noisy
  publication-title: SIAM J. Num. Anal.
  doi: 10.1137/0714044
– volume: 95
  start-page: 231
  year: 1995
  ident: 10.1016/j.neuroimage.2006.12.026_bib12
  article-title: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(95)00107-A
– volume: XXII
  start-page: 91
  year: 1985
  ident: 10.1016/j.neuroimage.2006.12.026_bib6
  article-title: Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data
  publication-title: Calcolo
  doi: 10.1007/BF02576202
– year: 2004
  ident: 10.1016/j.neuroimage.2006.12.026_bib23
– volume: 12
  start-page: 120
  year: 2001
  ident: 10.1016/j.neuroimage.2006.12.026_bib20
  article-title: A cortical potential imaging analysis of the P300 and novelty P3 components
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/1097-0193(200102)12:2<120::AID-HBM1009>3.0.CO;2-V
– volume: 17
  start-page: 287
  year: 2002
  ident: 10.1016/j.neuroimage.2006.12.026_bib41
  article-title: Systematic regularization of linear inverse solutions of the EEG source localization problem
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1175
– volume: 62
  start-page: 32
  year: 1985
  ident: 10.1016/j.neuroimage.2006.12.026_bib42
  article-title: Two bilateral sources of the late AEP as identified by a spatio-temporal dipole model
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0168-5597(85)90033-4
– volume: 13
  start-page: 209
  year: 2001
  ident: 10.1016/j.neuroimage.2006.12.026_bib29
  article-title: A minimal product method and its application to cortical imaging
  publication-title: Brain Topogr.
  doi: 10.1023/A:1007807203163
– start-page: 144
  year: 2004
  ident: 10.1016/j.neuroimage.2006.12.026_bib32
– year: 2005
  ident: 10.1016/j.neuroimage.2006.12.026_bib24
– volume: 65
  start-page: 413
  year: 1993
  ident: 10.1016/j.neuroimage.2006.12.026_bib15
  article-title: Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 24D
  start-page: 5
  year: 2002
  ident: 10.1016/j.neuroimage.2006.12.026_bib37
  article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): technical detail
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– volume: 195
  start-page: 23
  year: 1995
  ident: 10.1016/j.neuroimage.2006.12.026_bib53
  article-title: Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery
  publication-title: Neuroradiology
– volume: 89
  start-page: 5951
  year: 1992
  ident: 10.1016/j.neuroimage.2006.12.026_bib35
  article-title: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.89.13.5951
– volume: 5
  start-page: 189
  year: 1992
  ident: 10.1016/j.neuroimage.2006.12.026_bib51
  article-title: Effect of the singal-to-noise ratio on the quality of linear estimation reconstructions of distributed current sources
  publication-title: Brain Topogr.
  doi: 10.1007/BF01129049
– volume: 24
  start-page: 118
  year: 2005
  ident: 10.1016/j.neuroimage.2006.12.026_bib2
  article-title: Assessing time-varying cortical functional connectivity with the multimodal integration of high resolution EEG and fMRI data by directed transfer function
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.09.036
– volume: 28
  start-page: 811
  year: 1990
  ident: 10.1016/j.neuroimage.2006.12.026_bib5
  article-title: MEG versus EEG localization test using implanted sources in the human brain
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410280613
– volume: 19
  start-page: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2006.12.026_bib1
  article-title: Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00052-1
– start-page: 587
  year: 1989
  ident: 10.1016/j.neuroimage.2006.12.026_bib4
  article-title: Localized and distributed source solutions for the biomagnetic inverse problem I
– volume: 120
  start-page: 141
  year: 1997
  ident: 10.1016/j.neuroimage.2006.12.026_bib54
  article-title: Localization of motor hand area to knob on the precentral gyrus: a new landwark
  publication-title: Brain
  doi: 10.1093/brain/120.1.141
– volume: 11
  start-page: 503
  year: 1990
  ident: 10.1016/j.neuroimage.2006.12.026_bib17
  article-title: Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0911028
– year: 2005
  ident: 10.1016/j.neuroimage.2006.12.026_bib33
  article-title: Electric Fields of the Brain: The Neurophysics of EEG
– volume: 10
  start-page: 173
  year: 1999
  ident: 10.1016/j.neuroimage.2006.12.026_bib45
  article-title: Visualization of magnetoencephalographic data using minimum current estimates
  publication-title: NeuroImage
  doi: 10.1006/nimg.1999.0454
– volume: 116
  start-page: 456
  year: 2005
  ident: 10.1016/j.neuroimage.2006.12.026_bib28
  article-title: Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2004.08.017
– volume: 5
  start-page: 4
  year: 1994
  ident: 10.1016/j.neuroimage.2006.12.026_bib38
  article-title: LORETA (low resolution brain electromagnetic tomography): new authentic 3D functional images of the brain
  publication-title: ISBET Newsl.
– volume: 29
  start-page: 734
  year: 2006
  ident: 10.1016/j.neuroimage.2006.12.026_bib13
  article-title: Evaluation of EEG localization methods using realistic simulations of interictal spikes
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.08.053
– volume: 17
  start-page: 1347
  year: 2002
  ident: 10.1016/j.neuroimage.2006.12.026_bib46
  article-title: Spatiotemporal imaging of electrical activity related to attention to somatosensory stimulation
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1222
– volume: 18
  start-page: 49
  year: 1994
  ident: 10.1016/j.neuroimage.2006.12.026_bib39
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(84)90014-X
– volume: 16
  start-page: 277
  year: 2004
  ident: 10.1016/j.neuroimage.2006.12.026_bib49
  article-title: Evaluation of sLORETA in the presence of noise and multiple sources
  publication-title: Brain Topogr.
  doi: 10.1023/B:BRAT.0000032865.58382.62
– volume: 16
  start-page: 45
  year: 1989
  ident: 10.1016/j.neuroimage.2006.12.026_bib56
  article-title: Determination of three-dimensional structure in biplane radiography without prior knowledge of the relationship between the two views: theory
  publication-title: Med. Phys.
  doi: 10.1118/1.596401
– volume: 13
  start-page: 20
  year: 1989
  ident: 10.1016/j.neuroimage.2006.12.026_bib40
  article-title: Accurate three-dimensional registration of CT, PET and/or MRI images of the brain
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-198901000-00004
– reference: 12169243 - Neuroimage. 2002 Jul;16(3 Pt 1):564-76
– reference: 1516933 - IEEE Trans Biomed Eng. 1992 Jul;39(7):665-75
– reference: 11169876 - Hum Brain Mapp. 2001 Feb;12(2):120-30
– reference: 9691573 - IEEE Trans Biomed Eng. 1998 Aug;45(8):980-97
– reference: 7509273 - Electroencephalogr Clin Neurophysiol. 1994 Jan;90(1):40-57
– reference: 7790017 - IEEE Trans Biomed Eng. 1995 Jun;42(6):608-15
– reference: 16542857 - Neuroimage. 2006 Jul 1;31(3):1025-37
– reference: 15588603 - Neuroimage. 2005 Jan 1;24(1):118-31
– reference: 15661122 - Clin Neurophysiol. 2005 Feb;116(2):456-65
– reference: 7892475 - Radiology. 1995 Apr;195(1):23-9
– reference: 11302399 - Brain Topogr. 2001 Spring;13(3):209-17
– reference: 11098796 - Hum Brain Mapp. 2000 Nov;11(3):178-92
– reference: 2492038 - J Comput Assist Tomogr. 1989 Jan-Feb;13(1):20-6
– reference: 23972151 - J Cogn Neurosci. 1993 Spring;5(2):162-76
– reference: 12781723 - Neuroimage. 2003 May;19(1):1-15
– reference: 7876038 - Int J Psychophysiol. 1994 Oct;18(1):49-65
– reference: 9214781 - IEEE Trans Biomed Eng. 1997 Jan;44(1):19-39
– reference: 15379227 - Brain Topogr. 2004 Summer;16(4):277-80
– reference: 2578376 - Electroencephalogr Clin Neurophysiol. 1985 Jan;62(1):32-44
– reference: 7514981 - Electroencephalogr Clin Neurophysiol. 1994 May;90(5):337-58
– reference: 12414274 - Neuroimage. 2002 Nov;17(3):1347-57
– reference: 1631079 - Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5951-5
– reference: 12482084 - Neuroimage. 2002 Sep;17(1):287-301
– reference: 11077742 - IEEE Trans Biomed Eng. 2000 Nov;47(11):1487-92
– reference: 3610187 - IEEE Trans Biomed Eng. 1987 Jun;34(6):406-14
– reference: 8529554 - Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231-51
– reference: 9055804 - Brain. 1997 Jan;120 ( Pt 1):141-57
– reference: 10426408 - J Clin Neurophysiol. 1999 May;16(3):267-95
– reference: 12202081 - Neuroimage. 2002 Aug;16(4):936-43
– reference: 10417249 - Neuroimage. 1999 Aug;10(2):173-80
– reference: 11942719 - IEEE Trans Biomed Eng. 2002 Apr;49(4):277-88
– reference: 15784415 - Neuroimage. 2005 Apr 1;25(2):369-82
– reference: 2285267 - Ann Neurol. 1990 Dec;28(6):811-7
– reference: 7851932 - IEEE Trans Biomed Eng. 1995 Jan;42(1):68-71
– reference: 12880799 - Neuroimage. 2003 Jul;19(3):684-97
– reference: 1608978 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5675-9
– reference: 10513133 - IEEE Trans Biomed Eng. 1999 Oct;46(10):1264-8
– reference: 1489649 - Brain Topogr. 1992 Winter;5(2):189-94
– reference: 11114216 - Epilepsia. 2000 Dec;41(12):1574-83
– reference: 12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12
– reference: 16271483 - Neuroimage. 2006 Feb 1;29(3):734-53
SSID ssj0009148
Score 2.1711802
Snippet EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The aim of the...
Objective: EEG source imaging provides important information regarding the underlying neural activity from noninvasive electrophysiological measurements. The...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 598
SubjectTerms Accuracy
Algorithms
Brain imaging
Central sulcus
Cerebral Cortex - physiology
Computer simulation
Cortical current density
Electroencephalography
Electroencephalography - methods
Electrophysiology
Evoked Potentials, Somatosensory
High resolution EEG
Human subjects
Humans
Inverse Problem
Inverse problems
Linear programming
Magnetic Resonance Imaging
NMR
Nuclear magnetic resonance
Regularization methods
Sensory cortex
Somatosensory evoked potentials
Source imaging
Studies
Tomography
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4SBWXqlBKt-XhQ68WSWznoR6qCoEAaTkgkPZm-ZWyqM1um-XQf9-Z2MlCQWjPyeRhj2c-z4y_IeSLKaWupE4ZbJYtE8IlTGcmYS6xAP_rSpsUzw6Pr_LzW3E5kZMYcGtjWWVvEztD7WYWY-THyIRXCEQ33-a_GXaNwuxqbKGxTjaRugy1upgUS9LdVISjcJKzEm6IlTyhvqvji5z-glUbUhIYFESKhZfd03P4-X8V5SO3dPaOvI14kn4PCrBN1nyzQ96MY8b8PZmfDnTedFZT2Gt2wWtqAy8TdVjAvvhL8RPBi9HQUbqlWA__g07xnRbcGWgpjR1zwiO6qq6W6sZRdI0hokjH1xe75Pbs9ObknMUuC8wC9lkwI3KeeGw4L10OYFDmlTOVcTy3uFdMjOcuc57zqnZlkTmTprX2iROaS22k5R_IRjNr_EdCwfWbojIpYA4tMluWOc6ArTJvrBO1HJGiH1xlIwU5dsL4qfpas3u1nBbskJmrNFMwLSOSDpLzQMOxgkzVz5_qj5mCYVTgK1aQ_TrIRigSIMaK0vu9uqhoElq1VOARORouw2LGDI1u_OyhVQVm1BPBR2Qv6NbyZ8ESc8FLGMInWjfcgDThT68007uOLhwP4cMm9dPrH_WZbIWwNRYl7ZONxZ8HfwB4a2EOu0X1Dww9Lo0
  priority: 102
  providerName: ProQuest
Title Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811906012080
https://dx.doi.org/10.1016/j.neuroimage.2006.12.026
https://www.ncbi.nlm.nih.gov/pubmed/17303438
https://www.proquest.com/docview/1506740020
https://www.proquest.com/docview/70277043
https://pubmed.ncbi.nlm.nih.gov/PMC1995666
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZWi4S4oOVdWBYfuIYmsZ3E4rSsuuqCWqGFlXqz_AobBGm17R648NuZiZ2UAodKXBIpzuRhj-dhfzNDyGtTCS2FzhJwlm3CuUsTnZs0cakF87-W2mQYOzybF9Mr_n4hFgfkrI-FQVhllP1BpnfSOl4Zx94cr5pm_AksA1A3oNAKDACt0G_nvEQuf_NzC_OQGQ_hcIIleHdE8wSMV5czsvkOMzdsS-DCIKZZ-LeK-tsE_RNJ-ZtqOj8i96NNSU_DZz8gB759SO7O4q75I7KaDCm96bKm4G92C9jUhtxM1CGIffOD4ieCJqOhqvSaIib-C23wnRZUGnAqjVVzwiM6ZNea6tZRVI9hVZHOLi8ek6vzyeezaRIrLSQW7J9NYnjBUo9F54UrwCAUhXRGGscKi_5iajxzufOMydpVZe5MltXap45rJrQRlj0hh-2y9c8IBfVvSmkysDs0z21VFTgCVubeWMdrMSJl37nKxjTkWA3jm-rxZl_VdliwSmahslzBsIxINlCuQiqOPWhkP36qDzUF4ahAX-xB-3ag3WHJPamPe3ZRUSysFaZzLDma6CPyamiGCY27NLr1y9u1KnFXPeVsRJ4G3tr-LEhjxlkFXbjDdcMNmCp8t6VtrruU4RiID47q8__6pRfkXljZRtzSMTnc3Nz6l2CSbcxJN-fgWC7KE3Ln9OLDdA7nd5P5x8tfZgA-EQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxJtAoXuAo4XXu34JIYSgVUKbHlAr5bbsyyUInIBTof4pfiMzXtuhgFAuPdvjx87szDc7L4Bnpkh1mWoeobNsIyldHOnExJGLLcL_qtSGU-3w9Cgbn8j3s3S2BT_7WhhKq-x1Yquo3cLSGfkL6oSXS0I3r5ffIpoaRdHVfoRGEIsDf_4DXbbm1eQd8vd5kuzvHb8dR91UgciirV9FRmYi9jRgPXUZgp80K50pjROZJd8oNl64xHkhysoVeeIM55X2sZNapNqkVuBzr8BVNLwxOXv5LF83-eUylN6lIio4L7vMoZBP1vannH9FLRFCIHQISS0d_m0O_4a7f2Zt_mYG92_BzQ6_sjdB4G7Dlq_vwLVpF6G_C8u9oX04W1QMfdv2sJzZ0AeKOUqYX50z-kS0mixMsG4Y5d-fsjm906L5xF3Bugk94RFtFlnDdO0YmeJwgsmmHyb34ORS1v8-bNeL2j8EhlDD5KXhiHG0TGxRZMQBWybeWCerdAR5v7jKdi3PafLGF9Xntn1Wa7bQRM5M8UQhW0bAB8plaPuxAU3Z80_1Za2oiBXapg1oXw60HfQJkGZD6p1eXFSnghq13jAj2B0uo_KgiJCu_eKsUTlF8GMpRvAgyNb6Z1HzCykKXMILUjfcQG3JL16p55_a9uRU9I9O8aP_f9QuXB8fTw_V4eTo4DHcCEfmlBC1A9ur72f-CWK9lXnabjAGHy97R_8Cgy9rag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVKq4IHYChc4BjlY9nvEmhBDQRA0lUVVRqbdhNkMQOAGnQv1r_Dre84wdCgjl0rPzbMdvX-Z7hDzVRarKVLEIkmUTCWHjSCU6jmxsIPyvSqUZnh2ezrLDU_H2LD3bIj-7szA4VtnZxNZQ24XBGvk-IuHlAqOb_SqMRRwfjF8uv0W4QQo7rd06DS8iR-7iB6RvzYvJAfD6WZKMR-_fHEZhw0BkwO-vIi0yHjtctp7aDAKhNCutLrXlmcE8KdaO28Q6zsvKFnliNWOVcrEViqdKp4bDfa-R7RyzogHZfj2aHZ-sIX-Z8AfxUh4VjJVhjshPl7VolfOvYDN8QwRLkgjw8G_n-Hfw--cM529OcXyT3AjRLH3lxe8W2XL1bbIzDf36O2Q56sHE6aKikOm2pXNqPCoUtTg-v7qg-IrgQ6nfZ91QnMb_SOf4TAPOFHSEhn09_hbtTFlDVW0pOmZfz6TTk8ldcnolHLhHBvWidg8IhcBD56VmEPEokZiiyJADpkycNlZU6ZDk3ceVJgCg4x6OL7KbdPss12zB_ZyZZIkEtgwJ6ymXHgRkA5qy45_sDrmCWZbgqTagfd7ThkDIBzgbUu924iKDQWrkWn2GZK-_DKYE-0OqdovzRubYz48FH5L7XrbWfxb8ABe8gE94Ser6HyBI-eUr9fxTC1aOEACQIj_8_0vtkR3QZvluMjt6RK77-jlOR-2Swer7uXsMgd9KPwkaRsmHq1bqX2IjcQU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+cortical+current+density+imaging+methods+using+intracranial+electrocorticograms+and+functional+MRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Bai%2C+Xiaoxiao&rft.au=Towle%2C+Vernon+L.&rft.au=He%2C+Eric+J.&rft.au=He%2C+Bin&rft.date=2007-04-01&rft.issn=1053-8119&rft.volume=35&rft.issue=2&rft.spage=598&rft.epage=608&rft_id=info:doi/10.1016%2Fj.neuroimage.2006.12.026&rft_id=info%3Apmid%2F17303438&rft.externalDocID=PMC1995666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon