Likelihood Ratio Tests for a Large Directed Acyclic Graph

Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in practice, imposing challenges because of lack of inferential tools. For example, inferring a specific gene pathway of a regulatory gene network is...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 115; no. 531; pp. 1304 - 1319
Main Authors Li, Chunlin, Shen, Xiaotong, Pan, Wei
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.07.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
1537-274X
DOI10.1080/01621459.2019.1623042

Cover

Loading…
Abstract Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in practice, imposing challenges because of lack of inferential tools. For example, inferring a specific gene pathway of a regulatory gene network is biologically important. Yet, frequentist inference of directionality of connections remains largely unexplored for regulatory models. In this article, we propose constrained likelihood ratio tests for inference of the connectivity as well as directionality subject to nonconvex acyclicity constraints in a Gaussian directed graphical model. Particularly, we derive the asymptotic distributions of the constrained likelihood ratios in a high-dimensional situation. For testing of connectivity, the asymptotic distribution is either chi-squared or normal depending on if the number of testable links in a DAG model is small. For testing of directionality, the asymptotic distribution is the minimum of d independent chi-squared variables with one-degree of freedom or a generalized Gamma distribution depending on if d is small, where d is number of breakpoints in a hypothesized pathway. Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. Finally, the power analysis and simulations suggest that the tests achieve the desired objectives of inference. An analysis of an Alzheimer's disease gene expression dataset illustrates the utility of the proposed method to infer a directed pathway in a gene network.
AbstractList Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in practice, imposing challenges because of lack of inferential tools. For example, inferring a specific gene pathway of a regulatory gene network is biologically important. Yet, frequentist inference of directionality of connections remains largely unexplored for regulatory models. In this article, we propose constrained likelihood ratio tests for inference of the connectivity as well as directionality subject to nonconvex acyclicity constraints in a Gaussian directed graphical model. Particularly, we derive the asymptotic distributions of the constrained likelihood ratios in a high-dimensional situation. For testing of connectivity, the asymptotic distribution is either chi-squared or normal depending on if the number of testable links in a DAG model is small. For testing of directionality, the asymptotic distribution is the minimum of d independent chi-squared variables with one-degree of freedom or a generalized Gamma distribution depending on if d is small, where d is number of breakpoints in a hypothesized pathway. Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. Finally, the power analysis and simulations suggest that the tests achieve the desired objectives of inference. An analysis of an Alzheimer's disease gene expression dataset illustrates the utility of the proposed method to infer a directed pathway in a gene network.
Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in practice, imposing challenges because of lack of inferential tools. For example, inferring a specific gene pathway of a regulatory gene network is biologically important. Yet, frequentist inference of directionality of connections remains largely unexplored for regulatory models. In this article, we propose constrained likelihood ratio tests for inference of the connectivity as well as directionality subject to nonconvex acyclicity constraints in a Gaussian directed graphical model. Particularly, we derive the asymptotic distributions of the constrained likelihood ratios in a high-dimensional situation. For testing of connectivity, the asymptotic distribution is either chi-squared or normal depending on if the number of testable links in a DAG model is small. For testing of directionality, the asymptotic distribution is the minimum of independent chi-squared variables with one-degree of freedom or a generalized Gamma distribution depending on if is small, where is number of breakpoints in a hypothesized pathway. Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. Finally, the power analysis and simulations suggest that the tests achieve the desired objectives of inference. An analysis of an Alzheimer's disease gene expression dataset illustrates the utility of the proposed method to infer a directed pathway in a gene network.
Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in practice, imposing challenges because of lack of inferential tools. For example, inferring a specific gene pathway of a regulatory gene network is biologically important. Yet, frequentist inference of directionality of connections remains largely unexplored for regulatory models. In this article, we propose constrained likelihood ratio tests for inference of the connectivity as well as directionality subject to nonconvex acyclicity constraints in a Gaussian directed graphical model. Particularly, we derive the asymptotic distributions of the constrained likelihood ratios in a high-dimensional situation. For testing of connectivity, the asymptotic distribution is either chi-squared or normal depending on if the number of testable links in a DAG model is small. For testing of directionality, the asymptotic distribution is the minimum of d independent chi-squared variables with one-degree of freedom or a generalized Gamma distribution depending on if d is small, where d is number of breakpoints in a hypothesized pathway. Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. Finally, the power analysis and simulations suggest that the tests achieve the desired objectives of inference. An analysis of an Alzheimer’s disease gene expression dataset illustrates the utility of the proposed method to infer a directed pathway in a gene network.
Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in practice, imposing challenges because of lack of inferential tools. For example, inferring a specific gene pathway of a regulatory gene network is biologically important. Yet, frequentist inference of directionality of connections remains largely unexplored for regulatory models. In this article, we propose constrained likelihood ratio tests for inference of the connectivity as well as directionality subject to nonconvex acyclicity constraints in a Gaussian directed graphical model. Particularly, we derive the asymptotic distributions of the constrained likelihood ratios in a high-dimensional situation. For testing of connectivity, the asymptotic distribution is either chi-squared or normal depending on if the number of testable links in a DAG model is small. For testing of directionality, the asymptotic distribution is the minimum of d independent chi-squared variables with one-degree of freedom or a generalized Gamma distribution depending on if d is small, where d is number of breakpoints in a hypothesized pathway. Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. Finally, the power analysis and simulations suggest that the tests achieve the desired objectives of inference. An analysis of an Alzheimer's disease gene expression dataset illustrates the utility of the proposed method to infer a directed pathway in a gene network.Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in practice, imposing challenges because of lack of inferential tools. For example, inferring a specific gene pathway of a regulatory gene network is biologically important. Yet, frequentist inference of directionality of connections remains largely unexplored for regulatory models. In this article, we propose constrained likelihood ratio tests for inference of the connectivity as well as directionality subject to nonconvex acyclicity constraints in a Gaussian directed graphical model. Particularly, we derive the asymptotic distributions of the constrained likelihood ratios in a high-dimensional situation. For testing of connectivity, the asymptotic distribution is either chi-squared or normal depending on if the number of testable links in a DAG model is small. For testing of directionality, the asymptotic distribution is the minimum of d independent chi-squared variables with one-degree of freedom or a generalized Gamma distribution depending on if d is small, where d is number of breakpoints in a hypothesized pathway. Moreover, we develop a computational method to perform the proposed tests, which integrates an alternating direction method of multipliers and difference convex programming. Finally, the power analysis and simulations suggest that the tests achieve the desired objectives of inference. An analysis of an Alzheimer's disease gene expression dataset illustrates the utility of the proposed method to infer a directed pathway in a gene network.
Author Shen, Xiaotong
Pan, Wei
Li, Chunlin
AuthorAffiliation 2 Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455
1 School of Statistics, University of Minnesota, Minneapolis, MN 55455
AuthorAffiliation_xml – name: 1 School of Statistics, University of Minnesota, Minneapolis, MN 55455
– name: 2 Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455
Author_xml – sequence: 1
  givenname: Chunlin
  orcidid: 0000-0003-2989-8785
  surname: Li
  fullname: Li, Chunlin
  organization: School of Statistics, University of Minnesota
– sequence: 2
  givenname: Xiaotong
  orcidid: 0000-0003-1300-1451
  surname: Shen
  fullname: Shen, Xiaotong
  email: shenx002@umn.edu
  organization: School of Statistics, University of Minnesota
– sequence: 3
  givenname: Wei
  surname: Pan
  fullname: Pan, Wei
  organization: Division of Biostatistics, University of Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32973370$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFrFDEUhYNU7Lb6E5QBX_oya5KbmcwgiKXWKiwUpIJv4U4m6aZmJ2syW9l_3wy7LdqHNi8h3O8cTu45IgdDGAwhbxmdM9rQD5TVnImqnXPK2nl-ABX8BZmxCmTJpfh1QGYTU07QITlK6YbmI5vmFTkE3koASWekXbjfxrtlCH3xA0cXiiuTxlTYEAssFhivTfHFRaNH0xenequ908VFxPXyNXlp0SfzZn8fk59fz6_OvpWLy4vvZ6eLUlc1H8u2pR1KXrdguDa2Y0AbDZJ3iAaFNhwBQXSWUwtdngGKhnNZV7axfZNjHpNPO9_1pluZXpthjOjVOroVxq0K6NT_k8Et1XW4VbLKbhSywcneIIY_m_w7tXJJG-9xMGGTFK-4AEapYM-jQtR1DdDUGX3_CL0JmzjkTWQKWi7zqifDd_-Gf0h9X0AGqh2gY0gpGvuAMKqmotV90WoqWu2LzrqPj3TajVN_0w6cf1b9ead2Qy56hX9D9L0acetDtBEH7ZKCpy3uAFm_vmw
CitedBy_id crossref_primary_10_1002_gepi_22433
crossref_primary_10_1371_journal_pgen_1009105
crossref_primary_10_1111_rssb_12471
crossref_primary_10_1214_22_AOAS1636
crossref_primary_10_1002_cjs_11727
crossref_primary_10_1080_01621459_2021_2008944
crossref_primary_10_1080_01621459_2023_2220169
crossref_primary_10_1002_sim_8925
crossref_primary_10_1080_01621459_2023_2261658
crossref_primary_10_1080_01621459_2023_2179490
Cites_doi 10.1523/JNEUROSCI.21-11-04066.2001
10.1214/aos/1176325768
10.1007/BF01581266
10.3389/fnbeh.2017.00211
10.1111/rssb.12167
10.1007/s10959-010-0338-z
10.1093/biomet/asy057
10.1093/nar/28.1.27
10.1214/aos/1015957395
10.1007/s10479-004-5022-1
10.1561/2200000016
10.1016/S0004-3702(02)00191-1
10.1007/s11222-018-9801-y
10.1214/10-AOAS425
10.1016/j.ajhg.2009.03.011
10.1214/14-AOS1260
10.1214/18-AOS1732
10.1080/01621459.2012.754359
10.1214/aop/1176992072
10.1214/aos/1176324524
10.1126/science.1105809
10.1093/biomet/ast043
10.1080/01621459.2011.645783
ContentType Journal Article
Copyright 2019 American Statistical Association 2019
2019 American Statistical Association
Copyright_xml – notice: 2019 American Statistical Association 2019
– notice: 2019 American Statistical Association
DBID AAYXX
CITATION
NPM
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
DOI 10.1080/01621459.2019.1623042
DatabaseName CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
International Bibliography of the Social Sciences (IBSS)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 1319
ExternalDocumentID PMC7508303
32973370
10_1080_01621459_2019_1623042
1623042
Genre Article
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: DMS-1712564; DMS-1721216
– fundername: NIH
  grantid: 1R01GM081535-01; 1R01GM126002; HL65462; R01HL105397
– fundername: NHLBI NIH HHS
  grantid: R01 HL105397
– fundername: NIGMS NIH HHS
  grantid: R01 GM081535
– fundername: NHLBI NIH HHS
  grantid: R01 HL065462
– fundername: NIGMS NIH HHS
  grantid: R01 GM126002
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
ADLSF
ADMHG
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
FJW
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
J.P
JAS
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADXHL
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
.-4
.GJ
07G
1OL
2AX
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAWIL
ABAWQ
ABBHK
ABEFU
ABJCF
ABPQH
ABUWG
ABXSQ
ACAGQ
ACGEE
ACHJO
ACUBG
ADBBV
ADODI
ADULT
AEUMN
AEUPB
AFKRA
AFQQW
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AI.
AIHAF
ALCKM
ALRMG
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DQDLB
DSRWC
DWIFK
DWQXO
E.L
ECEWR
EJD
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HQ6
HVGLF
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NPM
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SA0
SJN
TAQ
TASJS
TFMCV
TOXWX
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZUP
ZXP
8BJ
FQK
JBE
K9.
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c562t-990ba72693e2cefb1308c372baaea4ce2a3a34bf20f3b3083a4822765f8fd8973
ISSN 0162-1459
1537-274X
IngestDate Thu Aug 21 17:54:30 EDT 2025
Fri Jul 11 18:24:11 EDT 2025
Mon Jul 21 11:35:59 EDT 2025
Wed Aug 13 07:10:59 EDT 2025
Mon Jul 21 05:50:58 EDT 2025
Tue Jul 01 02:39:32 EDT 2025
Thu Apr 24 22:54:30 EDT 2025
Wed Dec 25 09:09:51 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 531
Keywords Directed acyclic graph
L0-regularization
high-dimensional inference
gene network
nonconvex minimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c562t-990ba72693e2cefb1308c372baaea4ce2a3a34bf20f3b3083a4822765f8fd8973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1300-1451
0000-0003-2989-8785
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7508303
PMID 32973370
PQID 2439270781
PQPubID 41715
PageCount 16
ParticipantIDs crossref_primary_10_1080_01621459_2019_1623042
crossref_citationtrail_10_1080_01621459_2019_1623042
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7508303
proquest_miscellaneous_2524310041
proquest_miscellaneous_2446663386
pubmed_primary_32973370
informaworld_taylorfrancis_310_1080_01621459_2019_1623042
proquest_journals_2439270781
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-02
PublicationDateYYYYMMDD 2020-07-02
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
Núñez-Antón V. A. (CIT0019) 2009
CIT0031
CIT0011
Cormen T. H. (CIT0005) 2001
Rockafellar R. (CIT0023) 2011; 317
Horst R. (CIT0012) 2013
Liu J (CIT0016) 2001
CIT0013
Kolmogorov A. (CIT0014) 1959; 14
CIT0015
CIT0018
CIT0017
CIT0021
CIT0020
CIT0001
CIT0022
Edwards D (CIT0006) 2012
CIT0003
CIT0025
CIT0002
CIT0024
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
Gabay D. (CIT0009) 1975
CIT0028
CIT0008
References_xml – volume-title: Global Optimization: Deterministic Approaches
  year: 2013
  ident: CIT0012
– ident: CIT0007
  doi: 10.1523/JNEUROSCI.21-11-04066.2001
– ident: CIT0010
  doi: 10.1214/aos/1176325768
– ident: CIT0002
  doi: 10.1007/BF01581266
– ident: CIT0017
  doi: 10.3389/fnbeh.2017.00211
– ident: CIT0022
  doi: 10.1111/rssb.12167
– ident: CIT0028
  doi: 10.1007/s10959-010-0338-z
– volume-title: Introduction to Algorithms
  year: 2001
  ident: CIT0005
– ident: CIT0031
  doi: 10.1093/biomet/asy057
– ident: CIT0013
  doi: 10.1093/nar/28.1.27
– ident: CIT0015
  doi: 10.1214/aos/1015957395
– volume-title: Antedependence Models for Longitudinal Data
  year: 2009
  ident: CIT0019
– ident: CIT0027
  doi: 10.1007/s10479-004-5022-1
– volume-title: Introduction to Graphical Modelling
  year: 2012
  ident: CIT0006
– volume-title: A Dual Algorithm for the Solution of Nonlinear Variational Problems via Finite Element Approximation
  year: 1975
  ident: CIT0009
– ident: CIT0001
  doi: 10.1561/2200000016
– volume: 317
  volume-title: Variational Analysis
  year: 2011
  ident: CIT0023
– ident: CIT0004
  doi: 10.1016/S0004-3702(02)00191-1
– ident: CIT0011
  doi: 10.1007/s11222-018-9801-y
– ident: CIT0018
  doi: 10.1214/10-AOAS425
– volume-title: Monte Carlo Strategies in Statistical Computing
  year: 2001
  ident: CIT0016
– ident: CIT0029
  doi: 10.1016/j.ajhg.2009.03.011
– volume: 14
  start-page: 3
  year: 1959
  ident: CIT0014
  publication-title: Uspekhi Matematicheskikh Nauk
– ident: CIT0003
  doi: 10.1214/14-AOS1260
– ident: CIT0024
  doi: 10.1214/18-AOS1732
– ident: CIT0008
  doi: 10.1080/01621459.2012.754359
– ident: CIT0020
  doi: 10.1214/aop/1176992072
– ident: CIT0030
  doi: 10.1214/aos/1176324524
– ident: CIT0025
  doi: 10.1126/science.1105809
– ident: CIT0021
  doi: 10.1093/biomet/ast043
– ident: CIT0026
  doi: 10.1080/01621459.2011.645783
SSID ssj0000788
Score 2.4039571
Snippet Inference of directional pairwise relations between interacting units in a directed acyclic graph (DAG), such as a regulatory gene network, is common in...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1304
SubjectTerms Alzheimer's disease
Asymptotic properties
Chi-square test
Computational geometry
Computer simulation
Convexity
data collection
Directed acyclic graph
Gene expression
Gene network
High-dimensional inference
Independent variables
Inference
L0-regularization
Likelihood ratio
Mathematical programming
Nonconvex minimization
Power structure
Probability distribution functions
Regression analysis
regulator genes
Statistical methods
Statistics
Title Likelihood Ratio Tests for a Large Directed Acyclic Graph
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2019.1623042
https://www.ncbi.nlm.nih.gov/pubmed/32973370
https://www.proquest.com/docview/2439270781
https://www.proquest.com/docview/2446663386
https://www.proquest.com/docview/2524310041
https://pubmed.ncbi.nlm.nih.gov/PMC7508303
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQkFBf0PguDGQk3qpUje3YzSOaQBOCiYdN9C2yEwciunSi6cP467mzna-tYrCXqE3sOPHvcj7bd78j5J0oVW5VrCMuuY6ELJLIxIWMNDeSG5Fi1B56W5zKk3PxaZUMNtpddElj5vnvvXEld0EVzgGuGCX7H8h2N4UT8BvwhSMgDMd_wvhz9dOuK0dM7ICcgd3YbL1j5GyNPt4zP2SBVanzqxwJrfskEzdN0kGYiUvs2zgW5z0gogdP5Xfrd0i10a3ThFiPVaU3YFR-7zeo3OlvthquMsCUElcwRwuPkkWxCOzdtlWWKoJZ7WqkTX10ZhCbJKh4rx1hvBSDkTbmXlve0OLB7RGaxBbR_y6dwx9ceRmWBzAuLxy0HDNwcZ-B5Bp99tcvxwop75ER9j6DuQRqb7447Ydr5ZKTdi_YhnkhAfu-J5iQB21zI1tmxHS7b75y3e12YMecHZKHAW363kvTI3LP1o_JpAN7-4SkvVhRJ1bUiRWFdqmmTqxoK1Y0iBV1YvWUnH_8cHZ8EoUMG1EOdm8TgSlitGIy5ZbltjQA0DLnihmtrRaYK45rLkzJFiU3cI1rAQalkkm5LIsldMIzclBvavuC0FQUVi8kS4UtRWIXqWFWFYUodFzoPDFTItq-yvJAP49ZUNZZ3LLUht7OsLez0NtTMu-qXXr-ldsqpEMgssYtfJU-S03Gb6l71KKWhc98mzEw2ZnjxJqSt91lUMK4s6Zru9lhGSHBdOdL-ZcyCdwJ-RnhPs-9IHRv1ArUlKiRiHQFkAR-fKWufjgy-CDcL-9c8xWZ9B_8ETlofu3sazC0G_PGfSh_AOB9ytI
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOdBLedNAASNx3bDr8drxsUKUACEHlEq9WX6tiBptEd0c4Nfj2UdIKqCHHlf2WBp7Xp4dfwPwRlTKR1XYDCXaTMhQZq4IMrPoJDqh6dUeVVvM5fRUfDorz7bewlBZJd2hqw4oorXVpNyUjB5K4t6mMIUAtumdSaHH6YPu5LfhTqmlIuXEfP7HGqu29ySRZEQzvOL51zI7_mkHvfRvMejVUsot33RyD_zAVVeScj5eN27sf10BfLwZ2_fhoA9d2XEnaw_gVqwfwj5Fqx3Y8yPQs-V5XC0JKZl9pSNni8TGJUvcMctmVHTOOhsbAzv2P_1q6dkHgsx-DKcn7xfvplnfmyHzKWJqsuTEnFVcaozcx8olVzjxqLizNlpBXcbQonAVzyt0aQytSKGIkmU1qcJEK3wCe_VFHQ-BaRGizSXXIlaijLl2PKoQRLBFsL50IxDDiRjfA5dT_4yVKQZ8035jDG2M6TdmBOMN2fcOueM6Ar193KZpUyZV19_E4DW0R4NsmN4IXBqegj3eoimN4PVmOKkv_ZOxdbxY0xyRLpCIE_mfOWVaiZD90jpPO3HbcITUewxVPgK1I4ibCQQfvjtSL7-1MOKKOgHk-OwGbL-Cu9PFl5mZfZx_fg77nHIRlPrmR7DX_FjHFylga9zLViN_A0GwL_U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVkK9FMozUIqRuG7Ytb12fKwKoUAUIdRK3Cw_1ajRtmo2h_bX49lH2lRADz2u7LE09njms3f8DcBHHqULsjAZE8xkXPgys4UXmWFWMMsVvtrDbIupODrh33-XfTbhokurxDN0bIkiGl-Nm_vCxz4j7lNCKcivjc9MCjVMH3gkfwRbAn_y4SuOfHrjjGVTehJFMpTpH_H8a5i18LRGXvo3CHo3k_JWaBo_Adsr1WaknA2XtR266zt8jw_S-insdMCVHLSWtgsboXoG24hVW6rn56Ams7MwnyFPMvmFC06OkxYLkpQjhkww5Zy0HjZ4cuCu3HzmyFckzH4BJ-Mvx4dHWVeZIXMJL9VZCmHWSCoUC9SFaFMgHDkmqTUmGI41xphh3EaaR2ZTGzM8AREpyjiKfqQkewmb1XkVXgNR3AeTC6p4iLwMubI0SO-5N4U3rrQD4P2CaNfRlmP1jLkuenbTbmI0TozuJmYAw5XYRcvbcZ-Aur3aum4uTGJb3USze2T3etPQnQtYaJqgHm24lAbwYdWcNi_-kTFVOF9iH56Oj4yNxH_6lGkk5PVL47xqrW2lEcPKY0zmA5BrdrjqgOTh6y3V7LQhEZdYByBnbx6g9nt4_PPzWE--TX-8hW2KFxF47033YLO-XIZ3Ca3Vdr_Zj38AUDsumQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood+ratio+tests+for+a+large+directed+acyclic+graph&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Li%2C+Chunlin&rft.au=Shen%2C+Xiaotong&rft.au=Pan%2C+Wei&rft.date=2020-07-02&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=115&rft.issue=531&rft.spage=1304&rft.epage=1319&rft_id=info:doi/10.1080%2F01621459.2019.1623042&rft_id=info%3Apmid%2F32973370&rft.externalDocID=PMC7508303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon