Bovine neutrophils stimulated with Streptococcus uberis induce neutrophil extracellular traps, and cause cytotoxicity and transcriptional upregulation of inflammatory cytokine genes in bovine mammary epithelial cells

This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release o...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 86; no. 2; pp. 141 - 149
Main Authors GOTO, Shinya, MIKAMI, Osamu, WATANABE, Atsushi, NAGASAWA, Yuya
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 2024
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin (IL) -1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8, in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis-induced mastitis.
AbstractList This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin (IL) -1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8, in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis-induced mastitis.
This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis , a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis -infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin ( IL ) -1β , tumor necrosis factor ( TNF ) -α , IL-6 , and IL-8 , in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis -induced mastitis.
This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin (IL) -1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8, in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis-induced mastitis.This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin (IL) -1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8, in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis-induced mastitis.
ArticleNumber 23-0302
Author WATANABE, Atsushi
MIKAMI, Osamu
NAGASAWA, Yuya
GOTO, Shinya
Author_xml – sequence: 1
  fullname: GOTO, Shinya
  organization: Pathology and Production Disease Group, Division of Hygiene Management, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, Japan
– sequence: 1
  fullname: MIKAMI, Osamu
  organization: Pathology and Production Disease Group, Division of Hygiene Management, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, Japan
– sequence: 1
  fullname: WATANABE, Atsushi
  organization: Pathology and Production Disease Group, Division of Hygiene Management, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, Japan
– sequence: 1
  fullname: NAGASAWA, Yuya
  organization: Pathology and Production Disease Group, Division of Hygiene Management, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38104974$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhS1URKeFHWtkiQ2Lpji281ohWvGSKrEA1pbj3Mx4SOxgO0Pnn_JzsCftqFRi4zz8nXOPfe8ZOjHWAEIvc3KZ04a-3e5Gf0lZRhihT9AqZ7zKKs6aE7QiTV5mFS3IKTrzfksIzXnZPEOnrM4Jbyq-Qn-u7E4bwAbm4Oy00YPHPuhxHmSADv_WYYO_BQdTsMoqNXs8t-C0x9p0s3qow3AbnFQwDFHrcHyf_AWWpsNKzh6w2gcb7K1WOuwPvyNhvHJ6CtoaOeB5crBOdeMntn2s0A9yHGWwbn9Q_0xB12AgVcftEnxMSARgilFh0NEoZfDP0dNeDh5e3D3P0Y-PH75ff85uvn76cv3-JlNFSUNWt71sZcGrlhYgSyCU5WVJ-lzWXRcXrsqOKZkD5Yp3JasY1JSpooO66tumYOfo3eI7ze0InQITzzWIyekUS1ipxb87Rm_E2u5ETuqmbhoeHd7cOTj7awYfxKh9OoM0YGcvaEMYoyx2LqKvH6FbO7t4eYkqKlLSmqdIrx5GOma573oE6AIoZ7130IvYlMO9x4R6iNFEGi2RRktQJtJoRdHFI9G973_wqwXf-iDXcISlC1oNsMB1KehhWUTHTbWRToBhfwE8HvJS
CitedBy_id crossref_primary_10_3390_antiox13020171
crossref_primary_10_1016_j_vetimm_2025_110883
Cites_doi 10.1146/annurev-immunol-032414-112248
10.3899/jrheum.181232
10.1038/s41423-021-00832-3
10.3168/jds.2018-14824
10.3390/ijms22158046
10.1128/IAI.66.6.2529-2534.1998
10.1016/j.vetimm.2015.03.002
10.3389/fimmu.2022.1031785
10.1016/j.vetimm.2011.08.022
10.1371/journal.pone.0219440
10.3168/jds.2018-15326
10.1016/j.vetmic.2016.12.022
10.1016/j.intimp.2013.05.007
10.3390/ijms22168854
10.1128/IAI.00910-17
10.1038/s41598-019-55556-2
10.1042/CS20200021
10.1016/j.vetimm.2003.08.008
10.1038/nature15514
10.1007/s12016-020-08804-7
10.3389/fimmu.2022.880578
10.1186/s13567-015-0196-x
10.3389/fimmu.2022.927215
10.1051/rnd:2003031
10.3389/fimmu.2016.00302
10.1053/jcpa.2002.0620
10.1371/journal.ppat.1004327
10.1067/mai.2003.108
10.3168/jds.2013-6741
10.1111/tbed.12704
10.1038/nri.2017.105
10.1017/S0950268802008221
10.1016/j.vetmic.2020.108710
10.1371/journal.pone.0218946
10.1016/j.mimet.2021.106208
10.3168/jds.2014-8430
10.1126/science.1092385
10.1038/nrmicro1710
ContentType Journal Article
Copyright 2024 by the Japanese Society of Veterinary Science
2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Japanese Society of Veterinary Science 2024
Copyright_xml – notice: 2024 by the Japanese Society of Veterinary Science
– notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Japanese Society of Veterinary Science 2024
DBID AAYXX
CITATION
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.23-0302
DatabaseName CrossRef
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 149
ExternalDocumentID PMC10898994
38104974
10_1292_jvms_23_0302
article_jvms_86_2_86_23_0302_article_char_en
Genre Journal Article
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
ECGQY
EJD
EYRJQ
HYE
JSF
JSH
KQ8
M48
N5S
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c562t-8bfaba547b25ea6e0231660f1a8dd1a84c6d3ca1e24c4d6373e823c5de87fb953
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 18:35:01 EDT 2025
Thu Jul 10 18:02:20 EDT 2025
Sun Jun 29 15:15:26 EDT 2025
Mon Jul 21 05:56:18 EDT 2025
Tue Jul 01 00:31:12 EDT 2025
Thu Apr 24 22:59:28 EDT 2025
Wed Sep 03 06:31:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Streptococcus uberis
bovine neutrophil
mastitis
inflammation
neutrophil extracellular trap
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-8bfaba547b25ea6e0231660f1a8dd1a84c6d3ca1e24c4d6373e823c5de87fb953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.23-0302
PMID 38104974
PQID 2957062845
PQPubID 2028964
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10898994
proquest_miscellaneous_2903323469
proquest_journals_2957062845
pubmed_primary_38104974
crossref_citationtrail_10_1292_jvms_23_0302
crossref_primary_10_1292_jvms_23_0302
jstage_primary_article_jvms_86_2_86_23_0302_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2024
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 15. Li M, Gao Y, Wang Z, Wu B, Zhang J, Xu Y, Han X, Phouthapane V, Miao J. 2022. Taurine inhibits Streptococcus uberis-induced NADPH oxidase-dependent neutrophil extracellular traps via TAK1/MAPK signaling pathways. Front Immunol 13: 927215.
34. Taddese R, Belzer C, Aalvink S, de Jonge MI, Nagtegaal ID, Dutilh BE, Boleij A. 2021. Production of inactivated gram-positive and gram-negative species with preserved cellular morphology and integrity. J Microbiol Methods 184: 106208.
10. Herrero-Cervera A, Soehnlein O, Kenne E. 2022. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 19: 177–191.
22. Pisanu S, Cubeddu T, Pagnozzi D, Rocca S, Cacciotto C, Alberti A, Marogna G, Uzzau S, Addis MF. 2015. Neutrophil extracellular traps in sheep mastitis. Vet Res (Faisalabad) 46: 59.
32. Szturmowicz M, Demkow U. 2021. Neutrophil extracellular traps (NETs) in severe SARS-CoV-2 lung disease. Int J Mol Sci 22: 8854.
25. Rambeaud M, Almeida RA, Pighetti GM, Oliver SP. 2003. Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet Immunol Immunopathol 96: 193–205.
37. Worku M, Rehrah D, Ismail HD, Asiamah E, Adjei-Fremah S. 2021. A review of the neutrophil extracellular traps (NETs) from cow, sheep and goat models. Int J Mol Sci 22: 8046.
6. Chan FK, Luz NF, Moriwaki K. 2015. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33: 79–106.
29. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526: 660–665.
36. Watanabe A, Kawai K, Hata E, Goto S, Shinozuka Y, Kurumisawa T, Koyama Y, Chikayama Y, Kiku Y, Nagasawa Y, Hayashi T. 2021. Sequence type and primary structure of the vru gene upstream region of Streptococcus uberis isolated from bovine clinical mastitis in Japan. Jpn J Vet Res 69: 195–203.
7. Gondaira S, Higuchi H, Iwano H, Nakajima K, Kawai K, Hashiguchi S, Konnai S, Nagahata H. 2015. Cytokine mRNA profiling and the proliferative response of bovine peripheral blood mononuclear cells to Mycoplasma bovis. Vet Immunol Immunopathol 165: 45–53.
18. Nakajima K, Itoh F, Nakamura M, Kawamura A, Yamazaki T, Kozakai T, Takusari N, Ishisaki A. 2015. Short communication: opposing effects of lactoferrin on the proliferation of fibroblasts and epithelial cells from bovine mammary gland. J Dairy Sci 98: 1069–1077.
1. Ballas P, Gabler C, Wagener K, Drillich M, Ehling-Schulz M. 2020. Streptococcus uberis strains originating from bovine uteri provoke upregulation of pro-inflammatory factors mRNA expression of endometrial epithelial cells in vitro. Vet Microbiol 245: 108710.
20. Pedersen LH, Aalbaek B, Røntved CM, Ingvartsen KL, Sorensen NS, Heegaard PM, Jensen HE. 2003. Early pathogenesis and inflammatory response in experimental bovine mastitis due to Streptococcus uberis. J Comp Pathol 128: 156–164.
13. Keane OM. 2019. Symposium review: Intramammary infections-Major pathogens and strain-associated complexity. J Dairy Sci 102: 4713–4726.
9. Heikkilä AM, Liski E, Pyörälä S, Taponen S. 2018. Pathogen-specific production losses in bovine mastitis. J Dairy Sci 101: 9493–9504.
24. Rainard P, Riollet C. 2003. Mobilization of neutrophils and defense of the bovine mammary gland. Reprod Nutr Dev 43: 439–457.
33. Sundaram VK, Sampathkumar NK, Massaad C, Grenier J. 2019. Optimal use of statistical methods to validate reference gene stability in longitudinal studies. PLoS One 14: e0219440.
35. Tassi R, McNeilly TN, Fitzpatrick JL, Fontaine MC, Reddick D, Ramage C, Lutton M, Schukken YH, Zadoks RN. 2013. Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. J Dairy Sci 96: 5129–5145.
30. Shu L, Zhong L, Xiao Y, Wu X, Liu Y, Jiang X, Tang T, Hoo R, Zhou Z, Xu A. 2020. Neutrophil elastase triggers the development of autoimmune diabetes by exacerbating innate immune responses in pancreatic islets of non-obese diabetic mice. Clin Sci (Lond) 134: 1679–1696.
23. Rainard P, Gilbert FB, Germon P. 2022. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 13: 1031785.
12. Jiang LY, Sun HZ, Guan RW, Shi F, Zhao FQ, Liu JX. 2022. Formation of blood neutrophil extracellular traps increases the mastitis risk of dairy cows during the transition period. Front Immunol 13: 880578.
3. Brinkmann V, Zychlinsky A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5: 577–582.
14. Klaas IC, Zadoks RN. 2018. An update on environmental mastitis: Challenging perceptions. Transbound Emerg Dis 65Suppl 1: 166–185.
21. Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, Migliorini P. 2019. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One 14: e0218946.
2. Borish LC, Steinke JW. 2003. 2. Cytokines and chemokines. J Allergy Clin Immunol 111Suppl: S460–S475.
4. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532–1535.
26. Sahoo M, Del Barrio L, Miller MA, Re F. 2014. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with burkholderia species. PLoS Pathog 10: e1004327.
28. Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DG, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM. Members of the Pfizer mastitis research consortium. 2011. Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 144: 270–289.
8. Gondaira S, Higuchi H, Nishi K, Iwano H, Nagahata H. 2017. Mycoplasma bovis escapes bovine neutrophil extracellular traps. Vet Microbiol 199: 68–73.
19. Papayannopoulos V. 2018. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18: 134–147.
38. Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. 2016. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol 7: 302.
39. Zadoks RN, Gillespie BE, Barkema HW, Sampimon OC, Oliver SP, Schukken YH. 2003. Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol Infect 130: 335–349.
11. Huang Y, Shen L, Jiang J, Xu Q, Luo Z, Luo Q, Yu S, Yao X, Ren Z, Hu Y, Yang Y, Cao S. 2019. Metabolomic Profiles of Bovine Mammary Epithelial Cells Stimulated by Lipopolysaccharide. Sci Rep 9: 19131.
31. Smits E, Burvenich C, Guidry AJ, Roets E. 1998. In vitro expression of adhesion receptors and diapedesis by polymorphonuclear neutrophils during experimentally induced Streptococcus uberis mastitis. Infect Immun 66: 2529–2534.
5. Bruschi M, Bonanni A, Petretto A, Vaglio A, Pratesi F, Santucci L, Migliorini P, Bertelli R, Galetti M, Belletti S, Cavagna L, Moroni G, Franceschini F, Fredi M, Pazzola G, Allegri L, Sinico RA, Pesce G, Bagnasco M, Manfredi A, Ramirez GA, Ramoino P, Bianchini P, Puppo F, Pupo F, Negrini S, Mattana F, Emmi G, Garibotto G, Santoro D, Scolari F, Ravelli A, Tincani A, Cravedi P, Volpi S, Candiano G, Ghiggeri GM. 2020. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol 47: 377–386.
27. Sajiki Y, Konnai S, Okagawa T, Nishimori A, Maekawa N, Goto S, Ikebuchi R, Nagata R, Kawaji S, Kagawa Y, Yamada S, Kato Y, Nakajima C, Suzuki Y, Murata S, Mori Y, Ohashi K. 2018. Prostaglandin E2 induction suppresses the Th1 immune responses in cattle with Johne’s disease. Infect Immun 86: e00910–e00917.
17. Mutua V, Gershwin LJ. 2021. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol 61: 194–211.
16. Miao J, Zhang J, Ma Z, Zheng L. 2013. The role of NADPH oxidase in taurine attenuation of Streptococcus uberis-induced mastitis in rats. Int Immunopharmacol 16: 429–435.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 3. Brinkmann V, Zychlinsky A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5: 577–582.
– reference: 27. Sajiki Y, Konnai S, Okagawa T, Nishimori A, Maekawa N, Goto S, Ikebuchi R, Nagata R, Kawaji S, Kagawa Y, Yamada S, Kato Y, Nakajima C, Suzuki Y, Murata S, Mori Y, Ohashi K. 2018. Prostaglandin E2 induction suppresses the Th1 immune responses in cattle with Johne’s disease. Infect Immun 86: e00910–e00917.
– reference: 7. Gondaira S, Higuchi H, Iwano H, Nakajima K, Kawai K, Hashiguchi S, Konnai S, Nagahata H. 2015. Cytokine mRNA profiling and the proliferative response of bovine peripheral blood mononuclear cells to Mycoplasma bovis. Vet Immunol Immunopathol 165: 45–53.
– reference: 38. Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. 2016. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol 7: 302.
– reference: 5. Bruschi M, Bonanni A, Petretto A, Vaglio A, Pratesi F, Santucci L, Migliorini P, Bertelli R, Galetti M, Belletti S, Cavagna L, Moroni G, Franceschini F, Fredi M, Pazzola G, Allegri L, Sinico RA, Pesce G, Bagnasco M, Manfredi A, Ramirez GA, Ramoino P, Bianchini P, Puppo F, Pupo F, Negrini S, Mattana F, Emmi G, Garibotto G, Santoro D, Scolari F, Ravelli A, Tincani A, Cravedi P, Volpi S, Candiano G, Ghiggeri GM. 2020. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol 47: 377–386.
– reference: 39. Zadoks RN, Gillespie BE, Barkema HW, Sampimon OC, Oliver SP, Schukken YH. 2003. Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol Infect 130: 335–349.
– reference: 18. Nakajima K, Itoh F, Nakamura M, Kawamura A, Yamazaki T, Kozakai T, Takusari N, Ishisaki A. 2015. Short communication: opposing effects of lactoferrin on the proliferation of fibroblasts and epithelial cells from bovine mammary gland. J Dairy Sci 98: 1069–1077.
– reference: 24. Rainard P, Riollet C. 2003. Mobilization of neutrophils and defense of the bovine mammary gland. Reprod Nutr Dev 43: 439–457.
– reference: 2. Borish LC, Steinke JW. 2003. 2. Cytokines and chemokines. J Allergy Clin Immunol 111Suppl: S460–S475.
– reference: 34. Taddese R, Belzer C, Aalvink S, de Jonge MI, Nagtegaal ID, Dutilh BE, Boleij A. 2021. Production of inactivated gram-positive and gram-negative species with preserved cellular morphology and integrity. J Microbiol Methods 184: 106208.
– reference: 14. Klaas IC, Zadoks RN. 2018. An update on environmental mastitis: Challenging perceptions. Transbound Emerg Dis 65Suppl 1: 166–185.
– reference: 9. Heikkilä AM, Liski E, Pyörälä S, Taponen S. 2018. Pathogen-specific production losses in bovine mastitis. J Dairy Sci 101: 9493–9504.
– reference: 8. Gondaira S, Higuchi H, Nishi K, Iwano H, Nagahata H. 2017. Mycoplasma bovis escapes bovine neutrophil extracellular traps. Vet Microbiol 199: 68–73.
– reference: 16. Miao J, Zhang J, Ma Z, Zheng L. 2013. The role of NADPH oxidase in taurine attenuation of Streptococcus uberis-induced mastitis in rats. Int Immunopharmacol 16: 429–435.
– reference: 21. Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, Migliorini P. 2019. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One 14: e0218946.
– reference: 29. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526: 660–665.
– reference: 32. Szturmowicz M, Demkow U. 2021. Neutrophil extracellular traps (NETs) in severe SARS-CoV-2 lung disease. Int J Mol Sci 22: 8854.
– reference: 33. Sundaram VK, Sampathkumar NK, Massaad C, Grenier J. 2019. Optimal use of statistical methods to validate reference gene stability in longitudinal studies. PLoS One 14: e0219440.
– reference: 37. Worku M, Rehrah D, Ismail HD, Asiamah E, Adjei-Fremah S. 2021. A review of the neutrophil extracellular traps (NETs) from cow, sheep and goat models. Int J Mol Sci 22: 8046.
– reference: 15. Li M, Gao Y, Wang Z, Wu B, Zhang J, Xu Y, Han X, Phouthapane V, Miao J. 2022. Taurine inhibits Streptococcus uberis-induced NADPH oxidase-dependent neutrophil extracellular traps via TAK1/MAPK signaling pathways. Front Immunol 13: 927215.
– reference: 35. Tassi R, McNeilly TN, Fitzpatrick JL, Fontaine MC, Reddick D, Ramage C, Lutton M, Schukken YH, Zadoks RN. 2013. Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. J Dairy Sci 96: 5129–5145.
– reference: 30. Shu L, Zhong L, Xiao Y, Wu X, Liu Y, Jiang X, Tang T, Hoo R, Zhou Z, Xu A. 2020. Neutrophil elastase triggers the development of autoimmune diabetes by exacerbating innate immune responses in pancreatic islets of non-obese diabetic mice. Clin Sci (Lond) 134: 1679–1696.
– reference: 12. Jiang LY, Sun HZ, Guan RW, Shi F, Zhao FQ, Liu JX. 2022. Formation of blood neutrophil extracellular traps increases the mastitis risk of dairy cows during the transition period. Front Immunol 13: 880578.
– reference: 22. Pisanu S, Cubeddu T, Pagnozzi D, Rocca S, Cacciotto C, Alberti A, Marogna G, Uzzau S, Addis MF. 2015. Neutrophil extracellular traps in sheep mastitis. Vet Res (Faisalabad) 46: 59.
– reference: 26. Sahoo M, Del Barrio L, Miller MA, Re F. 2014. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with burkholderia species. PLoS Pathog 10: e1004327.
– reference: 25. Rambeaud M, Almeida RA, Pighetti GM, Oliver SP. 2003. Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet Immunol Immunopathol 96: 193–205.
– reference: 31. Smits E, Burvenich C, Guidry AJ, Roets E. 1998. In vitro expression of adhesion receptors and diapedesis by polymorphonuclear neutrophils during experimentally induced Streptococcus uberis mastitis. Infect Immun 66: 2529–2534.
– reference: 4. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532–1535.
– reference: 19. Papayannopoulos V. 2018. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18: 134–147.
– reference: 28. Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DG, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM. Members of the Pfizer mastitis research consortium. 2011. Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 144: 270–289.
– reference: 1. Ballas P, Gabler C, Wagener K, Drillich M, Ehling-Schulz M. 2020. Streptococcus uberis strains originating from bovine uteri provoke upregulation of pro-inflammatory factors mRNA expression of endometrial epithelial cells in vitro. Vet Microbiol 245: 108710.
– reference: 6. Chan FK, Luz NF, Moriwaki K. 2015. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33: 79–106.
– reference: 13. Keane OM. 2019. Symposium review: Intramammary infections-Major pathogens and strain-associated complexity. J Dairy Sci 102: 4713–4726.
– reference: 11. Huang Y, Shen L, Jiang J, Xu Q, Luo Z, Luo Q, Yu S, Yao X, Ren Z, Hu Y, Yang Y, Cao S. 2019. Metabolomic Profiles of Bovine Mammary Epithelial Cells Stimulated by Lipopolysaccharide. Sci Rep 9: 19131.
– reference: 20. Pedersen LH, Aalbaek B, Røntved CM, Ingvartsen KL, Sorensen NS, Heegaard PM, Jensen HE. 2003. Early pathogenesis and inflammatory response in experimental bovine mastitis due to Streptococcus uberis. J Comp Pathol 128: 156–164.
– reference: 23. Rainard P, Gilbert FB, Germon P. 2022. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 13: 1031785.
– reference: 36. Watanabe A, Kawai K, Hata E, Goto S, Shinozuka Y, Kurumisawa T, Koyama Y, Chikayama Y, Kiku Y, Nagasawa Y, Hayashi T. 2021. Sequence type and primary structure of the vru gene upstream region of Streptococcus uberis isolated from bovine clinical mastitis in Japan. Jpn J Vet Res 69: 195–203.
– reference: 17. Mutua V, Gershwin LJ. 2021. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol 61: 194–211.
– reference: 10. Herrero-Cervera A, Soehnlein O, Kenne E. 2022. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 19: 177–191.
– ident: 6
  doi: 10.1146/annurev-immunol-032414-112248
– ident: 5
  doi: 10.3899/jrheum.181232
– ident: 10
  doi: 10.1038/s41423-021-00832-3
– ident: 9
  doi: 10.3168/jds.2018-14824
– ident: 37
  doi: 10.3390/ijms22158046
– ident: 31
  doi: 10.1128/IAI.66.6.2529-2534.1998
– ident: 7
  doi: 10.1016/j.vetimm.2015.03.002
– ident: 23
  doi: 10.3389/fimmu.2022.1031785
– ident: 28
  doi: 10.1016/j.vetimm.2011.08.022
– ident: 33
  doi: 10.1371/journal.pone.0219440
– ident: 13
  doi: 10.3168/jds.2018-15326
– ident: 8
  doi: 10.1016/j.vetmic.2016.12.022
– ident: 16
  doi: 10.1016/j.intimp.2013.05.007
– ident: 32
  doi: 10.3390/ijms22168854
– ident: 27
  doi: 10.1128/IAI.00910-17
– ident: 11
  doi: 10.1038/s41598-019-55556-2
– ident: 30
  doi: 10.1042/CS20200021
– ident: 25
  doi: 10.1016/j.vetimm.2003.08.008
– ident: 29
  doi: 10.1038/nature15514
– ident: 17
  doi: 10.1007/s12016-020-08804-7
– ident: 12
  doi: 10.3389/fimmu.2022.880578
– ident: 22
  doi: 10.1186/s13567-015-0196-x
– ident: 15
  doi: 10.3389/fimmu.2022.927215
– ident: 24
  doi: 10.1051/rnd:2003031
– ident: 38
  doi: 10.3389/fimmu.2016.00302
– ident: 20
  doi: 10.1053/jcpa.2002.0620
– ident: 26
  doi: 10.1371/journal.ppat.1004327
– ident: 2
  doi: 10.1067/mai.2003.108
– ident: 35
  doi: 10.3168/jds.2013-6741
– ident: 36
– ident: 14
  doi: 10.1111/tbed.12704
– ident: 19
  doi: 10.1038/nri.2017.105
– ident: 39
  doi: 10.1017/S0950268802008221
– ident: 1
  doi: 10.1016/j.vetmic.2020.108710
– ident: 21
  doi: 10.1371/journal.pone.0218946
– ident: 34
  doi: 10.1016/j.mimet.2021.106208
– ident: 18
  doi: 10.3168/jds.2014-8430
– ident: 4
  doi: 10.1126/science.1092385
– ident: 3
  doi: 10.1038/nrmicro1710
SSID ssj0021469
Score 2.3614361
Snippet This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of...
This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis , a major cause of mastitis. It was found that the production of...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 141
SubjectTerms bovine neutrophil
Cytokines
Cytotoxicity
Elastase
Epithelial cells
Immunology
Inflammation
Leukocytes (neutrophilic)
Mammary gland
Mastitis
neutrophil extracellular trap
Neutrophils
Streptococcus infections
Streptococcus uberis
Tumor necrosis factor-TNF
Up-regulation
Title Bovine neutrophils stimulated with Streptococcus uberis induce neutrophil extracellular traps, and cause cytotoxicity and transcriptional upregulation of inflammatory cytokine genes in bovine mammary epithelial cells
URI https://www.jstage.jst.go.jp/article/jvms/86/2/86_23-0302/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/38104974
https://www.proquest.com/docview/2957062845
https://www.proquest.com/docview/2903323469
https://pubmed.ncbi.nlm.nih.gov/PMC10898994
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2024, Vol.86(2), pp.141-149
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0KoKBy6IllegVEaCE6RsbOclhBAgqgIqJxb1FtnOZNuym6SbBHX_lM9hxslG3apIHDZaxWN5lHl4xp4HYy9CCMRE59I3kKS-kjbyTREUvjQx2KSQUuYuyvd7dDRVX0_Cky227jY6fMDmRteO-klNl_ODy4vVexT4d642QirenP9eNAdC-sivqIxv4Z4Uk4geq_E-gbpXp871UrFPJvgQAn999sbmdPsc7bMZ3GR6Xo-gvLIlHd5jdwdbkn_oib_DtqDcZbs_KcDFZdny4-Hi_D7785FODoCX0LXLqj49mzcchXtBzbsg53Qay-mCum4r1JC2a3hnqIgzR5cdiX9lHkdtvtR03k8BrBz_181rrsucW901wO2qrdrqEtdtV-51S7vhWjchul29hNnQNIxXBa5QIFcu3G2_m_2LEJ2RDsYxbnrEF9ol2XGoKYlkjlLDCYfmAZsefv7x6cgfmjr4Fk2t1k9MoY0OVWxECDoCqj8XRZMi0Eme40PZKJdWByCUVXkkYwmJkDbMIYkLk4byIdsuqxIeM55quuZVqQ4LUKGGVILEn42tNULlymOv1tTM7FDxnBpvzDPyfJD2GdE-EzIj2nvs5Qhd95U-_gH3tmeMEWqQ8R4qiTLhHj30OEhJdKiJPLa35qZszeyZSMOYcllV6LHn4zDKOX1IXULVEcxESiGRjz32qGe-EQGq0qbQMfRYssGWIwDVEN8cKc9OXS3xYEL9Q1P15D8WfsruCDTp-gOoPbbdLjt4hiZZa_bRGfnybd_J3F9VEkNk
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bovine+neutrophils+stimulated+with+Streptococcus+uberis+induce+neutrophil+extracellular+traps%2C+and+cause+cytotoxicity+and+transcriptional+upregulation+of+inflammatory+cytokine+genes+in+bovine+mammary+epithelial+cells&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Goto%2C+Shinya&rft.au=Mikami%2C+Osamu&rft.au=Nagasawa%2C+Yuya&rft.au=Watanabe%2C+Atsushi&rft.date=2024&rft.issn=1347-7439&rft.eissn=1347-7439&rft.volume=86&rft.issue=2&rft.spage=141&rft_id=info:doi/10.1292%2Fjvms.23-0302&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon