Bovine neutrophils stimulated with Streptococcus uberis induce neutrophil extracellular traps, and cause cytotoxicity and transcriptional upregulation of inflammatory cytokine genes in bovine mammary epithelial cells
This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release o...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 86; no. 2; pp. 141 - 149 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
2024
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin (IL) -1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8, in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis-induced mastitis. |
---|---|
AbstractList | This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin (IL) -1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8, in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis-induced mastitis. This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis , a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis -infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin ( IL ) -1β , tumor necrosis factor ( TNF ) -α , IL-6 , and IL-8 , in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis -induced mastitis. This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin (IL) -1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8, in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis-induced mastitis.This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of neutrophil extracellular traps (NETs) was induced in milk clots from mastitic milk produced by S. uberis-infected bovine udders. The release of NETs from neutrophils stimulated by S. uberis was investigated. Bovine neutrophils cocultured with S. uberis in vitro released the components of NETs, which contained extracellular DNA and elastase. Bovine mammary epithelial cells (BMECs) incubated in coculture supernatants containing components of NETs, caused cytotoxicity and transcriptional upregulation of inflammatory cytokines, including of interleukin (IL) -1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8, in BMECs. These findings suggest that bovine neutrophils stimulated by S. uberis induce responses that cause exacerbated inflammation, such as NET formation, cytotoxicity against BMECs, and increased production of inflammatory cytokines. Bovine neutrophil responses stimulated by S. uberis could be involved in the progression of S. uberis-induced mastitis. |
ArticleNumber | 23-0302 |
Author | WATANABE, Atsushi MIKAMI, Osamu NAGASAWA, Yuya GOTO, Shinya |
Author_xml | – sequence: 1 fullname: GOTO, Shinya organization: Pathology and Production Disease Group, Division of Hygiene Management, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, Japan – sequence: 1 fullname: MIKAMI, Osamu organization: Pathology and Production Disease Group, Division of Hygiene Management, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, Japan – sequence: 1 fullname: WATANABE, Atsushi organization: Pathology and Production Disease Group, Division of Hygiene Management, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, Japan – sequence: 1 fullname: NAGASAWA, Yuya organization: Pathology and Production Disease Group, Division of Hygiene Management, National Institute of Animal Health, National Agriculture and Food Research Organization, Hokkaido, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38104974$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhS1URKeFHWtkiQ2Lpji281ohWvGSKrEA1pbj3Mx4SOxgO0Pnn_JzsCftqFRi4zz8nXOPfe8ZOjHWAEIvc3KZ04a-3e5Gf0lZRhihT9AqZ7zKKs6aE7QiTV5mFS3IKTrzfksIzXnZPEOnrM4Jbyq-Qn-u7E4bwAbm4Oy00YPHPuhxHmSADv_WYYO_BQdTsMoqNXs8t-C0x9p0s3qow3AbnFQwDFHrcHyf_AWWpsNKzh6w2gcb7K1WOuwPvyNhvHJ6CtoaOeB5crBOdeMntn2s0A9yHGWwbn9Q_0xB12AgVcftEnxMSARgilFh0NEoZfDP0dNeDh5e3D3P0Y-PH75ff85uvn76cv3-JlNFSUNWt71sZcGrlhYgSyCU5WVJ-lzWXRcXrsqOKZkD5Yp3JasY1JSpooO66tumYOfo3eI7ze0InQITzzWIyekUS1ipxb87Rm_E2u5ETuqmbhoeHd7cOTj7awYfxKh9OoM0YGcvaEMYoyx2LqKvH6FbO7t4eYkqKlLSmqdIrx5GOma573oE6AIoZ7130IvYlMO9x4R6iNFEGi2RRktQJtJoRdHFI9G973_wqwXf-iDXcISlC1oNsMB1KehhWUTHTbWRToBhfwE8HvJS |
CitedBy_id | crossref_primary_10_3390_antiox13020171 crossref_primary_10_1016_j_vetimm_2025_110883 |
Cites_doi | 10.1146/annurev-immunol-032414-112248 10.3899/jrheum.181232 10.1038/s41423-021-00832-3 10.3168/jds.2018-14824 10.3390/ijms22158046 10.1128/IAI.66.6.2529-2534.1998 10.1016/j.vetimm.2015.03.002 10.3389/fimmu.2022.1031785 10.1016/j.vetimm.2011.08.022 10.1371/journal.pone.0219440 10.3168/jds.2018-15326 10.1016/j.vetmic.2016.12.022 10.1016/j.intimp.2013.05.007 10.3390/ijms22168854 10.1128/IAI.00910-17 10.1038/s41598-019-55556-2 10.1042/CS20200021 10.1016/j.vetimm.2003.08.008 10.1038/nature15514 10.1007/s12016-020-08804-7 10.3389/fimmu.2022.880578 10.1186/s13567-015-0196-x 10.3389/fimmu.2022.927215 10.1051/rnd:2003031 10.3389/fimmu.2016.00302 10.1053/jcpa.2002.0620 10.1371/journal.ppat.1004327 10.1067/mai.2003.108 10.3168/jds.2013-6741 10.1111/tbed.12704 10.1038/nri.2017.105 10.1017/S0950268802008221 10.1016/j.vetmic.2020.108710 10.1371/journal.pone.0218946 10.1016/j.mimet.2021.106208 10.3168/jds.2014-8430 10.1126/science.1092385 10.1038/nrmicro1710 |
ContentType | Journal Article |
Copyright | 2024 by the Japanese Society of Veterinary Science 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Japanese Society of Veterinary Science 2024 |
Copyright_xml | – notice: 2024 by the Japanese Society of Veterinary Science – notice: 2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Japanese Society of Veterinary Science 2024 |
DBID | AAYXX CITATION NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.23-0302 |
DatabaseName | CrossRef PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 149 |
ExternalDocumentID | PMC10898994 38104974 10_1292_jvms_23_0302 article_jvms_86_2_86_23_0302_article_char_en |
Genre | Journal Article |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS ECGQY EJD EYRJQ HYE JSF JSH KQ8 M48 N5S OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 VH1 XSB AAYXX CITATION NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c562t-8bfaba547b25ea6e0231660f1a8dd1a84c6d3ca1e24c4d6373e823c5de87fb953 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 18:35:01 EDT 2025 Thu Jul 10 18:02:20 EDT 2025 Sun Jun 29 15:15:26 EDT 2025 Mon Jul 21 05:56:18 EDT 2025 Tue Jul 01 00:31:12 EDT 2025 Thu Apr 24 22:59:28 EDT 2025 Wed Sep 03 06:31:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Streptococcus uberis bovine neutrophil mastitis inflammation neutrophil extracellular trap |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-8bfaba547b25ea6e0231660f1a8dd1a84c6d3ca1e24c4d6373e823c5de87fb953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.23-0302 |
PMID | 38104974 |
PQID | 2957062845 |
PQPubID | 2028964 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10898994 proquest_miscellaneous_2903323469 proquest_journals_2957062845 pubmed_primary_38104974 crossref_citationtrail_10_1292_jvms_23_0302 crossref_primary_10_1292_jvms_23_0302 jstage_primary_article_jvms_86_2_86_23_0302_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2024 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 15. Li M, Gao Y, Wang Z, Wu B, Zhang J, Xu Y, Han X, Phouthapane V, Miao J. 2022. Taurine inhibits Streptococcus uberis-induced NADPH oxidase-dependent neutrophil extracellular traps via TAK1/MAPK signaling pathways. Front Immunol 13: 927215. 34. Taddese R, Belzer C, Aalvink S, de Jonge MI, Nagtegaal ID, Dutilh BE, Boleij A. 2021. Production of inactivated gram-positive and gram-negative species with preserved cellular morphology and integrity. J Microbiol Methods 184: 106208. 10. Herrero-Cervera A, Soehnlein O, Kenne E. 2022. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 19: 177–191. 22. Pisanu S, Cubeddu T, Pagnozzi D, Rocca S, Cacciotto C, Alberti A, Marogna G, Uzzau S, Addis MF. 2015. Neutrophil extracellular traps in sheep mastitis. Vet Res (Faisalabad) 46: 59. 32. Szturmowicz M, Demkow U. 2021. Neutrophil extracellular traps (NETs) in severe SARS-CoV-2 lung disease. Int J Mol Sci 22: 8854. 25. Rambeaud M, Almeida RA, Pighetti GM, Oliver SP. 2003. Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet Immunol Immunopathol 96: 193–205. 37. Worku M, Rehrah D, Ismail HD, Asiamah E, Adjei-Fremah S. 2021. A review of the neutrophil extracellular traps (NETs) from cow, sheep and goat models. Int J Mol Sci 22: 8046. 6. Chan FK, Luz NF, Moriwaki K. 2015. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33: 79–106. 29. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526: 660–665. 36. Watanabe A, Kawai K, Hata E, Goto S, Shinozuka Y, Kurumisawa T, Koyama Y, Chikayama Y, Kiku Y, Nagasawa Y, Hayashi T. 2021. Sequence type and primary structure of the vru gene upstream region of Streptococcus uberis isolated from bovine clinical mastitis in Japan. Jpn J Vet Res 69: 195–203. 7. Gondaira S, Higuchi H, Iwano H, Nakajima K, Kawai K, Hashiguchi S, Konnai S, Nagahata H. 2015. Cytokine mRNA profiling and the proliferative response of bovine peripheral blood mononuclear cells to Mycoplasma bovis. Vet Immunol Immunopathol 165: 45–53. 18. Nakajima K, Itoh F, Nakamura M, Kawamura A, Yamazaki T, Kozakai T, Takusari N, Ishisaki A. 2015. Short communication: opposing effects of lactoferrin on the proliferation of fibroblasts and epithelial cells from bovine mammary gland. J Dairy Sci 98: 1069–1077. 1. Ballas P, Gabler C, Wagener K, Drillich M, Ehling-Schulz M. 2020. Streptococcus uberis strains originating from bovine uteri provoke upregulation of pro-inflammatory factors mRNA expression of endometrial epithelial cells in vitro. Vet Microbiol 245: 108710. 20. Pedersen LH, Aalbaek B, Røntved CM, Ingvartsen KL, Sorensen NS, Heegaard PM, Jensen HE. 2003. Early pathogenesis and inflammatory response in experimental bovine mastitis due to Streptococcus uberis. J Comp Pathol 128: 156–164. 13. Keane OM. 2019. Symposium review: Intramammary infections-Major pathogens and strain-associated complexity. J Dairy Sci 102: 4713–4726. 9. Heikkilä AM, Liski E, Pyörälä S, Taponen S. 2018. Pathogen-specific production losses in bovine mastitis. J Dairy Sci 101: 9493–9504. 24. Rainard P, Riollet C. 2003. Mobilization of neutrophils and defense of the bovine mammary gland. Reprod Nutr Dev 43: 439–457. 33. Sundaram VK, Sampathkumar NK, Massaad C, Grenier J. 2019. Optimal use of statistical methods to validate reference gene stability in longitudinal studies. PLoS One 14: e0219440. 35. Tassi R, McNeilly TN, Fitzpatrick JL, Fontaine MC, Reddick D, Ramage C, Lutton M, Schukken YH, Zadoks RN. 2013. Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. J Dairy Sci 96: 5129–5145. 30. Shu L, Zhong L, Xiao Y, Wu X, Liu Y, Jiang X, Tang T, Hoo R, Zhou Z, Xu A. 2020. Neutrophil elastase triggers the development of autoimmune diabetes by exacerbating innate immune responses in pancreatic islets of non-obese diabetic mice. Clin Sci (Lond) 134: 1679–1696. 23. Rainard P, Gilbert FB, Germon P. 2022. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 13: 1031785. 12. Jiang LY, Sun HZ, Guan RW, Shi F, Zhao FQ, Liu JX. 2022. Formation of blood neutrophil extracellular traps increases the mastitis risk of dairy cows during the transition period. Front Immunol 13: 880578. 3. Brinkmann V, Zychlinsky A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5: 577–582. 14. Klaas IC, Zadoks RN. 2018. An update on environmental mastitis: Challenging perceptions. Transbound Emerg Dis 65Suppl 1: 166–185. 21. Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, Migliorini P. 2019. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One 14: e0218946. 2. Borish LC, Steinke JW. 2003. 2. Cytokines and chemokines. J Allergy Clin Immunol 111Suppl: S460–S475. 4. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532–1535. 26. Sahoo M, Del Barrio L, Miller MA, Re F. 2014. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with burkholderia species. PLoS Pathog 10: e1004327. 28. Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DG, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM. Members of the Pfizer mastitis research consortium. 2011. Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 144: 270–289. 8. Gondaira S, Higuchi H, Nishi K, Iwano H, Nagahata H. 2017. Mycoplasma bovis escapes bovine neutrophil extracellular traps. Vet Microbiol 199: 68–73. 19. Papayannopoulos V. 2018. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18: 134–147. 38. Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. 2016. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol 7: 302. 39. Zadoks RN, Gillespie BE, Barkema HW, Sampimon OC, Oliver SP, Schukken YH. 2003. Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol Infect 130: 335–349. 11. Huang Y, Shen L, Jiang J, Xu Q, Luo Z, Luo Q, Yu S, Yao X, Ren Z, Hu Y, Yang Y, Cao S. 2019. Metabolomic Profiles of Bovine Mammary Epithelial Cells Stimulated by Lipopolysaccharide. Sci Rep 9: 19131. 31. Smits E, Burvenich C, Guidry AJ, Roets E. 1998. In vitro expression of adhesion receptors and diapedesis by polymorphonuclear neutrophils during experimentally induced Streptococcus uberis mastitis. Infect Immun 66: 2529–2534. 5. Bruschi M, Bonanni A, Petretto A, Vaglio A, Pratesi F, Santucci L, Migliorini P, Bertelli R, Galetti M, Belletti S, Cavagna L, Moroni G, Franceschini F, Fredi M, Pazzola G, Allegri L, Sinico RA, Pesce G, Bagnasco M, Manfredi A, Ramirez GA, Ramoino P, Bianchini P, Puppo F, Pupo F, Negrini S, Mattana F, Emmi G, Garibotto G, Santoro D, Scolari F, Ravelli A, Tincani A, Cravedi P, Volpi S, Candiano G, Ghiggeri GM. 2020. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol 47: 377–386. 27. Sajiki Y, Konnai S, Okagawa T, Nishimori A, Maekawa N, Goto S, Ikebuchi R, Nagata R, Kawaji S, Kagawa Y, Yamada S, Kato Y, Nakajima C, Suzuki Y, Murata S, Mori Y, Ohashi K. 2018. Prostaglandin E2 induction suppresses the Th1 immune responses in cattle with Johne’s disease. Infect Immun 86: e00910–e00917. 17. Mutua V, Gershwin LJ. 2021. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol 61: 194–211. 16. Miao J, Zhang J, Ma Z, Zheng L. 2013. The role of NADPH oxidase in taurine attenuation of Streptococcus uberis-induced mastitis in rats. Int Immunopharmacol 16: 429–435. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 3. Brinkmann V, Zychlinsky A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5: 577–582. – reference: 27. Sajiki Y, Konnai S, Okagawa T, Nishimori A, Maekawa N, Goto S, Ikebuchi R, Nagata R, Kawaji S, Kagawa Y, Yamada S, Kato Y, Nakajima C, Suzuki Y, Murata S, Mori Y, Ohashi K. 2018. Prostaglandin E2 induction suppresses the Th1 immune responses in cattle with Johne’s disease. Infect Immun 86: e00910–e00917. – reference: 7. Gondaira S, Higuchi H, Iwano H, Nakajima K, Kawai K, Hashiguchi S, Konnai S, Nagahata H. 2015. Cytokine mRNA profiling and the proliferative response of bovine peripheral blood mononuclear cells to Mycoplasma bovis. Vet Immunol Immunopathol 165: 45–53. – reference: 38. Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. 2016. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol 7: 302. – reference: 5. Bruschi M, Bonanni A, Petretto A, Vaglio A, Pratesi F, Santucci L, Migliorini P, Bertelli R, Galetti M, Belletti S, Cavagna L, Moroni G, Franceschini F, Fredi M, Pazzola G, Allegri L, Sinico RA, Pesce G, Bagnasco M, Manfredi A, Ramirez GA, Ramoino P, Bianchini P, Puppo F, Pupo F, Negrini S, Mattana F, Emmi G, Garibotto G, Santoro D, Scolari F, Ravelli A, Tincani A, Cravedi P, Volpi S, Candiano G, Ghiggeri GM. 2020. Neutrophil extracellular traps profiles in patients with incident systemic lupus erythematosus and lupus nephritis. J Rheumatol 47: 377–386. – reference: 39. Zadoks RN, Gillespie BE, Barkema HW, Sampimon OC, Oliver SP, Schukken YH. 2003. Clinical, epidemiological and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol Infect 130: 335–349. – reference: 18. Nakajima K, Itoh F, Nakamura M, Kawamura A, Yamazaki T, Kozakai T, Takusari N, Ishisaki A. 2015. Short communication: opposing effects of lactoferrin on the proliferation of fibroblasts and epithelial cells from bovine mammary gland. J Dairy Sci 98: 1069–1077. – reference: 24. Rainard P, Riollet C. 2003. Mobilization of neutrophils and defense of the bovine mammary gland. Reprod Nutr Dev 43: 439–457. – reference: 2. Borish LC, Steinke JW. 2003. 2. Cytokines and chemokines. J Allergy Clin Immunol 111Suppl: S460–S475. – reference: 34. Taddese R, Belzer C, Aalvink S, de Jonge MI, Nagtegaal ID, Dutilh BE, Boleij A. 2021. Production of inactivated gram-positive and gram-negative species with preserved cellular morphology and integrity. J Microbiol Methods 184: 106208. – reference: 14. Klaas IC, Zadoks RN. 2018. An update on environmental mastitis: Challenging perceptions. Transbound Emerg Dis 65Suppl 1: 166–185. – reference: 9. Heikkilä AM, Liski E, Pyörälä S, Taponen S. 2018. Pathogen-specific production losses in bovine mastitis. J Dairy Sci 101: 9493–9504. – reference: 8. Gondaira S, Higuchi H, Nishi K, Iwano H, Nagahata H. 2017. Mycoplasma bovis escapes bovine neutrophil extracellular traps. Vet Microbiol 199: 68–73. – reference: 16. Miao J, Zhang J, Ma Z, Zheng L. 2013. The role of NADPH oxidase in taurine attenuation of Streptococcus uberis-induced mastitis in rats. Int Immunopharmacol 16: 429–435. – reference: 21. Petretto A, Bruschi M, Pratesi F, Croia C, Candiano G, Ghiggeri G, Migliorini P. 2019. Neutrophil extracellular traps (NET) induced by different stimuli: A comparative proteomic analysis. PLoS One 14: e0218946. – reference: 29. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526: 660–665. – reference: 32. Szturmowicz M, Demkow U. 2021. Neutrophil extracellular traps (NETs) in severe SARS-CoV-2 lung disease. Int J Mol Sci 22: 8854. – reference: 33. Sundaram VK, Sampathkumar NK, Massaad C, Grenier J. 2019. Optimal use of statistical methods to validate reference gene stability in longitudinal studies. PLoS One 14: e0219440. – reference: 37. Worku M, Rehrah D, Ismail HD, Asiamah E, Adjei-Fremah S. 2021. A review of the neutrophil extracellular traps (NETs) from cow, sheep and goat models. Int J Mol Sci 22: 8046. – reference: 15. Li M, Gao Y, Wang Z, Wu B, Zhang J, Xu Y, Han X, Phouthapane V, Miao J. 2022. Taurine inhibits Streptococcus uberis-induced NADPH oxidase-dependent neutrophil extracellular traps via TAK1/MAPK signaling pathways. Front Immunol 13: 927215. – reference: 35. Tassi R, McNeilly TN, Fitzpatrick JL, Fontaine MC, Reddick D, Ramage C, Lutton M, Schukken YH, Zadoks RN. 2013. Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. J Dairy Sci 96: 5129–5145. – reference: 30. Shu L, Zhong L, Xiao Y, Wu X, Liu Y, Jiang X, Tang T, Hoo R, Zhou Z, Xu A. 2020. Neutrophil elastase triggers the development of autoimmune diabetes by exacerbating innate immune responses in pancreatic islets of non-obese diabetic mice. Clin Sci (Lond) 134: 1679–1696. – reference: 12. Jiang LY, Sun HZ, Guan RW, Shi F, Zhao FQ, Liu JX. 2022. Formation of blood neutrophil extracellular traps increases the mastitis risk of dairy cows during the transition period. Front Immunol 13: 880578. – reference: 22. Pisanu S, Cubeddu T, Pagnozzi D, Rocca S, Cacciotto C, Alberti A, Marogna G, Uzzau S, Addis MF. 2015. Neutrophil extracellular traps in sheep mastitis. Vet Res (Faisalabad) 46: 59. – reference: 26. Sahoo M, Del Barrio L, Miller MA, Re F. 2014. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with burkholderia species. PLoS Pathog 10: e1004327. – reference: 25. Rambeaud M, Almeida RA, Pighetti GM, Oliver SP. 2003. Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet Immunol Immunopathol 96: 193–205. – reference: 31. Smits E, Burvenich C, Guidry AJ, Roets E. 1998. In vitro expression of adhesion receptors and diapedesis by polymorphonuclear neutrophils during experimentally induced Streptococcus uberis mastitis. Infect Immun 66: 2529–2534. – reference: 4. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science 303: 1532–1535. – reference: 19. Papayannopoulos V. 2018. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18: 134–147. – reference: 28. Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DG, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM. Members of the Pfizer mastitis research consortium. 2011. Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 144: 270–289. – reference: 1. Ballas P, Gabler C, Wagener K, Drillich M, Ehling-Schulz M. 2020. Streptococcus uberis strains originating from bovine uteri provoke upregulation of pro-inflammatory factors mRNA expression of endometrial epithelial cells in vitro. Vet Microbiol 245: 108710. – reference: 6. Chan FK, Luz NF, Moriwaki K. 2015. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol 33: 79–106. – reference: 13. Keane OM. 2019. Symposium review: Intramammary infections-Major pathogens and strain-associated complexity. J Dairy Sci 102: 4713–4726. – reference: 11. Huang Y, Shen L, Jiang J, Xu Q, Luo Z, Luo Q, Yu S, Yao X, Ren Z, Hu Y, Yang Y, Cao S. 2019. Metabolomic Profiles of Bovine Mammary Epithelial Cells Stimulated by Lipopolysaccharide. Sci Rep 9: 19131. – reference: 20. Pedersen LH, Aalbaek B, Røntved CM, Ingvartsen KL, Sorensen NS, Heegaard PM, Jensen HE. 2003. Early pathogenesis and inflammatory response in experimental bovine mastitis due to Streptococcus uberis. J Comp Pathol 128: 156–164. – reference: 23. Rainard P, Gilbert FB, Germon P. 2022. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 13: 1031785. – reference: 36. Watanabe A, Kawai K, Hata E, Goto S, Shinozuka Y, Kurumisawa T, Koyama Y, Chikayama Y, Kiku Y, Nagasawa Y, Hayashi T. 2021. Sequence type and primary structure of the vru gene upstream region of Streptococcus uberis isolated from bovine clinical mastitis in Japan. Jpn J Vet Res 69: 195–203. – reference: 17. Mutua V, Gershwin LJ. 2021. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol 61: 194–211. – reference: 10. Herrero-Cervera A, Soehnlein O, Kenne E. 2022. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 19: 177–191. – ident: 6 doi: 10.1146/annurev-immunol-032414-112248 – ident: 5 doi: 10.3899/jrheum.181232 – ident: 10 doi: 10.1038/s41423-021-00832-3 – ident: 9 doi: 10.3168/jds.2018-14824 – ident: 37 doi: 10.3390/ijms22158046 – ident: 31 doi: 10.1128/IAI.66.6.2529-2534.1998 – ident: 7 doi: 10.1016/j.vetimm.2015.03.002 – ident: 23 doi: 10.3389/fimmu.2022.1031785 – ident: 28 doi: 10.1016/j.vetimm.2011.08.022 – ident: 33 doi: 10.1371/journal.pone.0219440 – ident: 13 doi: 10.3168/jds.2018-15326 – ident: 8 doi: 10.1016/j.vetmic.2016.12.022 – ident: 16 doi: 10.1016/j.intimp.2013.05.007 – ident: 32 doi: 10.3390/ijms22168854 – ident: 27 doi: 10.1128/IAI.00910-17 – ident: 11 doi: 10.1038/s41598-019-55556-2 – ident: 30 doi: 10.1042/CS20200021 – ident: 25 doi: 10.1016/j.vetimm.2003.08.008 – ident: 29 doi: 10.1038/nature15514 – ident: 17 doi: 10.1007/s12016-020-08804-7 – ident: 12 doi: 10.3389/fimmu.2022.880578 – ident: 22 doi: 10.1186/s13567-015-0196-x – ident: 15 doi: 10.3389/fimmu.2022.927215 – ident: 24 doi: 10.1051/rnd:2003031 – ident: 38 doi: 10.3389/fimmu.2016.00302 – ident: 20 doi: 10.1053/jcpa.2002.0620 – ident: 26 doi: 10.1371/journal.ppat.1004327 – ident: 2 doi: 10.1067/mai.2003.108 – ident: 35 doi: 10.3168/jds.2013-6741 – ident: 36 – ident: 14 doi: 10.1111/tbed.12704 – ident: 19 doi: 10.1038/nri.2017.105 – ident: 39 doi: 10.1017/S0950268802008221 – ident: 1 doi: 10.1016/j.vetmic.2020.108710 – ident: 21 doi: 10.1371/journal.pone.0218946 – ident: 34 doi: 10.1016/j.mimet.2021.106208 – ident: 18 doi: 10.3168/jds.2014-8430 – ident: 4 doi: 10.1126/science.1092385 – ident: 3 doi: 10.1038/nrmicro1710 |
SSID | ssj0021469 |
Score | 2.3614361 |
Snippet | This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis, a major cause of mastitis. It was found that the production of... This study aimed to understand the response of neutrophils stimulated by Streptococcus uberis , a major cause of mastitis. It was found that the production of... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 141 |
SubjectTerms | bovine neutrophil Cytokines Cytotoxicity Elastase Epithelial cells Immunology Inflammation Leukocytes (neutrophilic) Mammary gland Mastitis neutrophil extracellular trap Neutrophils Streptococcus infections Streptococcus uberis Tumor necrosis factor-TNF Up-regulation |
Title | Bovine neutrophils stimulated with Streptococcus uberis induce neutrophil extracellular traps, and cause cytotoxicity and transcriptional upregulation of inflammatory cytokine genes in bovine mammary epithelial cells |
URI | https://www.jstage.jst.go.jp/article/jvms/86/2/86_23-0302/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/38104974 https://www.proquest.com/docview/2957062845 https://www.proquest.com/docview/2903323469 https://pubmed.ncbi.nlm.nih.gov/PMC10898994 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2024, Vol.86(2), pp.141-149 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0KoKBy6IllegVEaCE6RsbOclhBAgqgIqJxb1FtnOZNuym6SbBHX_lM9hxslG3apIHDZaxWN5lHl4xp4HYy9CCMRE59I3kKS-kjbyTREUvjQx2KSQUuYuyvd7dDRVX0_Cky227jY6fMDmRteO-klNl_ODy4vVexT4d642QirenP9eNAdC-sivqIxv4Z4Uk4geq_E-gbpXp871UrFPJvgQAn999sbmdPsc7bMZ3GR6Xo-gvLIlHd5jdwdbkn_oib_DtqDcZbs_KcDFZdny4-Hi_D7785FODoCX0LXLqj49mzcchXtBzbsg53Qay-mCum4r1JC2a3hnqIgzR5cdiX9lHkdtvtR03k8BrBz_181rrsucW901wO2qrdrqEtdtV-51S7vhWjchul29hNnQNIxXBa5QIFcu3G2_m_2LEJ2RDsYxbnrEF9ol2XGoKYlkjlLDCYfmAZsefv7x6cgfmjr4Fk2t1k9MoY0OVWxECDoCqj8XRZMi0Eme40PZKJdWByCUVXkkYwmJkDbMIYkLk4byIdsuqxIeM55quuZVqQ4LUKGGVILEn42tNULlymOv1tTM7FDxnBpvzDPyfJD2GdE-EzIj2nvs5Qhd95U-_gH3tmeMEWqQ8R4qiTLhHj30OEhJdKiJPLa35qZszeyZSMOYcllV6LHn4zDKOX1IXULVEcxESiGRjz32qGe-EQGq0qbQMfRYssGWIwDVEN8cKc9OXS3xYEL9Q1P15D8WfsruCDTp-gOoPbbdLjt4hiZZa_bRGfnybd_J3F9VEkNk |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bovine+neutrophils+stimulated+with+Streptococcus+uberis+induce+neutrophil+extracellular+traps%2C+and+cause+cytotoxicity+and+transcriptional+upregulation+of+inflammatory+cytokine+genes+in+bovine+mammary+epithelial+cells&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Goto%2C+Shinya&rft.au=Mikami%2C+Osamu&rft.au=Nagasawa%2C+Yuya&rft.au=Watanabe%2C+Atsushi&rft.date=2024&rft.issn=1347-7439&rft.eissn=1347-7439&rft.volume=86&rft.issue=2&rft.spage=141&rft_id=info:doi/10.1292%2Fjvms.23-0302&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |