Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling
Membrane biofouling has a negative impact on the membrane treatment performance. Silver nanoparticles (AgNPs) are well-known antimicrobial agent. Herein, AgNPs with approximately 15nm in diameter were effectively attached to the surface of polyamide (PA) thin-film composite (TFC) membrane via covale...
Saved in:
Published in | Journal of membrane science Vol. 441; pp. 73 - 82 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.08.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membrane biofouling has a negative impact on the membrane treatment performance. Silver nanoparticles (AgNPs) are well-known antimicrobial agent. Herein, AgNPs with approximately 15nm in diameter were effectively attached to the surface of polyamide (PA) thin-film composite (TFC) membrane via covalent bonding, with cysteamine as a bridging agent. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and cross-sectional transmission electron microscopy (TEM) studies all showed the immobilization of AgNPs. Compared with the pristine TFC membrane, thiol-terminated membrane (TFC–SH) and AgNPs grafted membrane (TFC-S–AgNPs) both showed a higher water flux with slightly lower salt rejection. At a constant transmenbrane pressure of 300psi, the water permeability of TFC–SH, TFC-S–AgNPs, and control TFC membranes was 70.6±0.5, 69.4±0.3, and 49.8±1.7L/m2h, respectively, while NaCl rejection was 93.4±0.1%, 93.6±0.2%, and 95.9±0.6%, respectively. TFC-S–AgNPs had an improved antibacterial ability to inhibit E. coli growth. The silver leaching from the TFC-S–AgNPs membrane surfaces was minimal, as tested by both batch and flow-through methods. The results successfully demonstrated that AgNPs could be grafted onto TFC via chemical bonding, leading towards the development of an advanced functional TFC membrane with anti-biofouling properties.
•AgNPs around 15nm in diameter were synthesized via chemical reduction.•AgNPs were effectively attached to the membrane surface via covalent bonding.•Effects of grafting conditions on membrane performance.•Silver ions releases were assessed via both batch and flow-through experiments.•Biofilm growth test was carried out on a drip flow biofilm reactor. |
---|---|
AbstractList | Membrane biofouling has a negative impact on the membrane treatment performance. Silver nanoparticles (AgNPs) are well-known antimicrobial agent. Herein, AgNPs with approximately 15 nm in diameter were effectively attached to the surface of polyamide (PA) thin-film composite (TFC) membrane via covalent bonding, with cysteamine as a bridging agent. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and cross-sectional transmission electron microscopy (TEM) studies all showed the immobilization of AgNPs. Compared with the pristine TFC membrane, thiol-terminated membrane (TFCaSH) and AgNPs grafted membrane (TFC-SaAgNPs) both showed a higher water flux with slightly lower salt rejection. At a constant transmenbrane pressure of 300 psi, the water permeability of TFCaSH, TFC-SaAgNPs, and control TFC membranes was 70.6A-0.5, 69.4A-0.3, and 49.8A-1.7 L/m2h, respectively, while NaCl rejection was 93.4A-0.1%, 93.6A-0.2%, and 95.9A-0.6%, respectively. TFC-SaAgNPs had an improved antibacterial ability to inhibit E. coli growth. The silver leaching from the TFC-SaAgNPs membrane surfaces was minimal, as tested by both batch and flow-through methods. The results successfully demonstrated that AgNPs could be grafted onto TFC via chemical bonding, leading towards the development of an advanced functional TFC membrane with anti-biofouling properties. Membrane biofouling has a negative impact on the membrane treatment performance. Silver nanoparticles (AgNPs) are well-known antimicrobial agent. Herein, AgNPs with approximately 15nm in diameter were effectively attached to the surface of polyamide (PA) thin-film composite (TFC) membrane via covalent bonding, with cysteamine as a bridging agent. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and cross-sectional transmission electron microscopy (TEM) studies all showed the immobilization of AgNPs. Compared with the pristine TFC membrane, thiol-terminated membrane (TFC–SH) and AgNPs grafted membrane (TFC-S–AgNPs) both showed a higher water flux with slightly lower salt rejection. At a constant transmenbrane pressure of 300psi, the water permeability of TFC–SH, TFC-S–AgNPs, and control TFC membranes was 70.6±0.5, 69.4±0.3, and 49.8±1.7L/m²h, respectively, while NaCl rejection was 93.4±0.1%, 93.6±0.2%, and 95.9±0.6%, respectively. TFC-S–AgNPs had an improved antibacterial ability to inhibit E. coli growth. The silver leaching from the TFC-S–AgNPs membrane surfaces was minimal, as tested by both batch and flow-through methods. The results successfully demonstrated that AgNPs could be grafted onto TFC via chemical bonding, leading towards the development of an advanced functional TFC membrane with anti-biofouling properties. Membrane biofouling has a negative impact on the membrane treatment performance. Silver nanoparticles (AgNPs) are well-known antimicrobial agent. Herein, AgNPs with approximately 15nm in diameter were effectively attached to the surface of polyamide (PA) thin-film composite (TFC) membrane via covalent bonding, with cysteamine as a bridging agent. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and cross-sectional transmission electron microscopy (TEM) studies all showed the immobilization of AgNPs. Compared with the pristine TFC membrane, thiol-terminated membrane (TFC–SH) and AgNPs grafted membrane (TFC-S–AgNPs) both showed a higher water flux with slightly lower salt rejection. At a constant transmenbrane pressure of 300psi, the water permeability of TFC–SH, TFC-S–AgNPs, and control TFC membranes was 70.6±0.5, 69.4±0.3, and 49.8±1.7L/m2h, respectively, while NaCl rejection was 93.4±0.1%, 93.6±0.2%, and 95.9±0.6%, respectively. TFC-S–AgNPs had an improved antibacterial ability to inhibit E. coli growth. The silver leaching from the TFC-S–AgNPs membrane surfaces was minimal, as tested by both batch and flow-through methods. The results successfully demonstrated that AgNPs could be grafted onto TFC via chemical bonding, leading towards the development of an advanced functional TFC membrane with anti-biofouling properties. •AgNPs around 15nm in diameter were synthesized via chemical reduction.•AgNPs were effectively attached to the membrane surface via covalent bonding.•Effects of grafting conditions on membrane performance.•Silver ions releases were assessed via both batch and flow-through experiments.•Biofilm growth test was carried out on a drip flow biofilm reactor. |
Author | Deng, Baolin Hu, Zhiqiang Yang, Yu Yin, Jun |
Author_xml | – sequence: 1 givenname: Jun surname: Yin fullname: Yin, Jun organization: Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, USA – sequence: 2 givenname: Yu surname: Yang fullname: Yang, Yu organization: Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, USA – sequence: 3 givenname: Zhiqiang surname: Hu fullname: Hu, Zhiqiang organization: Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, USA – sequence: 4 givenname: Baolin surname: Deng fullname: Deng, Baolin email: dengb@missouri.edu organization: Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27449484$$DView record in Pascal Francis |
BookMark | eNqFkc1qGzEUhYeSQp20b1CoNgVnMa40-hlNFwVjmrQQ2kKTtZA0d2yZGcmVZENeoU8dGadddFHDBS3ud44O91xWFz54qKq3BC8IJuLDdjHBlKxbNJjQBS4j8ItqRmRLa0oaelHNMG1F3VIpX1WXKW0xJi2W3az6vcxZ280EPqMwoOTGA0TktQ87HbOzIyQ0X66__UjXKPgcUN44Xw9unJAN0y4klwHN729W16hkMFH7IsibGPbrTSEOejw6m-B759eo6CP0ewt_YWRcGMJ-LNvX1ctBjwnePL9X1cPN5_vVl_ru--3X1fKutlw0uZZNb6UVDDgnrDe6MYYQy1kHDAQRAlprcKNlo6mwlhnRlXUnpTaG0c5QelXNT767GH7tIWU1uWRhHEucsE-KSEwJxRzL82jLKecUY34e5YQywYQ8ou-fUZ2sHodyB-uS2kU36fiompaxjklWuI8nzsaQUoRBWZd1dqWHqN2oCFbH-tVWnepXx_oVLiNwEbN_xH_8z8jenWSDDkqvY8n18LMAAmMsWcePN_l0IqB0dHAQVfEAb6F3EWxWfXD__-IJZ-zXuQ |
CODEN | JMESDO |
CitedBy_id | crossref_primary_10_1016_j_memsci_2020_118143 crossref_primary_10_1021_ez4001356 crossref_primary_10_1080_15422119_2019_1630430 crossref_primary_10_1016_j_seppur_2018_11_016 crossref_primary_10_1021_acs_est_7b00782 crossref_primary_10_1002_app_49410 crossref_primary_10_1016_j_desal_2021_115109 crossref_primary_10_1021_acs_iecr_0c00157 crossref_primary_10_1016_j_memsci_2014_11_051 crossref_primary_10_2166_wh_2017_234 crossref_primary_10_1021_acsami_0c06037 crossref_primary_10_1126_sciadv_adf6122 crossref_primary_10_1002_adsu_202000279 crossref_primary_10_1016_j_jece_2021_105769 crossref_primary_10_1016_j_memsci_2019_117604 crossref_primary_10_1016_j_biortech_2015_06_070 crossref_primary_10_3390_nano9050705 crossref_primary_10_1002_ceat_202000417 crossref_primary_10_1002_jctb_7478 crossref_primary_10_1016_j_desal_2019_114077 crossref_primary_10_1016_j_desal_2019_114072 crossref_primary_10_1016_j_desal_2014_12_042 crossref_primary_10_1016_j_desal_2015_01_018 crossref_primary_10_1016_j_memsci_2019_01_047 crossref_primary_10_1007_s10570_017_1471_y crossref_primary_10_1016_j_giant_2022_100099 crossref_primary_10_1016_j_matlet_2019_04_058 crossref_primary_10_1039_C6TA02885C crossref_primary_10_1002_pat_4438 crossref_primary_10_1016_j_cej_2021_129340 crossref_primary_10_1002_app_53811 crossref_primary_10_1021_acssuschemeng_9b02929 crossref_primary_10_1155_2019_6217924 crossref_primary_10_1016_j_memsci_2021_119778 crossref_primary_10_5004_dwt_2020_25678 crossref_primary_10_1016_j_cej_2020_124625 crossref_primary_10_1021_acs_estlett_5b00008 crossref_primary_10_1021_acsami_0c13029 crossref_primary_10_1021_acs_est_5b00904 crossref_primary_10_1016_j_desal_2020_114673 crossref_primary_10_3390_polym12081686 crossref_primary_10_1016_j_apsusc_2018_03_003 crossref_primary_10_1016_j_colsurfa_2024_134441 crossref_primary_10_1016_j_memsci_2019_05_040 crossref_primary_10_1016_j_memsci_2016_06_012 crossref_primary_10_1002_jctb_4531 crossref_primary_10_1039_C5RA17221G crossref_primary_10_1016_j_memsci_2014_11_030 crossref_primary_10_1016_j_memsci_2016_07_052 crossref_primary_10_3390_membranes13050530 crossref_primary_10_1002_asia_202401618 crossref_primary_10_1515_psr_2017_0024 crossref_primary_10_1021_acsestwater_1c00139 crossref_primary_10_1016_j_matdes_2023_111805 crossref_primary_10_3390_membranes12060607 crossref_primary_10_1007_s11157_020_09548_8 crossref_primary_10_1007_s12010_023_04497_8 crossref_primary_10_1016_j_desal_2020_114442 crossref_primary_10_3390_w12020495 crossref_primary_10_1039_C6RA04458A crossref_primary_10_1016_j_seppur_2018_12_050 crossref_primary_10_3390_separations11030075 crossref_primary_10_1016_j_memsci_2014_11_019 crossref_primary_10_1016_j_crci_2019_08_001 crossref_primary_10_1016_j_progpolymsci_2016_03_003 crossref_primary_10_1007_s10311_018_0717_8 crossref_primary_10_1016_j_jksus_2021_101791 crossref_primary_10_3390_membranes13040387 crossref_primary_10_1186_1556_276X_9_305 crossref_primary_10_1021_acs_est_8b00562 crossref_primary_10_1016_j_desal_2017_10_018 crossref_primary_10_1016_j_desal_2020_114857 crossref_primary_10_1016_j_aca_2018_07_073 crossref_primary_10_3390_membranes11040246 crossref_primary_10_1080_19443994_2015_1026279 crossref_primary_10_1016_j_mtcomm_2024_110109 crossref_primary_10_1016_j_memsci_2017_02_047 crossref_primary_10_1021_acsapm_1c00779 crossref_primary_10_1038_s41598_024_83801_w crossref_primary_10_3390_membranes13080693 crossref_primary_10_1016_j_desal_2018_01_035 crossref_primary_10_1016_j_molliq_2024_126833 crossref_primary_10_1016_j_watres_2014_04_025 crossref_primary_10_1021_acsami_7b12314 crossref_primary_10_1016_j_memsci_2017_01_013 crossref_primary_10_1080_15422119_2015_1068806 crossref_primary_10_1016_j_desal_2018_01_031 crossref_primary_10_4028_www_scientific_net_AMR_1065_1069_1717 crossref_primary_10_1016_j_memsci_2019_117773 crossref_primary_10_1016_j_desal_2020_114867 crossref_primary_10_1016_j_memsci_2017_02_049 crossref_primary_10_1016_j_memsci_2021_119732 crossref_primary_10_1007_s10853_017_1313_1 crossref_primary_10_1002_adem_202201279 crossref_primary_10_1016_j_memsci_2015_09_060 crossref_primary_10_1016_j_rineng_2022_100500 crossref_primary_10_1016_j_memsci_2019_01_030 crossref_primary_10_1038_s41545_022_00217_7 crossref_primary_10_1039_C8RA00637G crossref_primary_10_1002_admi_201801742 crossref_primary_10_1016_j_memsci_2017_12_004 crossref_primary_10_3390_nano9010125 crossref_primary_10_1039_D0EN00300J crossref_primary_10_1016_j_seppur_2024_131173 crossref_primary_10_1016_j_desal_2015_08_007 crossref_primary_10_1002_admi_201701427 crossref_primary_10_1021_acs_iecr_1c00543 crossref_primary_10_1016_j_desal_2022_116190 crossref_primary_10_1016_j_memsci_2020_118135 crossref_primary_10_1002_pola_27130 crossref_primary_10_1021_acs_estlett_0c00507 crossref_primary_10_1016_j_seppur_2021_120295 crossref_primary_10_1016_j_colcom_2021_100543 crossref_primary_10_1016_j_desal_2016_06_034 crossref_primary_10_1016_j_scitotenv_2019_135365 crossref_primary_10_1016_j_seppur_2016_11_024 crossref_primary_10_1016_j_watres_2018_08_068 crossref_primary_10_1016_j_watres_2014_05_049 crossref_primary_10_1016_j_watres_2021_116976 crossref_primary_10_1007_s13762_021_03464_2 crossref_primary_10_1021_acs_estlett_1c00733 crossref_primary_10_1016_j_impact_2016_09_004 crossref_primary_10_1016_j_desal_2022_115775 crossref_primary_10_1016_j_desal_2022_115655 crossref_primary_10_1016_j_memsci_2018_05_070 crossref_primary_10_5004_dwt_2021_26815 crossref_primary_10_1016_j_desal_2016_01_007 crossref_primary_10_1016_j_memsci_2020_118542 crossref_primary_10_1016_j_cej_2023_143005 crossref_primary_10_1016_j_jiec_2018_04_021 crossref_primary_10_1016_j_tifs_2021_01_012 crossref_primary_10_1021_acsabm_8b00471 crossref_primary_10_1007_s11270_020_04483_4 crossref_primary_10_1016_j_eti_2023_103059 crossref_primary_10_1007_s11051_023_05727_0 crossref_primary_10_1021_acs_estlett_5b00304 crossref_primary_10_5004_dwt_2018_22478 crossref_primary_10_1016_j_desal_2020_114496 crossref_primary_10_1016_j_jcis_2017_04_069 crossref_primary_10_1088_1755_1315_356_1_012019 crossref_primary_10_1007_s42247_022_00367_x crossref_primary_10_1016_j_jwpe_2020_101835 crossref_primary_10_3390_membranes10060122 crossref_primary_10_1016_j_memsci_2017_11_057 crossref_primary_10_1016_j_scitotenv_2020_137018 crossref_primary_10_1016_j_reactfunctpolym_2018_12_019 crossref_primary_10_1016_j_memsci_2016_04_025 crossref_primary_10_1039_C8TA01200H crossref_primary_10_1016_j_memsci_2017_11_055 crossref_primary_10_1016_j_mtchem_2021_100600 crossref_primary_10_1016_j_desal_2016_08_001 crossref_primary_10_1016_j_memsci_2021_119922 crossref_primary_10_5004_dwt_2020_25729 crossref_primary_10_1021_es404232s crossref_primary_10_1515_epoly_2022_8087 crossref_primary_10_1016_j_seppur_2018_09_034 crossref_primary_10_1016_j_memsci_2022_120730 crossref_primary_10_1039_C5EN00086F crossref_primary_10_3390_membranes9080096 crossref_primary_10_1016_j_memsci_2016_04_013 crossref_primary_10_1016_j_cherd_2020_10_003 crossref_primary_10_1080_03067319_2020_1857375 crossref_primary_10_1002_admi_201500599 crossref_primary_10_1080_19443994_2014_928804 crossref_primary_10_1016_j_jece_2018_03_044 crossref_primary_10_1002_clen_201500923 crossref_primary_10_1021_acsami_9b02983 crossref_primary_10_1016_j_memsci_2023_121773 crossref_primary_10_1039_C4RA06489E crossref_primary_10_1016_j_watres_2024_122528 crossref_primary_10_1016_j_watres_2020_115557 crossref_primary_10_1016_j_scitotenv_2022_156231 crossref_primary_10_1016_j_nanoso_2018_02_002 crossref_primary_10_1007_s10965_016_0992_7 crossref_primary_10_1039_C8EW00206A crossref_primary_10_1016_j_watres_2022_118901 crossref_primary_10_1016_j_msec_2020_111411 crossref_primary_10_1016_j_seppur_2016_12_006 crossref_primary_10_1016_j_jiec_2018_12_036 crossref_primary_10_3390_membranes8030066 crossref_primary_10_1039_D4RA01796J crossref_primary_10_1016_j_jwpe_2022_103250 crossref_primary_10_1021_acsanm_3c05880 crossref_primary_10_3390_membranes8030068 crossref_primary_10_1021_acs_est_8b00804 crossref_primary_10_1002_pc_24837 crossref_primary_10_1021_acs_est_6b03795 crossref_primary_10_3390_membranes11030205 crossref_primary_10_1016_j_jcis_2016_11_060 crossref_primary_10_1016_j_chemosphere_2020_129187 crossref_primary_10_1016_j_eti_2021_101561 crossref_primary_10_1016_j_watres_2018_06_036 crossref_primary_10_1039_c3tb21681k crossref_primary_10_1016_j_cjche_2017_04_014 crossref_primary_10_1016_j_polymdegradstab_2014_01_024 crossref_primary_10_1021_acsbiomaterials_7b00977 crossref_primary_10_1016_j_cej_2024_152451 crossref_primary_10_1039_C5CS00579E crossref_primary_10_1016_j_apsusc_2016_05_141 crossref_primary_10_1016_j_jcis_2023_02_047 crossref_primary_10_1016_j_memsci_2019_02_027 crossref_primary_10_1016_j_carbon_2018_07_040 crossref_primary_10_1080_19443994_2015_1040854 crossref_primary_10_1016_j_watres_2015_04_037 crossref_primary_10_1021_acs_analchem_5b04751 crossref_primary_10_1016_j_colsurfa_2016_08_077 crossref_primary_10_1016_j_seppur_2020_117455 crossref_primary_10_1016_j_watres_2015_10_025 crossref_primary_10_1016_j_memsci_2024_122964 crossref_primary_10_1021_acs_est_6b01867 crossref_primary_10_1016_j_desal_2017_12_012 crossref_primary_10_1016_j_memsci_2017_06_070 crossref_primary_10_1002_app_45891 crossref_primary_10_1016_j_seppur_2017_10_018 crossref_primary_10_1002_app_51389 crossref_primary_10_1007_s42247_021_00330_2 crossref_primary_10_1016_j_reactfunctpolym_2021_104981 crossref_primary_10_1016_j_desal_2022_116233 crossref_primary_10_1016_j_jcis_2015_03_051 crossref_primary_10_1002_admi_202400461 crossref_primary_10_1021_acsami_6b06727 crossref_primary_10_1016_j_cclet_2019_05_057 crossref_primary_10_1016_j_memsci_2016_10_040 crossref_primary_10_1016_j_memsci_2020_118870 crossref_primary_10_1039_D1EW00881A crossref_primary_10_1016_j_memsci_2020_119045 crossref_primary_10_1016_j_mtchem_2022_101044 crossref_primary_10_1016_j_cej_2024_148746 crossref_primary_10_1007_s10118_017_1944_3 crossref_primary_10_1021_acs_iecr_6b04934 crossref_primary_10_3390_membranes9020030 crossref_primary_10_1021_acs_est_6b00788 crossref_primary_10_1002_pat_5964 crossref_primary_10_1016_j_seppur_2017_04_038 crossref_primary_10_1039_C6NR01356B crossref_primary_10_1016_j_inoche_2022_109987 crossref_primary_10_5004_dwt_2018_21881 crossref_primary_10_1016_j_mfglet_2023_08_008 crossref_primary_10_1080_08927014_2017_1331436 crossref_primary_10_1155_2017_3587019 crossref_primary_10_1080_2374068X_2024_2379677 crossref_primary_10_1002_app_50508 crossref_primary_10_1039_C8RA10540E crossref_primary_10_1016_j_cej_2018_03_154 crossref_primary_10_1080_07366299_2013_839192 crossref_primary_10_1016_j_matlet_2020_127409 crossref_primary_10_1016_j_jwpe_2018_10_004 crossref_primary_10_3390_membranes12020148 crossref_primary_10_1016_j_apsusc_2018_06_066 crossref_primary_10_1016_j_desal_2015_06_001 crossref_primary_10_3390_ma10060667 crossref_primary_10_1016_j_jiec_2019_07_052 crossref_primary_10_1016_j_scitotenv_2017_12_022 crossref_primary_10_1007_s12221_018_8107_1 crossref_primary_10_1039_C8TA11460A crossref_primary_10_1016_j_desal_2021_115402 crossref_primary_10_1021_acsami_5b01603 crossref_primary_10_1039_C9EN01367A crossref_primary_10_1016_j_memsci_2016_08_069 crossref_primary_10_3390_ijms222212155 crossref_primary_10_1039_C7TA00009J crossref_primary_10_1039_C7TA08627J crossref_primary_10_1016_j_desal_2022_116216 crossref_primary_10_1021_acs_est_5b04584 crossref_primary_10_1080_15422119_2017_1386681 crossref_primary_10_1039_D4LF00088A crossref_primary_10_1016_j_watres_2022_118375 crossref_primary_10_1021_acsami_9b22147 crossref_primary_10_1016_j_memsci_2017_12_071 crossref_primary_10_1016_j_desal_2019_114171 crossref_primary_10_1016_j_memsci_2014_08_021 crossref_primary_10_1016_j_surfin_2019_04_003 crossref_primary_10_1016_j_eti_2023_103108 crossref_primary_10_1016_j_molstruc_2020_128142 crossref_primary_10_1021_acsami_0c04349 crossref_primary_10_1002_app_47368 crossref_primary_10_1016_j_desal_2022_116107 crossref_primary_10_1038_s41545_022_00190_1 crossref_primary_10_1007_s12598_024_03122_9 crossref_primary_10_1021_acssuschemeng_5b00931 crossref_primary_10_1016_j_cej_2020_124252 crossref_primary_10_1016_j_seppur_2023_125945 crossref_primary_10_1016_j_watres_2020_115749 |
Cites_doi | 10.1128/AEM.69.7.4278-4281.2003 10.1155/2009/217469 10.1021/am200522v 10.1088/0957-4484/16/10/059 10.1016/j.watres.2008.11.014 10.1016/j.jcis.2004.02.012 10.1016/j.memsci.2011.11.041 10.1002/pat.630 10.1016/j.desal.2010.12.051 10.1039/b810576f 10.1021/la027083c 10.1016/j.ica.2011.10.032 10.1016/j.desal.2011.04.004 10.1080/17435390902725914 10.1016/j.surfcoat.2006.09.319 10.1042/bj2330025 10.1016/j.memsci.2008.07.037 10.1016/S0011-9164(98)00091-5 10.1002/sia.740010103 10.1016/j.actbio.2007.11.006 10.1016/j.desal.2007.06.003 10.1021/nn2038725 10.1016/S0008-6223(98)00101-8 10.1186/1754-1611-3-9 10.1016/S0079-6468(08)70024-9 10.1016/0376-7388(95)00271-5 10.1021/ie2029392 10.1016/j.colsurfb.2010.07.057 10.1016/j.watres.2008.02.021 10.1016/j.memsci.2010.07.041 10.1016/j.micromeso.2008.01.032 10.1016/j.memsci.2012.08.020 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 10.1016/j.watres.2011.12.024 10.1002/pat.918 10.1016/0376-7388(93)80014-O 10.1016/j.polymer.2004.11.046 10.1021/pr0504079 10.1016/S0305-4179(99)00116-3 10.1016/j.desal.2010.12.048 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7QH 7UA C1K F1W H97 L.G 7SR 7SU 7U5 8FD FR3 JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.memsci.2013.03.060 |
DatabaseName | AGRIS CrossRef Pascal-Francis Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Engineered Materials Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-3123 |
EndPage | 82 |
ExternalDocumentID | 27449484 10_1016_j_memsci_2013_03_060 US201600084958 S0376738813002639 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ABXRA ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHPOS AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSH SSM SSZ T5K XPP Y6R ZMT ~G- 29L AACTN AAIAV AAQXK ABPIF ABPTK ABYKQ ACNNM ADMUD AFKWA AI. AJBFU AJOXV AMFUW ASPBG AVWKF AZFZN BBWZM EJD FBQ FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW VH1 WUQ AAYXX ACRPL ADNMO AFJKZ AGQPQ AIGII APXCP BNPGV CITATION IQODW 7QH 7UA C1K F1W H97 L.G 7SR 7SU 7U5 8FD FR3 JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c562t-82dc8c64e5514dba2bb11c549e4e6166e7cb02a82a36cc4b6911c988abb439b33 |
IEDL.DBID | .~1 |
ISSN | 0376-7388 |
IngestDate | Fri Jul 11 06:44:13 EDT 2025 Fri Jul 11 03:47:46 EDT 2025 Fri Jul 11 07:30:39 EDT 2025 Mon Jul 21 09:13:27 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Tue Jul 01 03:37:52 EDT 2025 Wed Dec 27 19:15:06 EST 2023 Thu Jul 17 02:00:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thiol group Polyamide Covalent bonding Anti-biofouling Thin-film composite Silver nanoparticles Thiol Nylon Nanoparticle Transition metal Antimicrobial agent Composite material Thin film Silver Biofouling Membrane |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-82dc8c64e5514dba2bb11c549e4e6166e7cb02a82a36cc4b6911c988abb439b33 |
Notes | http://dx.doi.org/10.1016/j.memsci.2013.03.060 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1513464685 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1803130508 proquest_miscellaneous_1753553005 proquest_miscellaneous_1513464685 pascalfrancis_primary_27449484 crossref_citationtrail_10_1016_j_memsci_2013_03_060 crossref_primary_10_1016_j_memsci_2013_03_060 fao_agris_US201600084958 elsevier_sciencedirect_doi_10_1016_j_memsci_2013_03_060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130801 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 20130801 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of membrane science |
PublicationYear | 2013 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Chou, Yu, Yang (bib9) 2005; 16 El Harrak, Carrot, Oberdisse, Jestin, Boué (bib29) 2005; 46 Feng, Wu, Chen, Cui, Kim, Kim (bib36) 2000; 52 Russell, Hugo (bib38) 1994; 31 Yin, Kim, Yang, Deng (bib17) 2012; 423–424 Cao, Tang, Liu, Nie, Zhao (bib12) 2010; 81 Carter, Yantasee, Sangvanich, Fryxell, Johnson, Addleman (bib28) 2008; 43 Yang, Chen, Wall, Hu (bib16) 2012; 46 Kim, Kuk, Yu, Kim, Park, Lee, Kim, Park, Park, Hwang, Kim, Lee, Jeong, Cho (bib18) 2007; 3 Zhu, Bai, Wee, Liu, Tang (bib1) 2010; 363 Gunawan, Guan, Song, Zhang, Leong, Tang, Chen, Chan-Park, Chang, Wang, Xu (bib5) 2011; 5 Wijnhoven, Peijnenburg, Herberts, Hagens, Oomen, Heugens, Roszek, Bisschops, Gosens, Van De Meent, Dekkers, De Jong, Van Zijverden, Sips, Geertsma (bib14) 2009; 3 Zodrow, Brunet, Mahendra, Li, Zhang, Li, Alvarez (bib8) 2009; 43 Hoek, Bhattacharjee, Elimelech (bib19) 2003; 19 Ruparelia, Chatterjee, Duttagupta, Mukherji (bib34) 2008; 4 Klasen (bib7) 2000; 26 Lee, Kim, Patel, Im, Kim, Min (bib3) 2007; 18 Liao, Yu, Zhao, Wang, Luo (bib42) 2011; 272 Tarboush, Rana, Matsuura, Arafat, Narbaitz (bib23) 2008; 325 Prabhawathi, Sivakumar, Doble (bib31) 2012; 51 Liu, Wang, Yang, Yang (bib6) 2008; 114 Yeh, Huang, Lin, Wu, Huang, Liou (bib26) 2009; 2009 Gajjar, Pettee, Britt, Huang, Johnson, Anderson (bib15) 2009; 3 Petersen (bib20) 1993; 83 Morones, Elechiguerra, Camacho, Holt, Kouri, Ramírez, Yacaman (bib41) 2005; 16 Shawky, Chae, Lin, Wiesner (bib24) 2011; 272 Parada, de Almeida, Volpe, Muntele, Ila (bib25) 2007; 201 Khaydarov, Khaydarov, Estrin, Evgrafova, Scheper, Endres, Cho (bib33) 2009 Kulkarni, Mukherjee, Gill (bib32) 1996; 114 Choi, Deng, Kim, Ross, Surampalli, Hu (bib39) 2008; 42 Wang, Wan, Dong, Cheng, Tao, Wen (bib10) 1998; 36 Mauter, Wang, Okemgbo, Osuji, Giannelis, Elimelech (bib13) 2011; 3 Matsumura, Yoshikata, Kunisaki, Tsuchido (bib37) 2003; 69 Kim, Hwang, Gamal El-Din, Liu (bib11) 2012; 394–395 Sondi, Salopek-Sondi (bib35) 2004; 275 Lee, Im, Kim, Kim, Kim, Min (bib22) 2008; 219 Barrientos, Allende, Orellana, Jara (bib30) 2012; 380 Baker, Dudley (bib2) 1998; 118 Seah, Dench (bib21) 1979; 1 Lau, Ismail, Misdan, Kassim (bib4) 2012; 287 Wharton (bib27) 1986; 233 Lok, Ho, Chen, He, Yu, Sun, Tam, Chiu, Che (bib40) 2006; 5 Mauter (10.1016/j.memsci.2013.03.060_bib13) 2011; 3 Lok (10.1016/j.memsci.2013.03.060_bib40) 2006; 5 Matsumura (10.1016/j.memsci.2013.03.060_bib37) 2003; 69 Liao (10.1016/j.memsci.2013.03.060_bib42) 2011; 272 Yeh (10.1016/j.memsci.2013.03.060_bib26) 2009; 2009 Kulkarni (10.1016/j.memsci.2013.03.060_bib32) 1996; 114 Chou (10.1016/j.memsci.2013.03.060_bib9) 2005; 16 Feng (10.1016/j.memsci.2013.03.060_bib36) 2000; 52 Prabhawathi (10.1016/j.memsci.2013.03.060_bib31) 2012; 51 Yin (10.1016/j.memsci.2013.03.060_bib17) 2012; 423–424 Morones (10.1016/j.memsci.2013.03.060_bib41) 2005; 16 Wharton (10.1016/j.memsci.2013.03.060_bib27) 1986; 233 Shawky (10.1016/j.memsci.2013.03.060_bib24) 2011; 272 Lau (10.1016/j.memsci.2013.03.060_bib4) 2012; 287 Wang (10.1016/j.memsci.2013.03.060_bib10) 1998; 36 Yang (10.1016/j.memsci.2013.03.060_bib16) 2012; 46 Russell (10.1016/j.memsci.2013.03.060_bib38) 1994; 31 Kim (10.1016/j.memsci.2013.03.060_bib18) 2007; 3 Khaydarov (10.1016/j.memsci.2013.03.060_bib33) 2009 Cao (10.1016/j.memsci.2013.03.060_bib12) 2010; 81 Petersen (10.1016/j.memsci.2013.03.060_bib20) 1993; 83 Klasen (10.1016/j.memsci.2013.03.060_bib7) 2000; 26 Wijnhoven (10.1016/j.memsci.2013.03.060_bib14) 2009; 3 Choi (10.1016/j.memsci.2013.03.060_bib39) 2008; 42 Kim (10.1016/j.memsci.2013.03.060_bib11) 2012; 394–395 Gajjar (10.1016/j.memsci.2013.03.060_bib15) 2009; 3 Ruparelia (10.1016/j.memsci.2013.03.060_bib34) 2008; 4 Gunawan (10.1016/j.memsci.2013.03.060_bib5) 2011; 5 Hoek (10.1016/j.memsci.2013.03.060_bib19) 2003; 19 Lee (10.1016/j.memsci.2013.03.060_bib22) 2008; 219 Carter (10.1016/j.memsci.2013.03.060_bib28) 2008; 43 Tarboush (10.1016/j.memsci.2013.03.060_bib23) 2008; 325 Zodrow (10.1016/j.memsci.2013.03.060_bib8) 2009; 43 El Harrak (10.1016/j.memsci.2013.03.060_bib29) 2005; 46 Baker (10.1016/j.memsci.2013.03.060_bib2) 1998; 118 Sondi (10.1016/j.memsci.2013.03.060_bib35) 2004; 275 Zhu (10.1016/j.memsci.2013.03.060_bib1) 2010; 363 Seah (10.1016/j.memsci.2013.03.060_bib21) 1979; 1 Barrientos (10.1016/j.memsci.2013.03.060_bib30) 2012; 380 Liu (10.1016/j.memsci.2013.03.060_bib6) 2008; 114 Lee (10.1016/j.memsci.2013.03.060_bib3) 2007; 18 Parada (10.1016/j.memsci.2013.03.060_bib25) 2007; 201 |
References_xml | – volume: 36 start-page: 1567 year: 1998 end-page: 1571 ident: bib10 article-title: Preparation and characterization of antibacterial viscose-based activated carbon fiber supporting silver publication-title: Carbon – volume: 325 start-page: 166 year: 2008 end-page: 175 ident: bib23 article-title: Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules publication-title: J. Membr. Sci. – volume: 4 start-page: 707 year: 2008 end-page: 716 ident: bib34 article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles publication-title: Acta Biomater. – volume: 5 start-page: 916 year: 2006 end-page: 924 ident: bib40 article-title: Proteomic analysis of the mode of antibacterial action of silver nanoparticles publication-title: J. Proteome Res. – volume: 3 start-page: 95 year: 2007 end-page: 101 ident: bib18 article-title: Antimicrobial effects of silver nanoparticles, Nanomedicine: Nanotechnology publication-title: Biol. Med. – volume: 43 start-page: 5583 year: 2008 end-page: 5585 ident: bib28 article-title: New functional materials for heavy metal sorption: “ Supramolecular” attachment of thiols to mesoporous silica substrates publication-title: Chem. Commun. – volume: 46 start-page: 1095 year: 2005 end-page: 1104 ident: bib29 article-title: Atom transfer radical polymerization from silica nanoparticles using the ‘grafting from’ method and structural study via small-angle neutron scattering publication-title: Polymer – volume: 18 start-page: 562 year: 2007 end-page: 568 ident: bib3 article-title: Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties publication-title: Polym. Adv. Technol. – volume: 233 start-page: 25 year: 1986 end-page: 36 ident: bib27 article-title: Review article: infra-red and Raman spectroscopic studies of enzyme structure and function publication-title: Biochem. J. – volume: 26 start-page: 131 year: 2000 end-page: 138 ident: bib7 article-title: A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver publication-title: Burns – volume: 272 start-page: 59 year: 2011 end-page: 65 ident: bib42 article-title: Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials publication-title: Desalination – volume: 275 start-page: 177 year: 2004 end-page: 182 ident: bib35 article-title: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria publication-title: J. Colloid Interface Sci. – volume: 118 start-page: 81 year: 1998 end-page: 89 ident: bib2 article-title: Biofouling in membrane systems—a review publication-title: Desalination – volume: 2009 start-page: 1 year: 2009 end-page: 7 ident: bib26 article-title: Noncovalent interaction between gold nanoparticles and multiwalled carbon nanotubes via an intermediatory publication-title: J. Nanotechnol. – volume: 423–424 start-page: 238 year: 2012 end-page: 246 ident: bib17 article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification publication-title: J. Membr. Sci. – volume: 201 start-page: 8052 year: 2007 end-page: 8054 ident: bib25 article-title: Damage effects of 1 publication-title: Surf. Coat. Technol. – year: 2009 ident: bib33 article-title: Silver Nanoparticles Nanomaterials: Risks and Benefits – volume: 363 start-page: 278 year: 2010 end-page: 286 ident: bib1 article-title: Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances publication-title: J. Membr. Sci. – volume: 380 start-page: 372 year: 2012 end-page: 377 ident: bib30 article-title: Ordered arrangements of metal nanoparticles on alpha-cyclodextrin inclusion complexes by magnetron sputtering publication-title: Inorg. Chim. Acta – volume: 46 start-page: 1176 year: 2012 end-page: 1184 ident: bib16 article-title: Potential nanosilver impact on anaerobic digestion at moderate silver concentrations publication-title: Water Res. – volume: 16 start-page: 2346 year: 2005 end-page: 2353 ident: bib41 article-title: The bactericidal effect of silver nanoparticles publication-title: Nanotechnology – volume: 394–395 start-page: 37 year: 2012 end-page: 48 ident: bib11 article-title: Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment publication-title: J. Membr. Sci. – volume: 81 start-page: 555 year: 2010 end-page: 562 ident: bib12 article-title: Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials publication-title: Colloids Surf. B: Biointerfaces – volume: 3 start-page: 109 year: 2009 end-page: 138 ident: bib14 article-title: Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment publication-title: Nanotoxicology – volume: 272 start-page: 46 year: 2011 end-page: 50 ident: bib24 article-title: Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment publication-title: Desalination – volume: 1 start-page: 2 year: 1979 end-page: 11 ident: bib21 article-title: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids publication-title: Surf. Interface Anal. – volume: 51 start-page: 5230 year: 2012 end-page: 5239 ident: bib31 article-title: Green synthesis of protein stabilized silver nanoparticles using Pseudomonas fluorescens, a marine bacterium, and its biomedical applications when coated on polycaprolactam publication-title: Ind. Eng. Chem. Res. – volume: 31 start-page: 351 year: 1994 end-page: 370 ident: bib38 article-title: Antimicrobial activity and action of silver publication-title: Prog. Med. Chem. – volume: 69 start-page: 4278 year: 2003 end-page: 4281 ident: bib37 article-title: Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate publication-title: Appl. Environ. Microbiol. – volume: 19 start-page: 4836 year: 2003 end-page: 4847 ident: bib19 article-title: Effect of membrane surface roughness on colloid-membrane DLVO interactions publication-title: Langmuir – volume: 5 start-page: 10033 year: 2011 end-page: 10040 ident: bib5 article-title: Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control publication-title: ACS Nano – volume: 287 start-page: 190 year: 2012 end-page: 199 ident: bib4 article-title: A recent progress in thin film composite membrane: a review publication-title: Desalination – volume: 3 start-page: 2861 year: 2011 end-page: 2868 ident: bib13 article-title: Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 715 year: 2009 end-page: 723 ident: bib8 article-title: Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal publication-title: Water Res. – volume: 42 start-page: 3066 year: 2008 end-page: 3074 ident: bib39 article-title: The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth publication-title: Water Res. – volume: 114 start-page: 431 year: 2008 end-page: 439 ident: bib6 article-title: Excellent antimicrobial properties of mesoporous anatase TiO publication-title: Microporous Mesoporous Mater. – volume: 3 start-page: 9 year: 2009 end-page: 21 ident: bib15 article-title: Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440 publication-title: J. Biol. Eng. – volume: 16 start-page: 600 year: 2005 end-page: 607 ident: bib9 article-title: The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment publication-title: Polym. Ad. Technol. – volume: 83 start-page: 81 year: 1993 end-page: 150 ident: bib20 article-title: Composite reverse osmosis and nanofiltration membranes publication-title: J. Membr. Sci. – volume: 52 start-page: 662 year: 2000 end-page: 668 ident: bib36 article-title: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus publication-title: J. Biomed. Mater. Res. – volume: 114 start-page: 39 year: 1996 end-page: 50 ident: bib32 article-title: Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes publication-title: J. Membr. Sci. – volume: 219 start-page: 48 year: 2008 end-page: 56 ident: bib22 article-title: Polyamide thin-film nanofiltration membranes containing TiO publication-title: Desalination – volume: 69 start-page: 4278 year: 2003 ident: 10.1016/j.memsci.2013.03.060_bib37 article-title: Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.7.4278-4281.2003 – volume: 2009 start-page: 1 year: 2009 ident: 10.1016/j.memsci.2013.03.060_bib26 article-title: Noncovalent interaction between gold nanoparticles and multiwalled carbon nanotubes via an intermediatory publication-title: J. Nanotechnol. doi: 10.1155/2009/217469 – volume: 3 start-page: 2861 year: 2011 ident: 10.1016/j.memsci.2013.03.060_bib13 article-title: Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am200522v – volume: 16 start-page: 2346 year: 2005 ident: 10.1016/j.memsci.2013.03.060_bib41 article-title: The bactericidal effect of silver nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/16/10/059 – volume: 43 start-page: 715 year: 2009 ident: 10.1016/j.memsci.2013.03.060_bib8 article-title: Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal publication-title: Water Res. doi: 10.1016/j.watres.2008.11.014 – volume: 275 start-page: 177 year: 2004 ident: 10.1016/j.memsci.2013.03.060_bib35 article-title: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.02.012 – volume: 394–395 start-page: 37 year: 2012 ident: 10.1016/j.memsci.2013.03.060_bib11 article-title: Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.041 – volume: 3 start-page: 95 year: 2007 ident: 10.1016/j.memsci.2013.03.060_bib18 article-title: Antimicrobial effects of silver nanoparticles, Nanomedicine: Nanotechnology publication-title: Biol. Med. – volume: 16 start-page: 600 year: 2005 ident: 10.1016/j.memsci.2013.03.060_bib9 article-title: The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment publication-title: Polym. Ad. Technol. doi: 10.1002/pat.630 – volume: 272 start-page: 46 year: 2011 ident: 10.1016/j.memsci.2013.03.060_bib24 article-title: Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment publication-title: Desalination doi: 10.1016/j.desal.2010.12.051 – volume: 43 start-page: 5583 year: 2008 ident: 10.1016/j.memsci.2013.03.060_bib28 article-title: New functional materials for heavy metal sorption: “ Supramolecular” attachment of thiols to mesoporous silica substrates publication-title: Chem. Commun. doi: 10.1039/b810576f – year: 2009 ident: 10.1016/j.memsci.2013.03.060_bib33 article-title: Silver Nanoparticles Nanomaterials: Risks and Benefits – volume: 19 start-page: 4836 year: 2003 ident: 10.1016/j.memsci.2013.03.060_bib19 article-title: Effect of membrane surface roughness on colloid-membrane DLVO interactions publication-title: Langmuir doi: 10.1021/la027083c – volume: 380 start-page: 372 year: 2012 ident: 10.1016/j.memsci.2013.03.060_bib30 article-title: Ordered arrangements of metal nanoparticles on alpha-cyclodextrin inclusion complexes by magnetron sputtering publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2011.10.032 – volume: 287 start-page: 190 year: 2012 ident: 10.1016/j.memsci.2013.03.060_bib4 article-title: A recent progress in thin film composite membrane: a review publication-title: Desalination doi: 10.1016/j.desal.2011.04.004 – volume: 3 start-page: 109 year: 2009 ident: 10.1016/j.memsci.2013.03.060_bib14 article-title: Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment publication-title: Nanotoxicology doi: 10.1080/17435390902725914 – volume: 201 start-page: 8052 year: 2007 ident: 10.1016/j.memsci.2013.03.060_bib25 article-title: Damage effects of 1MeV proton bombardment in PVDC polymeric film publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2006.09.319 – volume: 233 start-page: 25 year: 1986 ident: 10.1016/j.memsci.2013.03.060_bib27 article-title: Review article: infra-red and Raman spectroscopic studies of enzyme structure and function publication-title: Biochem. J. doi: 10.1042/bj2330025 – volume: 325 start-page: 166 year: 2008 ident: 10.1016/j.memsci.2013.03.060_bib23 article-title: Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.07.037 – volume: 118 start-page: 81 year: 1998 ident: 10.1016/j.memsci.2013.03.060_bib2 article-title: Biofouling in membrane systems—a review publication-title: Desalination doi: 10.1016/S0011-9164(98)00091-5 – volume: 1 start-page: 2 year: 1979 ident: 10.1016/j.memsci.2013.03.060_bib21 article-title: Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids publication-title: Surf. Interface Anal. doi: 10.1002/sia.740010103 – volume: 4 start-page: 707 year: 2008 ident: 10.1016/j.memsci.2013.03.060_bib34 article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles publication-title: Acta Biomater. doi: 10.1016/j.actbio.2007.11.006 – volume: 219 start-page: 48 year: 2008 ident: 10.1016/j.memsci.2013.03.060_bib22 article-title: Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles publication-title: Desalination doi: 10.1016/j.desal.2007.06.003 – volume: 5 start-page: 10033 year: 2011 ident: 10.1016/j.memsci.2013.03.060_bib5 article-title: Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control publication-title: ACS Nano doi: 10.1021/nn2038725 – volume: 36 start-page: 1567 year: 1998 ident: 10.1016/j.memsci.2013.03.060_bib10 article-title: Preparation and characterization of antibacterial viscose-based activated carbon fiber supporting silver publication-title: Carbon doi: 10.1016/S0008-6223(98)00101-8 – volume: 3 start-page: 9 year: 2009 ident: 10.1016/j.memsci.2013.03.060_bib15 article-title: Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440 publication-title: J. Biol. Eng. doi: 10.1186/1754-1611-3-9 – volume: 31 start-page: 351 year: 1994 ident: 10.1016/j.memsci.2013.03.060_bib38 article-title: Antimicrobial activity and action of silver publication-title: Prog. Med. Chem. doi: 10.1016/S0079-6468(08)70024-9 – volume: 114 start-page: 39 year: 1996 ident: 10.1016/j.memsci.2013.03.060_bib32 article-title: Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(95)00271-5 – volume: 51 start-page: 5230 year: 2012 ident: 10.1016/j.memsci.2013.03.060_bib31 article-title: Green synthesis of protein stabilized silver nanoparticles using Pseudomonas fluorescens, a marine bacterium, and its biomedical applications when coated on polycaprolactam publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2029392 – volume: 81 start-page: 555 year: 2010 ident: 10.1016/j.memsci.2013.03.060_bib12 article-title: Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2010.07.057 – volume: 42 start-page: 3066 year: 2008 ident: 10.1016/j.memsci.2013.03.060_bib39 article-title: The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth publication-title: Water Res. doi: 10.1016/j.watres.2008.02.021 – volume: 363 start-page: 278 year: 2010 ident: 10.1016/j.memsci.2013.03.060_bib1 article-title: Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.07.041 – volume: 114 start-page: 431 year: 2008 ident: 10.1016/j.memsci.2013.03.060_bib6 article-title: Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2008.01.032 – volume: 423–424 start-page: 238 year: 2012 ident: 10.1016/j.memsci.2013.03.060_bib17 article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.08.020 – volume: 52 start-page: 662 year: 2000 ident: 10.1016/j.memsci.2013.03.060_bib36 article-title: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3 – volume: 46 start-page: 1176 year: 2012 ident: 10.1016/j.memsci.2013.03.060_bib16 article-title: Potential nanosilver impact on anaerobic digestion at moderate silver concentrations publication-title: Water Res. doi: 10.1016/j.watres.2011.12.024 – volume: 18 start-page: 562 year: 2007 ident: 10.1016/j.memsci.2013.03.060_bib3 article-title: Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties publication-title: Polym. Adv. Technol. doi: 10.1002/pat.918 – volume: 83 start-page: 81 year: 1993 ident: 10.1016/j.memsci.2013.03.060_bib20 article-title: Composite reverse osmosis and nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(93)80014-O – volume: 46 start-page: 1095 year: 2005 ident: 10.1016/j.memsci.2013.03.060_bib29 article-title: Atom transfer radical polymerization from silica nanoparticles using the ‘grafting from’ method and structural study via small-angle neutron scattering publication-title: Polymer doi: 10.1016/j.polymer.2004.11.046 – volume: 5 start-page: 916 year: 2006 ident: 10.1016/j.memsci.2013.03.060_bib40 article-title: Proteomic analysis of the mode of antibacterial action of silver nanoparticles publication-title: J. Proteome Res. doi: 10.1021/pr0504079 – volume: 26 start-page: 131 year: 2000 ident: 10.1016/j.memsci.2013.03.060_bib7 article-title: A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver publication-title: Burns doi: 10.1016/S0305-4179(99)00116-3 – volume: 272 start-page: 59 year: 2011 ident: 10.1016/j.memsci.2013.03.060_bib42 article-title: Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials publication-title: Desalination doi: 10.1016/j.desal.2010.12.048 |
SSID | ssj0017089 |
Score | 2.5642502 |
Snippet | Membrane biofouling has a negative impact on the membrane treatment performance. Silver nanoparticles (AgNPs) are well-known antimicrobial agent. Herein, AgNPs... |
SourceID | proquest pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 73 |
SubjectTerms | Anti-biofouling anti-infective agents Antiinfectives and antibacterials Applied sciences artificial membranes Biofouling Bonding chemical bonding Composites Covalent bonding cysteamine energy energy-dispersive X-ray analysis Escherichia coli Exact sciences and technology Forms of application and semi-finished materials Grafting leaching Membranes nanosilver permeability Polyamide polyamides Polymer industry, paints, wood Rejection Scanning electron microscopy Silver Silver nanoparticles sodium chloride spectroscopy Technology of polymers Thin films Thin-film composite Thiol group transmission electron microscopy X-radiation |
Title | Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling |
URI | https://dx.doi.org/10.1016/j.memsci.2013.03.060 https://www.proquest.com/docview/1513464685 https://www.proquest.com/docview/1753553005 https://www.proquest.com/docview/1803130508 |
Volume | 441 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBddd9kOY580-wga7NAetMiWLCvHEBayjYVBG-hNSLKcejR2adzr_oD91XtPtsPKRgsDn8yTkKWn92H99HuEfBAQY0_BzTGecc-kLAOzvpDMZmmuZAhalnii-22llmv55Tw7PyDz4S4Mwip729_Z9Git-zeTfjYnV1U1OeVIRCK0xgOZFBwt3mCXOWr5x597mEeS81gGD4UZSg_X5yLGaxu20DUCvESkOo1Elf90Tw9K2yBu0u5g6squ5sVf5jv6pMVT8qQPJumsG-8zchDq5-TxHxSDL8ivWdtaf4H_AGlT0l2FSGha2xqS5R4TR49nm9X33QlFKgPaXlQ1K6vLLUW0OUK6Aj0-W8xPKHwGpNZgGmlf3AckQE-xZ9fEyzEU2l8jF2zYC1NXNSVWXa83L8l68elsvmR9_QXmISpqmU4Lrz2sGEZVhbOpc0niIaEMMqhEqZB7x1OrUyuU99IpMJx-qrV1DsIcJ8Qrclg3dTgiVHIPeXiRCYuMf8K7pITIjxdKq6zwGR8RMUy78T05OdbIuDQDCu2H6RbL4GIZDo-CVmzf6qoj57hHPh9W1NxSMgP-456WR6AAxm7A8pr1aYq8fFiKYJrpERnf0or9SJB7cSq1HJH3g5oY2Lt4IAPT39zsDERbQiqpdHaHDOSTWNqJ3yWjkYETdpt-_d9f-IY8SmOlD8Q2viWH7fVNeAfxVuvGcUONycPZ56_L1W9JSylm |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELagHHb3sNqn6D5Yr7QHOFh1Y8d1j1W1VVmgWolW4mbZjlOCaIJo-BP8ambyqEAgkJByimaixB7PI_78DSF_BOTYQwhzjMfcMynTwKxPJLNxNFAyBC1T3NE9manpQv47i8-2yLg9C4Owysb31z698tbNnV4zmr2rLOudciQiEVrjhkwEgXab7CA7VdwhO6PDo-lss5kw4FUnPJRnqNCeoKtgXquwgqcjxktUbKcVV-WTEWo7tQVCJ-0aRi-t21488uBVWJp8IO-bfJKO6lf-SLZC_om8u8cy-JncjsrS-nP8DUiLlK4zBEPT3OZQLzewOLo_Ws7-rw8oshnQ8jzLWZpdrigCzhHVFej-fDI-oPAZUF2Dd6RNfx-QAFPFJ7uiOh9DQf8a6WDDRpi6rEix8Xq-_EIWk7_z8ZQ1LRiYh8SoZDpKvPYwaZhYJc5GzvX7HmrKIIPqKxUG3vHI6sgK5b10CnynH2ptnYNMxwnxlXTyIg-7hEruoRRPYmGR9E94108h-eOJ0ipOfMy7RLTDbnzDT45tMi5NC0S7MPVkGZwsw-FSoMU2Wlc1P8cL8oN2Rs0DOzMQQl7Q3AUDMHYJztcsTiOk5sNuBMNYd8neA6vYvAnSLw6lll3yuzUTA8sX92Rg-IubtYGES0gllY6fkYGSErs78edkNJJwwoLT3179hb_Im-n85NgcH86OvpO3UdX4A6GOP0invL4JPyH9Kt1es7zuAGJpLBc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attachment+of+silver+nanoparticles+%28AgNPs%29+onto+thin-film+composite+%28TFC%29+membranes+through+covalent+bonding+to+reduce+membrane+biofouling&rft.jtitle=Journal+of+membrane+science&rft.au=Yin%2C+Jun&rft.au=Yang%2C+Yu&rft.au=Hu%2C+Zhiqiang&rft.au=Deng%2C+Baolin&rft.date=2013-08-01&rft.issn=0376-7388&rft.volume=441&rft.spage=73&rft.epage=82&rft_id=info:doi/10.1016%2Fj.memsci.2013.03.060&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |