Transmission of IMI-2 carbapenemase-producing Enterobacteriaceae from river water to human
•Carbapenemase-producing enterobacteria transmitted from river to human.•The river carbapenem-resistant community partially replaced the human microbiota.•Surveillance of carbapenem resistance should include environmental reservoirs. Carbapenemase-producing Enterobacteriaceae (CPE) are increasing wo...
Saved in:
Published in | Journal of Global Antimicrobial Resistance Vol. 15; pp. 88 - 92 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.12.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Carbapenemase-producing enterobacteria transmitted from river to human.•The river carbapenem-resistant community partially replaced the human microbiota.•Surveillance of carbapenem resistance should include environmental reservoirs.
Carbapenemase-producing Enterobacteriaceae (CPE) are increasing worldwide in human infections. The role of rivers as reservoirs is highlighted, but transmission from the environment to humans is not documented. A human case of bacteraemia caused by IMI-2 carbapenemase-producing Enterobacter asburiae following massive river water exposure underwent microbiological investigations with the aim of deciphering the origin and mechanism of infection.
Clinical and environmental bacterial strains were compared by resistotyping and genomotyping using pulsed-field gel electrophoresis (PFGE). PFGE was also used to determine the location of the blaIMI-2 carbapenemase gene. The patient’s microbiota and river bacterial communities were compared by fingerprinting using 16S rRNA gene PCR–temporal temperature gel electrophoresis.
Enterobacter asburiae causing bacteraemia carried the same plasmidic blaIMI-2 gene as E. asburiae strains detected in river water 1 month later. Clinical and river strains displayed identical PFGE profiles. Community fingerprinting showed the persistence in the patient’s microbiota of carbapenem-resistant bacteria, which were also autochthonous in the river community (E. asburiae, Aeromonas veronii and Pseudomonas fluorescens).
Here we have identified for the first time the presence of an IMI-2-producing E. asburiae in a river in the South of France and suggest transmission from the river to a human probably following intestinal translocation. General insights into transmission of CPE from the environment to humans are gained from this case. Considering the rapid spread of CPE in humans, the risk of transfer from an environmental reservoir to human microbiota should be thoroughly investigated at least by implementing environmental surveillance of carbapenem resistance. |
---|---|
AbstractList | Carbapenemase-producing Enterobacteriaceae (CPE) are increasing worldwide in human infections. The role of rivers as reservoirs is highlighted, but transmission from the environment to humans is not documented. A human case of bacteraemia caused by IMI-2 carbapenemase-producing Enterobacter asburiae following massive river water exposure underwent microbiological investigations with the aim of deciphering the origin and mechanism of infection.OBJECTIVESCarbapenemase-producing Enterobacteriaceae (CPE) are increasing worldwide in human infections. The role of rivers as reservoirs is highlighted, but transmission from the environment to humans is not documented. A human case of bacteraemia caused by IMI-2 carbapenemase-producing Enterobacter asburiae following massive river water exposure underwent microbiological investigations with the aim of deciphering the origin and mechanism of infection.Clinical and environmental bacterial strains were compared by resistotyping and genomotyping using pulsed-field gel electrophoresis (PFGE). PFGE was also used to determine the location of the blaIMI-2 carbapenemase gene. The patient's microbiota and river bacterial communities were compared by fingerprinting using 16S rRNA gene PCR-temporal temperature gel electrophoresis.METHODSClinical and environmental bacterial strains were compared by resistotyping and genomotyping using pulsed-field gel electrophoresis (PFGE). PFGE was also used to determine the location of the blaIMI-2 carbapenemase gene. The patient's microbiota and river bacterial communities were compared by fingerprinting using 16S rRNA gene PCR-temporal temperature gel electrophoresis.Enterobacter asburiae causing bacteraemia carried the same plasmidic blaIMI-2 gene as E. asburiae strains detected in river water 1 month later. Clinical and river strains displayed identical PFGE profiles. Community fingerprinting showed the persistence in the patient's microbiota of carbapenem-resistant bacteria, which were also autochthonous in the river community (E. asburiae, Aeromonas veronii and Pseudomonas fluorescens).RESULTSEnterobacter asburiae causing bacteraemia carried the same plasmidic blaIMI-2 gene as E. asburiae strains detected in river water 1 month later. Clinical and river strains displayed identical PFGE profiles. Community fingerprinting showed the persistence in the patient's microbiota of carbapenem-resistant bacteria, which were also autochthonous in the river community (E. asburiae, Aeromonas veronii and Pseudomonas fluorescens).Here we have identified for the first time the presence of an IMI-2-producing E. asburiae in a river in the South of France and suggest transmission from the river to a human probably following intestinal translocation. General insights into transmission of CPE from the environment to humans are gained from this case. Considering the rapid spread of CPE in humans, the risk of transfer from an environmental reservoir to human microbiota should be thoroughly investigated at least by implementing environmental surveillance of carbapenem resistance.CONCLUSIONHere we have identified for the first time the presence of an IMI-2-producing E. asburiae in a river in the South of France and suggest transmission from the river to a human probably following intestinal translocation. General insights into transmission of CPE from the environment to humans are gained from this case. Considering the rapid spread of CPE in humans, the risk of transfer from an environmental reservoir to human microbiota should be thoroughly investigated at least by implementing environmental surveillance of carbapenem resistance. Highlights•Carbapenemase-producing enterobacteria transmitted from river to human. •The river carbapenem-resistant community partially replaced the human microbiota. •Surveillance of carbapenem resistance should include environmental reservoirs. •Carbapenemase-producing enterobacteria transmitted from river to human.•The river carbapenem-resistant community partially replaced the human microbiota.•Surveillance of carbapenem resistance should include environmental reservoirs. Carbapenemase-producing Enterobacteriaceae (CPE) are increasing worldwide in human infections. The role of rivers as reservoirs is highlighted, but transmission from the environment to humans is not documented. A human case of bacteraemia caused by IMI-2 carbapenemase-producing Enterobacter asburiae following massive river water exposure underwent microbiological investigations with the aim of deciphering the origin and mechanism of infection. Clinical and environmental bacterial strains were compared by resistotyping and genomotyping using pulsed-field gel electrophoresis (PFGE). PFGE was also used to determine the location of the blaIMI-2 carbapenemase gene. The patient’s microbiota and river bacterial communities were compared by fingerprinting using 16S rRNA gene PCR–temporal temperature gel electrophoresis. Enterobacter asburiae causing bacteraemia carried the same plasmidic blaIMI-2 gene as E. asburiae strains detected in river water 1 month later. Clinical and river strains displayed identical PFGE profiles. Community fingerprinting showed the persistence in the patient’s microbiota of carbapenem-resistant bacteria, which were also autochthonous in the river community (E. asburiae, Aeromonas veronii and Pseudomonas fluorescens). Here we have identified for the first time the presence of an IMI-2-producing E. asburiae in a river in the South of France and suggest transmission from the river to a human probably following intestinal translocation. General insights into transmission of CPE from the environment to humans are gained from this case. Considering the rapid spread of CPE in humans, the risk of transfer from an environmental reservoir to human microbiota should be thoroughly investigated at least by implementing environmental surveillance of carbapenem resistance. Carbapenemase-producing Enterobacteriaceae (CPE) are increasing worldwide in human infections. The role of rivers as reservoirs is highlighted, but transmission from the environment to humans is not documented. A human case of bacteraemia caused by IMI-2 carbapenemase-producing Enterobacter asburiae following massive river water exposure underwent microbiological investigations with the aim of deciphering the origin and mechanism of infection. Clinical and environmental bacterial strains were compared by resistotyping and genomotyping using pulsed-field gel electrophoresis (PFGE). PFGE was also used to determine the location of the bla carbapenemase gene. The patient's microbiota and river bacterial communities were compared by fingerprinting using 16S rRNA gene PCR-temporal temperature gel electrophoresis. Enterobacter asburiae causing bacteraemia carried the same plasmidic bla gene as E. asburiae strains detected in river water 1 month later. Clinical and river strains displayed identical PFGE profiles. Community fingerprinting showed the persistence in the patient's microbiota of carbapenem-resistant bacteria, which were also autochthonous in the river community (E. asburiae, Aeromonas veronii and Pseudomonas fluorescens). Here we have identified for the first time the presence of an IMI-2-producing E. asburiae in a river in the South of France and suggest transmission from the river to a human probably following intestinal translocation. General insights into transmission of CPE from the environment to humans are gained from this case. Considering the rapid spread of CPE in humans, the risk of transfer from an environmental reservoir to human microbiota should be thoroughly investigated at least by implementing environmental surveillance of carbapenem resistance. OBJECTIVES: Carbapenemase-producing Enterobacteriaceae (CPE) are increasing worldwide in human infections. The role of rivers as reservoirs is highlighted, but transmission from the environment to humans is not documented. A human case of bacteraemia caused by IMI-2 carbapenemase-producing Enterobacter asburiae following massive river water exposure underwent microbiological investigations with the aim of deciphering the origin and mechanism of infection. METHODS: Clinical and environmental bacterial strains were compared by resistotyping and genomotyping using pulsed-field gel electrophoresis (PFGE). PFGE was also used to determine the location of the blaIMI-2 carbapenemase gene. The patient's microbiota and river bacterial communities were compared by fingerprinting using 16S rRNA gene PCR-temporal temperature gel electrophoresis. RESULTS: Enterobacter asburiae causing bacteraemia carried the same plasmidic blaIMI-2 gene as E. asburiae strains detected in river water 1 month later. Clinical and river strains displayed identical PFGE profiles. Community fingerprinting showed the persistence in the patient's microbiota of carbapenem-resistant bacteria, which were also autochthonous in the river community (E. asburiae, Aeromonas veronii and Pseudomonas fluorescens). CONCLUSION: Here we have identified for the first time the presence of an IMI-2-producing E. asburiae in a river in the South of France and suggest transmission from the river to a human probably following intestinal translocation. General insights into transmission of CPE from the environment to humans are gained from this case. Considering the rapid spread of CPE in humans, the risk of transfer from an environmental reservoir to human microbiota should be thoroughly investigated at least by implementing environmental surveillance of carbapenem resistance. |
Author | Hantova, Stefaniya Martinez, Orianne Godreuil, Sylvain Licznar-Fajardo, Patricia Jumas-Bilak, Estelle Laurens, Chrislène Jean-Pierre, Hélène |
Author_xml | – sequence: 1 givenname: Chrislène surname: Laurens fullname: Laurens, Chrislène organization: Laboratoire de bactériologie, CHU de Montpellier, Université de Montpellier, Montpellier, France – sequence: 2 givenname: Hélène surname: Jean-Pierre fullname: Jean-Pierre, Hélène organization: Laboratoire de bactériologie, CHU de Montpellier, Université de Montpellier, Montpellier, France – sequence: 3 givenname: Patricia surname: Licznar-Fajardo fullname: Licznar-Fajardo, Patricia organization: HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Département d’Hygiène Hospitalière, CHU de Montpellier, Montpellier, France – sequence: 4 givenname: Stefaniya surname: Hantova fullname: Hantova, Stefaniya organization: HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Département d’Hygiène Hospitalière, CHU de Montpellier, Montpellier, France – sequence: 5 givenname: Sylvain surname: Godreuil fullname: Godreuil, Sylvain organization: MIVEGEC, IRD, CNRS, Université de Montpellier, Laboratoire de bactériologie, CHU de Montpellier, Montpellier, France – sequence: 6 givenname: Orianne surname: Martinez fullname: Martinez, Orianne organization: Département Anesthésie Réanimation A, CHU de Montpellier, Université de Montpellier, Montpellier, France – sequence: 7 givenname: Estelle surname: Jumas-Bilak fullname: Jumas-Bilak, Estelle email: estelle.bilak@umontpellier.fr organization: HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Département d’Hygiène Hospitalière, CHU de Montpellier, Montpellier, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30279153$$D View this record in MEDLINE/PubMed https://hal.science/hal-02047993$$DView record in HAL |
BookMark | eNqFkk9v1DAQxS1UREvpF-CAcoRDgv_EToIQUlUVutIiDpQLF2viTFovib3YyaJ-exy27KES5WRr9HvPnnnznBw575CQl4wWjDL1dlNsbiAUnLK6oKqgnD8hJ5wzkVesEkeHu5LH5CxG21JJKyFUSZ-RY0F51TApTsj36wAujjYR3mW-z1afVznPDIQWtuhwhIj5NvhuNtbdZJduwuBbMOmwYBAw64Mfs2B3GLJfkMrZ5LPbeQT3gjztYYh4dn-ekm8fL68vrvL1l0-ri_N1bqTiUy472jZKIW3bsjQ9CpSyVh3WHXRVbQBrKIVSEqDqG2rKEkUrU7tcyoabrhWn5M3e9xYGvQ12hHCnPVh9db7WS41yWlZNI3Yssa_3bGrp54xx0ql1g8MADv0cNWdMMd5wphL66h6d2xG7g_Pf2SWA7wETfIwB-wPCqF4y0hu9ZKSXjDRV6R88ieoHImMnmNLwpwB2eFz6fi_FNMydxaCjsegMdjagmXTn7ePyDw_kZrDOGhh-4B3GjZ-DSzFppiPXVH9d9mdZH1YLysQfg3f_Nvjf678B47fUBA |
CitedBy_id | crossref_primary_10_1016_j_watres_2024_121952 crossref_primary_10_1016_j_jgar_2021_07_021 crossref_primary_10_3389_fmed_2020_616490 crossref_primary_10_3390_antibiotics11020196 crossref_primary_10_1002_etc_5498 crossref_primary_10_1128_spectrum_00751_24 crossref_primary_10_1016_j_jgar_2021_03_024 crossref_primary_10_1016_j_envpol_2025_126015 crossref_primary_10_1007_s11356_023_27018_w crossref_primary_10_1016_j_jhazmat_2024_133577 crossref_primary_10_1007_s12403_019_00313_z crossref_primary_10_1038_s41598_020_75247_7 crossref_primary_10_1371_journal_pone_0232289 crossref_primary_10_1016_j_chemosphere_2019_125032 crossref_primary_10_1016_j_scitotenv_2020_142265 crossref_primary_10_1016_j_envpol_2019_113067 crossref_primary_10_1128_spectrum_02381_23 crossref_primary_10_1016_j_envpol_2019_113143 crossref_primary_10_1016_j_scitotenv_2023_167100 crossref_primary_10_1016_j_jece_2025_116172 crossref_primary_10_1093_jac_dkae284 crossref_primary_10_3389_fmicb_2022_993454 crossref_primary_10_1016_j_jenvman_2022_115521 crossref_primary_10_1016_j_scitotenv_2024_178300 crossref_primary_10_1177_11786302221130613 crossref_primary_10_26693_jmbs06_03_232 crossref_primary_10_1016_j_watres_2020_116210 crossref_primary_10_1099_jmm_0_001919 crossref_primary_10_1128_spectrum_02853_22 crossref_primary_10_3390_antibiotics11080985 crossref_primary_10_3390_antibiotics11070974 crossref_primary_10_1016_j_scitotenv_2020_140894 crossref_primary_10_1016_j_envc_2022_100527 crossref_primary_10_1016_j_scitotenv_2023_164201 crossref_primary_10_1016_j_watres_2024_122032 crossref_primary_10_3390_antibiotics9100699 crossref_primary_10_1128_spectrum_02711_21 crossref_primary_10_1016_j_mib_2021_10_004 crossref_primary_10_1186_s13756_020_00826_2 |
Cites_doi | 10.1016/j.ijantimicag.2017.04.003 10.1016/j.jgar.2017.10.001 10.1093/jac/dkx103 10.1371/journal.pone.0175246 10.2807/1560-7917.ES.2015.20.45.30062 10.3201/eid1102.030684 10.1128/AAC.40.9.2080 10.1128/AEM.69.9.5306-5318.2003 10.1089/mdr.2015.0072 10.1128/AEM.00054-13 10.1016/j.mimet.2009.08.005 10.1007/s10096-017-3112-7 10.1093/jac/dkt431 10.1128/AAC.05478-11 10.1016/j.ijantimicag.2014.02.019 10.1128/AAC.00681-11 10.1128/AAC.50.4.1610-1611.2006 10.1128/AAC.46.6.2004-2006.2002 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 1XC |
DOI | 10.1016/j.jgar.2018.06.022 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-7173 |
EndPage | 92 |
ExternalDocumentID | oai_HAL_hal_02047993v1 30279153 10_1016_j_jgar_2018_06_022 S2213716518301322 1_s2_0_S2213716518301322 |
Genre | Journal Article |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS M~E --M .1- .FO .~1 0R~ 1~. 4.4 457 4G. 53G 7-5 8P~ AAAJQ AABSN AACTN AAEDT AAEDW AAHOK AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ABMZM ABXDB ACDAQ ACGFS ACRLP ADBBV ADEZE ADVLN AEBSH AEIPS AEKER AENEX AFCTW AFJKZ AFKWA AFRHN AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY AJUYK AKRWK AMFUW AMRAJ ANKPU ANZVX AXJTR BKOJK BLXMC BNPGV CJTIS COPKO EBS EFJIC EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HVGLF HZ~ KOM LUGTX M41 MO0 NCXOZ O-L O9- OAUVE OK1 P-8 P-9 PC. Q38 RIG ROL SDF SPCBC SSH SSI SSZ T5K Z5R ~G- AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AATTM AAYWO AAYXX ACIEU ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION NPM 7X8 1XC EFKBS |
ID | FETCH-LOGICAL-c562t-5d0b966e0bb44cfe3e5586de8dad78cae8a43665aa7f90c44e3b502225592cdb3 |
IEDL.DBID | .~1 |
ISSN | 2213-7165 2213-7173 |
IngestDate | Thu Aug 14 06:49:18 EDT 2025 Fri Jul 11 01:43:10 EDT 2025 Thu Apr 03 07:05:57 EDT 2025 Tue Jul 01 01:38:36 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Fri Feb 23 02:31:54 EST 2024 Tue Feb 25 20:01:04 EST 2025 Tue Aug 26 19:10:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gut microbiota Bacteraemia Carbapenemase-producing enterobacteria Environmental reservoir Pathobiome Corbicula |
Language | English |
License | Copyright © 2018. Published by Elsevier Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-5d0b966e0bb44cfe3e5586de8dad78cae8a43665aa7f90c44e3b502225592cdb3 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 ObjectType-Feature-4 content type line 23 ObjectType-Report-1 ObjectType-Article-3 |
ORCID | 0000-0003-2094-1468 0000-0001-8725-2937 |
PMID | 30279153 |
PQID | 2116129216 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | hal_primary_oai_HAL_hal_02047993v1 proquest_miscellaneous_2116129216 pubmed_primary_30279153 crossref_primary_10_1016_j_jgar_2018_06_022 crossref_citationtrail_10_1016_j_jgar_2018_06_022 elsevier_sciencedirect_doi_10_1016_j_jgar_2018_06_022 elsevier_clinicalkeyesjournals_1_s2_0_S2213716518301322 elsevier_clinicalkey_doi_10_1016_j_jgar_2018_06_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of Global Antimicrobial Resistance |
PublicationTitleAlternate | J Glob Antimicrob Resist |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Albiger, Glasner, Struelens, Grundmann, Monnet, European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) Working Group (bib0005) 2015; 20 Rotova, Papagiannitsis, Chudejova, Medvecky, Skalova, Adamkova (bib0070) 2017; 11 Hopkins, Findlay, Doumith, Mather, Meunier, D’Arcy (bib0050) 2017; 72 Roudière, Jacquot, Marchandin, Aujoulat, Devine, Zorgniotti (bib0090) 2009; 79 Almakki, Maure, Pantel, Romano-Bertrand, Masnou, Marchandin (bib0025) 2017; 50 Piedra-Carrasco, Fàbrega, Calero-Cáceres, Cornejo-Sánchez, Brown-Jaque, Mir-Cros (bib0030) 2017; 12 Yu, Du, Zhou, Chen, Li (bib0060) 2006; 50 Tacão, Correia, Henriques (bib0035) 2015; 21 Rojo-Bezares, Martín, López, Torres, Sáenz (bib0065) 2012; 56 Romano-Bertrand S, Dupont C, Marchandin H, Jumas-Bilak E, Licznar-Fajardo P. Reducing pathobiomes could slow arms race between man and microbes. In: Méndez-Vilas A, editor. The battle against microbial pathogens: basic science, technological advances and educational programs. Microbiology Series No. 5. Badajoz, Spain: Formatex; 2015. p. 698–716. Potron, Poirel, Nordmann (bib0040) 2011; 55 Rasmussen, Bush, Keeney, Yang, Hare, O’Gara (bib0055) 1996; 40 Oliveira, Moura, Silva, Pavez, McCulloch, Dropa (bib0045) 2014; 69 Hoffmann, Roggenkamp (bib0075) 2003; 69 Bonnet, Marchandin, Chanal, Sirot, Labia, De Champs (bib0080) 2002; 46 Clarivet, Grau, Jumas-Bilak, Jean-Pierre, Pantel, Parer (bib0100) 2016; 28 Rodríguez, Thomas, Van Essen, Schink, Day, Chattaway (bib0085) 2014; 43 Aubron, Poirel, Ash, Nordmann (bib0015) 2005; 11 Mairi, Pantel, Sotto, Lavigne, Touati (bib0010) 2018; 37 Zurfluh, Hächler, Nüesch-Inderbinen, Stephan (bib0020) 2013; 79 Rodríguez (10.1016/j.jgar.2018.06.022_bib0085) 2014; 43 Albiger (10.1016/j.jgar.2018.06.022_bib0005) 2015; 20 Rotova (10.1016/j.jgar.2018.06.022_bib0070) 2017; 11 Hoffmann (10.1016/j.jgar.2018.06.022_bib0075) 2003; 69 Potron (10.1016/j.jgar.2018.06.022_bib0040) 2011; 55 Oliveira (10.1016/j.jgar.2018.06.022_bib0045) 2014; 69 Rojo-Bezares (10.1016/j.jgar.2018.06.022_bib0065) 2012; 56 Hopkins (10.1016/j.jgar.2018.06.022_bib0050) 2017; 72 Roudière (10.1016/j.jgar.2018.06.022_bib0090) 2009; 79 Zurfluh (10.1016/j.jgar.2018.06.022_bib0020) 2013; 79 Aubron (10.1016/j.jgar.2018.06.022_bib0015) 2005; 11 10.1016/j.jgar.2018.06.022_bib0095 Mairi (10.1016/j.jgar.2018.06.022_bib0010) 2018; 37 Tacão (10.1016/j.jgar.2018.06.022_bib0035) 2015; 21 Piedra-Carrasco (10.1016/j.jgar.2018.06.022_bib0030) 2017; 12 Almakki (10.1016/j.jgar.2018.06.022_bib0025) 2017; 50 Clarivet (10.1016/j.jgar.2018.06.022_bib0100) 2016; 28 Rasmussen (10.1016/j.jgar.2018.06.022_bib0055) 1996; 40 Bonnet (10.1016/j.jgar.2018.06.022_bib0080) 2002; 46 Yu (10.1016/j.jgar.2018.06.022_bib0060) 2006; 50 |
References_xml | – volume: 12 year: 2017 ident: bib0030 article-title: Carbapenemase-producing Enterobacteriaceae recovered from a Spanish river ecosystem publication-title: PLoS One – volume: 72 start-page: 2129 year: 2017 end-page: 2131 ident: bib0050 article-title: IMI-2 carbapenemase in a clinical publication-title: J Antimicrob Chemother – volume: 69 start-page: 5306 year: 2003 end-page: 5318 ident: bib0075 article-title: Population genetics of the nomenspecies publication-title: Appl Environ Microbiol – volume: 46 start-page: 2004 year: 2002 end-page: 2006 ident: bib0080 article-title: Chromosome-encoded class D β-lactamase OXA-23 in publication-title: Antimicrob Agents Chemother – volume: 21 start-page: 497 year: 2015 end-page: 506 ident: bib0035 article-title: Low prevalence of carbapenem-resistant bacteria in river water: resistance is mostly related to intrinsic mechanisms publication-title: Microb Drug Resist – volume: 69 start-page: 849 year: 2014 end-page: 852 ident: bib0045 article-title: Isolation of KPC-2-producing publication-title: J Antimicrob Chemother – volume: 11 start-page: 98 year: 2017 end-page: 99 ident: bib0070 article-title: First description of the emergence of publication-title: J Glob Antimicrob Resist – volume: 79 start-page: 3021 year: 2013 end-page: 3026 ident: bib0020 article-title: Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae isolates from rivers and lakes in Switzerland publication-title: Appl Environ Microbiol – volume: 50 start-page: 1610 year: 2006 end-page: 1611 ident: bib0060 article-title: First isolation of publication-title: Antimicrob Agents Chemother – volume: 50 start-page: 123 year: 2017 end-page: 124 ident: bib0025 article-title: NDM-5-producing publication-title: Int J Antimicrob Agents – volume: 56 start-page: 1146 year: 2012 end-page: 1147 ident: bib0065 article-title: First detection of publication-title: Antimicrob Agents Chemother – volume: 43 start-page: 553 year: 2014 end-page: 557 ident: bib0085 article-title: SAFEFOODERA-ESBL Consortium. Chromosomal location of publication-title: Int J Antimicrob Agents – volume: 55 start-page: 4405 year: 2011 end-page: 4407 ident: bib0040 article-title: Origin of OXA-181, an emerging carbapenem-hydrolyzing oxacillinase, as a chromosomal gene in publication-title: Antimicrob Agents Chemother – reference: Romano-Bertrand S, Dupont C, Marchandin H, Jumas-Bilak E, Licznar-Fajardo P. Reducing pathobiomes could slow arms race between man and microbes. In: Méndez-Vilas A, editor. The battle against microbial pathogens: basic science, technological advances and educational programs. Microbiology Series No. 5. Badajoz, Spain: Formatex; 2015. p. 698–716. – volume: 11 start-page: 260 year: 2005 end-page: 264 ident: bib0015 article-title: Carbapenemase-producing Enterobacteriaceae, U.S. rivers publication-title: Emerg Infect Dis – volume: 79 start-page: 156 year: 2009 end-page: 165 ident: bib0090 article-title: Optimized PCR–temporal temperature gel electrophoresis compared to cultivation to assess diversity of gut microbiota in neonates publication-title: J Microbiol Methods – volume: 40 start-page: 2080 year: 1996 end-page: 2086 ident: bib0055 article-title: Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from publication-title: Antimicrob Agents Chemother – volume: 20 year: 2015 ident: bib0005 article-title: Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015 publication-title: Euro Surveill – volume: 28 start-page: 21 year: 2016 ident: bib0100 article-title: Persisting transmission of carbapenemase-producing publication-title: Euro Surveill – volume: 37 start-page: 587 year: 2018 end-page: 604 ident: bib0010 article-title: OXA-48-like carbapenemases producing Enterobacteriaceae in different niches publication-title: Eur J Clin Microbiol Infect Dis – volume: 50 start-page: 123 year: 2017 ident: 10.1016/j.jgar.2018.06.022_bib0025 article-title: NDM-5-producing Escherichia coli in an urban river in Montpellier, France publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2017.04.003 – volume: 11 start-page: 98 year: 2017 ident: 10.1016/j.jgar.2018.06.022_bib0070 article-title: First description of the emergence of Enterobacter asburiae producing IMI-2 carbapenemase in the Czech Republic publication-title: J Glob Antimicrob Resist doi: 10.1016/j.jgar.2017.10.001 – volume: 72 start-page: 2129 year: 2017 ident: 10.1016/j.jgar.2018.06.022_bib0050 article-title: IMI-2 carbapenemase in a clinical Klebsiella variicola isolated in the UK publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkx103 – volume: 12 year: 2017 ident: 10.1016/j.jgar.2018.06.022_bib0030 article-title: Carbapenemase-producing Enterobacteriaceae recovered from a Spanish river ecosystem publication-title: PLoS One doi: 10.1371/journal.pone.0175246 – volume: 20 year: 2015 ident: 10.1016/j.jgar.2018.06.022_bib0005 article-title: Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015 publication-title: Euro Surveill doi: 10.2807/1560-7917.ES.2015.20.45.30062 – volume: 11 start-page: 260 year: 2005 ident: 10.1016/j.jgar.2018.06.022_bib0015 article-title: Carbapenemase-producing Enterobacteriaceae, U.S. rivers publication-title: Emerg Infect Dis doi: 10.3201/eid1102.030684 – volume: 40 start-page: 2080 year: 1996 ident: 10.1016/j.jgar.2018.06.022_bib0055 article-title: Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.40.9.2080 – volume: 28 start-page: 21 year: 2016 ident: 10.1016/j.jgar.2018.06.022_bib0100 article-title: Persisting transmission of carbapenemase-producing Klebsiella pneumoniae due to an environmental reservoir in a university hospital, France, 2012 to 2014 publication-title: Euro Surveill – volume: 69 start-page: 5306 year: 2003 ident: 10.1016/j.jgar.2018.06.022_bib0075 article-title: Population genetics of the nomenspecies Enterobacter cloacae publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.9.5306-5318.2003 – volume: 21 start-page: 497 year: 2015 ident: 10.1016/j.jgar.2018.06.022_bib0035 article-title: Low prevalence of carbapenem-resistant bacteria in river water: resistance is mostly related to intrinsic mechanisms publication-title: Microb Drug Resist doi: 10.1089/mdr.2015.0072 – ident: 10.1016/j.jgar.2018.06.022_bib0095 – volume: 79 start-page: 3021 year: 2013 ident: 10.1016/j.jgar.2018.06.022_bib0020 article-title: Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae isolates from rivers and lakes in Switzerland publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00054-13 – volume: 79 start-page: 156 year: 2009 ident: 10.1016/j.jgar.2018.06.022_bib0090 article-title: Optimized PCR–temporal temperature gel electrophoresis compared to cultivation to assess diversity of gut microbiota in neonates publication-title: J Microbiol Methods doi: 10.1016/j.mimet.2009.08.005 – volume: 37 start-page: 587 year: 2018 ident: 10.1016/j.jgar.2018.06.022_bib0010 article-title: OXA-48-like carbapenemases producing Enterobacteriaceae in different niches publication-title: Eur J Clin Microbiol Infect Dis doi: 10.1007/s10096-017-3112-7 – volume: 69 start-page: 849 year: 2014 ident: 10.1016/j.jgar.2018.06.022_bib0045 article-title: Isolation of KPC-2-producing Klebsiella pneumoniae strains belonging to the high-risk multiresistant clonal complex 11 (ST437 and ST340) in urban rivers publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkt431 – volume: 56 start-page: 1146 year: 2012 ident: 10.1016/j.jgar.2018.06.022_bib0065 article-title: First detection of blaIMI-2 gene in a clinical Escherichia coli strain publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.05478-11 – volume: 43 start-page: 553 year: 2014 ident: 10.1016/j.jgar.2018.06.022_bib0085 article-title: SAFEFOODERA-ESBL Consortium. Chromosomal location of blaCTX-M genes in clinical isolates of Escherichia coli from Germany. The Netherlands and the UK publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2014.02.019 – volume: 55 start-page: 4405 year: 2011 ident: 10.1016/j.jgar.2018.06.022_bib0040 article-title: Origin of OXA-181, an emerging carbapenem-hydrolyzing oxacillinase, as a chromosomal gene in Shewanella xiamenensis publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00681-11 – volume: 50 start-page: 1610 year: 2006 ident: 10.1016/j.jgar.2018.06.022_bib0060 article-title: First isolation of blaIMI-2 in an Enterobacter cloacae clinical isolate from China publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.50.4.1610-1611.2006 – volume: 46 start-page: 2004 year: 2002 ident: 10.1016/j.jgar.2018.06.022_bib0080 article-title: Chromosome-encoded class D β-lactamase OXA-23 in Proteus mirabilis publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.46.6.2004-2006.2002 |
SSID | ssib050733640 ssj0000941267 |
Score | 2.2771616 |
Snippet | •Carbapenemase-producing enterobacteria transmitted from river to human.•The river carbapenem-resistant community partially replaced the human... Highlights•Carbapenemase-producing enterobacteria transmitted from river to human. •The river carbapenem-resistant community partially replaced the human... Carbapenemase-producing Enterobacteriaceae (CPE) are increasing worldwide in human infections. The role of rivers as reservoirs is highlighted, but... OBJECTIVES: Carbapenemase-producing Enterobacteriaceae (CPE) are increasing worldwide in human infections. The role of rivers as reservoirs is highlighted, but... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 88 |
SubjectTerms | Bacteraemia Bacteriology Carbapenemase-producing enterobacteria Corbicula Earth Sciences Environmental reservoir Gut microbiota Hydrology Infectious Disease Life Sciences Microbiology and Parasitology Pathobiome Sciences of the Universe |
Title | Transmission of IMI-2 carbapenemase-producing Enterobacteriaceae from river water to human |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2213716518301322 https://www.clinicalkey.es/playcontent/1-s2.0-S2213716518301322 https://dx.doi.org/10.1016/j.jgar.2018.06.022 https://www.ncbi.nlm.nih.gov/pubmed/30279153 https://www.proquest.com/docview/2116129216 https://hal.science/hal-02047993 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwcFSKkLgg3qRAZRA3FDZ27MQ5rqpWy6O9QKWKi-VX1Fawu9rdFnHptzPjPCQELRLHWJ7EGY_n4XkBvCkct1a3Knc8NLkU5N-tdZs3vrHB-eBlqt15eFTNjuWHE3WyBXtDLgyFVfa8v-PpiVv3I5Mem5Pl2dnksxC8RG1fIVEmhwFlsMuaqPzdFR_vWdB84SI1kqX5OQH0uTNdmNc5FXtFKdiV8RTiOvl065QCJa_TQpM0OrgP93o1kk27lT6ArTh_CHe6xpI_H8HXJIJwC-kujC1ahiwqF8yTc2GJ3O07yq58mYq9ouhiKTIAD3Yq3Gx9tJFR2glbUdAG-4Hq6IptFiz183sMxwf7X_Zmed9FIfeo22xyFQqHNk0snJPSt7GMSukqRB1sqLW3UVtZVpWytm6bwksZS6eSGaga4YMrn8D2fDGPz4CVIhbaKzSBNJeilVYqp7W0bWgDITYDPuDO-L7EOHW6-GaGWLJzQ_g2hG9DAXVCZPB2hFl2BTZunF0OW2KG1FFkdgb5_41Q9d-g4ro_r2vDzVqYwvxBUxmoEfI3svznF18jvYw_RDW8Z9NPhsYoG7lGrfCSZ_BqICeDFEGeGjuPi4u1QascNc9G8CqDpx2dje8iR3ODcmrnP5f2HO7SUxeS8wK2N6uL-BIVq43bTSdnF25P33-cHeHT4dX-L8SQIJA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61qRC9IN41zwVxQ1bs9a69PkYVlUvTXGilistqXxatIImSFMS_Z2ZtR0LQInG1PX6MZ-exM_MNwLvM5saoVqY293UqOOV3K9WmtauNt847EbE7T2dlcy4-XsiLHTgcemGorLLX_Z1Oj9q6PzLuuTleXl6OP3GeF-jtSxTKmDDYhT1Cp5Ij2JscnzSz7VYLRjA5j7NkiSQlmr59pqv0uiK8VzSEHZIn5zeZqN0vVCt5kyMaDdLRfbjXe5Js0r3sA9gJ84dwp5st-fMRfI5WCP8ibYexRctQS6WcOcovLFHBfUPzlS4j3itaLxaLA3BtR-xm44IJjDpP2IrqNtgP9EhXbLNgcaTfYzg_-nB22KT9IIXUoXuzSaXPLIY1IbNWCNeGIkipSh-UN75SzgRlRFGW0piqrTMnRCisjJGgrLnztngCo_liHg6AFTxkykmMglQueCuMkFYpYVrfemJsAvnAO-16lHEadvFVD-VkV5r4rYnfmmrqOE_g_ZZm2WFs3Hp1MfwSPXSPor7TaAJupar-RhXW_ZJd61yvuc70H2KVgNxS_iaZ_3ziW5SX7QcRjHczmWo6Rg3JFTqG3_ME3gzipFEiKFlj5mFxvdYYmKPzWfO8TOBpJ2fbe1GuuUZT9ew_X-013G3OTqd6ejw7eQ77dKar0HkBo83qOrxEP2tjX_Xr6BfSgyIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transmission+of+IMI-2+carbapenemase-producing+Enterobacteriaceae+from+river+water+to+human&rft.jtitle=Journal+of+global+antimicrobial+resistance.&rft.au=Laurens%2C+Chrisl%C3%A8ne&rft.au=Jean-Pierre%2C+H%C3%A9l%C3%A8ne&rft.au=Licznar-Fajardo%2C+Patricia&rft.au=Hantova%2C+Stefaniya&rft.date=2018-12-01&rft.issn=2213-7165&rft.volume=15&rft.spage=88&rft.epage=92&rft_id=info:doi/10.1016%2Fj.jgar.2018.06.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jgar_2018_06_022 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22137165%2Fcov200h.gif |