Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer
Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into following questions old and new: how might we target respiration or downst...
Saved in:
Published in | Molecular cell Vol. 82; no. 18; pp. 3321 - 3332 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into following questions old and new: how might we target respiration or downstream signaling pathways to amplify apoptotic stress in the context of cancer therapy? Why are respiration and apoptotic regulation housed in the same organelle? Here, we briefly review mitochondrial respiration and apoptosis and then focus on how the intersection of these two processes is regulated by cytoplasmic signaling pathways such as the integrated stress response.
Aerobic respiration and apoptosis are two of the most characteristic activities performed by mitochondria. Here, we review how they are functionally interconnected via stress signaling pathways and describe how these connections might be exploited in the context of cancer therapy. |
---|---|
AbstractList | Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into following questions old and new: how might we target respiration or downstream signaling pathways to amplify apoptotic stress in the context of cancer therapy? Why are respiration and apoptotic regulation housed in the same organelle? Here, we briefly review mitochondrial respiration and apoptosis and then focus on how the intersection of these two processes is regulated by cytoplasmic signaling pathways such as the integrated stress response. Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into questions old and new, such as: Why are respiration and apoptotic regulation housed in the same organelle? How might we target respiration or downstream signaling pathways to amplify apoptotic stress in the context of cancer therapy? Here we briefly review mitochondrial respiration and apoptosis, and then focus on how the intersection of these two processes is regulated by cytoplasmic signaling pathways such as the integrated stress response. Aerobic respiration and apoptosis are two of the most characteristic activities performed by mitochondria. Here we review how they are functionally interconnected via stress signaling pathways and describe how these connections might be exploited in the context of cancer therapy. Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into following questions old and new: how might we target respiration or downstream signaling pathways to amplify apoptotic stress in the context of cancer therapy? Why are respiration and apoptotic regulation housed in the same organelle? Here, we briefly review mitochondrial respiration and apoptosis and then focus on how the intersection of these two processes is regulated by cytoplasmic signaling pathways such as the integrated stress response.Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into following questions old and new: how might we target respiration or downstream signaling pathways to amplify apoptotic stress in the context of cancer therapy? Why are respiration and apoptotic regulation housed in the same organelle? Here, we briefly review mitochondrial respiration and apoptosis and then focus on how the intersection of these two processes is regulated by cytoplasmic signaling pathways such as the integrated stress response. Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the functional connection between these two processes may provide insight into following questions old and new: how might we target respiration or downstream signaling pathways to amplify apoptotic stress in the context of cancer therapy? Why are respiration and apoptotic regulation housed in the same organelle? Here, we briefly review mitochondrial respiration and apoptosis and then focus on how the intersection of these two processes is regulated by cytoplasmic signaling pathways such as the integrated stress response. Aerobic respiration and apoptosis are two of the most characteristic activities performed by mitochondria. Here, we review how they are functionally interconnected via stress signaling pathways and describe how these connections might be exploited in the context of cancer therapy. |
Author | Yadav, Tarun Rutter, Jared Winter, Jacob M. |
AuthorAffiliation | 2 Department of Biology, Indian Institute of Science Education and Research, Pune 4 Huntsman Cancer Institute, The University of Utah 1 Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah 3 Howard Hughes Medical Institute, The University of Utah |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah – name: 3 Howard Hughes Medical Institute, The University of Utah – name: 4 Huntsman Cancer Institute, The University of Utah – name: 2 Department of Biology, Indian Institute of Science Education and Research, Pune |
Author_xml | – sequence: 1 givenname: Jacob M. surname: Winter fullname: Winter, Jacob M. organization: Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT, USA – sequence: 2 givenname: Tarun surname: Yadav fullname: Yadav, Tarun organization: Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT, USA – sequence: 3 givenname: Jared surname: Rutter fullname: Rutter, Jared email: rutter@biochem.utah.edu organization: Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35961309$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUuPFCEUhYkZ4zz0HxjD0k2XF6iiilmYmImvZIwLdWkIBbdsOtVQAj3J_HuZ7naiLtQNEDj35HC-c3ISYkBCnjJoGDD5YtNs42xxbjhw3kDfAOMPyBkD1a9aJtuT45n3sjsl5zlvAFjbDeoRORWdkkyAOiNfP5WEOaOjJVKHpqwv6Qdfol3H4JI3M817Aa3LEkPGTG0MAW3Z3_hkio-BmuCoWeJSYvaZ-kCtCRbTY_JwMnPGJ8f9gnx58_rz1bvV9ce3769eXa9sJ3lZdUr1wzQYKy30Ro1GKXDjIMAqKQwiMOdq3JFzlJ0FhgC8H5GD6-TEuklckJcH32U3btFZDCWZWS_Jb0261dF4_ftL8Gv9Ld5o1Q5MKqgGz48GKX7fYS5663MtdzYB4y5r3nPBgItW_IcUOBvEwPoqffZrrPs8P-uvgvYgsCnmnHC6lzDQd5T1Rh8o6zvKGnpdKdexyz_GrC97EPVzfv7X8LErrEBuPCadrcdKy_lUsWoX_d8NfgA-Osc- |
CitedBy_id | crossref_primary_10_1093_hmg_ddae048 crossref_primary_10_1093_narcan_zcae043 crossref_primary_10_1186_s12964_024_01844_y crossref_primary_10_3390_ph17101352 crossref_primary_10_1055_a_2427_3135 crossref_primary_10_1021_acs_jafc_2c08505 crossref_primary_10_3390_ph16020234 crossref_primary_10_1016_j_cjac_2025_100510 crossref_primary_10_1016_j_tice_2023_102101 crossref_primary_10_1038_s41598_025_94029_7 crossref_primary_10_1111_apha_13985 crossref_primary_10_1021_jacs_4c12264 crossref_primary_10_1021_acs_jmedchem_3c01950 crossref_primary_10_12677_ACM_2024_141048 crossref_primary_10_2147_DDDT_S455098 crossref_primary_10_1016_j_jtcme_2024_07_004 crossref_primary_10_3389_fphar_2024_1367316 crossref_primary_10_1002_mco2_288 crossref_primary_10_1016_j_scitotenv_2024_173798 crossref_primary_10_1007_s11684_024_1093_3 crossref_primary_10_1007_s12672_024_01255_y crossref_primary_10_1089_thy_2023_0700 crossref_primary_10_1016_j_fitote_2024_106080 crossref_primary_10_1016_j_intimp_2024_113985 crossref_primary_10_1126_sciadv_adp0443 crossref_primary_10_1039_D4NJ01217H crossref_primary_10_15252_embj_2022113256 crossref_primary_10_2174_0109298673292365240422104456 crossref_primary_10_1016_j_neo_2025_101150 crossref_primary_10_1038_s41418_024_01418_y crossref_primary_10_1016_j_heliyon_2024_e27234 crossref_primary_10_1038_s41419_025_07390_w crossref_primary_10_3389_fimmu_2023_1325360 crossref_primary_10_3390_biomedicines12081717 crossref_primary_10_1016_j_etap_2023_104239 crossref_primary_10_7717_peerj_18591 crossref_primary_10_1016_j_celrep_2023_113264 crossref_primary_10_1016_j_ecoenv_2024_117072 crossref_primary_10_1002_advs_202400845 crossref_primary_10_1016_j_celrep_2023_112332 crossref_primary_10_1186_s12967_025_06220_z crossref_primary_10_30970_sbi_1803_787 crossref_primary_10_1002_bies_202400090 crossref_primary_10_1002_cam4_70602 crossref_primary_10_1007_s11596_024_2922_y |
Cites_doi | 10.1038/s41556-019-0294-5 10.1038/s41568-021-00407-4 10.1158/2159-8290.CD-18-0387 10.1007/s00018-021-03887-7 10.1016/j.ccell.2020.10.010 10.1016/j.molcel.2020.12.012 10.1056/NEJMoa1513257 10.1126/scitranslmed.aax2863 10.1158/1541-7786.MCR-20-0586 10.1016/S1097-2765(03)00105-9 10.15252/embr.201642195 10.1126/science.aad0116 10.1038/s41419-020-02867-2 10.1016/j.molcel.2014.09.026 10.1083/jcb.201308006 10.1016/j.cell.2006.06.025 10.1101/gad.215871.113 10.1091/mbc.E19-06-0329 10.1182/blood-2018-06-859405 10.1016/j.celrep.2016.02.011 10.1016/j.ijbiomac.2019.06.180 10.1038/s41580-020-0210-7 10.1038/s41598-019-49327-2 10.1016/S0092-8674(00)80085-9 10.1039/C5SC04664E 10.1038/nature19830 10.1016/j.biochi.2014.07.005 10.1016/j.cmet.2019.01.011 10.1038/s41467-022-30126-9 10.1002/embj.201386474 10.1242/jcs.159186 10.1083/jcb.201702058 10.1016/j.chemphyslip.2013.12.002 10.1038/nm.3788 10.1158/2159-8290.CD-18-1119 10.1038/s41586-020-2078-2 10.1038/s41586-020-2475-6 10.1083/jcb.201007152 10.1073/pnas.2022120118 10.1126/science.1223560 10.1101/gad.12.4.514 10.1038/s42255-020-0172-2 10.1126/sciadv.1600200 10.1038/ncb2152 10.1038/sj.cdd.4402135 10.1038/ng.3473 10.1016/j.celrep.2021.110197 10.1073/pnas.1303819110 10.1038/s41586-019-1738-6 10.1038/s41467-020-15051-z 10.1038/s41467-022-29479-y 10.1158/2159-8290.CD-19-0117 10.1038/s41586-020-2076-4 10.1016/j.cell.2017.02.004 10.1016/j.cell.2015.07.016 10.1038/nrm.2017.95 10.1016/j.ccell.2019.08.005 10.1038/s41556-018-0124-1 10.1126/science.123.3191.309 10.1038/ncomms16031 10.1016/j.neuron.2014.12.007 10.1038/cdd.2017.186 10.1126/science.aat5314 10.1038/nchembio727 10.1126/science.aan4146 10.1186/2049-3002-2-17 10.1016/j.cell.2015.07.017 10.7554/eLife.55279 10.1038/nature12985 10.1038/s41586-021-04025-w 10.1016/j.cub.2015.07.055 10.1101/gad.215855.113 10.1038/s41586-019-1227-y 10.1126/science.aab4138 10.1073/pnas.1417253111 10.7554/eLife.49178 10.1038/s41467-018-05815-z 10.1016/j.cmet.2020.06.019 10.1021/bi0525573 10.1146/annurev-cancerbio-050216-121933 10.1016/j.molcel.2008.07.010 10.1016/j.molcel.2017.05.032 10.1016/j.cmet.2019.11.002 10.1146/annurev-biochem-060713-035802 10.1038/nrm2959 10.1016/j.cell.2015.07.027 10.1038/s41575-021-00431-7 10.1038/nrm.2017.129 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2022.07.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 3332 |
ExternalDocumentID | PMC9481690 35961309 10_1016_j_molcel_2022_07_012 S1097276522007080 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA228346 – fundername: NCI NIH HHS grantid: F30 CA243440 – fundername: NIGMS NIH HHS grantid: R01 GM115174 – fundername: Howard Hughes Medical Institute – fundername: NIGMS NIH HHS grantid: R35 GM131854 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD FGOYB HZ~ OZT R2- RIG UHS X7M ZGI ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c562t-59978f8ac6c07a9ba990db830c963aee01dd130b22e65c01e0027be20d56f15f3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 18:36:44 EDT 2025 Fri Jul 11 04:18:44 EDT 2025 Tue Aug 05 11:21:25 EDT 2025 Mon Jul 21 06:07:44 EDT 2025 Tue Jul 01 03:21:22 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 23 02:39:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | stress leukemia CRISPR electron transport chain mitochondria apoptosis cancer respiration venetoclax oxidative phosphorylation oncology integrated stress response |
Language | English |
License | Copyright © 2022 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-59978f8ac6c07a9ba990db830c963aee01dd130b22e65c01e0027be20d56f15f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9481690 |
PMID | 35961309 |
PQID | 2702183817 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9481690 proquest_miscellaneous_2723102343 proquest_miscellaneous_2702183817 pubmed_primary_35961309 crossref_primary_10_1016_j_molcel_2022_07_012 crossref_citationtrail_10_1016_j_molcel_2022_07_012 elsevier_sciencedirect_doi_10_1016_j_molcel_2022_07_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-15 |
PublicationDateYYYYMMDD | 2022-09-15 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Arnarez, Marrink, Periole (bib3) 2016; 7 Bajpai, Sharma, Achreja, Edgar, Wei, Siddiqa, Gupta, Matulis, McBrayer, Mittal (bib4) 2020; 11 Lin, Xie, Rutter, Ahn, Lloyd-Cowden, Nichols, Soderquist, Koves, Muoio, MacIver (bib48) 2019; 29 Olivares, Mayers, Gouirand, Torrence, Gicquel, Borge, Lac, Roques, Lavaut, Berthezène (bib59) 2017; 8 Letai (bib47) 2017; 1 Kale, Osterlund, Andrews (bib44) 2018; 25 Kagan, Tyurin, Jiang, Tyurina, Ritov, Amoscato, Osipov, Belikova, Kapralov, Kini (bib43) 2005; 1 Kim, Kundu, Viollet, Guan (bib45) 2011; 13 Schell, Olson, Jiang, Hawkins, Van Vranken, Xie, Egnatchik, Earl, DeBerardinis, Rutter (bib72) 2014; 56 Jiang, Jiang, Shen, Wang (bib42) 2014; 111 Luengo, Li, Gui, Sullivan, Zagorulya, Do, Ferreira, Naamati, Ali, Lewis (bib50) 2021; 81 Liu, Kim, Yang, Jemmerson, Wang (bib49) 1996; 86 Cupo, Shorter (bib21) 2020; 9 Raemy, Martinou (bib66) 2014; 179 Sharon, Cathelin, Mirali, Di Trani, Yanofsky, Keon, Rubinstein, Schimmer, Ketela, Chan (bib74) 2019; 11 Daverey, Levytskyy, Stanke, Viana, Swenson, Hayward, Narasimhan, Khalimonchuk, Kidambi (bib22) 2019; 9 Roca-Portoles, Rodriguez-Blanco, Sumpton, Cloix, Mullin, Mackay, O’Neill, Lemgruber, Luo, Tait (bib69) 2020; 11 Thomas, Roberts, Kubli, Lee, Quinsay, Owens, Fischer, Sussman, Miyamoto, Gustafsson (bib81) 2013; 27 Crosby, Lee, London, Chen (bib20) 1994; 14 Otera, Wang, Cleland, Setoguchi, Yokota, Youle, Mihara (bib60) 2010; 191 Hinnebusch (bib41) 2014; 83 Pickrell, Youle (bib64) 2015; 85 Sullivan, Gui, Hosios, Bush, Freinkman, Vander Heiden (bib80) 2015; 162 Wang, Yen, Zhu, Timson, Weber, Xing, Liu, Allwein, Luo, Yeh (bib87) 2021; 599 Rainbolt, Lebeau, Puchades, Wiseman (bib67) 2016; 14 Sullivan, Chandel (bib79) 2014; 2 MacVicar, Langer (bib51) 2016; 129 Pakos-Zebrucka, Koryga, Mnich, Ljujic, Samali, Gorman (bib62) 2016; 17 Harper, Ordureau, Heo (bib39) 2018; 19 Ott, Zhivotovsky, Orrenius (bib61) 2007; 14 Pavitt, Ramaiah, Kimball, Hinnebusch (bib63) 1998; 12 Belikova, Vladimirov, Osipov, Kapralov, Tyurin, Potapovich, Basova, Peterson, Kurnikov, Kagan (bib7) 2006; 45 Garcia, Shaw (bib32) 2017; 66 DeBerardinis, Chandel (bib24) 2020; 2 Saxton, Sabatini (bib71) 2017; 168 Kotschy, Szlavik, Murray, Davidson, Maragno, Le Toumelin-Braizat, Chanrion, Kelly, Gong, Moujalled (bib46) 2016; 538 Frezza, Cipolat, Martins de Brito, Micaroni, Beznoussenko, Rudka, Bartoli, Polishuck, Danial, De Strooper (bib30) 2006; 126 Vasan, Werner, Chandel (bib84) 2020; 32 Weidberg, Amon (bib89) 2018; 360 Boos, Krämer, Groh, Jung, Haberkant, Stein, Wollweber, Gackstatter, Zöller, van der Laan (bib13) 2019; 21 Condon, Orozco, Adelmann, Spinelli, Helm, Roberts, Kunchok, Sabatini (bib18) 2021; 118 Schmidt, Pfanner, Meisinger (bib73) 2010; 11 Friedman, Nunnari (bib31) 2014; 505 Bergstrom, Beales, Lv, Vanderlick, Groves (bib9) 2013; 110 Costa-Mattioli, Walter (bib19) 2020; 368 Diepstraten, Anderson, Czabotar, Lessene, Strasser, Kelly (bib25) 2022; 22 Van Vranken, Rutter (bib83) 2015; 162 Archibald (bib2) 2015; 25 Fessler, Eckl, Schmitt, Mancilla, Meyer-Bender, Hanf, Philippou-Massier, Krebs, Zischka, Jae (bib28) 2020; 579 Bensard, Wisidagama, Olson, Berg, Krah, Schell, Nowinski, Fogarty, Bott, Wei (bib8) 2020; 31 Musatov, Robinson (bib56) 2014; 105 Baker, Lampe, Stojanovski, Korwitz, Anand, Tatsuta, Langer (bib5) 2014; 33 Blombery, Anderson, Gong, Thijssen, Birkinshaw, Thompson, Teh, Nguyen, Xu, Flensburg (bib12) 2019; 9 MacVicar, Ohba, Nolte, Mayer, Tatsuta, Sprenger, Lindner, Zhao, Li, Bruns (bib52) 2019; 575 Toyama, Herzig, Courchet, Lewis, Losón, Hellberg, Young, Chen, Polleux, Chan (bib82) 2016; 351 Basch, Wagner, Rolland, Carbonell, Zeng, Khosravi, Schmidt, Aftab, Imhof, Wagener (bib6) 2020; 31 Okosun, Wolfson, Wang, Araf, Wilkins, Castellano, Escudero-Ibarz, Al Seraihi, Richter, Bernhart (bib58) 2016; 48 Caenepeel, Brown, Belmontes, Moody, Keegan, Chui, Whittington, Huang, Poppe, Cheng (bib15) 2018; 8 Mick, Titov, Skinner, Sharma, Jourdain, Mootha (bib55) 2020; 9 Spinelli, Haigis (bib78) 2018; 20 Grenier, Poulain, Mondesir, Jacquel, Bosc, Stuani, Mouche, Larrue, Sahal, Birsen (bib35) 2022; 38 Mårtensson, Priesnitz, Song, Ellenrieder, Doan, Boos, Floerchinger, Zufall, Oeljeklaus, Warscheid (bib53) 2019; 569 Martínez-Reyes, Cardona, Kong, Vasan, McElroy, Werner, Kihshen, Reczek, Weinberg, Gao (bib54) 2020; 585 Yamaguchi, Lartigue, Perkins, Scott, Dixit, Kushnareva, Kuwana, Ellisman, Newmeyer (bib90) 2008; 31 Guièze, Liu, Rosebrock, Jourdain, Hernández-Sánchez, Martinez Zurita, Sun, Ten Hacken, Baranowski, Thompson (bib36) 2019; 36 Chen, Glytsou, Zhou, Narang, Reyna, Lopez, Sakellaropoulos, Gong, Kloetgen, Yap (bib17) 2019; 9 Chan, Thomas, Corces-Zimmerman, Xavy, Rastogi, Hong, Zhao, Medeiros, Tyvoll, Majeti (bib16) 2015; 21 Eckl, Ziegemann, Krumwiede, Fessler, Jae (bib26) 2021; 78 Warburg (bib88) 1956; 123 Herzig, Shaw (bib40) 2018; 19 Shi, Reinstadler, Shah, To, Byrne, Summer, Calvo, Goldberger, Doench, Mootha (bib75) 2022; 13 Wai, García-Prieto, Baker, Merkwirth, Benit, Rustin, Rupérez, Barbas, Ibañez, Langer (bib85) 2015; 350 Birsoy, Wang, Chen, Freinkman, Abu-Remaileh, Sabatini (bib11) 2015; 162 Encarnación-Rosado, Kimmelman (bib27) 2021; 18 Harding, Zhang, Zeng, Novoa, Lu, Calfon, Sadri, Yun, Popko, Paules (bib38) 2003; 11 Nargund, Pellegrino, Fiorese, Baker, Haynes (bib57) 2012; 337 Fessler, Krumwiede, Jae (bib29) 2022; 13 Quirós, Prado, Zamboni, D’Amico, Williams, Finley, Gygi, Auwerx (bib65) 2017; 216 Bhatt, Pioso, Olesinski, Yilma, Ryan, Mashaka, Leutz, Adamia, Zhu, Kuang (bib10) 2020; 38 Roberts, Davids, Pagel, Kahl, Puvvada, Gerecitano, Kipps, Anderson, Brown, Gressick (bib68) 2016; 374 Wang, Bathina, Lynch, Koss, Calabrese, Frase, Schuetz, Rehg, Opferman (bib86) 2013; 27 Greaves, Milani, Butterworth, Carter, Byrne, Eyers, Luo, Cohen, Varadarajan (bib34) 2018; 1 Guo, Aviles, Liu, Tian, Unger, Lin, Wiita, Xu, Correia, Kampmann (bib37) 2020; 579 Santucci, Sinibaldi, Cozza, Polticelli, Fiorucci (bib70) 2019; 136 Soderquist, Crawford, Liu, Lu, Agarwal, Anderson, Lin, Winter, Cakir, Wood (bib77) 2018; 9 Giacomello, Pyakurel, Glytsou, Scorrano (bib33) 2020; 21 Anand, Wai, Baker, Kladt, Schauss, Rugarli, Langer (bib1) 2014; 204 Brennan, Chang, Tai, Lessene, Strasser, Dewson, Kelly, Herold (bib14) 2018; 132 DeBerardinis, Chandel (bib23) 2016; 2 Smith, Budhraja, Lynch, Roberts, Panetta, Connelly, Turnis, Pruett-Miller, Schuetz, Mullighan (bib76) 2021; 19 Pavitt (10.1016/j.molcel.2022.07.012_bib63) 1998; 12 Roca-Portoles (10.1016/j.molcel.2022.07.012_bib69) 2020; 11 Chan (10.1016/j.molcel.2022.07.012_bib16) 2015; 21 Sullivan (10.1016/j.molcel.2022.07.012_bib80) 2015; 162 Kale (10.1016/j.molcel.2022.07.012_bib44) 2018; 25 Okosun (10.1016/j.molcel.2022.07.012_bib58) 2016; 48 Otera (10.1016/j.molcel.2022.07.012_bib60) 2010; 191 Quirós (10.1016/j.molcel.2022.07.012_bib65) 2017; 216 Daverey (10.1016/j.molcel.2022.07.012_bib22) 2019; 9 Sullivan (10.1016/j.molcel.2022.07.012_bib79) 2014; 2 Luengo (10.1016/j.molcel.2022.07.012_bib50) 2021; 81 Mårtensson (10.1016/j.molcel.2022.07.012_bib53) 2019; 569 Brennan (10.1016/j.molcel.2022.07.012_bib14) 2018; 132 Van Vranken (10.1016/j.molcel.2022.07.012_bib83) 2015; 162 Thomas (10.1016/j.molcel.2022.07.012_bib81) 2013; 27 Lin (10.1016/j.molcel.2022.07.012_bib48) 2019; 29 Hinnebusch (10.1016/j.molcel.2022.07.012_bib41) 2014; 83 Sharon (10.1016/j.molcel.2022.07.012_bib74) 2019; 11 Fessler (10.1016/j.molcel.2022.07.012_bib28) 2020; 579 Fessler (10.1016/j.molcel.2022.07.012_bib29) 2022; 13 Nargund (10.1016/j.molcel.2022.07.012_bib57) 2012; 337 Bhatt (10.1016/j.molcel.2022.07.012_bib10) 2020; 38 Crosby (10.1016/j.molcel.2022.07.012_bib20) 1994; 14 Harper (10.1016/j.molcel.2022.07.012_bib39) 2018; 19 Warburg (10.1016/j.molcel.2022.07.012_bib88) 1956; 123 Basch (10.1016/j.molcel.2022.07.012_bib6) 2020; 31 Condon (10.1016/j.molcel.2022.07.012_bib18) 2021; 118 Rainbolt (10.1016/j.molcel.2022.07.012_bib67) 2016; 14 Kim (10.1016/j.molcel.2022.07.012_bib45) 2011; 13 Liu (10.1016/j.molcel.2022.07.012_bib49) 1996; 86 MacVicar (10.1016/j.molcel.2022.07.012_bib51) 2016; 129 Mick (10.1016/j.molcel.2022.07.012_bib55) 2020; 9 Wai (10.1016/j.molcel.2022.07.012_bib85) 2015; 350 Grenier (10.1016/j.molcel.2022.07.012_bib35) 2022; 38 Harding (10.1016/j.molcel.2022.07.012_bib38) 2003; 11 Bensard (10.1016/j.molcel.2022.07.012_bib8) 2020; 31 Pakos-Zebrucka (10.1016/j.molcel.2022.07.012_bib62) 2016; 17 Costa-Mattioli (10.1016/j.molcel.2022.07.012_bib19) 2020; 368 Giacomello (10.1016/j.molcel.2022.07.012_bib33) 2020; 21 Diepstraten (10.1016/j.molcel.2022.07.012_bib25) 2022; 22 Belikova (10.1016/j.molcel.2022.07.012_bib7) 2006; 45 Spinelli (10.1016/j.molcel.2022.07.012_bib78) 2018; 20 Wang (10.1016/j.molcel.2022.07.012_bib87) 2021; 599 Archibald (10.1016/j.molcel.2022.07.012_bib2) 2015; 25 Kagan (10.1016/j.molcel.2022.07.012_bib43) 2005; 1 Ott (10.1016/j.molcel.2022.07.012_bib61) 2007; 14 Caenepeel (10.1016/j.molcel.2022.07.012_bib15) 2018; 8 Yamaguchi (10.1016/j.molcel.2022.07.012_bib90) 2008; 31 Eckl (10.1016/j.molcel.2022.07.012_bib26) 2021; 78 Guo (10.1016/j.molcel.2022.07.012_bib37) 2020; 579 Martínez-Reyes (10.1016/j.molcel.2022.07.012_bib54) 2020; 585 Bajpai (10.1016/j.molcel.2022.07.012_bib4) 2020; 11 Soderquist (10.1016/j.molcel.2022.07.012_bib77) 2018; 9 Chen (10.1016/j.molcel.2022.07.012_bib17) 2019; 9 Birsoy (10.1016/j.molcel.2022.07.012_bib11) 2015; 162 Pickrell (10.1016/j.molcel.2022.07.012_bib64) 2015; 85 Encarnación-Rosado (10.1016/j.molcel.2022.07.012_bib27) 2021; 18 Olivares (10.1016/j.molcel.2022.07.012_bib59) 2017; 8 Arnarez (10.1016/j.molcel.2022.07.012_bib3) 2016; 7 Raemy (10.1016/j.molcel.2022.07.012_bib66) 2014; 179 Anand (10.1016/j.molcel.2022.07.012_bib1) 2014; 204 Herzig (10.1016/j.molcel.2022.07.012_bib40) 2018; 19 Shi (10.1016/j.molcel.2022.07.012_bib75) 2022; 13 DeBerardinis (10.1016/j.molcel.2022.07.012_bib23) 2016; 2 Santucci (10.1016/j.molcel.2022.07.012_bib70) 2019; 136 Blombery (10.1016/j.molcel.2022.07.012_bib12) 2019; 9 DeBerardinis (10.1016/j.molcel.2022.07.012_bib24) 2020; 2 Garcia (10.1016/j.molcel.2022.07.012_bib32) 2017; 66 Vasan (10.1016/j.molcel.2022.07.012_bib84) 2020; 32 Frezza (10.1016/j.molcel.2022.07.012_bib30) 2006; 126 Letai (10.1016/j.molcel.2022.07.012_bib47) 2017; 1 Musatov (10.1016/j.molcel.2022.07.012_bib56) 2014; 105 Wang (10.1016/j.molcel.2022.07.012_bib86) 2013; 27 Friedman (10.1016/j.molcel.2022.07.012_bib31) 2014; 505 Schmidt (10.1016/j.molcel.2022.07.012_bib73) 2010; 11 Jiang (10.1016/j.molcel.2022.07.012_bib42) 2014; 111 Saxton (10.1016/j.molcel.2022.07.012_bib71) 2017; 168 Guièze (10.1016/j.molcel.2022.07.012_bib36) 2019; 36 Schell (10.1016/j.molcel.2022.07.012_bib72) 2014; 56 Roberts (10.1016/j.molcel.2022.07.012_bib68) 2016; 374 Weidberg (10.1016/j.molcel.2022.07.012_bib89) 2018; 360 Bergstrom (10.1016/j.molcel.2022.07.012_bib9) 2013; 110 Greaves (10.1016/j.molcel.2022.07.012_bib34) 2018; 1 Kotschy (10.1016/j.molcel.2022.07.012_bib46) 2016; 538 MacVicar (10.1016/j.molcel.2022.07.012_bib52) 2019; 575 Baker (10.1016/j.molcel.2022.07.012_bib5) 2014; 33 Toyama (10.1016/j.molcel.2022.07.012_bib82) 2016; 351 Smith (10.1016/j.molcel.2022.07.012_bib76) 2021; 19 Boos (10.1016/j.molcel.2022.07.012_bib13) 2019; 21 Cupo (10.1016/j.molcel.2022.07.012_bib21) 2020; 9 |
References_xml | – volume: 7 start-page: 4435 year: 2016 end-page: 4443 ident: bib3 article-title: Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes publication-title: Chem. Sci. – volume: 19 start-page: 636 year: 2021 end-page: 650 ident: bib76 article-title: The heme-regulated inhibitor pathway modulates susceptibility of poor prognosis B-lineage acute leukemia to BH3-mimetics publication-title: Mol. Cancer Res. – volume: 2 start-page: e1600200 year: 2016 ident: bib23 article-title: Fundamentals of cancer metabolism publication-title: Sci. Adv. – volume: 13 start-page: 1853 year: 2022 ident: bib29 article-title: DELE1 tracks perturbed protein import and processing in human mitochondria publication-title: Nat. Commun. – volume: 585 start-page: 288 year: 2020 end-page: 292 ident: bib54 article-title: Mitochondrial ubiquinol oxidation is necessary for tumour growth publication-title: Nature – volume: 9 start-page: 14746 year: 2019 ident: bib22 article-title: Depletion of mitochondrial protease OMA1 alters proliferative properties and promotes metastatic growth of breast cancer cells publication-title: Sci. Rep. – volume: 22 start-page: 45 year: 2022 end-page: 64 ident: bib25 article-title: The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs publication-title: Nat. Rev. Cancer – volume: 20 start-page: 745 year: 2018 end-page: 754 ident: bib78 article-title: The multifaceted contributions of mitochondria to cellular metabolism publication-title: Nat. Cell Biol. – volume: 38 start-page: 872 year: 2020 end-page: 890.e6 ident: bib10 article-title: Reduced mitochondrial apoptotic priming drives resistance to BH3 mimetics in acute myeloid leukemia publication-title: Cancer Cell – volume: 1 start-page: 223 year: 2005 end-page: 232 ident: bib43 article-title: Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors publication-title: Nat. Chem. Biol. – volume: 105 start-page: 159 year: 2014 end-page: 164 ident: bib56 article-title: Bound cardiolipin is essential for cytochrome c oxidase proton translocation publication-title: Biochimie – volume: 2 start-page: 17 year: 2014 ident: bib79 article-title: Mitochondrial reactive oxygen species and cancer publication-title: Cancer Metab. – volume: 1 year: 2018 ident: bib34 article-title: BH3-only proteins are dispensable for apoptosis induced by pharmacological inhibition of both MCL-1 and BCL-X L publication-title: Cell Death Differ. – volume: 19 start-page: 121 year: 2018 end-page: 135 ident: bib40 article-title: AMPK: guardian of metabolism and mitochondrial homeostasis publication-title: Nat. Rev. Mol. Cell Biol. – volume: 12 start-page: 514 year: 1998 end-page: 526 ident: bib63 article-title: eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange publication-title: Genes Dev. – volume: 162 start-page: 552 year: 2015 end-page: 563 ident: bib80 article-title: Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells publication-title: Cell – volume: 81 start-page: 691 year: 2021 end-page: 707.e6 ident: bib50 article-title: Increased demand for NAD publication-title: Mol. Cell – volume: 29 start-page: 1217 year: 2019 end-page: 1231.e7 ident: bib48 article-title: Systematic dissection of the metabolic-apoptotic interface in AML reveals heme biosynthesis to be a regulator of drug sensitivity publication-title: Cell Metab. – volume: 599 start-page: 136 year: 2021 end-page: 140 ident: bib87 article-title: SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells publication-title: Nature – volume: 8 start-page: 16031 year: 2017 ident: bib59 article-title: Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions publication-title: Nat. Commun. – volume: 129 start-page: 2297 year: 2016 end-page: 2306 ident: bib51 article-title: OPA1 processing in cell death and disease—the long and short of it publication-title: J. Cell Sci. – volume: 19 start-page: 93 year: 2018 end-page: 108 ident: bib39 article-title: Building and decoding ubiquitin chains for mitophagy publication-title: Nat. Rev. Mol. Cell Biol. – volume: 83 start-page: 779 year: 2014 end-page: 812 ident: bib41 article-title: The scanning mechanism of eukaryotic translation initiation publication-title: Annu. Rev. Biochem. – volume: 374 start-page: 311 year: 2016 end-page: 322 ident: bib68 article-title: Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia publication-title: N. Engl. J. Med. – volume: 48 start-page: 183 year: 2016 end-page: 188 ident: bib58 article-title: Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma publication-title: Nat. Genet. – volume: 18 start-page: 482 year: 2021 end-page: 492 ident: bib27 article-title: Harnessing metabolic dependencies in pancreatic cancers publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 579 start-page: 433 year: 2020 end-page: 437 ident: bib28 article-title: A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol publication-title: Nature – volume: 216 start-page: 2027 year: 2017 end-page: 2045 ident: bib65 article-title: Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals publication-title: J. Cell Biol. – volume: 11 start-page: 616 year: 2020 ident: bib69 article-title: Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition publication-title: Cell Death Dis. – volume: 111 start-page: 14782 year: 2014 end-page: 14787 ident: bib42 article-title: Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 753 year: 2020 end-page: 767 ident: bib6 article-title: Msp1 cooperates with the proteasome for extraction of arrested mitochondrial import intermediates publication-title: Mol. Biol. Cell – volume: 11 start-page: 655 year: 2010 end-page: 667 ident: bib73 article-title: Mitochondrial protein import: from proteomics to functional mechanisms publication-title: Nat. Rev. Mol. Cell Biol. – volume: 31 start-page: 557 year: 2008 end-page: 569 ident: bib90 article-title: Opa1-mediated cristae opening is Bax/Bak- and BH3-dependent, required for apoptosis, and independent of Bak oligomerization publication-title: Mol. Cell – volume: 27 start-page: 1351 year: 2013 end-page: 1364 ident: bib86 article-title: Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction publication-title: Genes Dev. – volume: 9 start-page: 890 year: 2019 end-page: 909 ident: bib17 article-title: Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment publication-title: Cancer Discov. – volume: 25 start-page: R911 year: 2015 end-page: R921 ident: bib2 article-title: Endosymbiosis and eukaryotic cell evolution publication-title: Curr. Biol. – volume: 9 start-page: 3513 year: 2018 ident: bib77 article-title: Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity publication-title: Nat. Commun. – volume: 38 start-page: 110197 year: 2022 ident: bib35 article-title: AMPK-PERK axis represses oxidative metabolism and enhances apoptotic priming of mitochondria in acute myeloid leukemia publication-title: Cell Rep. – volume: 179 start-page: 70 year: 2014 end-page: 74 ident: bib66 article-title: Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis publication-title: Chem. Phys. Lipids – volume: 31 start-page: 284 year: 2020 end-page: 300.e7 ident: bib8 article-title: Regulation of tumor initiation by the mitochondrial pyruvate carrier publication-title: Cell Metab. – volume: 85 start-page: 257 year: 2015 end-page: 273 ident: bib64 article-title: The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease publication-title: Neuron – volume: 168 start-page: 960 year: 2017 end-page: 976 ident: bib71 article-title: MTOR signaling in growth, metabolism, and disease publication-title: Cell – volume: 9 start-page: 342 year: 2019 end-page: 353 ident: bib12 article-title: Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia publication-title: Cancer Discov. – volume: 360 year: 2018 ident: bib89 article-title: MitoCPR—A surveillance pathway that protects mitochondria in response to protein import stress publication-title: Science – volume: 569 start-page: 679 year: 2019 end-page: 683 ident: bib53 article-title: Mitochondrial protein translocation-associated degradation publication-title: Nature – volume: 123 start-page: 309 year: 1956 end-page: 314 ident: bib88 article-title: On the origin of cancer cells publication-title: Science – volume: 36 start-page: 369 year: 2019 end-page: 384.e13 ident: bib36 article-title: Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies publication-title: Cancer Cell – volume: 132 start-page: 1573 year: 2018 end-page: 1583 ident: bib14 article-title: Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use publication-title: Blood – volume: 13 start-page: 132 year: 2011 end-page: 141 ident: bib45 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nat. Cell Biol. – volume: 45 start-page: 4998 year: 2006 end-page: 5009 ident: bib7 article-title: Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes publication-title: Biochemistry – volume: 337 start-page: 587 year: 2012 end-page: 590 ident: bib57 article-title: Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation publication-title: Science – volume: 162 start-page: 471 year: 2015 end-page: 473 ident: bib83 article-title: You down With ETC? Yeah, you know D! publication-title: Cell – volume: 579 start-page: 427 year: 2020 end-page: 432 ident: bib37 article-title: Mitochondrial stress is relayed to the cytosol by an OMA1–DELE1–HRI pathway publication-title: Nature – volume: 505 start-page: 335 year: 2014 end-page: 343 ident: bib31 article-title: Mitochondrial form and function publication-title: Nature – volume: 575 start-page: 361 year: 2019 end-page: 365 ident: bib52 article-title: Lipid signalling drives proteolytic rewiring of mitochondria by YME1L publication-title: Nature – volume: 351 start-page: 275 year: 2016 end-page: 281 ident: bib82 article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress publication-title: Science – volume: 191 start-page: 1141 year: 2010 end-page: 1158 ident: bib60 article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells publication-title: J. Cell Biol. – volume: 27 start-page: 1365 year: 2013 end-page: 1377 ident: bib81 article-title: Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure publication-title: Genes Dev. – volume: 9 start-page: e49178 year: 2020 ident: bib55 article-title: Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell publication-title: eLife – volume: 162 start-page: 540 year: 2015 end-page: 551 ident: bib11 article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis publication-title: Cell – volume: 11 start-page: 1228 year: 2020 ident: bib4 article-title: Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma publication-title: Nat. Commun. – volume: 14 start-page: 2041 year: 2016 end-page: 2049 ident: bib67 article-title: Reciprocal degradation of YME1L and OMA1 adapts mitochondrial proteolytic activity during stress publication-title: Cell Rep. – volume: 21 start-page: 204 year: 2020 end-page: 224 ident: bib33 article-title: The cell biology of mitochondrial membrane dynamics publication-title: Nat. Rev. Mol. Cell Biol. – volume: 538 start-page: 477 year: 2016 end-page: 482 ident: bib46 article-title: The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models publication-title: Nature – volume: 66 start-page: 789 year: 2017 end-page: 800 ident: bib32 article-title: AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance publication-title: Mol. Cell – volume: 32 start-page: 341 year: 2020 end-page: 352 ident: bib84 article-title: Mitochondrial metabolism as a target for cancer therapy publication-title: Cell Metab. – volume: 14 start-page: 3906 year: 1994 end-page: 3914 ident: bib20 article-title: Erythroid expression of the heme-regulated eIF-2 alpha kinase publication-title: Mol. Cell. Biol. – volume: 8 start-page: 1582 year: 2018 end-page: 1597 ident: bib15 article-title: AMG 176, a selective MCL1 inhibitor, is effective in hematological cancer models alone and in combination with established therapies. Cancer discovery CD-18-0387 publication-title: Cancer Discov. – volume: 136 start-page: 1237 year: 2019 end-page: 1246 ident: bib70 article-title: Cytochrome c: an extreme multifunctional protein with a key role in cell fate publication-title: Int. J. Biol. Macromol. – volume: 350 start-page: aad0116 year: 2015 ident: bib85 article-title: Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice publication-title: Science – volume: 25 start-page: 65 year: 2018 end-page: 80 ident: bib44 article-title: BCL-2 family proteins: changing partners in the dance towards death publication-title: Cell Death Differ. – volume: 56 start-page: 400 year: 2014 end-page: 413 ident: bib72 article-title: A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth publication-title: Mol. Cell – volume: 11 start-page: eaax2863 year: 2019 ident: bib74 article-title: Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response publication-title: Sci. Transl. Med. – volume: 13 start-page: 2483 year: 2022 ident: bib75 article-title: Combinatorial GxGxE CRISPR screen identifies SLC25A39 in mitochondrial glutathione transport linking iron homeostasis to OXPHOS publication-title: Nat. Commun. – volume: 86 start-page: 147 year: 1996 end-page: 157 ident: bib49 article-title: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c publication-title: Cell – volume: 204 start-page: 919 year: 2014 end-page: 929 ident: bib1 article-title: The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission publication-title: J. Cell Biol. – volume: 126 start-page: 177 year: 2006 end-page: 189 ident: bib30 article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion publication-title: Cell – volume: 368 start-page: eaat5314 year: 2020 ident: bib19 article-title: The integrated stress response: From mechanism to disease publication-title: Science – volume: 14 start-page: 1243 year: 2007 end-page: 1247 ident: bib61 article-title: Role of cardiolipin in cytochrome c release from mitochondria publication-title: Cell Death Differ. – volume: 118 year: 2021 ident: bib18 article-title: Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 178 year: 2015 end-page: 184 ident: bib16 article-title: Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia publication-title: Nat. Med. – volume: 2 start-page: 127 year: 2020 end-page: 129 ident: bib24 article-title: We need to talk about the Warburg effect publication-title: Nat. Metab. – volume: 17 start-page: 1374 year: 2016 end-page: 1395 ident: bib62 article-title: The integrated stress response publication-title: EMBO Rep. – volume: 21 start-page: 442 year: 2019 end-page: 451 ident: bib13 article-title: Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme publication-title: Nat. Cell Biol. – volume: 11 start-page: 619 year: 2003 end-page: 633 ident: bib38 article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress publication-title: Mol. Cell – volume: 78 start-page: 5925 year: 2021 end-page: 5951 ident: bib26 article-title: Sensing, signaling and surviving mitochondrial stress publication-title: Cell. Mol. Life Sci. – volume: 33 start-page: 578 year: 2014 end-page: 593 ident: bib5 article-title: Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics publication-title: EMBO J. – volume: 9 start-page: e55279 year: 2020 ident: bib21 article-title: Skd3 (human ClpB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations publication-title: eLife – volume: 110 start-page: 6269 year: 2013 end-page: 6274 ident: bib9 article-title: Cytochrome c causes pore formation in cardiolipin-containing membranes publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 start-page: 275 year: 2017 end-page: 294 ident: bib47 article-title: Apoptosis and cancer publication-title: Annu. Rev. Cancer Biol. – volume: 21 start-page: 442 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib13 article-title: Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0294-5 – volume: 22 start-page: 45 year: 2022 ident: 10.1016/j.molcel.2022.07.012_bib25 article-title: The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00407-4 – volume: 8 start-page: 1582 year: 2018 ident: 10.1016/j.molcel.2022.07.012_bib15 article-title: AMG 176, a selective MCL1 inhibitor, is effective in hematological cancer models alone and in combination with established therapies. Cancer discovery CD-18-0387 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-18-0387 – volume: 78 start-page: 5925 year: 2021 ident: 10.1016/j.molcel.2022.07.012_bib26 article-title: Sensing, signaling and surviving mitochondrial stress publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-021-03887-7 – volume: 38 start-page: 872 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib10 article-title: Reduced mitochondrial apoptotic priming drives resistance to BH3 mimetics in acute myeloid leukemia publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.10.010 – volume: 81 start-page: 691 year: 2021 ident: 10.1016/j.molcel.2022.07.012_bib50 article-title: Increased demand for NAD+ relative to ATP drives aerobic glycolysis publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.12.012 – volume: 374 start-page: 311 year: 2016 ident: 10.1016/j.molcel.2022.07.012_bib68 article-title: Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1513257 – volume: 11 start-page: eaax2863 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib74 article-title: Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aax2863 – volume: 19 start-page: 636 year: 2021 ident: 10.1016/j.molcel.2022.07.012_bib76 article-title: The heme-regulated inhibitor pathway modulates susceptibility of poor prognosis B-lineage acute leukemia to BH3-mimetics publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-20-0586 – volume: 11 start-page: 619 year: 2003 ident: 10.1016/j.molcel.2022.07.012_bib38 article-title: An integrated stress response regulates amino acid metabolism and resistance to oxidative stress publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00105-9 – volume: 17 start-page: 1374 year: 2016 ident: 10.1016/j.molcel.2022.07.012_bib62 article-title: The integrated stress response publication-title: EMBO Rep. doi: 10.15252/embr.201642195 – volume: 350 start-page: aad0116 year: 2015 ident: 10.1016/j.molcel.2022.07.012_bib85 article-title: Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice publication-title: Science doi: 10.1126/science.aad0116 – volume: 14 start-page: 3906 year: 1994 ident: 10.1016/j.molcel.2022.07.012_bib20 article-title: Erythroid expression of the heme-regulated eIF-2 alpha kinase publication-title: Mol. Cell. Biol. – volume: 11 start-page: 616 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib69 article-title: Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition publication-title: Cell Death Dis. doi: 10.1038/s41419-020-02867-2 – volume: 56 start-page: 400 year: 2014 ident: 10.1016/j.molcel.2022.07.012_bib72 article-title: A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.09.026 – volume: 204 start-page: 919 year: 2014 ident: 10.1016/j.molcel.2022.07.012_bib1 article-title: The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission publication-title: J. Cell Biol. doi: 10.1083/jcb.201308006 – volume: 126 start-page: 177 year: 2006 ident: 10.1016/j.molcel.2022.07.012_bib30 article-title: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion publication-title: Cell doi: 10.1016/j.cell.2006.06.025 – volume: 27 start-page: 1365 year: 2013 ident: 10.1016/j.molcel.2022.07.012_bib81 article-title: Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure publication-title: Genes Dev. doi: 10.1101/gad.215871.113 – volume: 31 start-page: 753 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib6 article-title: Msp1 cooperates with the proteasome for extraction of arrested mitochondrial import intermediates publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E19-06-0329 – volume: 132 start-page: 1573 year: 2018 ident: 10.1016/j.molcel.2022.07.012_bib14 article-title: Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use publication-title: Blood doi: 10.1182/blood-2018-06-859405 – volume: 14 start-page: 2041 year: 2016 ident: 10.1016/j.molcel.2022.07.012_bib67 article-title: Reciprocal degradation of YME1L and OMA1 adapts mitochondrial proteolytic activity during stress publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.02.011 – volume: 136 start-page: 1237 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib70 article-title: Cytochrome c: an extreme multifunctional protein with a key role in cell fate publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.06.180 – volume: 21 start-page: 204 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib33 article-title: The cell biology of mitochondrial membrane dynamics publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0210-7 – volume: 9 start-page: 14746 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib22 article-title: Depletion of mitochondrial protease OMA1 alters proliferative properties and promotes metastatic growth of breast cancer cells publication-title: Sci. Rep. doi: 10.1038/s41598-019-49327-2 – volume: 86 start-page: 147 year: 1996 ident: 10.1016/j.molcel.2022.07.012_bib49 article-title: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c publication-title: Cell doi: 10.1016/S0092-8674(00)80085-9 – volume: 7 start-page: 4435 year: 2016 ident: 10.1016/j.molcel.2022.07.012_bib3 article-title: Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes publication-title: Chem. Sci. doi: 10.1039/C5SC04664E – volume: 538 start-page: 477 year: 2016 ident: 10.1016/j.molcel.2022.07.012_bib46 article-title: The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models publication-title: Nature doi: 10.1038/nature19830 – volume: 105 start-page: 159 year: 2014 ident: 10.1016/j.molcel.2022.07.012_bib56 article-title: Bound cardiolipin is essential for cytochrome c oxidase proton translocation publication-title: Biochimie doi: 10.1016/j.biochi.2014.07.005 – volume: 29 start-page: 1217 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib48 article-title: Systematic dissection of the metabolic-apoptotic interface in AML reveals heme biosynthesis to be a regulator of drug sensitivity publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.01.011 – volume: 13 start-page: 2483 year: 2022 ident: 10.1016/j.molcel.2022.07.012_bib75 article-title: Combinatorial GxGxE CRISPR screen identifies SLC25A39 in mitochondrial glutathione transport linking iron homeostasis to OXPHOS publication-title: Nat. Commun. doi: 10.1038/s41467-022-30126-9 – volume: 33 start-page: 578 year: 2014 ident: 10.1016/j.molcel.2022.07.012_bib5 article-title: Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics publication-title: EMBO J. doi: 10.1002/embj.201386474 – volume: 129 start-page: 2297 year: 2016 ident: 10.1016/j.molcel.2022.07.012_bib51 article-title: OPA1 processing in cell death and disease—the long and short of it publication-title: J. Cell Sci. doi: 10.1242/jcs.159186 – volume: 216 start-page: 2027 year: 2017 ident: 10.1016/j.molcel.2022.07.012_bib65 article-title: Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals publication-title: J. Cell Biol. doi: 10.1083/jcb.201702058 – volume: 179 start-page: 70 year: 2014 ident: 10.1016/j.molcel.2022.07.012_bib66 article-title: Involvement of cardiolipin in tBID-induced activation of BAX during apoptosis publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2013.12.002 – volume: 21 start-page: 178 year: 2015 ident: 10.1016/j.molcel.2022.07.012_bib16 article-title: Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia publication-title: Nat. Med. doi: 10.1038/nm.3788 – volume: 9 start-page: 342 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib12 article-title: Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-18-1119 – volume: 579 start-page: 427 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib37 article-title: Mitochondrial stress is relayed to the cytosol by an OMA1–DELE1–HRI pathway publication-title: Nature doi: 10.1038/s41586-020-2078-2 – volume: 585 start-page: 288 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib54 article-title: Mitochondrial ubiquinol oxidation is necessary for tumour growth publication-title: Nature doi: 10.1038/s41586-020-2475-6 – volume: 191 start-page: 1141 year: 2010 ident: 10.1016/j.molcel.2022.07.012_bib60 article-title: Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201007152 – volume: 118 year: 2021 ident: 10.1016/j.molcel.2022.07.012_bib18 article-title: Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2022120118 – volume: 337 start-page: 587 year: 2012 ident: 10.1016/j.molcel.2022.07.012_bib57 article-title: Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation publication-title: Science doi: 10.1126/science.1223560 – volume: 12 start-page: 514 year: 1998 ident: 10.1016/j.molcel.2022.07.012_bib63 article-title: eIF2 independently binds two distinct eIF2B subcomplexes that catalyze and regulate guanine-nucleotide exchange publication-title: Genes Dev. doi: 10.1101/gad.12.4.514 – volume: 2 start-page: 127 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib24 article-title: We need to talk about the Warburg effect publication-title: Nat. Metab. doi: 10.1038/s42255-020-0172-2 – volume: 2 start-page: e1600200 year: 2016 ident: 10.1016/j.molcel.2022.07.012_bib23 article-title: Fundamentals of cancer metabolism publication-title: Sci. Adv. doi: 10.1126/sciadv.1600200 – volume: 13 start-page: 132 year: 2011 ident: 10.1016/j.molcel.2022.07.012_bib45 article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2152 – volume: 14 start-page: 1243 year: 2007 ident: 10.1016/j.molcel.2022.07.012_bib61 article-title: Role of cardiolipin in cytochrome c release from mitochondria publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402135 – volume: 48 start-page: 183 year: 2016 ident: 10.1016/j.molcel.2022.07.012_bib58 article-title: Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma publication-title: Nat. Genet. doi: 10.1038/ng.3473 – volume: 38 start-page: 110197 year: 2022 ident: 10.1016/j.molcel.2022.07.012_bib35 article-title: AMPK-PERK axis represses oxidative metabolism and enhances apoptotic priming of mitochondria in acute myeloid leukemia publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.110197 – volume: 110 start-page: 6269 year: 2013 ident: 10.1016/j.molcel.2022.07.012_bib9 article-title: Cytochrome c causes pore formation in cardiolipin-containing membranes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1303819110 – volume: 575 start-page: 361 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib52 article-title: Lipid signalling drives proteolytic rewiring of mitochondria by YME1L publication-title: Nature doi: 10.1038/s41586-019-1738-6 – volume: 11 start-page: 1228 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib4 article-title: Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma publication-title: Nat. Commun. doi: 10.1038/s41467-020-15051-z – volume: 13 start-page: 1853 year: 2022 ident: 10.1016/j.molcel.2022.07.012_bib29 article-title: DELE1 tracks perturbed protein import and processing in human mitochondria publication-title: Nat. Commun. doi: 10.1038/s41467-022-29479-y – volume: 9 start-page: 890 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib17 article-title: Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-19-0117 – volume: 579 start-page: 433 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib28 article-title: A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol publication-title: Nature doi: 10.1038/s41586-020-2076-4 – volume: 168 start-page: 960 year: 2017 ident: 10.1016/j.molcel.2022.07.012_bib71 article-title: MTOR signaling in growth, metabolism, and disease publication-title: Cell doi: 10.1016/j.cell.2017.02.004 – volume: 162 start-page: 540 year: 2015 ident: 10.1016/j.molcel.2022.07.012_bib11 article-title: An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis publication-title: Cell doi: 10.1016/j.cell.2015.07.016 – volume: 19 start-page: 121 year: 2018 ident: 10.1016/j.molcel.2022.07.012_bib40 article-title: AMPK: guardian of metabolism and mitochondrial homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.95 – volume: 36 start-page: 369 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib36 article-title: Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.08.005 – volume: 20 start-page: 745 year: 2018 ident: 10.1016/j.molcel.2022.07.012_bib78 article-title: The multifaceted contributions of mitochondria to cellular metabolism publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0124-1 – volume: 123 start-page: 309 year: 1956 ident: 10.1016/j.molcel.2022.07.012_bib88 article-title: On the origin of cancer cells publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 8 start-page: 16031 year: 2017 ident: 10.1016/j.molcel.2022.07.012_bib59 article-title: Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions publication-title: Nat. Commun. doi: 10.1038/ncomms16031 – volume: 85 start-page: 257 year: 2015 ident: 10.1016/j.molcel.2022.07.012_bib64 article-title: The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease publication-title: Neuron doi: 10.1016/j.neuron.2014.12.007 – volume: 25 start-page: 65 year: 2018 ident: 10.1016/j.molcel.2022.07.012_bib44 article-title: BCL-2 family proteins: changing partners in the dance towards death publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.186 – volume: 368 start-page: eaat5314 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib19 article-title: The integrated stress response: From mechanism to disease publication-title: Science doi: 10.1126/science.aat5314 – volume: 1 start-page: 223 year: 2005 ident: 10.1016/j.molcel.2022.07.012_bib43 article-title: Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio727 – volume: 360 year: 2018 ident: 10.1016/j.molcel.2022.07.012_bib89 article-title: MitoCPR—A surveillance pathway that protects mitochondria in response to protein import stress publication-title: Science doi: 10.1126/science.aan4146 – volume: 2 start-page: 17 year: 2014 ident: 10.1016/j.molcel.2022.07.012_bib79 article-title: Mitochondrial reactive oxygen species and cancer publication-title: Cancer Metab. doi: 10.1186/2049-3002-2-17 – volume: 162 start-page: 552 year: 2015 ident: 10.1016/j.molcel.2022.07.012_bib80 article-title: Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells publication-title: Cell doi: 10.1016/j.cell.2015.07.017 – volume: 9 start-page: e55279 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib21 article-title: Skd3 (human ClpB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations publication-title: eLife doi: 10.7554/eLife.55279 – volume: 505 start-page: 335 year: 2014 ident: 10.1016/j.molcel.2022.07.012_bib31 article-title: Mitochondrial form and function publication-title: Nature doi: 10.1038/nature12985 – volume: 599 start-page: 136 year: 2021 ident: 10.1016/j.molcel.2022.07.012_bib87 article-title: SLC25A39 is necessary for mitochondrial glutathione import in mammalian cells publication-title: Nature doi: 10.1038/s41586-021-04025-w – volume: 25 start-page: R911 year: 2015 ident: 10.1016/j.molcel.2022.07.012_bib2 article-title: Endosymbiosis and eukaryotic cell evolution publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.07.055 – volume: 27 start-page: 1351 year: 2013 ident: 10.1016/j.molcel.2022.07.012_bib86 article-title: Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction publication-title: Genes Dev. doi: 10.1101/gad.215855.113 – volume: 569 start-page: 679 year: 2019 ident: 10.1016/j.molcel.2022.07.012_bib53 article-title: Mitochondrial protein translocation-associated degradation publication-title: Nature doi: 10.1038/s41586-019-1227-y – volume: 351 start-page: 275 year: 2016 ident: 10.1016/j.molcel.2022.07.012_bib82 article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress publication-title: Science doi: 10.1126/science.aab4138 – volume: 111 start-page: 14782 year: 2014 ident: 10.1016/j.molcel.2022.07.012_bib42 article-title: Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1417253111 – volume: 9 start-page: e49178 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib55 article-title: Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell publication-title: eLife doi: 10.7554/eLife.49178 – volume: 9 start-page: 3513 year: 2018 ident: 10.1016/j.molcel.2022.07.012_bib77 article-title: Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity publication-title: Nat. Commun. doi: 10.1038/s41467-018-05815-z – volume: 32 start-page: 341 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib84 article-title: Mitochondrial metabolism as a target for cancer therapy publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.06.019 – volume: 45 start-page: 4998 year: 2006 ident: 10.1016/j.molcel.2022.07.012_bib7 article-title: Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes publication-title: Biochemistry doi: 10.1021/bi0525573 – volume: 1 start-page: 275 year: 2017 ident: 10.1016/j.molcel.2022.07.012_bib47 article-title: Apoptosis and cancer publication-title: Annu. Rev. Cancer Biol. doi: 10.1146/annurev-cancerbio-050216-121933 – volume: 31 start-page: 557 year: 2008 ident: 10.1016/j.molcel.2022.07.012_bib90 article-title: Opa1-mediated cristae opening is Bax/Bak- and BH3-dependent, required for apoptosis, and independent of Bak oligomerization publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.07.010 – volume: 66 start-page: 789 year: 2017 ident: 10.1016/j.molcel.2022.07.012_bib32 article-title: AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.05.032 – volume: 31 start-page: 284 year: 2020 ident: 10.1016/j.molcel.2022.07.012_bib8 article-title: Regulation of tumor initiation by the mitochondrial pyruvate carrier publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.11.002 – volume: 83 start-page: 779 year: 2014 ident: 10.1016/j.molcel.2022.07.012_bib41 article-title: The scanning mechanism of eukaryotic translation initiation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060713-035802 – volume: 11 start-page: 655 year: 2010 ident: 10.1016/j.molcel.2022.07.012_bib73 article-title: Mitochondrial protein import: from proteomics to functional mechanisms publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2959 – volume: 162 start-page: 471 year: 2015 ident: 10.1016/j.molcel.2022.07.012_bib83 article-title: You down With ETC? Yeah, you know D! publication-title: Cell doi: 10.1016/j.cell.2015.07.027 – volume: 18 start-page: 482 year: 2021 ident: 10.1016/j.molcel.2022.07.012_bib27 article-title: Harnessing metabolic dependencies in pancreatic cancers publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-021-00431-7 – volume: 1 year: 2018 ident: 10.1016/j.molcel.2022.07.012_bib34 article-title: BH3-only proteins are dispensable for apoptosis induced by pharmacological inhibition of both MCL-1 and BCL-X L publication-title: Cell Death Differ. – volume: 19 start-page: 93 year: 2018 ident: 10.1016/j.molcel.2022.07.012_bib39 article-title: Building and decoding ubiquitin chains for mitophagy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.129 |
SSID | ssj0014589 |
Score | 2.590143 |
SecondaryResourceType | review_article |
Snippet | Mitochondrial energetics and respiration have emerged as important factors in how cancer cells respond to or evade apoptotic signals. The study of the... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3321 |
SubjectTerms | Apoptosis cancer cancer therapy CRISPR death electron transport chain Humans integrated stress response leukemia mitochondria Mitochondria - metabolism Neoplasms - genetics Neoplasms - metabolism oncology oxidative phosphorylation Oxidative Stress Respiration Signal Transduction stress stress response venetoclax |
Title | Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer |
URI | https://dx.doi.org/10.1016/j.molcel.2022.07.012 https://www.ncbi.nlm.nih.gov/pubmed/35961309 https://www.proquest.com/docview/2702183817 https://www.proquest.com/docview/2723102343 https://pubmed.ncbi.nlm.nih.gov/PMC9481690 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS90wNIgy2Iuoc3rdlAi-htskTdvszYkiij5MxfsyQpqk2OHay731wX9vTtJedjec4GPTE0hPzmfPF0JHQguqq5yR1EhLUm05KRnNSGorWdC8dFTD_46r6-z8Lr2YiMkKOhlqYSCtspf9UaYHad2vjHtsjqd1Pb6B2CnLM29AQM-aAvx2nhahiG_yfRFJSEUYgwfABKCH8rmQ4_W7fTQOAhCMhRaelL2mnv41P__OovxDLZ1toPXensTH8cibaMU1W-hDnDD5_An9vAm1IM7irsUWzL1v-MozsRd6jQXaw7FYBM9irqybYwOpL6YLK3WkD6wbi_W0nXbtvJ7jusEGiGW2je7OTm9Pzkk_UYEYb-d0REjvNFaFNplJci1L7XWRLQueGM-H2rmEWuuVWsmYy4RJqAOvtXQssSKrqKj4Z7TatI3bRVgK7lIhmA7tYqiROoOMGlqUlXfpmBwhPiBSmb7dOEy9eFRDXtkvFdGvAP0qyZVH_wiRxa5pbLfxBnw-3JFaIhvlNcIbOw-HK1WeoyBMohvXPs0VVOh5Qecp9X8wYBcznvIR2olksDgvFxKcMo-BfIlAFgDQ0Xv5TVM_hM7e0Donk8neu7_qC_oIT5DQQsVXtNrNnty-t5q68gCtHV_-uL88COzxAvVGGNI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0KqKEFwQ5bmlBSNxtTZ24iTmRiuqLXR7aSvtBVmO7ahBJVntpof-PTN2smJBUImrPZac8TwzL0I-SCO5qQvBMqscy4xLWSV4zjJXq5IXlecG_3fMz_PZVfZlIRc75HishcG0ykH2R5kepPWwMh2wOV02zfQCY6eiyMGAwJ41JfjtD8AaKJA7TxdHm1BCJsMcPIRmCD7Wz4Ukrx_djfUYgRAi9PDk4m_66U_78_c0yl_00slT8mQwKOmneOc9suPbZ-RhHDF595x8uwjFIN7RvqMO7b2PdA5cDFKvdUh8NFaL0FVMlvVrajH3xfZhpYkEQk3rqFl2y75bN2vatNQitaxekKuTz5fHMzaMVGAWDJ2eSQVeY10am9ukMKoyoIxcVaaJBUY03ifcOdBqlRA-lzbhHt3WyovEybzmsk5fkt22a_1rQpVMfSalMKFfDLfK5JhSw8uqBp9OqAlJR0RqO_Qbx7EXN3pMLPuuI_o1ol8nhQb0TwjbnFrGfhv3wBfjG-ktutGgEu45-X58Ug0shXES0_rudq2xRA8kHZDqv2DQMBZplk7Iq0gGm_umUqFXBhgotghkA4Atvbd32uY6tPbG3jm5Svb_-6vekUezy_mZPjs9__qGPMYdzG7h8oDs9qtbfwgmVF-9DSzyEzpSGk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stressed+to+death%3A+Mitochondrial+stress+responses+connect+respiration+and+apoptosis+in+cancer&rft.jtitle=Molecular+cell&rft.au=Winter%2C+Jacob+M.&rft.au=Yadav%2C+Tarun&rft.au=Rutter%2C+Jared&rft.date=2022-09-15&rft.issn=1097-2765&rft.volume=82&rft.issue=18&rft.spage=3321&rft.epage=3332&rft_id=info:doi/10.1016%2Fj.molcel.2022.07.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2022_07_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |