A Tutorial in Bayesian Potential Outcomes Mediation Analysis

Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibili...

Full description

Saved in:
Bibliographic Details
Published inStructural equation modeling Vol. 25; no. 1; pp. 121 - 136
Main Authors Miočević, Milica, Gonzalez, Oscar, Valente, Matthew J., MacKinnon, David P.
Format Journal Article
LanguageEnglish
Published United States Routledge 01.01.2018
Psychology Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.
AbstractList Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.
Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.
Author Gonzalez, Oscar
Valente, Matthew J.
Miočević, Milica
MacKinnon, David P.
AuthorAffiliation 2 Department of Psychology, Arizona State University
1 Department of Methodology and Statistics, Utrecht University
AuthorAffiliation_xml – name: 1 Department of Methodology and Statistics, Utrecht University
– name: 2 Department of Psychology, Arizona State University
Author_xml – sequence: 1
  givenname: Milica
  surname: Miočević
  fullname: Miočević, Milica
  email: m.miocevic@uu.nl
  organization: Utrecht University
– sequence: 2
  givenname: Oscar
  surname: Gonzalez
  fullname: Gonzalez, Oscar
  organization: Arizona State University
– sequence: 3
  givenname: Matthew J.
  surname: Valente
  fullname: Valente, Matthew J.
  organization: Arizona State University
– sequence: 4
  givenname: David P.
  surname: MacKinnon
  fullname: MacKinnon, David P.
  organization: Arizona State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29910595$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wE0CR2LDJcK8dJ7FAiGnFSyoqi7K2bhwHXCV2sRPQ_Pt6mGkFXcDKlv2do3PvOWYHPnjL2FOEFUILLxEakBJxxQGbFYqKywofsCOUgpctQHOQ75kpt9AhO07pCgBb5O0jdsiVQpBKHrHX6-JymUN0NBbOF6e0scmRL76E2fp5-3qxzCZMNhWfbe9odsEXa0_jJrn0mD0caEz2yf48YV_fv7s8-1ieX3z4dLY-L42s-VxWKE1tKmGaeqhU1XPVkbRCYN1wgdB3JKSClmMFRI3sOmmIKlsrytmhV-KEvdn5Xi_dZHuTk0Ua9XV0E8WNDuT03z_efdffwk8tlVJQQTZ4sTeI4cdi06wnl4wdR_I2LElzkHUjVVPXGX1-D70KS8wDJ42qxVY0UrSZevZnorsot4vNgNwBJoaUoh3uEAS9LVDfFqi3Bep9gVn36p7OuPn31vNgbvyv-u1O7fwQ4kS_Qhx7PdNmDHGI5I1LWvzb4ganA7Gm
CitedBy_id crossref_primary_10_1177_09622802211003113
crossref_primary_10_1186_s12887_020_02341_0
crossref_primary_10_1080_00273171_2022_2119928
crossref_primary_10_1007_s11482_024_10401_1
crossref_primary_10_1016_j_ecosta_2021_12_009
crossref_primary_10_1080_03610926_2024_2307461
crossref_primary_10_1016_j_jbvi_2020_e00190
crossref_primary_10_1080_08923647_2019_1705116
crossref_primary_10_1007_s11336_020_09736_z
crossref_primary_10_1371_journal_pone_0287037
crossref_primary_10_1007_s41237_022_00185_9
crossref_primary_10_1093_pm_pnae132
crossref_primary_10_3390_brainsci10050303
crossref_primary_10_3390_jcm13123464
crossref_primary_10_1007_s11135_024_01915_9
crossref_primary_10_1016_j_intell_2024_101893
crossref_primary_10_1177_1094428118770731
crossref_primary_10_1093_aje_kwad183
crossref_primary_10_1177_03611981221128803
crossref_primary_10_1016_j_anr_2024_10_009
crossref_primary_10_1007_s11121_022_01422_z
crossref_primary_10_1080_10705511_2020_1811709
crossref_primary_10_1027_1614_2241_a000177
crossref_primary_10_1080_10705511_2024_2347588
crossref_primary_10_1007_s10639_023_12163_z
crossref_primary_10_3389_fpsyg_2019_00740
crossref_primary_10_1016_j_ijdrr_2020_101492
crossref_primary_10_1371_journal_pntd_0009260
crossref_primary_10_1080_10705511_2020_1777133
crossref_primary_10_3758_s13428_023_02095_4
crossref_primary_10_1016_j_spasta_2025_100885
crossref_primary_10_1080_02508281_2020_1830341
crossref_primary_10_3758_s13428_022_01860_1
crossref_primary_10_1016_j_neunet_2021_07_015
crossref_primary_10_1080_00273171_2022_2149449
crossref_primary_10_1080_17489539_2020_1732029
crossref_primary_10_1016_j_janxdis_2024_102827
crossref_primary_10_1080_10705511_2023_2193312
crossref_primary_10_3390_psych5030063
crossref_primary_10_1186_s40359_021_00704_5
crossref_primary_10_1016_j_cct_2022_106705
crossref_primary_10_1016_j_csda_2022_107586
crossref_primary_10_1044_2022_JSLHR_21_00551
crossref_primary_10_3389_fevo_2022_934876
crossref_primary_10_26754_ojs_ried_ijds_10548
Cites_doi 10.3758/s13428-011-0076-x
10.1080/10705510709336745
10.1037/1082-989X.7.1.83
10.1080/10705511.2017.1312407
10.1080/01621459.1986.10478354
10.18637/jss.v048.i02
10.18637/jss.v012.i03
10.1198/016214504000001880
10.3758/BF03193007
10.1097/00001648-199203000-00013
10.1177/0193841X14524576
10.1023/A:1008820505350
10.1111/rssb.12082
10.1037/1082-989X.12.1.23
10.1111/cdev.12169
10.4310/SII.2009.v2.n4.a7
10.1097/EDE.0b013e3181b6f4c9
10.1080/01621459.2015.1125788
10.1037/0278-6133.10.3.164
10.1037/h0037350
10.1097/EDE.0000000000000121
10.1097/EDE.0000000000000054
10.1080/00273171.2011.576624
10.1214/ss/1177012031
10.1080/10705511.2014.935256
10.1080/01621459.1996.10476956
10.1093/aje/kwt270
10.1017/CBO9781139025751
10.1177/0193841X8100500502
10.1515/jci-2013-0003
10.1023/A:1008929526011
10.1037/a0034912
10.1037/0022-3514.51.6.1173
10.3102/10769986029004461
10.1111/1467-9884.00117
10.1097/EDE.0b013e3181df191c
10.1037/a0020761
10.1177/0193841X9902300404
10.1177/0193841X9301700202
10.1080/10705511.2015.1062730
10.1037/1082-989X.12.1.1
10.1080/00031305.1992.10475878
10.3758/BRM.41.2.425
10.1177/0013164415618992
10.1037/a0016972
10.1177/1740774507083434
10.1111/j.1541-0420.2012.01781.x
10.1080/10705511.2014.935843
10.1007/s11121-008-0109-6
10.1037/1082-989X.7.4.422
10.1037/0022-3514.89.6.852
10.1037/a0029311
10.1177/0962280215615899
10.1037/a0020141
10.1214/aoms/1177732676
10.1515/jci-2017-0003
10.1002/j.2333-8504.2005.tb01983.x
10.1017/CBO9780511803161
10.1177/1359105315573448
10.1207/s15327906mbr3901_4
10.2307/271055
10.1080/00273171.2014.1003770
10.1037/a0036434
10.1002/sim.5830
10.1177/0049124198027002004
10.1080/00273170701341316
10.1002/sim.6990
10.1111/biom.2011.67.issue-3
10.1093/biostatistics/kxp060
10.1080/00273171.2013.784862
10.1214/ss/1177011136
10.1207/s15327906mbr3001_3
10.1037/a0031034
10.1007/BF02294763
10.3389/fpsyg.2017.00151
10.1007/s10461-014-0802-3
10.1002/9780470686621
10.1093/pan/mps040
10.1007/978-3-642-58648-4_1
10.1111/biom.v71.1
10.1177/1088868314542878
ContentType Journal Article
Copyright Copyright © Taylor & Francis Group, LLC
Copyright_xml – notice: Copyright © Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
AHOVV
7X8
5PM
DOI 10.1080/10705511.2017.1342541
DatabaseName CrossRef
PubMed
Education Research Index
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-8007
EndPage 136
ExternalDocumentID PMC5999040
29910595
10_1080_10705511_2017_1342541
1342541
Genre Other
Journal Article
GrantInformation_xml – fundername: National Science Foundation Graduate Research Fellowship
  grantid: DGE-1311230
– fundername: National Institute on Drug Abuse
  grantid: R01 DA09757
  funderid: 10.13039/100000026
– fundername: NIDA NIH HHS
  grantid: F31 DA043317
– fundername: NIDA NIH HHS
  grantid: R37 DA009757
GroupedDBID .7I
.QK
0BK
0R~
123
4.4
5VS
AAGZJ
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEISY
AEKEX
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AGDLA
AGMYJ
AGRBW
AIJEM
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CJ0
CQ1
DGFLZ
DKSSO
EBS
EJD
E~B
E~C
F5P
FXNIP
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
M4Z
NA5
NW-
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
XSW
~01
~S~
AAGDL
AAHIA
AAYXX
AEFOU
AFRVT
AIYEW
CITATION
TASJS
07M
4B3
AAAVZ
AANPH
ABVXC
ABWZE
ACIKQ
ACPKE
ACRBO
ADEWX
ADIUE
ADXAZ
ADYSH
AEXSR
AIXGP
ALLRG
C5A
CAG
CBZAQ
CKOZC
COF
C~T
DGXZK
EFRLQ
EGDCR
JLMOS
L7Y
LJTGL
NPM
OHT
QZZOY
RBICI
ROL
TBH
UA1
YHZ
AHOVV
7X8
5PM
ID FETCH-LOGICAL-c562t-415c6c43c76f494d29ba5e331672310dba359082140aa75bb5caa4e69a5510d93
ISSN 1070-5511
IngestDate Thu Aug 21 18:27:28 EDT 2025
Mon Jul 21 09:37:09 EDT 2025
Thu Aug 14 00:02:21 EDT 2025
Thu Apr 03 07:10:21 EDT 2025
Thu Apr 24 22:54:31 EDT 2025
Wed Jul 30 11:47:47 EDT 2025
Wed Dec 25 09:04:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords potential outcomes
mediation analysis
Bayesian methods
causal inference
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c562t-415c6c43c76f494d29ba5e331672310dba359082140aa75bb5caa4e69a5510d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5999040
PMID 29910595
PQID 1981837538
PQPubID 46559
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_10705511_2017_1342541
proquest_miscellaneous_2056759766
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5999040
pubmed_primary_29910595
proquest_journals_1981837538
crossref_primary_10_1080_10705511_2017_1342541
crossref_citationtrail_10_1080_10705511_2017_1342541
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hove
PublicationTitle Structural equation modeling
PublicationTitleAlternate Struct Equ Modeling
PublicationYear 2018
Publisher Routledge
Psychology Press
Publisher_xml – name: Routledge
– name: Psychology Press
References CIT0072
Robins J. M. (CIT0076) 2010
CIT0073
CIT0075
CIT0078
CIT0077
CIT0079
VanderWeele T. (CIT0096) 2015
CIT0083
CIT0085
CIT0084
CIT0087
MacKinnon D. P. (CIT0040) 2017
CIT0086
CIT0001
CIT0089
CIT0088
Gelman A. (CIT0021) 2004
CIT0081
Plummer M. (CIT0070) 2003
MacKinnon D. P. (CIT0049) 2017
CIT0003
CIT0005
CIT0004
CIT0007
CIT0006
CIT0009
CIT0008
CIT0094
CIT0093
Merkle E. C. (CIT0053) 2015
CIT0095
CIT0010
CIT0097
CIT0012
CIT0011
CIT0099
SAS Institute (CIT0080) 2009
CIT0090
CIT0091
Avin C. (CIT0002) 2005
Miočević M. (CIT0055) 2014
Kruschke J. (CIT0034) 2014
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0020
CIT0022
VanderWeele T. J. (CIT0098) 2013; 2
CIT0025
CIT0024
CIT0027
CIT0026
Yu Q. (CIT0103) 2014; 5
CIT0029
CIT0028
Pearl J. (CIT0065) 2001
CIT0030
CIT0031
Lazarsfeld P. F. (CIT0036) 1955
CIT0033
R Core Team (CIT0074) 2014
Sinharay S. (CIT0082) 2003; 2003
Muthén L. K. (CIT0059) 1998
CIT0035
CIT0038
CIT0039
CIT0041
CIT0043
CIT0042
CIT0045
CIT0044
CIT0047
Levy R. (CIT0037) 2013
CIT0046
CIT0048
CIT0050
CIT0052
CIT0051
CIT0054
CIT0056
CIT0058
CIT0057
Van de Schoot R. (CIT0092) 2014; 16
CIT0061
Plummer M. (CIT0071) 2006; 6
CIT0060
CIT0063
CIT0062
CIT0064
CIT0067
CIT0100
CIT0066
Kendall P. L. (CIT0032) 1950
Hernán M. A. (CIT0023) 2016
CIT0069
CIT0102
CIT0068
CIT0101
CIT0104
CIT0105
References_xml – ident: CIT0088
  doi: 10.3758/s13428-011-0076-x
– ident: CIT0008
  doi: 10.1080/10705510709336745
– ident: CIT0045
  doi: 10.1037/1082-989X.7.1.83
– ident: CIT0056
  doi: 10.1080/10705511.2017.1312407
– volume-title: Proceedings of the 19th Joint Conference on Artificial Intelligence
  year: 2005
  ident: CIT0002
– volume-title: Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan
  year: 2014
  ident: CIT0034
– volume-title: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence
  year: 2001
  ident: CIT0065
– ident: CIT0024
  doi: 10.1080/01621459.1986.10478354
– ident: CIT0077
  doi: 10.18637/jss.v048.i02
– ident: CIT0085
  doi: 10.18637/jss.v012.i03
– ident: CIT0079
  doi: 10.1198/016214504000001880
– ident: CIT0042
  doi: 10.3758/BF03193007
– volume-title: Proceedings of the 3rd international workshop on distributed statistical computing
  year: 2003
  ident: CIT0070
– volume-title: blavaan: Bayesian structural equation models via parameter expansion
  year: 2015
  ident: CIT0053
– volume-title: Benchmark validation of statistical models: Application to mediation analysis of imagery and memory
  year: 2017
  ident: CIT0049
– ident: CIT0075
  doi: 10.1097/00001648-199203000-00013
– ident: CIT0013
  doi: 10.1177/0193841X14524576
– ident: CIT0005
  doi: 10.1023/A:1008820505350
– ident: CIT0105
  doi: 10.1111/rssb.12082
– volume-title: SAS/STAT® 9.2 user’s guide
  year: 2009
  ident: CIT0080
– ident: CIT0052
  doi: 10.1037/1082-989X.12.1.23
– ident: CIT0093
  doi: 10.1111/cdev.12169
– ident: CIT0097
  doi: 10.4310/SII.2009.v2.n4.a7
– ident: CIT0099
  doi: 10.1097/EDE.0b013e3181b6f4c9
– ident: CIT0020
  doi: 10.1080/01621459.2015.1125788
– volume-title: Causal inference
  year: 2016
  ident: CIT0023
– volume-title: R: A language and environment for statistical computing
  year: 2014
  ident: CIT0074
– ident: CIT0043
  doi: 10.1037/0278-6133.10.3.164
– ident: CIT0078
  doi: 10.1037/h0037350
– ident: CIT0095
  doi: 10.1097/EDE.0000000000000121
– ident: CIT0087
  doi: 10.1097/EDE.0000000000000054
– volume-title: Structural equation modeling: A second course
  year: 2013
  ident: CIT0037
– ident: CIT0030
  doi: 10.1080/00273171.2011.576624
– ident: CIT0060
  doi: 10.1214/ss/1177012031
– ident: CIT0100
  doi: 10.1080/10705511.2014.935256
– ident: CIT0012
  doi: 10.1080/01621459.1996.10476956
– volume: 16
  start-page: 75
  issue: 2
  year: 2014
  ident: CIT0092
  publication-title: European Health Psychologist
– ident: CIT0035
  doi: 10.1093/aje/kwt270
– ident: CIT0028
  doi: 10.1017/CBO9781139025751
– volume-title: Bayesian data analysis
  year: 2004
  ident: CIT0021
– ident: CIT0031
  doi: 10.1177/0193841X8100500502
– ident: CIT0067
  doi: 10.1515/jci-2013-0003
– ident: CIT0039
  doi: 10.1023/A:1008929526011
– ident: CIT0090
  doi: 10.1037/a0034912
– ident: CIT0003
  doi: 10.1037/0022-3514.51.6.1173
– ident: CIT0083
  doi: 10.3102/10769986029004461
– volume-title: Proceedings of the 39th annual meeting of SAS Users Group International
  year: 2014
  ident: CIT0055
– ident: CIT0004
  doi: 10.1111/1467-9884.00117
– ident: CIT0094
  doi: 10.1097/EDE.0b013e3181df191c
– ident: CIT0026
  doi: 10.1037/a0020761
– ident: CIT0033
  doi: 10.1177/0193841X9902300404
– ident: CIT0048
– ident: CIT0041
  doi: 10.1177/0193841X9301700202
– ident: CIT0061
  doi: 10.1080/10705511.2015.1062730
– volume: 5
  start-page: 1
  issue: 2
  year: 2014
  ident: CIT0103
  publication-title: Journal of Biometrics and Biostatistics
– ident: CIT0054
– ident: CIT0016
  doi: 10.1037/1082-989X.12.1.1
– volume-title: Introduction to statistical mediation analysis
  year: 2017
  ident: CIT0040
– ident: CIT0006
  doi: 10.1080/00031305.1992.10475878
– ident: CIT0009
  doi: 10.3758/BRM.41.2.425
– ident: CIT0089
  doi: 10.1177/0013164415618992
– ident: CIT0104
  doi: 10.1037/a0016972
– ident: CIT0044
  doi: 10.1177/1740774507083434
– ident: CIT0015
  doi: 10.1111/j.1541-0420.2012.01781.x
– ident: CIT0058
  doi: 10.1080/10705511.2014.935843
– ident: CIT0019
  doi: 10.1007/s11121-008-0109-6
– ident: CIT0081
  doi: 10.1037/1082-989X.7.4.422
– ident: CIT0057
  doi: 10.1037/0022-3514.89.6.852
– ident: CIT0010
  doi: 10.1037/a0029311
– ident: CIT0086
  doi: 10.1177/0962280215615899
– ident: CIT0073
  doi: 10.1037/a0020141
– ident: CIT0102
  doi: 10.1214/aoms/1177732676
– ident: CIT0069
  doi: 10.1515/jci-2017-0003
– volume: 2003
  start-page: i
  issue: 1
  year: 2003
  ident: CIT0082
  publication-title: ETS Research Report Series
  doi: 10.1002/j.2333-8504.2005.tb01983.x
– ident: CIT0066
  doi: 10.1017/CBO9780511803161
– ident: CIT0007
  doi: 10.1177/1359105315573448
– volume: 6
  start-page: 7
  issue: 1
  year: 2006
  ident: CIT0071
  publication-title: R News
– ident: CIT0046
  doi: 10.1207/s15327906mbr3901_4
– ident: CIT0025
  doi: 10.2307/271055
– ident: CIT0062
  doi: 10.1080/00273171.2014.1003770
– ident: CIT0068
  doi: 10.1037/a0036434
– volume-title: Causality and psychopathology: Finding the determinants of disorders and their cures
  year: 2010
  ident: CIT0076
– ident: CIT0101
  doi: 10.1002/sim.5830
– ident: CIT0063
  doi: 10.1177/0049124198027002004
– volume-title: Mplus user’s guide
  year: 1998
  ident: CIT0059
– ident: CIT0072
  doi: 10.1080/00273170701341316
– ident: CIT0038
  doi: 10.1002/sim.6990
– volume-title: Explanation in causal inference: Methods for mediation and interaction
  year: 2015
  ident: CIT0096
– ident: CIT0001
  doi: 10.1111/biom.2011.67.issue-3
– volume-title: The language of social research: A reader in the methodology of social research
  year: 1955
  ident: CIT0036
– volume: 2
  start-page: 95
  issue: 1
  year: 2013
  ident: CIT0098
  publication-title: Epidemiologic Methods
– ident: CIT0017
  doi: 10.1093/biostatistics/kxp060
– ident: CIT0018
  doi: 10.1080/00273171.2013.784862
– ident: CIT0022
  doi: 10.1214/ss/1177011136
– ident: CIT0050
  doi: 10.1207/s15327906mbr3001_3
– ident: CIT0091
  doi: 10.1037/a0031034
– ident: CIT0084
  doi: 10.1007/BF02294763
– ident: CIT0011
  doi: 10.3389/fpsyg.2017.00151
– ident: CIT0051
  doi: 10.1007/s10461-014-0802-3
– ident: CIT0029
  doi: 10.1002/9780470686621
– volume-title: Continuities in social research; studies in the scope and method of “The American soldier”
  year: 1950
  ident: CIT0032
– ident: CIT0027
  doi: 10.1093/pan/mps040
– ident: CIT0064
  doi: 10.1007/978-3-642-58648-4_1
– ident: CIT0014
  doi: 10.1111/biom.v71.1
– ident: CIT0047
  doi: 10.1177/1088868314542878
SSID ssj0018128
Score 2.4005022
Snippet Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121
SubjectTerms Bayesian analysis
Bayesian methods
Bayesian Statistics
causal inference
Hypotheses
mediation analysis
potential outcomes
Predictor Variables
Title A Tutorial in Bayesian Potential Outcomes Mediation Analysis
URI https://www.tandfonline.com/doi/abs/10.1080/10705511.2017.1342541
https://www.ncbi.nlm.nih.gov/pubmed/29910595
https://www.proquest.com/docview/1981837538
https://www.proquest.com/docview/2056759766
https://pubmed.ncbi.nlm.nih.gov/PMC5999040
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOqOXVtAUFiVuVJYnzssRlocCqaCmCLeot2I4jVoJsq2QP9Nczfm4CiwpcoihOnMgzmfnGnvmM0DOA0HUsqAgEKySpNiYBy4oEopSK1EUFkCGTtcPz99nsPDm9SC9Goy-9rKV1xyb8emtdyf9IFa6BXGWV7D9I1nUKF-Ac5AtHkDAc_0rG0-OFpCBQ-240xy_pD6FKIj-sOpkDBFfP1h28V7RqPUaL2rKQ9FHpJ0Uiqwg4xJXm_tZb5Fi_pooGVwp4noAnVSe5zrrvJ_u8XTXX4HDUnPRZy6lL_P1MpXPTk-B6g_HNctSc8nfLptGr_yrF3tScmbmIqOjNRWjzCQYkAAwW9e2rLmwe6JE2lpGujf7NiOusR9mX7Eqm3-WTCINxSQb3gywuvyvJgkuVMDHd-DSXaWibbqGdGAKJeIx2Fh9PZzO30gQAR5dLmi-3VV5F-HzrF0j2aNPnAMoMiG63hSu_Zt32YMxiF9018Yc_1cq0h0aiuYfuzB15b3sfvZj6Vq38ZeNbtfKdWvlWrXynVr5Vqwfo_M3rxatZYDbZCDhA3y4AAMcznmCeZ3VCkiomjKYCS4IECf0rRnFKACdCIE5pnjKWckoTkREKQxNWBD9EY1ARsY98HuU540laEcB8IhSU1DhkIYsKSnEdhx5K7HiV3DDQy41QvpWRIaq1I17KES_NiHto4h671BQsNz1A-sIoOzX3VeuNakp8w7NHVnKl-dPbMiIAazEE9oWHnrpmsMNycY02YrVuoZMUYm8A95mHHmlBu6-1CuOhfKAC7gbJ8T5saZZfFdd7CgEc-NmDP_Z5iG5v_sQjNAaDIR4DTu7YE6PqPwHAX7LF
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hONAeoEBbAhSCxDWrZG0nscQFqqIUWEDVInGzbMdRUassYrMH-PXM5Eu7qBUHTpHiOMnYY_uNPfMG4AghdDF02gXOpESqzWRg4pSjlZLLIs0RMsQUOzy6irNbfn4n7uZiYcitkmzooiGKqOdqGty0Gd25xOGVOGAiMu-iZBAx1DuKXV8RkjM0wFbGv86zrD9LwCWsCYhLwoBqdXE8_3vRwgq1wF_6LxT62plybnU6WwfbydU4pfwZzCozsM-vKB_fJ_gnWGvBq3_SaNsGLLlyEz6OeubX6RYcn_hjokVAtfbvS_9UPzkK0_RvJhX5JeHd61mFX3VTf1RnCUG98DtmlM9we_Zj_D0L2gwNgUXcVAW4-tvYcmaTuOCS50NptHCMousJN-ZGszqnOlpxWifCGGG15i6WGqUIc8m-wHI5Kd02-DZKEmO5yCUCBhc6LQsWmtBEqdasGIYe8K5XlG3pyymLxl8VtSynXeMoahzVNo4Hg77aQ8Pf8VYFOd_lqqo3Toomy4lib9Td6_RDtVPBVEUSMRFDqzD14LAvxkFMJzO6dJPZFF8i0HBDZBh78LVRp_5vES8QBhYeJAuK1j9ABOGLJeX975ooXCD6x0l65x0iHcBqNh5dqsufVxe78AGL0mYDag-Wq8eZ-4aQrDL77Zh7AfWTJmk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEB5KAmV72O273qatC7062JFfgr2kj5BmN2lYEuhNSLLMLi1OWNuH9tfvjF8koWUPORksy7akkeYbaeYbgE8IodORkcYxKiZSbcYdFcY-WikJT-MEIUNIscPzRThd-7OfQetNmDdulWRDpzVRRLVW0-TeJmnrEYdXooDxyLrzoqHHUOwodL0foj5CIe-vrmfTaXeUgBqsjoeLXIdqtWE8_3vRnoLaoy_9Fwg99KXcUU6TM1Bts2qflF_DslBD_feA8fGodj-F0wa62uNa1p7BI5M9hyfzjvc1fwEXY3tFpAgo1PZtZn-WfwwFadrLTUFeSXj3R1ngR01uz6scISgVdsuL8hLWk2-rL1Onyc_gaERNhYO6X4faZzoKU5_7yYgrGRhGsfWEGhMlWZVRHW04KaNAqUBL6ZuQS2yFm3D2CnrZJjNvwNZeFCntBwlHuGBcI3nKXOUqL5aSpSPXAr8dFKEb8nLKofFbeA3Hads5gjpHNJ1jwbCrtq3ZOx6qwHdHXBTVtkla5zgR7IG6g1Y8RLMQ5MLjiIgY2oSxBR-7YpzCdC4jM7Mpc3xJgGYb4sLQgte1NHV_i2iBEHBgQbQnZ90DRA--X5Ld3lQ04QFif1yiz49o0gd4vPw6EVffF5dv4QRL4nr3aQC94q407xCPFep9M-PuASnMJQ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tutorial+in+Bayesian+Potential+Outcomes+Mediation+Analysis&rft.jtitle=Structural+equation+modeling&rft.au=Mio%C4%8Devi%C4%87%2C+Milica&rft.au=Gonzalez%2C+Oscar&rft.au=Valente%2C+Matthew+J&rft.au=MacKinnon%2C+David+P&rft.date=2018-01-01&rft.issn=1070-5511&rft.volume=25&rft.issue=1&rft.spage=121&rft_id=info:doi/10.1080%2F10705511.2017.1342541&rft_id=info%3Apmid%2F29910595&rft.externalDocID=29910595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5511&client=summon