A Tutorial in Bayesian Potential Outcomes Mediation Analysis
Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibili...
Saved in:
Published in | Structural equation modeling Vol. 25; no. 1; pp. 121 - 136 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Routledge
01.01.2018
Psychology Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example. |
---|---|
AbstractList | Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example. Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example.Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation of mediation analyses is challenging because randomization of subjects to levels of the independent variable does not rule out the possibility of unmeasured confounders of the mediator to outcome relation. Furthermore, commonly used frequentist methods for mediation analysis compute the probability of the data given the null hypothesis, which is not the probability of a hypothesis given the data as in Bayesian analysis. Under certain assumptions, applying the potential outcomes framework to mediation analysis allows for the computation of causal effects, and statistical mediation in the Bayesian framework gives indirect effects probabilistic interpretations. This tutorial combines causal inference and Bayesian methods for mediation analysis so the indirect and direct effects have both causal and probabilistic interpretations. Steps in Bayesian causal mediation analysis are shown in the application to an empirical example. |
Author | Gonzalez, Oscar Valente, Matthew J. Miočević, Milica MacKinnon, David P. |
AuthorAffiliation | 2 Department of Psychology, Arizona State University 1 Department of Methodology and Statistics, Utrecht University |
AuthorAffiliation_xml | – name: 1 Department of Methodology and Statistics, Utrecht University – name: 2 Department of Psychology, Arizona State University |
Author_xml | – sequence: 1 givenname: Milica surname: Miočević fullname: Miočević, Milica email: m.miocevic@uu.nl organization: Utrecht University – sequence: 2 givenname: Oscar surname: Gonzalez fullname: Gonzalez, Oscar organization: Arizona State University – sequence: 3 givenname: Matthew J. surname: Valente fullname: Valente, Matthew J. organization: Arizona State University – sequence: 4 givenname: David P. surname: MacKinnon fullname: MacKinnon, David P. organization: Arizona State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29910595$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB_wE0CR2LDJcK8dJ7FAiGnFSyoqi7K2bhwHXCV2sRPQ_Pt6mGkFXcDKlv2do3PvOWYHPnjL2FOEFUILLxEakBJxxQGbFYqKywofsCOUgpctQHOQ75kpt9AhO07pCgBb5O0jdsiVQpBKHrHX6-JymUN0NBbOF6e0scmRL76E2fp5-3qxzCZMNhWfbe9odsEXa0_jJrn0mD0caEz2yf48YV_fv7s8-1ieX3z4dLY-L42s-VxWKE1tKmGaeqhU1XPVkbRCYN1wgdB3JKSClmMFRI3sOmmIKlsrytmhV-KEvdn5Xi_dZHuTk0Ua9XV0E8WNDuT03z_efdffwk8tlVJQQTZ4sTeI4cdi06wnl4wdR_I2LElzkHUjVVPXGX1-D70KS8wDJ42qxVY0UrSZevZnorsot4vNgNwBJoaUoh3uEAS9LVDfFqi3Bep9gVn36p7OuPn31vNgbvyv-u1O7fwQ4kS_Qhx7PdNmDHGI5I1LWvzb4ganA7Gm |
CitedBy_id | crossref_primary_10_1177_09622802211003113 crossref_primary_10_1186_s12887_020_02341_0 crossref_primary_10_1080_00273171_2022_2119928 crossref_primary_10_1007_s11482_024_10401_1 crossref_primary_10_1016_j_ecosta_2021_12_009 crossref_primary_10_1080_03610926_2024_2307461 crossref_primary_10_1016_j_jbvi_2020_e00190 crossref_primary_10_1080_08923647_2019_1705116 crossref_primary_10_1007_s11336_020_09736_z crossref_primary_10_1371_journal_pone_0287037 crossref_primary_10_1007_s41237_022_00185_9 crossref_primary_10_1093_pm_pnae132 crossref_primary_10_3390_brainsci10050303 crossref_primary_10_3390_jcm13123464 crossref_primary_10_1007_s11135_024_01915_9 crossref_primary_10_1016_j_intell_2024_101893 crossref_primary_10_1177_1094428118770731 crossref_primary_10_1093_aje_kwad183 crossref_primary_10_1177_03611981221128803 crossref_primary_10_1016_j_anr_2024_10_009 crossref_primary_10_1007_s11121_022_01422_z crossref_primary_10_1080_10705511_2020_1811709 crossref_primary_10_1027_1614_2241_a000177 crossref_primary_10_1080_10705511_2024_2347588 crossref_primary_10_1007_s10639_023_12163_z crossref_primary_10_3389_fpsyg_2019_00740 crossref_primary_10_1016_j_ijdrr_2020_101492 crossref_primary_10_1371_journal_pntd_0009260 crossref_primary_10_1080_10705511_2020_1777133 crossref_primary_10_3758_s13428_023_02095_4 crossref_primary_10_1016_j_spasta_2025_100885 crossref_primary_10_1080_02508281_2020_1830341 crossref_primary_10_3758_s13428_022_01860_1 crossref_primary_10_1016_j_neunet_2021_07_015 crossref_primary_10_1080_00273171_2022_2149449 crossref_primary_10_1080_17489539_2020_1732029 crossref_primary_10_1016_j_janxdis_2024_102827 crossref_primary_10_1080_10705511_2023_2193312 crossref_primary_10_3390_psych5030063 crossref_primary_10_1186_s40359_021_00704_5 crossref_primary_10_1016_j_cct_2022_106705 crossref_primary_10_1016_j_csda_2022_107586 crossref_primary_10_1044_2022_JSLHR_21_00551 crossref_primary_10_3389_fevo_2022_934876 crossref_primary_10_26754_ojs_ried_ijds_10548 |
Cites_doi | 10.3758/s13428-011-0076-x 10.1080/10705510709336745 10.1037/1082-989X.7.1.83 10.1080/10705511.2017.1312407 10.1080/01621459.1986.10478354 10.18637/jss.v048.i02 10.18637/jss.v012.i03 10.1198/016214504000001880 10.3758/BF03193007 10.1097/00001648-199203000-00013 10.1177/0193841X14524576 10.1023/A:1008820505350 10.1111/rssb.12082 10.1037/1082-989X.12.1.23 10.1111/cdev.12169 10.4310/SII.2009.v2.n4.a7 10.1097/EDE.0b013e3181b6f4c9 10.1080/01621459.2015.1125788 10.1037/0278-6133.10.3.164 10.1037/h0037350 10.1097/EDE.0000000000000121 10.1097/EDE.0000000000000054 10.1080/00273171.2011.576624 10.1214/ss/1177012031 10.1080/10705511.2014.935256 10.1080/01621459.1996.10476956 10.1093/aje/kwt270 10.1017/CBO9781139025751 10.1177/0193841X8100500502 10.1515/jci-2013-0003 10.1023/A:1008929526011 10.1037/a0034912 10.1037/0022-3514.51.6.1173 10.3102/10769986029004461 10.1111/1467-9884.00117 10.1097/EDE.0b013e3181df191c 10.1037/a0020761 10.1177/0193841X9902300404 10.1177/0193841X9301700202 10.1080/10705511.2015.1062730 10.1037/1082-989X.12.1.1 10.1080/00031305.1992.10475878 10.3758/BRM.41.2.425 10.1177/0013164415618992 10.1037/a0016972 10.1177/1740774507083434 10.1111/j.1541-0420.2012.01781.x 10.1080/10705511.2014.935843 10.1007/s11121-008-0109-6 10.1037/1082-989X.7.4.422 10.1037/0022-3514.89.6.852 10.1037/a0029311 10.1177/0962280215615899 10.1037/a0020141 10.1214/aoms/1177732676 10.1515/jci-2017-0003 10.1002/j.2333-8504.2005.tb01983.x 10.1017/CBO9780511803161 10.1177/1359105315573448 10.1207/s15327906mbr3901_4 10.2307/271055 10.1080/00273171.2014.1003770 10.1037/a0036434 10.1002/sim.5830 10.1177/0049124198027002004 10.1080/00273170701341316 10.1002/sim.6990 10.1111/biom.2011.67.issue-3 10.1093/biostatistics/kxp060 10.1080/00273171.2013.784862 10.1214/ss/1177011136 10.1207/s15327906mbr3001_3 10.1037/a0031034 10.1007/BF02294763 10.3389/fpsyg.2017.00151 10.1007/s10461-014-0802-3 10.1002/9780470686621 10.1093/pan/mps040 10.1007/978-3-642-58648-4_1 10.1111/biom.v71.1 10.1177/1088868314542878 |
ContentType | Journal Article |
Copyright | Copyright © Taylor & Francis Group, LLC |
Copyright_xml | – notice: Copyright © Taylor & Francis Group, LLC |
DBID | AAYXX CITATION NPM AHOVV 7X8 5PM |
DOI | 10.1080/10705511.2017.1342541 |
DatabaseName | CrossRef PubMed Education Research Index MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-8007 |
EndPage | 136 |
ExternalDocumentID | PMC5999040 29910595 10_1080_10705511_2017_1342541 1342541 |
Genre | Other Journal Article |
GrantInformation_xml | – fundername: National Science Foundation Graduate Research Fellowship grantid: DGE-1311230 – fundername: National Institute on Drug Abuse grantid: R01 DA09757 funderid: 10.13039/100000026 – fundername: NIDA NIH HHS grantid: F31 DA043317 – fundername: NIDA NIH HHS grantid: R37 DA009757 |
GroupedDBID | .7I .QK 0BK 0R~ 123 4.4 5VS AAGZJ AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABLJU ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEISY AEKEX AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AGDLA AGMYJ AGRBW AIJEM AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CJ0 CQ1 DGFLZ DKSSO EBS EJD E~B E~C F5P FXNIP G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM M4Z NA5 NW- O9- P2P PQQKQ RIG RNANH ROSJB RSYQP S-F STATR TBQAZ TDBHL TEH TFH TFL TFW TNTFI TRJHH TUROJ UT5 UT9 VAE XSW ~01 ~S~ AAGDL AAHIA AAYXX AEFOU AFRVT AIYEW CITATION TASJS 07M 4B3 AAAVZ AANPH ABVXC ABWZE ACIKQ ACPKE ACRBO ADEWX ADIUE ADXAZ ADYSH AEXSR AIXGP ALLRG C5A CAG CBZAQ CKOZC COF C~T DGXZK EFRLQ EGDCR JLMOS L7Y LJTGL NPM OHT QZZOY RBICI ROL TBH UA1 YHZ AHOVV 7X8 5PM |
ID | FETCH-LOGICAL-c562t-415c6c43c76f494d29ba5e331672310dba359082140aa75bb5caa4e69a5510d93 |
ISSN | 1070-5511 |
IngestDate | Thu Aug 21 18:27:28 EDT 2025 Mon Jul 21 09:37:09 EDT 2025 Thu Aug 14 00:02:21 EDT 2025 Thu Apr 03 07:10:21 EDT 2025 Thu Apr 24 22:54:31 EDT 2025 Wed Jul 30 11:47:47 EDT 2025 Wed Dec 25 09:04:24 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | potential outcomes mediation analysis Bayesian methods causal inference |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c562t-415c6c43c76f494d29ba5e331672310dba359082140aa75bb5caa4e69a5510d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5999040 |
PMID | 29910595 |
PQID | 1981837538 |
PQPubID | 46559 |
PageCount | 16 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_10705511_2017_1342541 proquest_miscellaneous_2056759766 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5999040 pubmed_primary_29910595 proquest_journals_1981837538 crossref_primary_10_1080_10705511_2017_1342541 crossref_citationtrail_10_1080_10705511_2017_1342541 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hove |
PublicationTitle | Structural equation modeling |
PublicationTitleAlternate | Struct Equ Modeling |
PublicationYear | 2018 |
Publisher | Routledge Psychology Press |
Publisher_xml | – name: Routledge – name: Psychology Press |
References | CIT0072 Robins J. M. (CIT0076) 2010 CIT0073 CIT0075 CIT0078 CIT0077 CIT0079 VanderWeele T. (CIT0096) 2015 CIT0083 CIT0085 CIT0084 CIT0087 MacKinnon D. P. (CIT0040) 2017 CIT0086 CIT0001 CIT0089 CIT0088 Gelman A. (CIT0021) 2004 CIT0081 Plummer M. (CIT0070) 2003 MacKinnon D. P. (CIT0049) 2017 CIT0003 CIT0005 CIT0004 CIT0007 CIT0006 CIT0009 CIT0008 CIT0094 CIT0093 Merkle E. C. (CIT0053) 2015 CIT0095 CIT0010 CIT0097 CIT0012 CIT0011 CIT0099 SAS Institute (CIT0080) 2009 CIT0090 CIT0091 Avin C. (CIT0002) 2005 Miočević M. (CIT0055) 2014 Kruschke J. (CIT0034) 2014 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0020 CIT0022 VanderWeele T. J. (CIT0098) 2013; 2 CIT0025 CIT0024 CIT0027 CIT0026 Yu Q. (CIT0103) 2014; 5 CIT0029 CIT0028 Pearl J. (CIT0065) 2001 CIT0030 CIT0031 Lazarsfeld P. F. (CIT0036) 1955 CIT0033 R Core Team (CIT0074) 2014 Sinharay S. (CIT0082) 2003; 2003 Muthén L. K. (CIT0059) 1998 CIT0035 CIT0038 CIT0039 CIT0041 CIT0043 CIT0042 CIT0045 CIT0044 CIT0047 Levy R. (CIT0037) 2013 CIT0046 CIT0048 CIT0050 CIT0052 CIT0051 CIT0054 CIT0056 CIT0058 CIT0057 Van de Schoot R. (CIT0092) 2014; 16 CIT0061 Plummer M. (CIT0071) 2006; 6 CIT0060 CIT0063 CIT0062 CIT0064 CIT0067 CIT0100 CIT0066 Kendall P. L. (CIT0032) 1950 Hernán M. A. (CIT0023) 2016 CIT0069 CIT0102 CIT0068 CIT0101 CIT0104 CIT0105 |
References_xml | – ident: CIT0088 doi: 10.3758/s13428-011-0076-x – ident: CIT0008 doi: 10.1080/10705510709336745 – ident: CIT0045 doi: 10.1037/1082-989X.7.1.83 – ident: CIT0056 doi: 10.1080/10705511.2017.1312407 – volume-title: Proceedings of the 19th Joint Conference on Artificial Intelligence year: 2005 ident: CIT0002 – volume-title: Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan year: 2014 ident: CIT0034 – volume-title: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence year: 2001 ident: CIT0065 – ident: CIT0024 doi: 10.1080/01621459.1986.10478354 – ident: CIT0077 doi: 10.18637/jss.v048.i02 – ident: CIT0085 doi: 10.18637/jss.v012.i03 – ident: CIT0079 doi: 10.1198/016214504000001880 – ident: CIT0042 doi: 10.3758/BF03193007 – volume-title: Proceedings of the 3rd international workshop on distributed statistical computing year: 2003 ident: CIT0070 – volume-title: blavaan: Bayesian structural equation models via parameter expansion year: 2015 ident: CIT0053 – volume-title: Benchmark validation of statistical models: Application to mediation analysis of imagery and memory year: 2017 ident: CIT0049 – ident: CIT0075 doi: 10.1097/00001648-199203000-00013 – ident: CIT0013 doi: 10.1177/0193841X14524576 – ident: CIT0005 doi: 10.1023/A:1008820505350 – ident: CIT0105 doi: 10.1111/rssb.12082 – volume-title: SAS/STAT® 9.2 user’s guide year: 2009 ident: CIT0080 – ident: CIT0052 doi: 10.1037/1082-989X.12.1.23 – ident: CIT0093 doi: 10.1111/cdev.12169 – ident: CIT0097 doi: 10.4310/SII.2009.v2.n4.a7 – ident: CIT0099 doi: 10.1097/EDE.0b013e3181b6f4c9 – ident: CIT0020 doi: 10.1080/01621459.2015.1125788 – volume-title: Causal inference year: 2016 ident: CIT0023 – volume-title: R: A language and environment for statistical computing year: 2014 ident: CIT0074 – ident: CIT0043 doi: 10.1037/0278-6133.10.3.164 – ident: CIT0078 doi: 10.1037/h0037350 – ident: CIT0095 doi: 10.1097/EDE.0000000000000121 – ident: CIT0087 doi: 10.1097/EDE.0000000000000054 – volume-title: Structural equation modeling: A second course year: 2013 ident: CIT0037 – ident: CIT0030 doi: 10.1080/00273171.2011.576624 – ident: CIT0060 doi: 10.1214/ss/1177012031 – ident: CIT0100 doi: 10.1080/10705511.2014.935256 – ident: CIT0012 doi: 10.1080/01621459.1996.10476956 – volume: 16 start-page: 75 issue: 2 year: 2014 ident: CIT0092 publication-title: European Health Psychologist – ident: CIT0035 doi: 10.1093/aje/kwt270 – ident: CIT0028 doi: 10.1017/CBO9781139025751 – volume-title: Bayesian data analysis year: 2004 ident: CIT0021 – ident: CIT0031 doi: 10.1177/0193841X8100500502 – ident: CIT0067 doi: 10.1515/jci-2013-0003 – ident: CIT0039 doi: 10.1023/A:1008929526011 – ident: CIT0090 doi: 10.1037/a0034912 – ident: CIT0003 doi: 10.1037/0022-3514.51.6.1173 – ident: CIT0083 doi: 10.3102/10769986029004461 – volume-title: Proceedings of the 39th annual meeting of SAS Users Group International year: 2014 ident: CIT0055 – ident: CIT0004 doi: 10.1111/1467-9884.00117 – ident: CIT0094 doi: 10.1097/EDE.0b013e3181df191c – ident: CIT0026 doi: 10.1037/a0020761 – ident: CIT0033 doi: 10.1177/0193841X9902300404 – ident: CIT0048 – ident: CIT0041 doi: 10.1177/0193841X9301700202 – ident: CIT0061 doi: 10.1080/10705511.2015.1062730 – volume: 5 start-page: 1 issue: 2 year: 2014 ident: CIT0103 publication-title: Journal of Biometrics and Biostatistics – ident: CIT0054 – ident: CIT0016 doi: 10.1037/1082-989X.12.1.1 – volume-title: Introduction to statistical mediation analysis year: 2017 ident: CIT0040 – ident: CIT0006 doi: 10.1080/00031305.1992.10475878 – ident: CIT0009 doi: 10.3758/BRM.41.2.425 – ident: CIT0089 doi: 10.1177/0013164415618992 – ident: CIT0104 doi: 10.1037/a0016972 – ident: CIT0044 doi: 10.1177/1740774507083434 – ident: CIT0015 doi: 10.1111/j.1541-0420.2012.01781.x – ident: CIT0058 doi: 10.1080/10705511.2014.935843 – ident: CIT0019 doi: 10.1007/s11121-008-0109-6 – ident: CIT0081 doi: 10.1037/1082-989X.7.4.422 – ident: CIT0057 doi: 10.1037/0022-3514.89.6.852 – ident: CIT0010 doi: 10.1037/a0029311 – ident: CIT0086 doi: 10.1177/0962280215615899 – ident: CIT0073 doi: 10.1037/a0020141 – ident: CIT0102 doi: 10.1214/aoms/1177732676 – ident: CIT0069 doi: 10.1515/jci-2017-0003 – volume: 2003 start-page: i issue: 1 year: 2003 ident: CIT0082 publication-title: ETS Research Report Series doi: 10.1002/j.2333-8504.2005.tb01983.x – ident: CIT0066 doi: 10.1017/CBO9780511803161 – ident: CIT0007 doi: 10.1177/1359105315573448 – volume: 6 start-page: 7 issue: 1 year: 2006 ident: CIT0071 publication-title: R News – ident: CIT0046 doi: 10.1207/s15327906mbr3901_4 – ident: CIT0025 doi: 10.2307/271055 – ident: CIT0062 doi: 10.1080/00273171.2014.1003770 – ident: CIT0068 doi: 10.1037/a0036434 – volume-title: Causality and psychopathology: Finding the determinants of disorders and their cures year: 2010 ident: CIT0076 – ident: CIT0101 doi: 10.1002/sim.5830 – ident: CIT0063 doi: 10.1177/0049124198027002004 – volume-title: Mplus user’s guide year: 1998 ident: CIT0059 – ident: CIT0072 doi: 10.1080/00273170701341316 – ident: CIT0038 doi: 10.1002/sim.6990 – volume-title: Explanation in causal inference: Methods for mediation and interaction year: 2015 ident: CIT0096 – ident: CIT0001 doi: 10.1111/biom.2011.67.issue-3 – volume-title: The language of social research: A reader in the methodology of social research year: 1955 ident: CIT0036 – volume: 2 start-page: 95 issue: 1 year: 2013 ident: CIT0098 publication-title: Epidemiologic Methods – ident: CIT0017 doi: 10.1093/biostatistics/kxp060 – ident: CIT0018 doi: 10.1080/00273171.2013.784862 – ident: CIT0022 doi: 10.1214/ss/1177011136 – ident: CIT0050 doi: 10.1207/s15327906mbr3001_3 – ident: CIT0091 doi: 10.1037/a0031034 – ident: CIT0084 doi: 10.1007/BF02294763 – ident: CIT0011 doi: 10.3389/fpsyg.2017.00151 – ident: CIT0051 doi: 10.1007/s10461-014-0802-3 – ident: CIT0029 doi: 10.1002/9780470686621 – volume-title: Continuities in social research; studies in the scope and method of “The American soldier” year: 1950 ident: CIT0032 – ident: CIT0027 doi: 10.1093/pan/mps040 – ident: CIT0064 doi: 10.1007/978-3-642-58648-4_1 – ident: CIT0014 doi: 10.1111/biom.v71.1 – ident: CIT0047 doi: 10.1177/1088868314542878 |
SSID | ssj0018128 |
Score | 2.4005022 |
Snippet | Statistical mediation analysis is used to investigate intermediate variables in the relation between independent and dependent variables. Causal interpretation... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121 |
SubjectTerms | Bayesian analysis Bayesian methods Bayesian Statistics causal inference Hypotheses mediation analysis potential outcomes Predictor Variables |
Title | A Tutorial in Bayesian Potential Outcomes Mediation Analysis |
URI | https://www.tandfonline.com/doi/abs/10.1080/10705511.2017.1342541 https://www.ncbi.nlm.nih.gov/pubmed/29910595 https://www.proquest.com/docview/1981837538 https://www.proquest.com/docview/2056759766 https://pubmed.ncbi.nlm.nih.gov/PMC5999040 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOqOXVtAUFiVuVJYnzssRlocCqaCmCLeot2I4jVoJsq2QP9Nczfm4CiwpcoihOnMgzmfnGnvmM0DOA0HUsqAgEKySpNiYBy4oEopSK1EUFkCGTtcPz99nsPDm9SC9Goy-9rKV1xyb8emtdyf9IFa6BXGWV7D9I1nUKF-Ac5AtHkDAc_0rG0-OFpCBQ-240xy_pD6FKIj-sOpkDBFfP1h28V7RqPUaL2rKQ9FHpJ0Uiqwg4xJXm_tZb5Fi_pooGVwp4noAnVSe5zrrvJ_u8XTXX4HDUnPRZy6lL_P1MpXPTk-B6g_HNctSc8nfLptGr_yrF3tScmbmIqOjNRWjzCQYkAAwW9e2rLmwe6JE2lpGujf7NiOusR9mX7Eqm3-WTCINxSQb3gywuvyvJgkuVMDHd-DSXaWibbqGdGAKJeIx2Fh9PZzO30gQAR5dLmi-3VV5F-HzrF0j2aNPnAMoMiG63hSu_Zt32YMxiF9018Yc_1cq0h0aiuYfuzB15b3sfvZj6Vq38ZeNbtfKdWvlWrXynVr5Vqwfo_M3rxatZYDbZCDhA3y4AAMcznmCeZ3VCkiomjKYCS4IECf0rRnFKACdCIE5pnjKWckoTkREKQxNWBD9EY1ARsY98HuU540laEcB8IhSU1DhkIYsKSnEdhx5K7HiV3DDQy41QvpWRIaq1I17KES_NiHto4h671BQsNz1A-sIoOzX3VeuNakp8w7NHVnKl-dPbMiIAazEE9oWHnrpmsMNycY02YrVuoZMUYm8A95mHHmlBu6-1CuOhfKAC7gbJ8T5saZZfFdd7CgEc-NmDP_Z5iG5v_sQjNAaDIR4DTu7YE6PqPwHAX7LF |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hONAeoEBbAhSCxDWrZG0nscQFqqIUWEDVInGzbMdRUassYrMH-PXM5Eu7qBUHTpHiOMnYY_uNPfMG4AghdDF02gXOpESqzWRg4pSjlZLLIs0RMsQUOzy6irNbfn4n7uZiYcitkmzooiGKqOdqGty0Gd25xOGVOGAiMu-iZBAx1DuKXV8RkjM0wFbGv86zrD9LwCWsCYhLwoBqdXE8_3vRwgq1wF_6LxT62plybnU6WwfbydU4pfwZzCozsM-vKB_fJ_gnWGvBq3_SaNsGLLlyEz6OeubX6RYcn_hjokVAtfbvS_9UPzkK0_RvJhX5JeHd61mFX3VTf1RnCUG98DtmlM9we_Zj_D0L2gwNgUXcVAW4-tvYcmaTuOCS50NptHCMousJN-ZGszqnOlpxWifCGGG15i6WGqUIc8m-wHI5Kd02-DZKEmO5yCUCBhc6LQsWmtBEqdasGIYe8K5XlG3pyymLxl8VtSynXeMoahzVNo4Hg77aQ8Pf8VYFOd_lqqo3Toomy4lib9Td6_RDtVPBVEUSMRFDqzD14LAvxkFMJzO6dJPZFF8i0HBDZBh78LVRp_5vES8QBhYeJAuK1j9ABOGLJeX975ooXCD6x0l65x0iHcBqNh5dqsufVxe78AGL0mYDag-Wq8eZ-4aQrDL77Zh7AfWTJmk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9swEB5KAmV72O273qatC7062JFfgr2kj5BmN2lYEuhNSLLMLi1OWNuH9tfvjF8koWUPORksy7akkeYbaeYbgE8IodORkcYxKiZSbcYdFcY-WikJT-MEIUNIscPzRThd-7OfQetNmDdulWRDpzVRRLVW0-TeJmnrEYdXooDxyLrzoqHHUOwodL0foj5CIe-vrmfTaXeUgBqsjoeLXIdqtWE8_3vRnoLaoy_9Fwg99KXcUU6TM1Bts2qflF_DslBD_feA8fGodj-F0wa62uNa1p7BI5M9hyfzjvc1fwEXY3tFpAgo1PZtZn-WfwwFadrLTUFeSXj3R1ngR01uz6scISgVdsuL8hLWk2-rL1Onyc_gaERNhYO6X4faZzoKU5_7yYgrGRhGsfWEGhMlWZVRHW04KaNAqUBL6ZuQS2yFm3D2CnrZJjNvwNZeFCntBwlHuGBcI3nKXOUqL5aSpSPXAr8dFKEb8nLKofFbeA3Hads5gjpHNJ1jwbCrtq3ZOx6qwHdHXBTVtkla5zgR7IG6g1Y8RLMQ5MLjiIgY2oSxBR-7YpzCdC4jM7Mpc3xJgGYb4sLQgte1NHV_i2iBEHBgQbQnZ90DRA--X5Ld3lQ04QFif1yiz49o0gd4vPw6EVffF5dv4QRL4nr3aQC94q407xCPFep9M-PuASnMJQ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tutorial+in+Bayesian+Potential+Outcomes+Mediation+Analysis&rft.jtitle=Structural+equation+modeling&rft.au=Mio%C4%8Devi%C4%87%2C+Milica&rft.au=Gonzalez%2C+Oscar&rft.au=Valente%2C+Matthew+J&rft.au=MacKinnon%2C+David+P&rft.date=2018-01-01&rft.issn=1070-5511&rft.volume=25&rft.issue=1&rft.spage=121&rft_id=info:doi/10.1080%2F10705511.2017.1342541&rft_id=info%3Apmid%2F29910595&rft.externalDocID=29910595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5511&client=summon |