Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation

Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific de...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 74; no. 4; pp. 844 - 857.e7
Main Authors Wang, GuoXiao, Meyer, Jesse G., Cai, Weikang, Softic, Samir, Li, Mengyao Ella, Verdin, Eric, Newgard, Christopher, Schilling, Birgit, Kahn, C. Ronald
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis. [Display omitted] •Sirt5 regulates mitochondrial protein succinylation and malonylation in brown fat•Increased succinylation of UCP1 reduces its stability and function•Sirt5KO in BAT leads to metabolic inflexibility and impairs mitochondrial homeostasis•These processes are altered by cold exposure and diet Wang et al. performed succinyl-proteomics in brown fat (BAT) of normal and Sirt5 KO mice and identified UCP1 as a new target of Sirt5 desuccinylation. UCP1 with succinyl-mimetic mutations displayed reduced activity and stability. Elevated succinylation of mitochondrial protein in Sirt5 KO BAT resulted in altered metabolic flexibility and mitophagy.
AbstractList Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis. Wang et. al. performed succinyl-proteomics in brown fat (BAT) of normal and Sirt5 KO mice and identified UCP1 as a new target of Sirt5 desuccinylation. UCP1 with succinyl-mimetic mutations displayed reduced activity and stability. Elevated succinylation of mitochondrial protein in Sirt5 KO BAT resulted in altered metabolic flexibility and mitophagy.
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis. [Display omitted] •Sirt5 regulates mitochondrial protein succinylation and malonylation in brown fat•Increased succinylation of UCP1 reduces its stability and function•Sirt5KO in BAT leads to metabolic inflexibility and impairs mitochondrial homeostasis•These processes are altered by cold exposure and diet Wang et al. performed succinyl-proteomics in brown fat (BAT) of normal and Sirt5 KO mice and identified UCP1 as a new target of Sirt5 desuccinylation. UCP1 with succinyl-mimetic mutations displayed reduced activity and stability. Elevated succinylation of mitochondrial protein in Sirt5 KO BAT resulted in altered metabolic flexibility and mitophagy.
Author Wang, GuoXiao
Li, Mengyao Ella
Cai, Weikang
Schilling, Birgit
Verdin, Eric
Meyer, Jesse G.
Softic, Samir
Newgard, Christopher
Kahn, C. Ronald
AuthorAffiliation 4 Lead contact
1 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
3 Sarah W. Stedman Nutrition and Metabolism Center, and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 277049, USA
2 Buck Institute for Research on Aging, Novato, CA 94945, USA
AuthorAffiliation_xml – name: 3 Sarah W. Stedman Nutrition and Metabolism Center, and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 277049, USA
– name: 4 Lead contact
– name: 1 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
– name: 2 Buck Institute for Research on Aging, Novato, CA 94945, USA
Author_xml – sequence: 1
  givenname: GuoXiao
  surname: Wang
  fullname: Wang, GuoXiao
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
– sequence: 2
  givenname: Jesse G.
  surname: Meyer
  fullname: Meyer, Jesse G.
  organization: Buck Institute for Research on Aging, Novato, CA 94945, USA
– sequence: 3
  givenname: Weikang
  surname: Cai
  fullname: Cai, Weikang
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
– sequence: 4
  givenname: Samir
  surname: Softic
  fullname: Softic, Samir
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
– sequence: 5
  givenname: Mengyao Ella
  surname: Li
  fullname: Li, Mengyao Ella
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
– sequence: 6
  givenname: Eric
  surname: Verdin
  fullname: Verdin, Eric
  organization: Buck Institute for Research on Aging, Novato, CA 94945, USA
– sequence: 7
  givenname: Christopher
  surname: Newgard
  fullname: Newgard, Christopher
  organization: Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27708, USA
– sequence: 8
  givenname: Birgit
  surname: Schilling
  fullname: Schilling, Birgit
  organization: Buck Institute for Research on Aging, Novato, CA 94945, USA
– sequence: 9
  givenname: C. Ronald
  surname: Kahn
  fullname: Kahn, C. Ronald
  email: c.ronald.kahn@joslin.harvard.edu
  organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31000437$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEYhC1URD_gHyDkI5ds_bH2xhyQ2ggoUitQac-W7X3dOnLsYO8G5d-zJSkCDsDJr-SZR6OZY3SQcgKEXlLSUELl6bJZ5eggNoxQ1RDeEEafoCNKVDdrqWwP9jfrpDhEx7UuCaGtmKtn6JBTQkjLuyPkruFujGYIOeHs8e3iM8Um9fgqDNnd59SXYCK-gsHYHENd4ZDwecnfEj7rwzpXwDeh1hGw3eJr2ECpwUbAX0bnQtruwM_RU29ihRf79wTdvn93s7iYXX768HFxdjlzQrJhxolQis476JSTHrhwc-Odp84b6h2xouVOMtUZ5inhgihmbWcJV946DpbyE_R2x12PdgW9gzQUE_W6hJUpW51N0L__pHCv7_JGS8EEkfMJ8HoPKPnrCHXQq1CniqNJkMeqGRN8UjIq_0NKqRKMSzFJX_0a62eexxEmwZudwJVcawGvXRh-NDelDFFToh8W10u9W1w_LK4J11OSydz-YX7k_8O27wqmQTYBiq4uQHLQhwJu0H0Ofwd8B290yH4
CitedBy_id crossref_primary_10_1016_j_jbc_2023_105563
crossref_primary_10_1016_j_tem_2021_06_003
crossref_primary_10_3389_fonc_2023_1240115
crossref_primary_10_1016_j_jtcms_2021_01_009
crossref_primary_10_3389_fnagi_2022_845330
crossref_primary_10_1186_s13020_024_01053_2
crossref_primary_10_1016_j_bbrc_2021_08_083
crossref_primary_10_1073_pnas_2123065119
crossref_primary_10_21603_2308_4057_2024_2_609
crossref_primary_10_1016_j_molmet_2023_101770
crossref_primary_10_1093_jmcb_mjaa029
crossref_primary_10_1111_febs_16015
crossref_primary_10_3389_fonc_2022_1081712
crossref_primary_10_1038_s41420_022_00861_5
crossref_primary_10_1016_j_jprot_2021_104149
crossref_primary_10_3390_cells10020403
crossref_primary_10_1016_j_molmet_2020_101130
crossref_primary_10_3390_biom15030414
crossref_primary_10_1507_endocrj_EJ20_0405
crossref_primary_10_1016_j_phrs_2024_107493
crossref_primary_10_1038_s41392_022_01257_8
crossref_primary_10_1002_ctm2_172
crossref_primary_10_1038_s41556_021_00642_9
crossref_primary_10_3389_fpls_2022_1001935
crossref_primary_10_3389_fendo_2021_797680
crossref_primary_10_1016_j_jprot_2025_105400
crossref_primary_10_1016_j_fochx_2023_100962
crossref_primary_10_1016_j_arr_2024_102242
crossref_primary_10_18632_aging_205790
crossref_primary_10_3389_fimmu_2024_1378202
crossref_primary_10_1002_advs_202303388
crossref_primary_10_1007_s10753_025_02239_y
crossref_primary_10_3390_ijms24021352
crossref_primary_10_1016_j_jare_2022_12_009
crossref_primary_10_1038_s41467_022_35219_z
crossref_primary_10_1002_anie_202204565
crossref_primary_10_1080_10641963_2024_2358030
crossref_primary_10_3389_fnut_2023_1082250
crossref_primary_10_1002_prca_202200102
crossref_primary_10_1016_j_bbrep_2021_101127
crossref_primary_10_1155_2022_4919153
crossref_primary_10_15252_embr_202050085
crossref_primary_10_1126_sciadv_adg4993
crossref_primary_10_1016_j_cellsig_2022_110490
crossref_primary_10_1016_j_gendis_2021_12_011
crossref_primary_10_1186_s12964_023_01466_w
crossref_primary_10_1186_s13020_021_00437_y
crossref_primary_10_4254_wjh_v16_i3_344
crossref_primary_10_3390_cells10051126
crossref_primary_10_1093_bib_bbae415
crossref_primary_10_1038_s41598_023_31900_5
crossref_primary_10_1016_j_tips_2019_09_003
crossref_primary_10_1016_j_gendis_2022_03_009
crossref_primary_10_1016_j_isci_2024_109796
crossref_primary_10_3389_fendo_2023_1250487
crossref_primary_10_1016_j_jlr_2024_100626
crossref_primary_10_3390_ani14070999
crossref_primary_10_1002_advs_202301855
crossref_primary_10_1111_jcmm_15503
crossref_primary_10_1158_2643_3230_BCD_20_0168
crossref_primary_10_3724_zdxbyxb_2024_0355
crossref_primary_10_1038_s41467_025_56153_w
crossref_primary_10_3390_ijms241411676
crossref_primary_10_1111_jcmm_16676
crossref_primary_10_1016_j_gendis_2022_10_028
crossref_primary_10_1016_j_mito_2021_05_001
crossref_primary_10_1016_j_molmet_2023_101747
crossref_primary_10_1016_j_abb_2024_109975
crossref_primary_10_3389_fendo_2021_651763
crossref_primary_10_3390_cells12060852
crossref_primary_10_1080_13102818_2024_2425694
crossref_primary_10_1038_s41392_020_00311_7
crossref_primary_10_1007_s11892_020_01342_8
crossref_primary_10_3389_fcell_2022_981075
crossref_primary_10_3390_cimb46020065
crossref_primary_10_1038_s41598_025_92716_z
crossref_primary_10_1186_s13046_022_02338_w
crossref_primary_10_1080_14728222_2025_2482563
crossref_primary_10_1002_adbi_202300370
crossref_primary_10_1007_s11892_019_1264_9
crossref_primary_10_1016_j_biopha_2023_115713
crossref_primary_10_3724_abbs_2022155
crossref_primary_10_1093_bioadv_vbae172
crossref_primary_10_1016_j_molcel_2024_01_002
crossref_primary_10_1097_MD_0000000000031493
crossref_primary_10_1016_j_cmet_2022_07_011
crossref_primary_10_1002_ange_202204565
crossref_primary_10_1002_vms3_1356
crossref_primary_10_3390_molecules27175641
crossref_primary_10_1186_s12964_024_02025_7
crossref_primary_10_1016_j_celrep_2024_115060
crossref_primary_10_1038_s41467_022_33903_8
crossref_primary_10_3390_ph16010091
crossref_primary_10_3389_fonc_2020_00396
crossref_primary_10_1042_BST20220318
crossref_primary_10_1089_ars_2023_0295
crossref_primary_10_7554_eLife_68292
crossref_primary_10_1016_j_jnutbio_2024_109649
crossref_primary_10_1074_jbc_RA119_012095
crossref_primary_10_7717_peerj_15258
crossref_primary_10_14336_AD_2022_0711
crossref_primary_10_1186_s12864_022_08841_w
crossref_primary_10_37349_etat_2023_00196
crossref_primary_10_1186_s13046_020_01681_0
crossref_primary_10_1007_s13238_021_00846_7
crossref_primary_10_1016_j_mcpro_2021_100148
crossref_primary_10_1038_s41392_024_01918_w
crossref_primary_10_1146_annurev_biochem_082520_125411
crossref_primary_10_1038_s41467_020_19743_4
crossref_primary_10_1038_s41580_021_00350_0
crossref_primary_10_3390_ijms21155266
crossref_primary_10_1016_j_mad_2021_111598
crossref_primary_10_1152_ajpendo_00310_2020
crossref_primary_10_1016_j_isci_2020_101113
crossref_primary_10_1038_s41440_021_00842_8
crossref_primary_10_1016_j_drugalcdep_2020_107904
crossref_primary_10_1021_acs_jmedchem_2c00687
crossref_primary_10_1016_j_isci_2024_109991
crossref_primary_10_1038_s41392_023_01546_w
crossref_primary_10_1007_s10522_024_10137_3
crossref_primary_10_3390_cells12222598
crossref_primary_10_3390_biology10030194
crossref_primary_10_3390_ijms251910514
crossref_primary_10_1016_j_bbabio_2021_148428
crossref_primary_10_1016_j_tcb_2021_09_007
crossref_primary_10_3390_nu16244424
crossref_primary_10_3389_fimmu_2022_1068986
crossref_primary_10_1016_j_tice_2024_102636
crossref_primary_10_1186_s12872_024_04120_6
crossref_primary_10_3390_ijms24119276
crossref_primary_10_3390_ijms21114104
crossref_primary_10_1002_mco2_752
crossref_primary_10_1016_j_bmc_2023_117455
crossref_primary_10_1111_febs_15331
crossref_primary_10_1016_j_jlr_2024_100559
Cites_doi 10.1038/nm.2297
10.1016/j.redox.2017.02.011
10.1038/nmeth.4334
10.1016/S0005-2728(00)00247-4
10.1152/physrev.00015.2003
10.1038/nature17399
10.1007/s12079-015-0315-5
10.1056/NEJMoa0810780
10.1016/j.biochi.2016.09.017
10.1038/s41467-017-00249-5
10.2337/db12-1650
10.15252/embr.201438775
10.1038/ncb2220
10.1038/srep29790
10.1016/j.molmet.2014.03.010
10.1007/978-1-59745-157-4_4
10.1042/bj1941019
10.1016/j.cmet.2011.02.009
10.1146/annurev.genet.39.110304.095751
10.1038/srep02806
10.1016/j.cmet.2013.11.013
10.1016/j.cell.2014.04.049
10.1016/j.cell.2012.09.010
10.1016/j.cmet.2014.03.014
10.1042/BJ20120030
10.3389/fncel.2016.00171
10.1016/j.cmet.2017.09.002
10.1038/nprot.2006.478
10.1074/jbc.M117.785022
10.1007/s00018-016-2280-4
10.1038/nm995
10.1074/jbc.M111.260265
10.15252/embr.201541643
10.1074/mcp.O111.016717
10.1016/j.molcel.2015.05.022
10.1002/pmic.201800123
10.1073/pnas.1111308108
10.1002/bies.10058
10.1074/jbc.M604350200
10.1016/j.molcel.2013.06.001
10.1038/s41598-017-16463-6
10.1080/10409238.2018.1458071
10.1016/j.molcel.2014.03.027
10.1038/s41586-018-0353-2
10.1089/ars.2010.3779
10.1091/mbc.e05-01-0033
10.1016/j.molmet.2016.04.006
10.1016/j.cmet.2014.12.009
10.1016/j.cmet.2007.11.006
10.1074/jbc.M000547200
10.4161/auto.21544
10.1074/jbc.M112.381780
10.1016/j.cmet.2017.09.004
10.1016/j.bbamcr.2016.10.015
10.1023/A:1005436121005
10.1007/978-1-59745-245-8_8
10.1021/acs.jproteome.5b00543
10.1073/pnas.1519858113
10.1074/jbc.M004046200
10.1074/mcp.R114.046664
10.1007/BF01140499
10.1038/nature08778
10.1016/j.cmet.2018.01.016
10.1016/j.bbr.2014.12.035
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.molcel.2019.03.021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 857.e7
ExternalDocumentID PMC6525068
31000437
10_1016_j_molcel_2019_03_021
S1097276519302254
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: K01 DK120740
– fundername: NIDDK NIH HHS
  grantid: R24 DK085610
– fundername: NIDDK NIH HHS
  grantid: P30 DK036836
– fundername: NIDDK NIH HHS
  grantid: R01 DK082659
– fundername: NICHD NIH HHS
  grantid: F31 HD095583
– fundername: NICHD NIH HHS
  grantid: T32 HD083185
– fundername: NHLBI NIH HHS
  grantid: R35 HL140018
– fundername: NIGMS NIH HHS
  grantid: R01 GM051279
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c562t-30599187e79c6fe35c8afcf1cfa1fc0b543c6297a2f1035092bb7b039fbc3eb13
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 14:32:10 EDT 2025
Fri Jul 11 07:49:29 EDT 2025
Fri Jul 11 10:21:17 EDT 2025
Mon Jul 21 06:04:32 EDT 2025
Tue Jul 01 03:21:13 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Fri Feb 23 02:30:36 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords UCP1
thermogenesis
succinylation
brown fat
mitochondria
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-30599187e79c6fe35c8afcf1cfa1fc0b543c6297a2f1035092bb7b039fbc3eb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions
G. W. and C. R. K. conceived the project and designed the research. G. W. performed metabolic and molecular studies; W. C. cloned the UCP1 2KQ mutant. J.G. M. performed mass spectrometry data collection and analysis and helped in writing, reviewing and editing the manuscript. B. S. supervised and provided instrumentation and reagents for mass spectrometry. E. V. provided the Sirt5 floxed mice. C. N. performed metabolomics analysis. G. W. and C. R. K. wrote the manuscript. All authors helped edit it.
OpenAccessLink http://www.cell.com/article/S1097276519302254/pdf
PMID 31000437
PQID 2211952365
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6525068
proquest_miscellaneous_2253250216
proquest_miscellaneous_2211952365
pubmed_primary_31000437
crossref_citationtrail_10_1016_j_molcel_2019_03_021
crossref_primary_10_1016_j_molcel_2019_03_021
elsevier_sciencedirect_doi_10_1016_j_molcel_2019_03_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-16
PublicationDateYYYYMMDD 2019-05-16
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Nedergaard, Golozoubova, Matthias, Asadi, Jacobsson, Cannon (bib40) 2001; 1504
Stram, Payne (bib51) 2016; 73
Yu, Sadhukhan, Noriega, Moullan, He, Weiss, Lin, Schoonjans, Auwerx (bib62) 2013; 3
Tanida, Ueno, Kominami (bib54) 2008; 445
Mills, Pierce, Jedrychowski, Garrity, Winther, Vidoni, Yoneshiro, Spinelli, Lu, Kazak (bib38) 2018; 560
Zhang, Bharathi, Rardin, Lu, Maringer, Sims-Lucas, Prochownik, Gibson, Goetzman (bib64) 2017; 292
Jokinen, Pirnes-Karhu, Pietiläinen, Pirinen (bib27) 2017; 12
Liu, Peritore, Ginsberg, Shih, Arun, Donmez (bib34) 2015; 281
Michishita, Park, Burneskis, Barrett, Horikawa (bib37) 2005; 16
Klein, Fasshauer, Klein, Benito, Kahn (bib29) 2002; 24
Rothwell, Saville, Stock (bib46) 1984; 4
Cypess, Weiner, Roberts-Toler, Franquet Elía, Kessler, Kahn, English, Chatman, Trauger, Doria, Kolodny (bib12) 2015; 21
Jing, Emanuelli, Hirschey, Boucher, Lee, Lombard, Verdin, Kahn (bib25) 2011; 108
Morris-Blanco, Dave, Saul, Koronowski, Stradecki, Perez-Pinzon (bib39) 2016; 6
Cypess, Lehman, Williams, Tal, Rodman, Goldfine, Kuo, Palmer, Tseng, Doria (bib11) 2009; 360
Goodbody, Trayhurn (bib20) 1981; 194
Jensen, Joseph, Ilkayeva, Burgess, Lu, Ronnebaum, Odegaard, Becker, Sherry, Newgard (bib24) 2006; 281
Twig, Shirihai (bib56) 2011; 14
Divakaruni, Humphrey, Brand (bib13) 2012; 287
Villarroya, Peyrou, Giralt (bib57) 2017; 134
White, Lapworth, An, Wang, McGarrah, Stevens, Ilkayeva, George, Muehlbauer, Bain (bib60) 2016; 5
Sadhukhan, Liu, Ryu, Nelson, Stupinski, Li, Chen, Zhang, Weiss, Locasale (bib47) 2016; 113
Alcalá, Calderon-Dominguez, Bustos, Ramos, Casals, Serra, Viana, Herrero (bib2) 2017; 7
Juhász (bib28) 2012; 8
Shin, Ma, Chanturiya, Cao, Wang, Kadegowda, Jackson, Rumore, Xue, Shi (bib50) 2017; 26
Frezza, Cipolat, Scorrano (bib16) 2007; 2
Nishida, Rardin, Carrico, He, Sahu, Gut, Najjar, Fitch, Hellerstein, Gibson, Verdin (bib43) 2015; 59
Cannon, Nedergaard (bib7) 2008; 456
Meyer, Mukkamalla, Steen, Nesvizhskii, Gibson, Schilling (bib36) 2017; 14
Li, Fromme, Schweizer, Schöttl, Klingenspor (bib33) 2014; 15
Rardin, He, Nishida, Newman, Carrico, Danielson, Guo, Gut, Sahu, Li (bib45) 2013; 18
Basisty, Meyer, Wei, Gibson, Schilling (bib5) 2018; 18
Tomita, Kuzuyama, Nishiyama (bib55) 2011; 286
Collins, Hunter, Liu, Schilling, Rosenberger, Bader, Chan, Gibson, Gingras, Held (bib10) 2017; 8
Carrico, Meyer, He, Gibson, Verdin (bib8) 2018; 27
An, Muoio, Shiota, Fujimoto, Cline, Shulman, Koves, Stevens, Millington, Newgard (bib3) 2004; 10
Li, Liu (bib32) 2016; 10
Akie, Cooper (bib1) 2015
Zhang, Bilbao, Bruderer, Luban, Strambio-De-Castillia, Lisacek, Hopfgartner, Varesio (bib63) 2015; 14
Bartelt, Bruns, Reimer, Hohenberg, Ittrich, Peldschus, Kaul, Tromsdorf, Weller, Waurisch (bib4) 2011; 17
Chouchani, Kazak, Jedrychowski, Lu, Erickson, Szpyt, Pierce, Laznik-Bogoslavski, Vetrivelan, Clish (bib9) 2016; 532
Nedergaard, Bengtsson, Cannon (bib41) 2011; 13
Nicholls, Rial (bib42) 1999; 31
Park, Chen, Tishkoff, Peng, Tan, Dai, Xie, Zhang, Zwaans, Skinner (bib44) 2013; 50
Cannon, Nedergaard (bib6) 2004; 84
Sun, Kusminski, Luby-Phelps, Spurgin, An, Wang, Holland, Scherer (bib52) 2014; 3
Wallace (bib59) 2005; 39
Guedouari, Daigle, Scorrano, Hebert-Chatelain (bib21) 2017; 1864
Gillet, Navarro, Tate, Rost, Selevsek, Reiter, Bonner, Aebersold (bib17) 2012; 11
Hirschey, Zhao (bib22) 2015; 14
Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard, Grueter, Harris, Biddinger, Ilkayeva (bib23) 2010; 464
Yelamanchi, Jayaram, Thomas, Gundimeda, Khan, Singhal, Keshava Prasad, Pandey, Somani, Gowda (bib61) 2016; 10
Schreiber, Diwoky, Schoiswohl, Feiler, Wongsiriroj, Abdellatif, Kolb, Hoeks, Kershaw, Sedej (bib48) 2017; 26
Zhou, Wang, Sun, Chen, Zhang, Xu, Wang, Wang, Xiong, Guan (bib65) 2016; 17
Gomes, Di Benedetto, Scorrano (bib19) 2011; 13
Matthias, Ohlson, Fredriksson, Jacobsson, Nedergaard, Cannon (bib35) 2000; 275
Giralt, Villarroya (bib18) 2012; 444
Kong, Banks, Liu, Kazak, Rao, Cohen, Wang, Yu, Lo, Tseng (bib30) 2014; 158
Fasshauer, Klein, Ueki, Kriauciunas, Benito, White, Kahn (bib14) 2000; 275
Kumar, Lombard (bib31) 2018; 53
Tan, Peng, Anderson, Chhoy, Xie, Dai, Park, Chen, Huang, Zhang (bib53) 2014; 19
Jing, O’Neill, Rardin, Kleinridders, Ilkeyeva, Ussar, Bain, Lee, Verdin, Newgard (bib26) 2013; 62
Schwer, Verdin (bib49) 2008; 7
Wagner, Hirschey (bib58) 2014; 54
Fedorenko, Lishko, Kirichok (bib15) 2012; 151
Bartelt (10.1016/j.molcel.2019.03.021_bib4) 2011; 17
Nishida (10.1016/j.molcel.2019.03.021_bib43) 2015; 59
Wagner (10.1016/j.molcel.2019.03.021_bib58) 2014; 54
Frezza (10.1016/j.molcel.2019.03.021_bib16) 2007; 2
Jing (10.1016/j.molcel.2019.03.021_bib25) 2011; 108
Mills (10.1016/j.molcel.2019.03.021_bib38) 2018; 560
Yu (10.1016/j.molcel.2019.03.021_bib62) 2013; 3
Cannon (10.1016/j.molcel.2019.03.021_bib6) 2004; 84
Jensen (10.1016/j.molcel.2019.03.021_bib24) 2006; 281
Goodbody (10.1016/j.molcel.2019.03.021_bib20) 1981; 194
Liu (10.1016/j.molcel.2019.03.021_bib34) 2015; 281
Michishita (10.1016/j.molcel.2019.03.021_bib37) 2005; 16
Akie (10.1016/j.molcel.2019.03.021_bib1) 2015
Nicholls (10.1016/j.molcel.2019.03.021_bib42) 1999; 31
Tanida (10.1016/j.molcel.2019.03.021_bib54) 2008; 445
Hirschey (10.1016/j.molcel.2019.03.021_bib22) 2015; 14
Fedorenko (10.1016/j.molcel.2019.03.021_bib15) 2012; 151
Giralt (10.1016/j.molcel.2019.03.021_bib18) 2012; 444
Jing (10.1016/j.molcel.2019.03.021_bib26) 2013; 62
Meyer (10.1016/j.molcel.2019.03.021_bib36) 2017; 14
Kong (10.1016/j.molcel.2019.03.021_bib30) 2014; 158
Stram (10.1016/j.molcel.2019.03.021_bib51) 2016; 73
Tan (10.1016/j.molcel.2019.03.021_bib53) 2014; 19
Collins (10.1016/j.molcel.2019.03.021_bib10) 2017; 8
Hirschey (10.1016/j.molcel.2019.03.021_bib23) 2010; 464
Nedergaard (10.1016/j.molcel.2019.03.021_bib41) 2011; 13
Carrico (10.1016/j.molcel.2019.03.021_bib8) 2018; 27
Guedouari (10.1016/j.molcel.2019.03.021_bib21) 2017; 1864
Basisty (10.1016/j.molcel.2019.03.021_bib5) 2018; 18
Rardin (10.1016/j.molcel.2019.03.021_bib45) 2013; 18
Schwer (10.1016/j.molcel.2019.03.021_bib49) 2008; 7
Morris-Blanco (10.1016/j.molcel.2019.03.021_bib39) 2016; 6
Gillet (10.1016/j.molcel.2019.03.021_bib17) 2012; 11
Nedergaard (10.1016/j.molcel.2019.03.021_bib40) 2001; 1504
An (10.1016/j.molcel.2019.03.021_bib3) 2004; 10
Alcalá (10.1016/j.molcel.2019.03.021_bib2) 2017; 7
Kumar (10.1016/j.molcel.2019.03.021_bib31) 2018; 53
Matthias (10.1016/j.molcel.2019.03.021_bib35) 2000; 275
Cannon (10.1016/j.molcel.2019.03.021_bib7) 2008; 456
Zhang (10.1016/j.molcel.2019.03.021_bib63) 2015; 14
Shin (10.1016/j.molcel.2019.03.021_bib50) 2017; 26
Tomita (10.1016/j.molcel.2019.03.021_bib55) 2011; 286
Cypess (10.1016/j.molcel.2019.03.021_bib11) 2009; 360
Jokinen (10.1016/j.molcel.2019.03.021_bib27) 2017; 12
Zhou (10.1016/j.molcel.2019.03.021_bib65) 2016; 17
Sadhukhan (10.1016/j.molcel.2019.03.021_bib47) 2016; 113
Schreiber (10.1016/j.molcel.2019.03.021_bib48) 2017; 26
Fasshauer (10.1016/j.molcel.2019.03.021_bib14) 2000; 275
Li (10.1016/j.molcel.2019.03.021_bib32) 2016; 10
Divakaruni (10.1016/j.molcel.2019.03.021_bib13) 2012; 287
Twig (10.1016/j.molcel.2019.03.021_bib56) 2011; 14
White (10.1016/j.molcel.2019.03.021_bib60) 2016; 5
Wallace (10.1016/j.molcel.2019.03.021_bib59) 2005; 39
Juhász (10.1016/j.molcel.2019.03.021_bib28) 2012; 8
Rothwell (10.1016/j.molcel.2019.03.021_bib46) 1984; 4
Chouchani (10.1016/j.molcel.2019.03.021_bib9) 2016; 532
Park (10.1016/j.molcel.2019.03.021_bib44) 2013; 50
Villarroya (10.1016/j.molcel.2019.03.021_bib57) 2017; 134
Klein (10.1016/j.molcel.2019.03.021_bib29) 2002; 24
Yelamanchi (10.1016/j.molcel.2019.03.021_bib61) 2016; 10
Gomes (10.1016/j.molcel.2019.03.021_bib19) 2011; 13
Li (10.1016/j.molcel.2019.03.021_bib33) 2014; 15
Zhang (10.1016/j.molcel.2019.03.021_bib64) 2017; 292
Sun (10.1016/j.molcel.2019.03.021_bib52) 2014; 3
Cypess (10.1016/j.molcel.2019.03.021_bib12) 2015; 21
References_xml – volume: 16
  start-page: 4623
  year: 2005
  end-page: 4635
  ident: bib37
  article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
  publication-title: Mol. Biol. Cell
– volume: 4
  start-page: 351
  year: 1984
  end-page: 357
  ident: bib46
  article-title: Brown fat activity in fasted and refed rats
  publication-title: Biosci. Rep.
– volume: 26
  start-page: 764
  year: 2017
  end-page: 777
  ident: bib50
  article-title: Lipolysis in Brown Adipocytes Is Not Essential for Cold-Induced Thermogenesis in Mice
  publication-title: Cell Metab.
– volume: 27
  start-page: 497
  year: 2018
  end-page: 512
  ident: bib8
  article-title: The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications
  publication-title: Cell Metab.
– volume: 14
  start-page: 1939
  year: 2011
  end-page: 1951
  ident: bib56
  article-title: The interplay between mitochondrial dynamics and mitophagy
  publication-title: Antioxid. Redox Signal.
– volume: 292
  start-page: 10239
  year: 2017
  end-page: 10249
  ident: bib64
  article-title: Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain
  publication-title: J. Biol. Chem.
– volume: 560
  start-page: 102
  year: 2018
  end-page: 106
  ident: bib38
  article-title: Accumulation of succinate controls activation of adipose tissue thermogenesis
  publication-title: Nature
– volume: 113
  start-page: 4320
  year: 2016
  end-page: 4325
  ident: bib47
  article-title: Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 104
  year: 2008
  end-page: 112
  ident: bib49
  article-title: Conserved metabolic regulatory functions of sirtuins
  publication-title: Cell Metab.
– volume: 18
  start-page: e1800123
  year: 2018
  ident: bib5
  article-title: Simultaneous Quantification of the Acetylome and Succinylome by ‘One-Pot’ Affinity Enrichment
  publication-title: Proteomics
– volume: 24
  start-page: 382
  year: 2002
  end-page: 388
  ident: bib29
  article-title: Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action
  publication-title: BioEssays
– volume: 84
  start-page: 277
  year: 2004
  end-page: 359
  ident: bib6
  article-title: Brown adipose tissue: function and physiological significance
  publication-title: Physiol. Rev.
– volume: 281
  start-page: 22342
  year: 2006
  end-page: 22351
  ident: bib24
  article-title: Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion
  publication-title: J. Biol. Chem.
– volume: 158
  start-page: 69
  year: 2014
  end-page: 83
  ident: bib30
  article-title: IRF4 is a key thermogenic transcriptional partner of PGC-1α
  publication-title: Cell
– volume: 73
  start-page: 4063
  year: 2016
  end-page: 4073
  ident: bib51
  article-title: Post-translational modifications in mitochondria: protein signaling in the powerhouse
  publication-title: Cell. Mol. Life Sci.
– volume: 13
  start-page: 589
  year: 2011
  end-page: 598
  ident: bib19
  article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
  publication-title: Nat. Cell Biol.
– volume: 8
  start-page: 1875
  year: 2012
  end-page: 1876
  ident: bib28
  article-title: Interpretation of bafilomycin, pH neutralizing or protease inhibitor treatments in autophagic flux experiments: novel considerations
  publication-title: Autophagy
– volume: 3
  start-page: 2806
  year: 2013
  ident: bib62
  article-title: Metabolic characterization of a Sirt5 deficient mouse model
  publication-title: Sci. Rep.
– start-page: e52982
  year: 2015
  ident: bib1
  article-title: Determination of Fatty Acid Oxidation and Lipogenesis in Mouse Primary Hepatocytes
  publication-title: J. Vis. Exp.
– volume: 39
  start-page: 359
  year: 2005
  end-page: 407
  ident: bib59
  article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
  publication-title: Annu. Rev. Genet.
– volume: 14
  start-page: 4359
  year: 2015
  end-page: 4371
  ident: bib63
  article-title: The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition
  publication-title: J. Proteome Res.
– volume: 445
  start-page: 77
  year: 2008
  end-page: 88
  ident: bib54
  article-title: LC3 and Autophagy
  publication-title: Methods Mol. Biol.
– volume: 59
  start-page: 321
  year: 2015
  end-page: 332
  ident: bib43
  article-title: SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target
  publication-title: Mol. Cell
– volume: 21
  start-page: 33
  year: 2015
  end-page: 38
  ident: bib12
  article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist
  publication-title: Cell Metab.
– volume: 134
  start-page: 86
  year: 2017
  end-page: 92
  ident: bib57
  article-title: Transcriptional regulation of the uncoupling protein-1 gene
  publication-title: Biochimie
– volume: 6
  start-page: 29790
  year: 2016
  ident: bib39
  article-title: Protein Kinase C Epsilon Promotes Cerebral Ischemic Tolerance Via Modulation of Mitochondrial Sirt5
  publication-title: Sci. Rep.
– volume: 464
  start-page: 121
  year: 2010
  end-page: 125
  ident: bib23
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
– volume: 14
  start-page: 646
  year: 2017
  end-page: 647
  ident: bib36
  article-title: PIQED: automated identification and quantification of protein modifications from DIA-MS data
  publication-title: Nat. Methods
– volume: 275
  start-page: 25073
  year: 2000
  end-page: 25081
  ident: bib35
  article-title: Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis
  publication-title: J. Biol. Chem.
– volume: 11
  year: 2012
  ident: bib17
  article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis
  publication-title: Mol. Cell Proteomics
– volume: 26
  start-page: 753
  year: 2017
  end-page: 763
  ident: bib48
  article-title: Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue
  publication-title: Cell Metab.
– volume: 19
  start-page: 605
  year: 2014
  end-page: 617
  ident: bib53
  article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
  publication-title: Cell Metab.
– volume: 444
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib18
  article-title: SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging
  publication-title: Biochem. J.
– volume: 108
  start-page: 14608
  year: 2011
  end-page: 14613
  ident: bib25
  article-title: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 268
  year: 2004
  end-page: 274
  ident: bib3
  article-title: Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance
  publication-title: Nat. Med.
– volume: 532
  start-page: 112
  year: 2016
  end-page: 116
  ident: bib9
  article-title: Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1
  publication-title: Nature
– volume: 12
  start-page: 246
  year: 2017
  end-page: 263
  ident: bib27
  article-title: Adipose tissue NAD
  publication-title: Redox Biol.
– volume: 8
  start-page: 291
  year: 2017
  ident: bib10
  article-title: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry
  publication-title: Nat. Commun.
– volume: 15
  start-page: 1069
  year: 2014
  end-page: 1076
  ident: bib33
  article-title: Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes
  publication-title: EMBO Rep.
– volume: 31
  start-page: 399
  year: 1999
  end-page: 406
  ident: bib42
  article-title: A history of the first uncoupling protein, UCP1
  publication-title: J. Bioenerg. Biomembr.
– volume: 151
  start-page: 400
  year: 2012
  end-page: 413
  ident: bib15
  article-title: Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria
  publication-title: Cell
– volume: 54
  start-page: 5
  year: 2014
  end-page: 16
  ident: bib58
  article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases
  publication-title: Mol. Cell
– volume: 50
  start-page: 919
  year: 2013
  end-page: 930
  ident: bib44
  article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
  publication-title: Mol. Cell
– volume: 10
  start-page: 171
  year: 2016
  ident: bib32
  article-title: SIRT5 Deficiency Enhances Susceptibility to Kainate-Induced Seizures and Exacerbates Hippocampal Neurodegeneration not through Mitochondrial Antioxidant Enzyme SOD2
  publication-title: Front. Cell. Neurosci.
– volume: 287
  start-page: 36845
  year: 2012
  end-page: 36853
  ident: bib13
  article-title: Fatty acids change the conformation of uncoupling protein 1 (UCP1)
  publication-title: J. Biol. Chem.
– volume: 286
  start-page: 37406
  year: 2011
  end-page: 37413
  ident: bib55
  article-title: Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 811
  year: 2016
  end-page: 822
  ident: bib65
  article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense
  publication-title: EMBO Rep.
– volume: 1864
  start-page: 169
  year: 2017
  end-page: 176
  ident: bib21
  article-title: Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation
  publication-title: Biochim Biophys Acta Mol Cell Res
– volume: 53
  start-page: 311
  year: 2018
  end-page: 334
  ident: bib31
  article-title: Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 5
  start-page: 538
  year: 2016
  end-page: 551
  ident: bib60
  article-title: Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export
  publication-title: Mol. Metab.
– volume: 14
  start-page: 2308
  year: 2015
  end-page: 2315
  ident: bib22
  article-title: Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation
  publication-title: Mol. Cell. Proteomics
– volume: 62
  start-page: 3404
  year: 2013
  end-page: 3417
  ident: bib26
  article-title: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
  publication-title: Diabetes
– volume: 18
  start-page: 920
  year: 2013
  end-page: 933
  ident: bib45
  article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
  publication-title: Cell Metab.
– volume: 275
  start-page: 25494
  year: 2000
  end-page: 25501
  ident: bib14
  article-title: Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 474
  year: 2014
  end-page: 483
  ident: bib52
  article-title: Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure
  publication-title: Mol. Metab.
– volume: 17
  start-page: 200
  year: 2011
  end-page: 205
  ident: bib4
  article-title: Brown adipose tissue activity controls triglyceride clearance
  publication-title: Nat. Med.
– volume: 194
  start-page: 1019
  year: 1981
  end-page: 1022
  ident: bib20
  article-title: GDP binding to brown-adipose-tissue mitochondria of diabetic--obese (db/db) mice. Decreased binding in both the obese and pre-obese states
  publication-title: Biochem. J.
– volume: 281
  start-page: 215
  year: 2015
  end-page: 221
  ident: bib34
  article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease
  publication-title: Behav. Brain Res.
– volume: 13
  start-page: 238
  year: 2011
  end-page: 240
  ident: bib41
  article-title: New powers of brown fat: fighting the metabolic syndrome
  publication-title: Cell Metab.
– volume: 456
  start-page: 109
  year: 2008
  end-page: 121
  ident: bib7
  article-title: Studies of thermogenesis and mitochondrial function in adipose tissues
  publication-title: Methods Mol. Biol.
– volume: 360
  start-page: 1509
  year: 2009
  end-page: 1517
  ident: bib11
  article-title: Identification and importance of brown adipose tissue in adult humans
  publication-title: N. Engl. J. Med.
– volume: 1504
  start-page: 82
  year: 2001
  end-page: 106
  ident: bib40
  article-title: UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency
  publication-title: Biochim. Biophys. Acta
– volume: 10
  start-page: 69
  year: 2016
  end-page: 75
  ident: bib61
  article-title: A pathway map of glutamate metabolism
  publication-title: J. Cell Commun. Signal.
– volume: 7
  start-page: 16082
  year: 2017
  ident: bib2
  article-title: Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice
  publication-title: Sci. Rep.
– volume: 2
  start-page: 287
  year: 2007
  end-page: 295
  ident: bib16
  article-title: Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts
  publication-title: Nat. Protoc.
– volume: 17
  start-page: 200
  year: 2011
  ident: 10.1016/j.molcel.2019.03.021_bib4
  article-title: Brown adipose tissue activity controls triglyceride clearance
  publication-title: Nat. Med.
  doi: 10.1038/nm.2297
– volume: 12
  start-page: 246
  year: 2017
  ident: 10.1016/j.molcel.2019.03.021_bib27
  article-title: Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.02.011
– volume: 14
  start-page: 646
  year: 2017
  ident: 10.1016/j.molcel.2019.03.021_bib36
  article-title: PIQED: automated identification and quantification of protein modifications from DIA-MS data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4334
– volume: 1504
  start-page: 82
  year: 2001
  ident: 10.1016/j.molcel.2019.03.021_bib40
  article-title: UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2728(00)00247-4
– volume: 84
  start-page: 277
  year: 2004
  ident: 10.1016/j.molcel.2019.03.021_bib6
  article-title: Brown adipose tissue: function and physiological significance
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00015.2003
– volume: 532
  start-page: 112
  year: 2016
  ident: 10.1016/j.molcel.2019.03.021_bib9
  article-title: Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1
  publication-title: Nature
  doi: 10.1038/nature17399
– volume: 10
  start-page: 69
  year: 2016
  ident: 10.1016/j.molcel.2019.03.021_bib61
  article-title: A pathway map of glutamate metabolism
  publication-title: J. Cell Commun. Signal.
  doi: 10.1007/s12079-015-0315-5
– volume: 360
  start-page: 1509
  year: 2009
  ident: 10.1016/j.molcel.2019.03.021_bib11
  article-title: Identification and importance of brown adipose tissue in adult humans
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0810780
– volume: 134
  start-page: 86
  year: 2017
  ident: 10.1016/j.molcel.2019.03.021_bib57
  article-title: Transcriptional regulation of the uncoupling protein-1 gene
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2016.09.017
– volume: 8
  start-page: 291
  year: 2017
  ident: 10.1016/j.molcel.2019.03.021_bib10
  article-title: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00249-5
– volume: 62
  start-page: 3404
  year: 2013
  ident: 10.1016/j.molcel.2019.03.021_bib26
  article-title: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
  publication-title: Diabetes
  doi: 10.2337/db12-1650
– volume: 15
  start-page: 1069
  year: 2014
  ident: 10.1016/j.molcel.2019.03.021_bib33
  article-title: Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201438775
– volume: 13
  start-page: 589
  year: 2011
  ident: 10.1016/j.molcel.2019.03.021_bib19
  article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2220
– volume: 6
  start-page: 29790
  year: 2016
  ident: 10.1016/j.molcel.2019.03.021_bib39
  article-title: Protein Kinase C Epsilon Promotes Cerebral Ischemic Tolerance Via Modulation of Mitochondrial Sirt5
  publication-title: Sci. Rep.
  doi: 10.1038/srep29790
– volume: 3
  start-page: 474
  year: 2014
  ident: 10.1016/j.molcel.2019.03.021_bib52
  article-title: Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2014.03.010
– volume: 445
  start-page: 77
  year: 2008
  ident: 10.1016/j.molcel.2019.03.021_bib54
  article-title: LC3 and Autophagy
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-157-4_4
– volume: 194
  start-page: 1019
  year: 1981
  ident: 10.1016/j.molcel.2019.03.021_bib20
  article-title: GDP binding to brown-adipose-tissue mitochondria of diabetic--obese (db/db) mice. Decreased binding in both the obese and pre-obese states
  publication-title: Biochem. J.
  doi: 10.1042/bj1941019
– volume: 13
  start-page: 238
  year: 2011
  ident: 10.1016/j.molcel.2019.03.021_bib41
  article-title: New powers of brown fat: fighting the metabolic syndrome
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.02.009
– volume: 39
  start-page: 359
  year: 2005
  ident: 10.1016/j.molcel.2019.03.021_bib59
  article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.39.110304.095751
– volume: 3
  start-page: 2806
  year: 2013
  ident: 10.1016/j.molcel.2019.03.021_bib62
  article-title: Metabolic characterization of a Sirt5 deficient mouse model
  publication-title: Sci. Rep.
  doi: 10.1038/srep02806
– start-page: e52982
  issue: 102
  year: 2015
  ident: 10.1016/j.molcel.2019.03.021_bib1
  article-title: Determination of Fatty Acid Oxidation and Lipogenesis in Mouse Primary Hepatocytes
  publication-title: J. Vis. Exp.
– volume: 18
  start-page: 920
  year: 2013
  ident: 10.1016/j.molcel.2019.03.021_bib45
  article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.11.013
– volume: 158
  start-page: 69
  year: 2014
  ident: 10.1016/j.molcel.2019.03.021_bib30
  article-title: IRF4 is a key thermogenic transcriptional partner of PGC-1α
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.049
– volume: 151
  start-page: 400
  year: 2012
  ident: 10.1016/j.molcel.2019.03.021_bib15
  article-title: Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria
  publication-title: Cell
  doi: 10.1016/j.cell.2012.09.010
– volume: 19
  start-page: 605
  year: 2014
  ident: 10.1016/j.molcel.2019.03.021_bib53
  article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.03.014
– volume: 444
  start-page: 1
  year: 2012
  ident: 10.1016/j.molcel.2019.03.021_bib18
  article-title: SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging
  publication-title: Biochem. J.
  doi: 10.1042/BJ20120030
– volume: 10
  start-page: 171
  year: 2016
  ident: 10.1016/j.molcel.2019.03.021_bib32
  article-title: SIRT5 Deficiency Enhances Susceptibility to Kainate-Induced Seizures and Exacerbates Hippocampal Neurodegeneration not through Mitochondrial Antioxidant Enzyme SOD2
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2016.00171
– volume: 26
  start-page: 764
  year: 2017
  ident: 10.1016/j.molcel.2019.03.021_bib50
  article-title: Lipolysis in Brown Adipocytes Is Not Essential for Cold-Induced Thermogenesis in Mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.09.002
– volume: 2
  start-page: 287
  year: 2007
  ident: 10.1016/j.molcel.2019.03.021_bib16
  article-title: Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.478
– volume: 292
  start-page: 10239
  year: 2017
  ident: 10.1016/j.molcel.2019.03.021_bib64
  article-title: Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.785022
– volume: 73
  start-page: 4063
  year: 2016
  ident: 10.1016/j.molcel.2019.03.021_bib51
  article-title: Post-translational modifications in mitochondria: protein signaling in the powerhouse
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2280-4
– volume: 10
  start-page: 268
  year: 2004
  ident: 10.1016/j.molcel.2019.03.021_bib3
  article-title: Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance
  publication-title: Nat. Med.
  doi: 10.1038/nm995
– volume: 286
  start-page: 37406
  year: 2011
  ident: 10.1016/j.molcel.2019.03.021_bib55
  article-title: Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.260265
– volume: 17
  start-page: 811
  year: 2016
  ident: 10.1016/j.molcel.2019.03.021_bib65
  article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201541643
– volume: 11
  year: 2012
  ident: 10.1016/j.molcel.2019.03.021_bib17
  article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.O111.016717
– volume: 59
  start-page: 321
  year: 2015
  ident: 10.1016/j.molcel.2019.03.021_bib43
  article-title: SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.05.022
– volume: 18
  start-page: e1800123
  year: 2018
  ident: 10.1016/j.molcel.2019.03.021_bib5
  article-title: Simultaneous Quantification of the Acetylome and Succinylome by ‘One-Pot’ Affinity Enrichment
  publication-title: Proteomics
  doi: 10.1002/pmic.201800123
– volume: 108
  start-page: 14608
  year: 2011
  ident: 10.1016/j.molcel.2019.03.021_bib25
  article-title: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1111308108
– volume: 24
  start-page: 382
  year: 2002
  ident: 10.1016/j.molcel.2019.03.021_bib29
  article-title: Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action
  publication-title: BioEssays
  doi: 10.1002/bies.10058
– volume: 281
  start-page: 22342
  year: 2006
  ident: 10.1016/j.molcel.2019.03.021_bib24
  article-title: Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M604350200
– volume: 50
  start-page: 919
  year: 2013
  ident: 10.1016/j.molcel.2019.03.021_bib44
  article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.06.001
– volume: 7
  start-page: 16082
  year: 2017
  ident: 10.1016/j.molcel.2019.03.021_bib2
  article-title: Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-16463-6
– volume: 53
  start-page: 311
  year: 2018
  ident: 10.1016/j.molcel.2019.03.021_bib31
  article-title: Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2018.1458071
– volume: 54
  start-page: 5
  year: 2014
  ident: 10.1016/j.molcel.2019.03.021_bib58
  article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.027
– volume: 560
  start-page: 102
  year: 2018
  ident: 10.1016/j.molcel.2019.03.021_bib38
  article-title: Accumulation of succinate controls activation of adipose tissue thermogenesis
  publication-title: Nature
  doi: 10.1038/s41586-018-0353-2
– volume: 14
  start-page: 1939
  year: 2011
  ident: 10.1016/j.molcel.2019.03.021_bib56
  article-title: The interplay between mitochondrial dynamics and mitophagy
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2010.3779
– volume: 16
  start-page: 4623
  year: 2005
  ident: 10.1016/j.molcel.2019.03.021_bib37
  article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-01-0033
– volume: 5
  start-page: 538
  year: 2016
  ident: 10.1016/j.molcel.2019.03.021_bib60
  article-title: Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2016.04.006
– volume: 21
  start-page: 33
  year: 2015
  ident: 10.1016/j.molcel.2019.03.021_bib12
  article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.12.009
– volume: 7
  start-page: 104
  year: 2008
  ident: 10.1016/j.molcel.2019.03.021_bib49
  article-title: Conserved metabolic regulatory functions of sirtuins
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.11.006
– volume: 275
  start-page: 25073
  year: 2000
  ident: 10.1016/j.molcel.2019.03.021_bib35
  article-title: Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M000547200
– volume: 8
  start-page: 1875
  year: 2012
  ident: 10.1016/j.molcel.2019.03.021_bib28
  article-title: Interpretation of bafilomycin, pH neutralizing or protease inhibitor treatments in autophagic flux experiments: novel considerations
  publication-title: Autophagy
  doi: 10.4161/auto.21544
– volume: 287
  start-page: 36845
  year: 2012
  ident: 10.1016/j.molcel.2019.03.021_bib13
  article-title: Fatty acids change the conformation of uncoupling protein 1 (UCP1)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.381780
– volume: 26
  start-page: 753
  year: 2017
  ident: 10.1016/j.molcel.2019.03.021_bib48
  article-title: Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.09.004
– volume: 1864
  start-page: 169
  year: 2017
  ident: 10.1016/j.molcel.2019.03.021_bib21
  article-title: Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation
  publication-title: Biochim Biophys Acta Mol Cell Res
  doi: 10.1016/j.bbamcr.2016.10.015
– volume: 31
  start-page: 399
  year: 1999
  ident: 10.1016/j.molcel.2019.03.021_bib42
  article-title: A history of the first uncoupling protein, UCP1
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1023/A:1005436121005
– volume: 456
  start-page: 109
  year: 2008
  ident: 10.1016/j.molcel.2019.03.021_bib7
  article-title: Studies of thermogenesis and mitochondrial function in adipose tissues
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-245-8_8
– volume: 14
  start-page: 4359
  year: 2015
  ident: 10.1016/j.molcel.2019.03.021_bib63
  article-title: The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.5b00543
– volume: 113
  start-page: 4320
  year: 2016
  ident: 10.1016/j.molcel.2019.03.021_bib47
  article-title: Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1519858113
– volume: 275
  start-page: 25494
  year: 2000
  ident: 10.1016/j.molcel.2019.03.021_bib14
  article-title: Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004046200
– volume: 14
  start-page: 2308
  year: 2015
  ident: 10.1016/j.molcel.2019.03.021_bib22
  article-title: Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.R114.046664
– volume: 4
  start-page: 351
  year: 1984
  ident: 10.1016/j.molcel.2019.03.021_bib46
  article-title: Brown fat activity in fasted and refed rats
  publication-title: Biosci. Rep.
  doi: 10.1007/BF01140499
– volume: 464
  start-page: 121
  year: 2010
  ident: 10.1016/j.molcel.2019.03.021_bib23
  article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
  publication-title: Nature
  doi: 10.1038/nature08778
– volume: 27
  start-page: 497
  year: 2018
  ident: 10.1016/j.molcel.2019.03.021_bib8
  article-title: The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.01.016
– volume: 281
  start-page: 215
  year: 2015
  ident: 10.1016/j.molcel.2019.03.021_bib34
  article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2014.12.035
SSID ssj0014589
Score 2.6166074
Snippet Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels...
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis and glucose homeostasis. We find that levels...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 844
SubjectTerms Adipose Tissue, Brown - metabolism
Adipose Tissue, Brown - pathology
Animals
brown adipose tissue
brown fat
energy expenditure
Energy Metabolism - genetics
Gene Expression Regulation
glucose
Glucose - metabolism
glutamic acid
glutamine
heat production
homeostasis
linear amide hydrolases
mass spectrometry
metabolism
Mice
Mice, Knockout
mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial Proteins - genetics
mitophagy
mutation
Obesity - genetics
Obesity - metabolism
Obesity - pathology
proteins
Proteomics - methods
Sirtuins - genetics
Succinic Acid - metabolism
succinylation
thermogenesis
Thermogenesis - genetics
UCP1
Uncoupling Protein 1 - genetics
Uncoupling Protein 1 - metabolism
Title Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation
URI https://dx.doi.org/10.1016/j.molcel.2019.03.021
https://www.ncbi.nlm.nih.gov/pubmed/31000437
https://www.proquest.com/docview/2211952365
https://www.proquest.com/docview/2253250216
https://pubmed.ncbi.nlm.nih.gov/PMC6525068
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY7CXse4z6wca7FUksmTZfkzDSlnJGGnD8iYkWWIeqR2W5CH__e5kOzQbW2GPts9G1p1OP3F3vyPkY-4AgxShZKFMSyalyZktjGBGygxOQUVZlFjvPP2irufy8yJdHJFJXwuDaZWd7299evTW3Z1hN5vDVVUNbzF2mmQKIQhsRClyggqZxyK-xeU-kiDT2AYPhRlK9-VzMcfrvlk6jwEI3lKdJvxv29Of8PP3LMoH29LVC_K8w5N03A75hBz5-iV52naY3L0ibtb2mofZp02g88lXTk1d0iksZHB8dYn2R6d-A7awrNb3tKppPJnTcVmtmrWnd1Ez1O7ozMcUDrv09HbrXFXv2g-_JvOrT3eTa9b1VWAO0M6GCeRk4Xnms8Kp4EXqchNc4C4YHtzIplI4lRSZSQLHwGORWJvZkSiCdQJ8u3hDjuum9u8IDSNrEwx2ZqmXPgF8YQGQGV9w5wCamAER_XRq15GOY--Lpe6zy37oVgkalaBHQoMSBoTt31q1pBuPyGe9pvSB8WjYFx5580OvWA3rCoMlpvbNdq0TpL6DU7pK_yWTCoCQCVcD8rY1hv14Y-BEigzGdmAmewHk9T58UlffI7-3wlCzyt__91-dkmd4hUkOXJ2R483PrT8H7LSxF-TJ-Gb27eYiLpJft2MbDA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEIIXxDfl00i8Rq1jJ44fR8XUwTqhrZX6ZtmOrQV1SUXbh_733MVJRUEwidfkHDm-893P-p3vCPlYOMAgKpRJKLMyEcIUiVWGJ0YICacgVaoS7ztPL_LJXHxZZIsjMu7vwmBaZef7o09vvXX3ZNit5nBVVcMr5E5TmSMEgUCUiTvkLqABif0bzhaf9lSCyNo-eCidoHh_f65N8rppls4jA8FirdOU_S0-_Yk_f0-j_CUunT4iDztASU_inB-TI18_Ifdii8ndU-IuY7N5WH7aBDoff2PU1CWdwk4Gz1eXaIB06jdgDMtqfUOrmrZHc3pSVqtm7emsVQ21O3rp2xwOu_T0autcVe_ih5-R-enn2XiSdI0VEgdwZ5NwLMrCCumlcnnwPHOFCS4wFwwLbmQzwV2eKmnSwJB5VKm10o64CtZxcO78OTmum9q_JDSMrE2R7ZSZFz4FgGEBkRmvmHOATcyA8H45teuqjmPzi6Xu08u-66gEjUrQI65BCQOS7EetYtWNW-Rlryl9YD0aAsMtIz_0itWwsZAtMbVvtmudYu07OKbn2b9kMg4YMmX5gLyIxrCfb8ucCC5hbgdmshfAwt6Hb-rqui3wnSPXnBev_vuv3pP7k9n0XJ-fXXx9TR7gG8x4YPkbcrz5sfVvAUht7Lt2o_wEA1ociA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+UCP1+and+Mitochondrial+Metabolism+in+Brown+Adipose+Tissue+by+Reversible+Succinylation&rft.jtitle=Molecular+cell&rft.au=Wang%2C+Guoxiao&rft.au=Meyer%2C+Jesse+G.&rft.au=Cai%2C+Weikang&rft.au=Softic%2C+Samir&rft.date=2019-05-16&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=74&rft.issue=4&rft.spage=844&rft.epage=857.e7&rft_id=info:doi/10.1016%2Fj.molcel.2019.03.021&rft_id=info%3Apmid%2F31000437&rft.externalDocID=PMC6525068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon