Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation
Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific de...
Saved in:
Published in | Molecular cell Vol. 74; no. 4; pp. 844 - 857.e7 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.
[Display omitted]
•Sirt5 regulates mitochondrial protein succinylation and malonylation in brown fat•Increased succinylation of UCP1 reduces its stability and function•Sirt5KO in BAT leads to metabolic inflexibility and impairs mitochondrial homeostasis•These processes are altered by cold exposure and diet
Wang et al. performed succinyl-proteomics in brown fat (BAT) of normal and Sirt5 KO mice and identified UCP1 as a new target of Sirt5 desuccinylation. UCP1 with succinyl-mimetic mutations displayed reduced activity and stability. Elevated succinylation of mitochondrial protein in Sirt5 KO BAT resulted in altered metabolic flexibility and mitophagy. |
---|---|
AbstractList | Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis.Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis. Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis. Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis. Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis. Wang et. al. performed succinyl-proteomics in brown fat (BAT) of normal and Sirt5 KO mice and identified UCP1 as a new target of Sirt5 desuccinylation. UCP1 with succinyl-mimetic mutations displayed reduced activity and stability. Elevated succinylation of mitochondrial protein in Sirt5 KO BAT resulted in altered metabolic flexibility and mitophagy. Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels of mitochondrial protein succinylation and malonylation are high in BAT and subject to physiological and genetic regulation. BAT-specific deletion of Sirt5, a mitochondrial desuccinylase and demalonylase, results in dramatic increases in global protein succinylation and malonylation. Mass spectrometry-based quantification of succinylation reveals that Sirt5 regulates the key thermogenic protein in BAT, UCP1. Mutation of the two succinylated lysines in UCP1 to acyl-mimetic glutamine and glutamic acid significantly decreases its stability and activity. The reduced function of UCP1 and other proteins in Sirt5KO BAT results in impaired mitochondria respiration, defective mitophagy, and metabolic inflexibility. Thus, succinylation of UCP1 and other mitochondrial proteins plays an important role in BAT and in regulation of energy homeostasis. [Display omitted] •Sirt5 regulates mitochondrial protein succinylation and malonylation in brown fat•Increased succinylation of UCP1 reduces its stability and function•Sirt5KO in BAT leads to metabolic inflexibility and impairs mitochondrial homeostasis•These processes are altered by cold exposure and diet Wang et al. performed succinyl-proteomics in brown fat (BAT) of normal and Sirt5 KO mice and identified UCP1 as a new target of Sirt5 desuccinylation. UCP1 with succinyl-mimetic mutations displayed reduced activity and stability. Elevated succinylation of mitochondrial protein in Sirt5 KO BAT resulted in altered metabolic flexibility and mitophagy. |
Author | Wang, GuoXiao Li, Mengyao Ella Cai, Weikang Schilling, Birgit Verdin, Eric Meyer, Jesse G. Softic, Samir Newgard, Christopher Kahn, C. Ronald |
AuthorAffiliation | 4 Lead contact 1 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA 3 Sarah W. Stedman Nutrition and Metabolism Center, and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 277049, USA 2 Buck Institute for Research on Aging, Novato, CA 94945, USA |
AuthorAffiliation_xml | – name: 3 Sarah W. Stedman Nutrition and Metabolism Center, and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 277049, USA – name: 4 Lead contact – name: 1 Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA – name: 2 Buck Institute for Research on Aging, Novato, CA 94945, USA |
Author_xml | – sequence: 1 givenname: GuoXiao surname: Wang fullname: Wang, GuoXiao organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 2 givenname: Jesse G. surname: Meyer fullname: Meyer, Jesse G. organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 3 givenname: Weikang surname: Cai fullname: Cai, Weikang organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 4 givenname: Samir surname: Softic fullname: Softic, Samir organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 5 givenname: Mengyao Ella surname: Li fullname: Li, Mengyao Ella organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA – sequence: 6 givenname: Eric surname: Verdin fullname: Verdin, Eric organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 7 givenname: Christopher surname: Newgard fullname: Newgard, Christopher organization: Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27708, USA – sequence: 8 givenname: Birgit surname: Schilling fullname: Schilling, Birgit organization: Buck Institute for Research on Aging, Novato, CA 94945, USA – sequence: 9 givenname: C. Ronald surname: Kahn fullname: Kahn, C. Ronald email: c.ronald.kahn@joslin.harvard.edu organization: Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31000437$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1vEzEYhC1URD_gHyDkI5ds_bH2xhyQ2ggoUitQac-W7X3dOnLsYO8G5d-zJSkCDsDJr-SZR6OZY3SQcgKEXlLSUELl6bJZ5eggNoxQ1RDeEEafoCNKVDdrqWwP9jfrpDhEx7UuCaGtmKtn6JBTQkjLuyPkruFujGYIOeHs8e3iM8Um9fgqDNnd59SXYCK-gsHYHENd4ZDwecnfEj7rwzpXwDeh1hGw3eJr2ECpwUbAX0bnQtruwM_RU29ihRf79wTdvn93s7iYXX768HFxdjlzQrJhxolQis476JSTHrhwc-Odp84b6h2xouVOMtUZ5inhgihmbWcJV946DpbyE_R2x12PdgW9gzQUE_W6hJUpW51N0L__pHCv7_JGS8EEkfMJ8HoPKPnrCHXQq1CniqNJkMeqGRN8UjIq_0NKqRKMSzFJX_0a62eexxEmwZudwJVcawGvXRh-NDelDFFToh8W10u9W1w_LK4J11OSydz-YX7k_8O27wqmQTYBiq4uQHLQhwJu0H0Ofwd8B290yH4 |
CitedBy_id | crossref_primary_10_1016_j_jbc_2023_105563 crossref_primary_10_1016_j_tem_2021_06_003 crossref_primary_10_3389_fonc_2023_1240115 crossref_primary_10_1016_j_jtcms_2021_01_009 crossref_primary_10_3389_fnagi_2022_845330 crossref_primary_10_1186_s13020_024_01053_2 crossref_primary_10_1016_j_bbrc_2021_08_083 crossref_primary_10_1073_pnas_2123065119 crossref_primary_10_21603_2308_4057_2024_2_609 crossref_primary_10_1016_j_molmet_2023_101770 crossref_primary_10_1093_jmcb_mjaa029 crossref_primary_10_1111_febs_16015 crossref_primary_10_3389_fonc_2022_1081712 crossref_primary_10_1038_s41420_022_00861_5 crossref_primary_10_1016_j_jprot_2021_104149 crossref_primary_10_3390_cells10020403 crossref_primary_10_1016_j_molmet_2020_101130 crossref_primary_10_3390_biom15030414 crossref_primary_10_1507_endocrj_EJ20_0405 crossref_primary_10_1016_j_phrs_2024_107493 crossref_primary_10_1038_s41392_022_01257_8 crossref_primary_10_1002_ctm2_172 crossref_primary_10_1038_s41556_021_00642_9 crossref_primary_10_3389_fpls_2022_1001935 crossref_primary_10_3389_fendo_2021_797680 crossref_primary_10_1016_j_jprot_2025_105400 crossref_primary_10_1016_j_fochx_2023_100962 crossref_primary_10_1016_j_arr_2024_102242 crossref_primary_10_18632_aging_205790 crossref_primary_10_3389_fimmu_2024_1378202 crossref_primary_10_1002_advs_202303388 crossref_primary_10_1007_s10753_025_02239_y crossref_primary_10_3390_ijms24021352 crossref_primary_10_1016_j_jare_2022_12_009 crossref_primary_10_1038_s41467_022_35219_z crossref_primary_10_1002_anie_202204565 crossref_primary_10_1080_10641963_2024_2358030 crossref_primary_10_3389_fnut_2023_1082250 crossref_primary_10_1002_prca_202200102 crossref_primary_10_1016_j_bbrep_2021_101127 crossref_primary_10_1155_2022_4919153 crossref_primary_10_15252_embr_202050085 crossref_primary_10_1126_sciadv_adg4993 crossref_primary_10_1016_j_cellsig_2022_110490 crossref_primary_10_1016_j_gendis_2021_12_011 crossref_primary_10_1186_s12964_023_01466_w crossref_primary_10_1186_s13020_021_00437_y crossref_primary_10_4254_wjh_v16_i3_344 crossref_primary_10_3390_cells10051126 crossref_primary_10_1093_bib_bbae415 crossref_primary_10_1038_s41598_023_31900_5 crossref_primary_10_1016_j_tips_2019_09_003 crossref_primary_10_1016_j_gendis_2022_03_009 crossref_primary_10_1016_j_isci_2024_109796 crossref_primary_10_3389_fendo_2023_1250487 crossref_primary_10_1016_j_jlr_2024_100626 crossref_primary_10_3390_ani14070999 crossref_primary_10_1002_advs_202301855 crossref_primary_10_1111_jcmm_15503 crossref_primary_10_1158_2643_3230_BCD_20_0168 crossref_primary_10_3724_zdxbyxb_2024_0355 crossref_primary_10_1038_s41467_025_56153_w crossref_primary_10_3390_ijms241411676 crossref_primary_10_1111_jcmm_16676 crossref_primary_10_1016_j_gendis_2022_10_028 crossref_primary_10_1016_j_mito_2021_05_001 crossref_primary_10_1016_j_molmet_2023_101747 crossref_primary_10_1016_j_abb_2024_109975 crossref_primary_10_3389_fendo_2021_651763 crossref_primary_10_3390_cells12060852 crossref_primary_10_1080_13102818_2024_2425694 crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_1007_s11892_020_01342_8 crossref_primary_10_3389_fcell_2022_981075 crossref_primary_10_3390_cimb46020065 crossref_primary_10_1038_s41598_025_92716_z crossref_primary_10_1186_s13046_022_02338_w crossref_primary_10_1080_14728222_2025_2482563 crossref_primary_10_1002_adbi_202300370 crossref_primary_10_1007_s11892_019_1264_9 crossref_primary_10_1016_j_biopha_2023_115713 crossref_primary_10_3724_abbs_2022155 crossref_primary_10_1093_bioadv_vbae172 crossref_primary_10_1016_j_molcel_2024_01_002 crossref_primary_10_1097_MD_0000000000031493 crossref_primary_10_1016_j_cmet_2022_07_011 crossref_primary_10_1002_ange_202204565 crossref_primary_10_1002_vms3_1356 crossref_primary_10_3390_molecules27175641 crossref_primary_10_1186_s12964_024_02025_7 crossref_primary_10_1016_j_celrep_2024_115060 crossref_primary_10_1038_s41467_022_33903_8 crossref_primary_10_3390_ph16010091 crossref_primary_10_3389_fonc_2020_00396 crossref_primary_10_1042_BST20220318 crossref_primary_10_1089_ars_2023_0295 crossref_primary_10_7554_eLife_68292 crossref_primary_10_1016_j_jnutbio_2024_109649 crossref_primary_10_1074_jbc_RA119_012095 crossref_primary_10_7717_peerj_15258 crossref_primary_10_14336_AD_2022_0711 crossref_primary_10_1186_s12864_022_08841_w crossref_primary_10_37349_etat_2023_00196 crossref_primary_10_1186_s13046_020_01681_0 crossref_primary_10_1007_s13238_021_00846_7 crossref_primary_10_1016_j_mcpro_2021_100148 crossref_primary_10_1038_s41392_024_01918_w crossref_primary_10_1146_annurev_biochem_082520_125411 crossref_primary_10_1038_s41467_020_19743_4 crossref_primary_10_1038_s41580_021_00350_0 crossref_primary_10_3390_ijms21155266 crossref_primary_10_1016_j_mad_2021_111598 crossref_primary_10_1152_ajpendo_00310_2020 crossref_primary_10_1016_j_isci_2020_101113 crossref_primary_10_1038_s41440_021_00842_8 crossref_primary_10_1016_j_drugalcdep_2020_107904 crossref_primary_10_1021_acs_jmedchem_2c00687 crossref_primary_10_1016_j_isci_2024_109991 crossref_primary_10_1038_s41392_023_01546_w crossref_primary_10_1007_s10522_024_10137_3 crossref_primary_10_3390_cells12222598 crossref_primary_10_3390_biology10030194 crossref_primary_10_3390_ijms251910514 crossref_primary_10_1016_j_bbabio_2021_148428 crossref_primary_10_1016_j_tcb_2021_09_007 crossref_primary_10_3390_nu16244424 crossref_primary_10_3389_fimmu_2022_1068986 crossref_primary_10_1016_j_tice_2024_102636 crossref_primary_10_1186_s12872_024_04120_6 crossref_primary_10_3390_ijms24119276 crossref_primary_10_3390_ijms21114104 crossref_primary_10_1002_mco2_752 crossref_primary_10_1016_j_bmc_2023_117455 crossref_primary_10_1111_febs_15331 crossref_primary_10_1016_j_jlr_2024_100559 |
Cites_doi | 10.1038/nm.2297 10.1016/j.redox.2017.02.011 10.1038/nmeth.4334 10.1016/S0005-2728(00)00247-4 10.1152/physrev.00015.2003 10.1038/nature17399 10.1007/s12079-015-0315-5 10.1056/NEJMoa0810780 10.1016/j.biochi.2016.09.017 10.1038/s41467-017-00249-5 10.2337/db12-1650 10.15252/embr.201438775 10.1038/ncb2220 10.1038/srep29790 10.1016/j.molmet.2014.03.010 10.1007/978-1-59745-157-4_4 10.1042/bj1941019 10.1016/j.cmet.2011.02.009 10.1146/annurev.genet.39.110304.095751 10.1038/srep02806 10.1016/j.cmet.2013.11.013 10.1016/j.cell.2014.04.049 10.1016/j.cell.2012.09.010 10.1016/j.cmet.2014.03.014 10.1042/BJ20120030 10.3389/fncel.2016.00171 10.1016/j.cmet.2017.09.002 10.1038/nprot.2006.478 10.1074/jbc.M117.785022 10.1007/s00018-016-2280-4 10.1038/nm995 10.1074/jbc.M111.260265 10.15252/embr.201541643 10.1074/mcp.O111.016717 10.1016/j.molcel.2015.05.022 10.1002/pmic.201800123 10.1073/pnas.1111308108 10.1002/bies.10058 10.1074/jbc.M604350200 10.1016/j.molcel.2013.06.001 10.1038/s41598-017-16463-6 10.1080/10409238.2018.1458071 10.1016/j.molcel.2014.03.027 10.1038/s41586-018-0353-2 10.1089/ars.2010.3779 10.1091/mbc.e05-01-0033 10.1016/j.molmet.2016.04.006 10.1016/j.cmet.2014.12.009 10.1016/j.cmet.2007.11.006 10.1074/jbc.M000547200 10.4161/auto.21544 10.1074/jbc.M112.381780 10.1016/j.cmet.2017.09.004 10.1016/j.bbamcr.2016.10.015 10.1023/A:1005436121005 10.1007/978-1-59745-245-8_8 10.1021/acs.jproteome.5b00543 10.1073/pnas.1519858113 10.1074/jbc.M004046200 10.1074/mcp.R114.046664 10.1007/BF01140499 10.1038/nature08778 10.1016/j.cmet.2018.01.016 10.1016/j.bbr.2014.12.035 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.molcel.2019.03.021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 857.e7 |
ExternalDocumentID | PMC6525068 31000437 10_1016_j_molcel_2019_03_021 S1097276519302254 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: K01 DK120740 – fundername: NIDDK NIH HHS grantid: R24 DK085610 – fundername: NIDDK NIH HHS grantid: P30 DK036836 – fundername: NIDDK NIH HHS grantid: R01 DK082659 – fundername: NICHD NIH HHS grantid: F31 HD095583 – fundername: NICHD NIH HHS grantid: T32 HD083185 – fundername: NHLBI NIH HHS grantid: R35 HL140018 – fundername: NIGMS NIH HHS grantid: R01 GM051279 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c562t-30599187e79c6fe35c8afcf1cfa1fc0b543c6297a2f1035092bb7b039fbc3eb13 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 14:32:10 EDT 2025 Fri Jul 11 07:49:29 EDT 2025 Fri Jul 11 10:21:17 EDT 2025 Mon Jul 21 06:04:32 EDT 2025 Tue Jul 01 03:21:13 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Fri Feb 23 02:30:36 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | UCP1 thermogenesis succinylation brown fat mitochondria |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-30599187e79c6fe35c8afcf1cfa1fc0b543c6297a2f1035092bb7b039fbc3eb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions G. W. and C. R. K. conceived the project and designed the research. G. W. performed metabolic and molecular studies; W. C. cloned the UCP1 2KQ mutant. J.G. M. performed mass spectrometry data collection and analysis and helped in writing, reviewing and editing the manuscript. B. S. supervised and provided instrumentation and reagents for mass spectrometry. E. V. provided the Sirt5 floxed mice. C. N. performed metabolomics analysis. G. W. and C. R. K. wrote the manuscript. All authors helped edit it. |
OpenAccessLink | http://www.cell.com/article/S1097276519302254/pdf |
PMID | 31000437 |
PQID | 2211952365 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6525068 proquest_miscellaneous_2253250216 proquest_miscellaneous_2211952365 pubmed_primary_31000437 crossref_citationtrail_10_1016_j_molcel_2019_03_021 crossref_primary_10_1016_j_molcel_2019_03_021 elsevier_sciencedirect_doi_10_1016_j_molcel_2019_03_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-16 |
PublicationDateYYYYMMDD | 2019-05-16 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Nedergaard, Golozoubova, Matthias, Asadi, Jacobsson, Cannon (bib40) 2001; 1504 Stram, Payne (bib51) 2016; 73 Yu, Sadhukhan, Noriega, Moullan, He, Weiss, Lin, Schoonjans, Auwerx (bib62) 2013; 3 Tanida, Ueno, Kominami (bib54) 2008; 445 Mills, Pierce, Jedrychowski, Garrity, Winther, Vidoni, Yoneshiro, Spinelli, Lu, Kazak (bib38) 2018; 560 Zhang, Bharathi, Rardin, Lu, Maringer, Sims-Lucas, Prochownik, Gibson, Goetzman (bib64) 2017; 292 Jokinen, Pirnes-Karhu, Pietiläinen, Pirinen (bib27) 2017; 12 Liu, Peritore, Ginsberg, Shih, Arun, Donmez (bib34) 2015; 281 Michishita, Park, Burneskis, Barrett, Horikawa (bib37) 2005; 16 Klein, Fasshauer, Klein, Benito, Kahn (bib29) 2002; 24 Rothwell, Saville, Stock (bib46) 1984; 4 Cypess, Weiner, Roberts-Toler, Franquet Elía, Kessler, Kahn, English, Chatman, Trauger, Doria, Kolodny (bib12) 2015; 21 Jing, Emanuelli, Hirschey, Boucher, Lee, Lombard, Verdin, Kahn (bib25) 2011; 108 Morris-Blanco, Dave, Saul, Koronowski, Stradecki, Perez-Pinzon (bib39) 2016; 6 Cypess, Lehman, Williams, Tal, Rodman, Goldfine, Kuo, Palmer, Tseng, Doria (bib11) 2009; 360 Goodbody, Trayhurn (bib20) 1981; 194 Jensen, Joseph, Ilkayeva, Burgess, Lu, Ronnebaum, Odegaard, Becker, Sherry, Newgard (bib24) 2006; 281 Twig, Shirihai (bib56) 2011; 14 Divakaruni, Humphrey, Brand (bib13) 2012; 287 Villarroya, Peyrou, Giralt (bib57) 2017; 134 White, Lapworth, An, Wang, McGarrah, Stevens, Ilkayeva, George, Muehlbauer, Bain (bib60) 2016; 5 Sadhukhan, Liu, Ryu, Nelson, Stupinski, Li, Chen, Zhang, Weiss, Locasale (bib47) 2016; 113 Alcalá, Calderon-Dominguez, Bustos, Ramos, Casals, Serra, Viana, Herrero (bib2) 2017; 7 Juhász (bib28) 2012; 8 Shin, Ma, Chanturiya, Cao, Wang, Kadegowda, Jackson, Rumore, Xue, Shi (bib50) 2017; 26 Frezza, Cipolat, Scorrano (bib16) 2007; 2 Nishida, Rardin, Carrico, He, Sahu, Gut, Najjar, Fitch, Hellerstein, Gibson, Verdin (bib43) 2015; 59 Cannon, Nedergaard (bib7) 2008; 456 Meyer, Mukkamalla, Steen, Nesvizhskii, Gibson, Schilling (bib36) 2017; 14 Li, Fromme, Schweizer, Schöttl, Klingenspor (bib33) 2014; 15 Rardin, He, Nishida, Newman, Carrico, Danielson, Guo, Gut, Sahu, Li (bib45) 2013; 18 Basisty, Meyer, Wei, Gibson, Schilling (bib5) 2018; 18 Tomita, Kuzuyama, Nishiyama (bib55) 2011; 286 Collins, Hunter, Liu, Schilling, Rosenberger, Bader, Chan, Gibson, Gingras, Held (bib10) 2017; 8 Carrico, Meyer, He, Gibson, Verdin (bib8) 2018; 27 An, Muoio, Shiota, Fujimoto, Cline, Shulman, Koves, Stevens, Millington, Newgard (bib3) 2004; 10 Li, Liu (bib32) 2016; 10 Akie, Cooper (bib1) 2015 Zhang, Bilbao, Bruderer, Luban, Strambio-De-Castillia, Lisacek, Hopfgartner, Varesio (bib63) 2015; 14 Bartelt, Bruns, Reimer, Hohenberg, Ittrich, Peldschus, Kaul, Tromsdorf, Weller, Waurisch (bib4) 2011; 17 Chouchani, Kazak, Jedrychowski, Lu, Erickson, Szpyt, Pierce, Laznik-Bogoslavski, Vetrivelan, Clish (bib9) 2016; 532 Nedergaard, Bengtsson, Cannon (bib41) 2011; 13 Nicholls, Rial (bib42) 1999; 31 Park, Chen, Tishkoff, Peng, Tan, Dai, Xie, Zhang, Zwaans, Skinner (bib44) 2013; 50 Cannon, Nedergaard (bib6) 2004; 84 Sun, Kusminski, Luby-Phelps, Spurgin, An, Wang, Holland, Scherer (bib52) 2014; 3 Wallace (bib59) 2005; 39 Guedouari, Daigle, Scorrano, Hebert-Chatelain (bib21) 2017; 1864 Gillet, Navarro, Tate, Rost, Selevsek, Reiter, Bonner, Aebersold (bib17) 2012; 11 Hirschey, Zhao (bib22) 2015; 14 Hirschey, Shimazu, Goetzman, Jing, Schwer, Lombard, Grueter, Harris, Biddinger, Ilkayeva (bib23) 2010; 464 Yelamanchi, Jayaram, Thomas, Gundimeda, Khan, Singhal, Keshava Prasad, Pandey, Somani, Gowda (bib61) 2016; 10 Schreiber, Diwoky, Schoiswohl, Feiler, Wongsiriroj, Abdellatif, Kolb, Hoeks, Kershaw, Sedej (bib48) 2017; 26 Zhou, Wang, Sun, Chen, Zhang, Xu, Wang, Wang, Xiong, Guan (bib65) 2016; 17 Gomes, Di Benedetto, Scorrano (bib19) 2011; 13 Matthias, Ohlson, Fredriksson, Jacobsson, Nedergaard, Cannon (bib35) 2000; 275 Giralt, Villarroya (bib18) 2012; 444 Kong, Banks, Liu, Kazak, Rao, Cohen, Wang, Yu, Lo, Tseng (bib30) 2014; 158 Fasshauer, Klein, Ueki, Kriauciunas, Benito, White, Kahn (bib14) 2000; 275 Kumar, Lombard (bib31) 2018; 53 Tan, Peng, Anderson, Chhoy, Xie, Dai, Park, Chen, Huang, Zhang (bib53) 2014; 19 Jing, O’Neill, Rardin, Kleinridders, Ilkeyeva, Ussar, Bain, Lee, Verdin, Newgard (bib26) 2013; 62 Schwer, Verdin (bib49) 2008; 7 Wagner, Hirschey (bib58) 2014; 54 Fedorenko, Lishko, Kirichok (bib15) 2012; 151 Bartelt (10.1016/j.molcel.2019.03.021_bib4) 2011; 17 Nishida (10.1016/j.molcel.2019.03.021_bib43) 2015; 59 Wagner (10.1016/j.molcel.2019.03.021_bib58) 2014; 54 Frezza (10.1016/j.molcel.2019.03.021_bib16) 2007; 2 Jing (10.1016/j.molcel.2019.03.021_bib25) 2011; 108 Mills (10.1016/j.molcel.2019.03.021_bib38) 2018; 560 Yu (10.1016/j.molcel.2019.03.021_bib62) 2013; 3 Cannon (10.1016/j.molcel.2019.03.021_bib6) 2004; 84 Jensen (10.1016/j.molcel.2019.03.021_bib24) 2006; 281 Goodbody (10.1016/j.molcel.2019.03.021_bib20) 1981; 194 Liu (10.1016/j.molcel.2019.03.021_bib34) 2015; 281 Michishita (10.1016/j.molcel.2019.03.021_bib37) 2005; 16 Akie (10.1016/j.molcel.2019.03.021_bib1) 2015 Nicholls (10.1016/j.molcel.2019.03.021_bib42) 1999; 31 Tanida (10.1016/j.molcel.2019.03.021_bib54) 2008; 445 Hirschey (10.1016/j.molcel.2019.03.021_bib22) 2015; 14 Fedorenko (10.1016/j.molcel.2019.03.021_bib15) 2012; 151 Giralt (10.1016/j.molcel.2019.03.021_bib18) 2012; 444 Jing (10.1016/j.molcel.2019.03.021_bib26) 2013; 62 Meyer (10.1016/j.molcel.2019.03.021_bib36) 2017; 14 Kong (10.1016/j.molcel.2019.03.021_bib30) 2014; 158 Stram (10.1016/j.molcel.2019.03.021_bib51) 2016; 73 Tan (10.1016/j.molcel.2019.03.021_bib53) 2014; 19 Collins (10.1016/j.molcel.2019.03.021_bib10) 2017; 8 Hirschey (10.1016/j.molcel.2019.03.021_bib23) 2010; 464 Nedergaard (10.1016/j.molcel.2019.03.021_bib41) 2011; 13 Carrico (10.1016/j.molcel.2019.03.021_bib8) 2018; 27 Guedouari (10.1016/j.molcel.2019.03.021_bib21) 2017; 1864 Basisty (10.1016/j.molcel.2019.03.021_bib5) 2018; 18 Rardin (10.1016/j.molcel.2019.03.021_bib45) 2013; 18 Schwer (10.1016/j.molcel.2019.03.021_bib49) 2008; 7 Morris-Blanco (10.1016/j.molcel.2019.03.021_bib39) 2016; 6 Gillet (10.1016/j.molcel.2019.03.021_bib17) 2012; 11 Nedergaard (10.1016/j.molcel.2019.03.021_bib40) 2001; 1504 An (10.1016/j.molcel.2019.03.021_bib3) 2004; 10 Alcalá (10.1016/j.molcel.2019.03.021_bib2) 2017; 7 Kumar (10.1016/j.molcel.2019.03.021_bib31) 2018; 53 Matthias (10.1016/j.molcel.2019.03.021_bib35) 2000; 275 Cannon (10.1016/j.molcel.2019.03.021_bib7) 2008; 456 Zhang (10.1016/j.molcel.2019.03.021_bib63) 2015; 14 Shin (10.1016/j.molcel.2019.03.021_bib50) 2017; 26 Tomita (10.1016/j.molcel.2019.03.021_bib55) 2011; 286 Cypess (10.1016/j.molcel.2019.03.021_bib11) 2009; 360 Jokinen (10.1016/j.molcel.2019.03.021_bib27) 2017; 12 Zhou (10.1016/j.molcel.2019.03.021_bib65) 2016; 17 Sadhukhan (10.1016/j.molcel.2019.03.021_bib47) 2016; 113 Schreiber (10.1016/j.molcel.2019.03.021_bib48) 2017; 26 Fasshauer (10.1016/j.molcel.2019.03.021_bib14) 2000; 275 Li (10.1016/j.molcel.2019.03.021_bib32) 2016; 10 Divakaruni (10.1016/j.molcel.2019.03.021_bib13) 2012; 287 Twig (10.1016/j.molcel.2019.03.021_bib56) 2011; 14 White (10.1016/j.molcel.2019.03.021_bib60) 2016; 5 Wallace (10.1016/j.molcel.2019.03.021_bib59) 2005; 39 Juhász (10.1016/j.molcel.2019.03.021_bib28) 2012; 8 Rothwell (10.1016/j.molcel.2019.03.021_bib46) 1984; 4 Chouchani (10.1016/j.molcel.2019.03.021_bib9) 2016; 532 Park (10.1016/j.molcel.2019.03.021_bib44) 2013; 50 Villarroya (10.1016/j.molcel.2019.03.021_bib57) 2017; 134 Klein (10.1016/j.molcel.2019.03.021_bib29) 2002; 24 Yelamanchi (10.1016/j.molcel.2019.03.021_bib61) 2016; 10 Gomes (10.1016/j.molcel.2019.03.021_bib19) 2011; 13 Li (10.1016/j.molcel.2019.03.021_bib33) 2014; 15 Zhang (10.1016/j.molcel.2019.03.021_bib64) 2017; 292 Sun (10.1016/j.molcel.2019.03.021_bib52) 2014; 3 Cypess (10.1016/j.molcel.2019.03.021_bib12) 2015; 21 |
References_xml | – volume: 16 start-page: 4623 year: 2005 end-page: 4635 ident: bib37 article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins publication-title: Mol. Biol. Cell – volume: 4 start-page: 351 year: 1984 end-page: 357 ident: bib46 article-title: Brown fat activity in fasted and refed rats publication-title: Biosci. Rep. – volume: 26 start-page: 764 year: 2017 end-page: 777 ident: bib50 article-title: Lipolysis in Brown Adipocytes Is Not Essential for Cold-Induced Thermogenesis in Mice publication-title: Cell Metab. – volume: 27 start-page: 497 year: 2018 end-page: 512 ident: bib8 article-title: The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications publication-title: Cell Metab. – volume: 14 start-page: 1939 year: 2011 end-page: 1951 ident: bib56 article-title: The interplay between mitochondrial dynamics and mitophagy publication-title: Antioxid. Redox Signal. – volume: 292 start-page: 10239 year: 2017 end-page: 10249 ident: bib64 article-title: Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain publication-title: J. Biol. Chem. – volume: 560 start-page: 102 year: 2018 end-page: 106 ident: bib38 article-title: Accumulation of succinate controls activation of adipose tissue thermogenesis publication-title: Nature – volume: 113 start-page: 4320 year: 2016 end-page: 4325 ident: bib47 article-title: Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 104 year: 2008 end-page: 112 ident: bib49 article-title: Conserved metabolic regulatory functions of sirtuins publication-title: Cell Metab. – volume: 18 start-page: e1800123 year: 2018 ident: bib5 article-title: Simultaneous Quantification of the Acetylome and Succinylome by ‘One-Pot’ Affinity Enrichment publication-title: Proteomics – volume: 24 start-page: 382 year: 2002 end-page: 388 ident: bib29 article-title: Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action publication-title: BioEssays – volume: 84 start-page: 277 year: 2004 end-page: 359 ident: bib6 article-title: Brown adipose tissue: function and physiological significance publication-title: Physiol. Rev. – volume: 281 start-page: 22342 year: 2006 end-page: 22351 ident: bib24 article-title: Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion publication-title: J. Biol. Chem. – volume: 158 start-page: 69 year: 2014 end-page: 83 ident: bib30 article-title: IRF4 is a key thermogenic transcriptional partner of PGC-1α publication-title: Cell – volume: 73 start-page: 4063 year: 2016 end-page: 4073 ident: bib51 article-title: Post-translational modifications in mitochondria: protein signaling in the powerhouse publication-title: Cell. Mol. Life Sci. – volume: 13 start-page: 589 year: 2011 end-page: 598 ident: bib19 article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability publication-title: Nat. Cell Biol. – volume: 8 start-page: 1875 year: 2012 end-page: 1876 ident: bib28 article-title: Interpretation of bafilomycin, pH neutralizing or protease inhibitor treatments in autophagic flux experiments: novel considerations publication-title: Autophagy – volume: 3 start-page: 2806 year: 2013 ident: bib62 article-title: Metabolic characterization of a Sirt5 deficient mouse model publication-title: Sci. Rep. – start-page: e52982 year: 2015 ident: bib1 article-title: Determination of Fatty Acid Oxidation and Lipogenesis in Mouse Primary Hepatocytes publication-title: J. Vis. Exp. – volume: 39 start-page: 359 year: 2005 end-page: 407 ident: bib59 article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine publication-title: Annu. Rev. Genet. – volume: 14 start-page: 4359 year: 2015 end-page: 4371 ident: bib63 article-title: The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition publication-title: J. Proteome Res. – volume: 445 start-page: 77 year: 2008 end-page: 88 ident: bib54 article-title: LC3 and Autophagy publication-title: Methods Mol. Biol. – volume: 59 start-page: 321 year: 2015 end-page: 332 ident: bib43 article-title: SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target publication-title: Mol. Cell – volume: 21 start-page: 33 year: 2015 end-page: 38 ident: bib12 article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist publication-title: Cell Metab. – volume: 134 start-page: 86 year: 2017 end-page: 92 ident: bib57 article-title: Transcriptional regulation of the uncoupling protein-1 gene publication-title: Biochimie – volume: 6 start-page: 29790 year: 2016 ident: bib39 article-title: Protein Kinase C Epsilon Promotes Cerebral Ischemic Tolerance Via Modulation of Mitochondrial Sirt5 publication-title: Sci. Rep. – volume: 464 start-page: 121 year: 2010 end-page: 125 ident: bib23 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature – volume: 14 start-page: 646 year: 2017 end-page: 647 ident: bib36 article-title: PIQED: automated identification and quantification of protein modifications from DIA-MS data publication-title: Nat. Methods – volume: 275 start-page: 25073 year: 2000 end-page: 25081 ident: bib35 article-title: Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis publication-title: J. Biol. Chem. – volume: 11 year: 2012 ident: bib17 article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis publication-title: Mol. Cell Proteomics – volume: 26 start-page: 753 year: 2017 end-page: 763 ident: bib48 article-title: Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue publication-title: Cell Metab. – volume: 19 start-page: 605 year: 2014 end-page: 617 ident: bib53 article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5 publication-title: Cell Metab. – volume: 444 start-page: 1 year: 2012 end-page: 10 ident: bib18 article-title: SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging publication-title: Biochem. J. – volume: 108 start-page: 14608 year: 2011 end-page: 14613 ident: bib25 article-title: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 268 year: 2004 end-page: 274 ident: bib3 article-title: Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance publication-title: Nat. Med. – volume: 532 start-page: 112 year: 2016 end-page: 116 ident: bib9 article-title: Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1 publication-title: Nature – volume: 12 start-page: 246 year: 2017 end-page: 263 ident: bib27 article-title: Adipose tissue NAD publication-title: Redox Biol. – volume: 8 start-page: 291 year: 2017 ident: bib10 article-title: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry publication-title: Nat. Commun. – volume: 15 start-page: 1069 year: 2014 end-page: 1076 ident: bib33 article-title: Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes publication-title: EMBO Rep. – volume: 31 start-page: 399 year: 1999 end-page: 406 ident: bib42 article-title: A history of the first uncoupling protein, UCP1 publication-title: J. Bioenerg. Biomembr. – volume: 151 start-page: 400 year: 2012 end-page: 413 ident: bib15 article-title: Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria publication-title: Cell – volume: 54 start-page: 5 year: 2014 end-page: 16 ident: bib58 article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases publication-title: Mol. Cell – volume: 50 start-page: 919 year: 2013 end-page: 930 ident: bib44 article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways publication-title: Mol. Cell – volume: 10 start-page: 171 year: 2016 ident: bib32 article-title: SIRT5 Deficiency Enhances Susceptibility to Kainate-Induced Seizures and Exacerbates Hippocampal Neurodegeneration not through Mitochondrial Antioxidant Enzyme SOD2 publication-title: Front. Cell. Neurosci. – volume: 287 start-page: 36845 year: 2012 end-page: 36853 ident: bib13 article-title: Fatty acids change the conformation of uncoupling protein 1 (UCP1) publication-title: J. Biol. Chem. – volume: 286 start-page: 37406 year: 2011 end-page: 37413 ident: bib55 article-title: Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase publication-title: J. Biol. Chem. – volume: 17 start-page: 811 year: 2016 end-page: 822 ident: bib65 article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense publication-title: EMBO Rep. – volume: 1864 start-page: 169 year: 2017 end-page: 176 ident: bib21 article-title: Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation publication-title: Biochim Biophys Acta Mol Cell Res – volume: 53 start-page: 311 year: 2018 end-page: 334 ident: bib31 article-title: Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 5 start-page: 538 year: 2016 end-page: 551 ident: bib60 article-title: Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export publication-title: Mol. Metab. – volume: 14 start-page: 2308 year: 2015 end-page: 2315 ident: bib22 article-title: Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation publication-title: Mol. Cell. Proteomics – volume: 62 start-page: 3404 year: 2013 end-page: 3417 ident: bib26 article-title: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation publication-title: Diabetes – volume: 18 start-page: 920 year: 2013 end-page: 933 ident: bib45 article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks publication-title: Cell Metab. – volume: 275 start-page: 25494 year: 2000 end-page: 25501 ident: bib14 article-title: Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes publication-title: J. Biol. Chem. – volume: 3 start-page: 474 year: 2014 end-page: 483 ident: bib52 article-title: Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure publication-title: Mol. Metab. – volume: 17 start-page: 200 year: 2011 end-page: 205 ident: bib4 article-title: Brown adipose tissue activity controls triglyceride clearance publication-title: Nat. Med. – volume: 194 start-page: 1019 year: 1981 end-page: 1022 ident: bib20 article-title: GDP binding to brown-adipose-tissue mitochondria of diabetic--obese (db/db) mice. Decreased binding in both the obese and pre-obese states publication-title: Biochem. J. – volume: 281 start-page: 215 year: 2015 end-page: 221 ident: bib34 article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease publication-title: Behav. Brain Res. – volume: 13 start-page: 238 year: 2011 end-page: 240 ident: bib41 article-title: New powers of brown fat: fighting the metabolic syndrome publication-title: Cell Metab. – volume: 456 start-page: 109 year: 2008 end-page: 121 ident: bib7 article-title: Studies of thermogenesis and mitochondrial function in adipose tissues publication-title: Methods Mol. Biol. – volume: 360 start-page: 1509 year: 2009 end-page: 1517 ident: bib11 article-title: Identification and importance of brown adipose tissue in adult humans publication-title: N. Engl. J. Med. – volume: 1504 start-page: 82 year: 2001 end-page: 106 ident: bib40 article-title: UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 69 year: 2016 end-page: 75 ident: bib61 article-title: A pathway map of glutamate metabolism publication-title: J. Cell Commun. Signal. – volume: 7 start-page: 16082 year: 2017 ident: bib2 article-title: Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice publication-title: Sci. Rep. – volume: 2 start-page: 287 year: 2007 end-page: 295 ident: bib16 article-title: Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts publication-title: Nat. Protoc. – volume: 17 start-page: 200 year: 2011 ident: 10.1016/j.molcel.2019.03.021_bib4 article-title: Brown adipose tissue activity controls triglyceride clearance publication-title: Nat. Med. doi: 10.1038/nm.2297 – volume: 12 start-page: 246 year: 2017 ident: 10.1016/j.molcel.2019.03.021_bib27 article-title: Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health publication-title: Redox Biol. doi: 10.1016/j.redox.2017.02.011 – volume: 14 start-page: 646 year: 2017 ident: 10.1016/j.molcel.2019.03.021_bib36 article-title: PIQED: automated identification and quantification of protein modifications from DIA-MS data publication-title: Nat. Methods doi: 10.1038/nmeth.4334 – volume: 1504 start-page: 82 year: 2001 ident: 10.1016/j.molcel.2019.03.021_bib40 article-title: UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2728(00)00247-4 – volume: 84 start-page: 277 year: 2004 ident: 10.1016/j.molcel.2019.03.021_bib6 article-title: Brown adipose tissue: function and physiological significance publication-title: Physiol. Rev. doi: 10.1152/physrev.00015.2003 – volume: 532 start-page: 112 year: 2016 ident: 10.1016/j.molcel.2019.03.021_bib9 article-title: Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1 publication-title: Nature doi: 10.1038/nature17399 – volume: 10 start-page: 69 year: 2016 ident: 10.1016/j.molcel.2019.03.021_bib61 article-title: A pathway map of glutamate metabolism publication-title: J. Cell Commun. Signal. doi: 10.1007/s12079-015-0315-5 – volume: 360 start-page: 1509 year: 2009 ident: 10.1016/j.molcel.2019.03.021_bib11 article-title: Identification and importance of brown adipose tissue in adult humans publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0810780 – volume: 134 start-page: 86 year: 2017 ident: 10.1016/j.molcel.2019.03.021_bib57 article-title: Transcriptional regulation of the uncoupling protein-1 gene publication-title: Biochimie doi: 10.1016/j.biochi.2016.09.017 – volume: 8 start-page: 291 year: 2017 ident: 10.1016/j.molcel.2019.03.021_bib10 article-title: Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry publication-title: Nat. Commun. doi: 10.1038/s41467-017-00249-5 – volume: 62 start-page: 3404 year: 2013 ident: 10.1016/j.molcel.2019.03.021_bib26 article-title: Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation publication-title: Diabetes doi: 10.2337/db12-1650 – volume: 15 start-page: 1069 year: 2014 ident: 10.1016/j.molcel.2019.03.021_bib33 article-title: Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes publication-title: EMBO Rep. doi: 10.15252/embr.201438775 – volume: 13 start-page: 589 year: 2011 ident: 10.1016/j.molcel.2019.03.021_bib19 article-title: During autophagy mitochondria elongate, are spared from degradation and sustain cell viability publication-title: Nat. Cell Biol. doi: 10.1038/ncb2220 – volume: 6 start-page: 29790 year: 2016 ident: 10.1016/j.molcel.2019.03.021_bib39 article-title: Protein Kinase C Epsilon Promotes Cerebral Ischemic Tolerance Via Modulation of Mitochondrial Sirt5 publication-title: Sci. Rep. doi: 10.1038/srep29790 – volume: 3 start-page: 474 year: 2014 ident: 10.1016/j.molcel.2019.03.021_bib52 article-title: Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure publication-title: Mol. Metab. doi: 10.1016/j.molmet.2014.03.010 – volume: 445 start-page: 77 year: 2008 ident: 10.1016/j.molcel.2019.03.021_bib54 article-title: LC3 and Autophagy publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-157-4_4 – volume: 194 start-page: 1019 year: 1981 ident: 10.1016/j.molcel.2019.03.021_bib20 article-title: GDP binding to brown-adipose-tissue mitochondria of diabetic--obese (db/db) mice. Decreased binding in both the obese and pre-obese states publication-title: Biochem. J. doi: 10.1042/bj1941019 – volume: 13 start-page: 238 year: 2011 ident: 10.1016/j.molcel.2019.03.021_bib41 article-title: New powers of brown fat: fighting the metabolic syndrome publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.02.009 – volume: 39 start-page: 359 year: 2005 ident: 10.1016/j.molcel.2019.03.021_bib59 article-title: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.39.110304.095751 – volume: 3 start-page: 2806 year: 2013 ident: 10.1016/j.molcel.2019.03.021_bib62 article-title: Metabolic characterization of a Sirt5 deficient mouse model publication-title: Sci. Rep. doi: 10.1038/srep02806 – start-page: e52982 issue: 102 year: 2015 ident: 10.1016/j.molcel.2019.03.021_bib1 article-title: Determination of Fatty Acid Oxidation and Lipogenesis in Mouse Primary Hepatocytes publication-title: J. Vis. Exp. – volume: 18 start-page: 920 year: 2013 ident: 10.1016/j.molcel.2019.03.021_bib45 article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.11.013 – volume: 158 start-page: 69 year: 2014 ident: 10.1016/j.molcel.2019.03.021_bib30 article-title: IRF4 is a key thermogenic transcriptional partner of PGC-1α publication-title: Cell doi: 10.1016/j.cell.2014.04.049 – volume: 151 start-page: 400 year: 2012 ident: 10.1016/j.molcel.2019.03.021_bib15 article-title: Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria publication-title: Cell doi: 10.1016/j.cell.2012.09.010 – volume: 19 start-page: 605 year: 2014 ident: 10.1016/j.molcel.2019.03.021_bib53 article-title: Lysine glutarylation is a protein posttranslational modification regulated by SIRT5 publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.03.014 – volume: 444 start-page: 1 year: 2012 ident: 10.1016/j.molcel.2019.03.021_bib18 article-title: SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging publication-title: Biochem. J. doi: 10.1042/BJ20120030 – volume: 10 start-page: 171 year: 2016 ident: 10.1016/j.molcel.2019.03.021_bib32 article-title: SIRT5 Deficiency Enhances Susceptibility to Kainate-Induced Seizures and Exacerbates Hippocampal Neurodegeneration not through Mitochondrial Antioxidant Enzyme SOD2 publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2016.00171 – volume: 26 start-page: 764 year: 2017 ident: 10.1016/j.molcel.2019.03.021_bib50 article-title: Lipolysis in Brown Adipocytes Is Not Essential for Cold-Induced Thermogenesis in Mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.09.002 – volume: 2 start-page: 287 year: 2007 ident: 10.1016/j.molcel.2019.03.021_bib16 article-title: Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.478 – volume: 292 start-page: 10239 year: 2017 ident: 10.1016/j.molcel.2019.03.021_bib64 article-title: Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.785022 – volume: 73 start-page: 4063 year: 2016 ident: 10.1016/j.molcel.2019.03.021_bib51 article-title: Post-translational modifications in mitochondria: protein signaling in the powerhouse publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2280-4 – volume: 10 start-page: 268 year: 2004 ident: 10.1016/j.molcel.2019.03.021_bib3 article-title: Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance publication-title: Nat. Med. doi: 10.1038/nm995 – volume: 286 start-page: 37406 year: 2011 ident: 10.1016/j.molcel.2019.03.021_bib55 article-title: Structural basis for leucine-induced allosteric activation of glutamate dehydrogenase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.260265 – volume: 17 start-page: 811 year: 2016 ident: 10.1016/j.molcel.2019.03.021_bib65 article-title: SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense publication-title: EMBO Rep. doi: 10.15252/embr.201541643 – volume: 11 year: 2012 ident: 10.1016/j.molcel.2019.03.021_bib17 article-title: Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.O111.016717 – volume: 59 start-page: 321 year: 2015 ident: 10.1016/j.molcel.2019.03.021_bib43 article-title: SIRT5 Regulates both Cytosolic and Mitochondrial Protein Malonylation with Glycolysis as a Major Target publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.022 – volume: 18 start-page: e1800123 year: 2018 ident: 10.1016/j.molcel.2019.03.021_bib5 article-title: Simultaneous Quantification of the Acetylome and Succinylome by ‘One-Pot’ Affinity Enrichment publication-title: Proteomics doi: 10.1002/pmic.201800123 – volume: 108 start-page: 14608 year: 2011 ident: 10.1016/j.molcel.2019.03.021_bib25 article-title: Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1111308108 – volume: 24 start-page: 382 year: 2002 ident: 10.1016/j.molcel.2019.03.021_bib29 article-title: Novel adipocyte lines from brown fat: a model system for the study of differentiation, energy metabolism, and insulin action publication-title: BioEssays doi: 10.1002/bies.10058 – volume: 281 start-page: 22342 year: 2006 ident: 10.1016/j.molcel.2019.03.021_bib24 article-title: Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion publication-title: J. Biol. Chem. doi: 10.1074/jbc.M604350200 – volume: 50 start-page: 919 year: 2013 ident: 10.1016/j.molcel.2019.03.021_bib44 article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.06.001 – volume: 7 start-page: 16082 year: 2017 ident: 10.1016/j.molcel.2019.03.021_bib2 article-title: Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice publication-title: Sci. Rep. doi: 10.1038/s41598-017-16463-6 – volume: 53 start-page: 311 year: 2018 ident: 10.1016/j.molcel.2019.03.021_bib31 article-title: Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2018.1458071 – volume: 54 start-page: 5 year: 2014 ident: 10.1016/j.molcel.2019.03.021_bib58 article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.027 – volume: 560 start-page: 102 year: 2018 ident: 10.1016/j.molcel.2019.03.021_bib38 article-title: Accumulation of succinate controls activation of adipose tissue thermogenesis publication-title: Nature doi: 10.1038/s41586-018-0353-2 – volume: 14 start-page: 1939 year: 2011 ident: 10.1016/j.molcel.2019.03.021_bib56 article-title: The interplay between mitochondrial dynamics and mitophagy publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2010.3779 – volume: 16 start-page: 4623 year: 2005 ident: 10.1016/j.molcel.2019.03.021_bib37 article-title: Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-01-0033 – volume: 5 start-page: 538 year: 2016 ident: 10.1016/j.molcel.2019.03.021_bib60 article-title: Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export publication-title: Mol. Metab. doi: 10.1016/j.molmet.2016.04.006 – volume: 21 start-page: 33 year: 2015 ident: 10.1016/j.molcel.2019.03.021_bib12 article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.12.009 – volume: 7 start-page: 104 year: 2008 ident: 10.1016/j.molcel.2019.03.021_bib49 article-title: Conserved metabolic regulatory functions of sirtuins publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.11.006 – volume: 275 start-page: 25073 year: 2000 ident: 10.1016/j.molcel.2019.03.021_bib35 article-title: Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M000547200 – volume: 8 start-page: 1875 year: 2012 ident: 10.1016/j.molcel.2019.03.021_bib28 article-title: Interpretation of bafilomycin, pH neutralizing or protease inhibitor treatments in autophagic flux experiments: novel considerations publication-title: Autophagy doi: 10.4161/auto.21544 – volume: 287 start-page: 36845 year: 2012 ident: 10.1016/j.molcel.2019.03.021_bib13 article-title: Fatty acids change the conformation of uncoupling protein 1 (UCP1) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.381780 – volume: 26 start-page: 753 year: 2017 ident: 10.1016/j.molcel.2019.03.021_bib48 article-title: Cold-Induced Thermogenesis Depends on ATGL-Mediated Lipolysis in Cardiac Muscle, but Not Brown Adipose Tissue publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.09.004 – volume: 1864 start-page: 169 year: 2017 ident: 10.1016/j.molcel.2019.03.021_bib21 article-title: Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation publication-title: Biochim Biophys Acta Mol Cell Res doi: 10.1016/j.bbamcr.2016.10.015 – volume: 31 start-page: 399 year: 1999 ident: 10.1016/j.molcel.2019.03.021_bib42 article-title: A history of the first uncoupling protein, UCP1 publication-title: J. Bioenerg. Biomembr. doi: 10.1023/A:1005436121005 – volume: 456 start-page: 109 year: 2008 ident: 10.1016/j.molcel.2019.03.021_bib7 article-title: Studies of thermogenesis and mitochondrial function in adipose tissues publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-245-8_8 – volume: 14 start-page: 4359 year: 2015 ident: 10.1016/j.molcel.2019.03.021_bib63 article-title: The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.5b00543 – volume: 113 start-page: 4320 year: 2016 ident: 10.1016/j.molcel.2019.03.021_bib47 article-title: Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1519858113 – volume: 275 start-page: 25494 year: 2000 ident: 10.1016/j.molcel.2019.03.021_bib14 article-title: Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004046200 – volume: 14 start-page: 2308 year: 2015 ident: 10.1016/j.molcel.2019.03.021_bib22 article-title: Metabolic Regulation by Lysine Malonylation, Succinylation, and Glutarylation publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.R114.046664 – volume: 4 start-page: 351 year: 1984 ident: 10.1016/j.molcel.2019.03.021_bib46 article-title: Brown fat activity in fasted and refed rats publication-title: Biosci. Rep. doi: 10.1007/BF01140499 – volume: 464 start-page: 121 year: 2010 ident: 10.1016/j.molcel.2019.03.021_bib23 article-title: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation publication-title: Nature doi: 10.1038/nature08778 – volume: 27 start-page: 497 year: 2018 ident: 10.1016/j.molcel.2019.03.021_bib8 article-title: The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.01.016 – volume: 281 start-page: 215 year: 2015 ident: 10.1016/j.molcel.2019.03.021_bib34 article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2014.12.035 |
SSID | ssj0014589 |
Score | 2.6166074 |
Snippet | Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis, and glucose homeostasis. We find that levels... Brown adipose tissue (BAT) is rich in mitochondria and plays important roles in energy expenditure, thermogenesis and glucose homeostasis. We find that levels... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 844 |
SubjectTerms | Adipose Tissue, Brown - metabolism Adipose Tissue, Brown - pathology Animals brown adipose tissue brown fat energy expenditure Energy Metabolism - genetics Gene Expression Regulation glucose Glucose - metabolism glutamic acid glutamine heat production homeostasis linear amide hydrolases mass spectrometry metabolism Mice Mice, Knockout mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial Proteins - genetics mitophagy mutation Obesity - genetics Obesity - metabolism Obesity - pathology proteins Proteomics - methods Sirtuins - genetics Succinic Acid - metabolism succinylation thermogenesis Thermogenesis - genetics UCP1 Uncoupling Protein 1 - genetics Uncoupling Protein 1 - metabolism |
Title | Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation |
URI | https://dx.doi.org/10.1016/j.molcel.2019.03.021 https://www.ncbi.nlm.nih.gov/pubmed/31000437 https://www.proquest.com/docview/2211952365 https://www.proquest.com/docview/2253250216 https://pubmed.ncbi.nlm.nih.gov/PMC6525068 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelY7CXse4z6wca7FUksmTZfkzDSlnJGGnD8iYkWWIeqR2W5CH__e5kOzQbW2GPts9G1p1OP3F3vyPkY-4AgxShZKFMSyalyZktjGBGygxOQUVZlFjvPP2irufy8yJdHJFJXwuDaZWd7299evTW3Z1hN5vDVVUNbzF2mmQKIQhsRClyggqZxyK-xeU-kiDT2AYPhRlK9-VzMcfrvlk6jwEI3lKdJvxv29Of8PP3LMoH29LVC_K8w5N03A75hBz5-iV52naY3L0ibtb2mofZp02g88lXTk1d0iksZHB8dYn2R6d-A7awrNb3tKppPJnTcVmtmrWnd1Ez1O7ozMcUDrv09HbrXFXv2g-_JvOrT3eTa9b1VWAO0M6GCeRk4Xnms8Kp4EXqchNc4C4YHtzIplI4lRSZSQLHwGORWJvZkSiCdQJ8u3hDjuum9u8IDSNrEwx2ZqmXPgF8YQGQGV9w5wCamAER_XRq15GOY--Lpe6zy37oVgkalaBHQoMSBoTt31q1pBuPyGe9pvSB8WjYFx5580OvWA3rCoMlpvbNdq0TpL6DU7pK_yWTCoCQCVcD8rY1hv14Y-BEigzGdmAmewHk9T58UlffI7-3wlCzyt__91-dkmd4hUkOXJ2R483PrT8H7LSxF-TJ-Gb27eYiLpJft2MbDA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEIIXxDfl00i8Rq1jJ44fR8XUwTqhrZX6ZtmOrQV1SUXbh_733MVJRUEwidfkHDm-893P-p3vCPlYOMAgKpRJKLMyEcIUiVWGJ0YICacgVaoS7ztPL_LJXHxZZIsjMu7vwmBaZef7o09vvXX3ZNit5nBVVcMr5E5TmSMEgUCUiTvkLqABif0bzhaf9lSCyNo-eCidoHh_f65N8rppls4jA8FirdOU_S0-_Yk_f0-j_CUunT4iDztASU_inB-TI18_Ifdii8ndU-IuY7N5WH7aBDoff2PU1CWdwk4Gz1eXaIB06jdgDMtqfUOrmrZHc3pSVqtm7emsVQ21O3rp2xwOu_T0autcVe_ih5-R-enn2XiSdI0VEgdwZ5NwLMrCCumlcnnwPHOFCS4wFwwLbmQzwV2eKmnSwJB5VKm10o64CtZxcO78OTmum9q_JDSMrE2R7ZSZFz4FgGEBkRmvmHOATcyA8H45teuqjmPzi6Xu08u-66gEjUrQI65BCQOS7EetYtWNW-Rlryl9YD0aAsMtIz_0itWwsZAtMbVvtmudYu07OKbn2b9kMg4YMmX5gLyIxrCfb8ucCC5hbgdmshfAwt6Hb-rqui3wnSPXnBev_vuv3pP7k9n0XJ-fXXx9TR7gG8x4YPkbcrz5sfVvAUht7Lt2o_wEA1ociA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+UCP1+and+Mitochondrial+Metabolism+in+Brown+Adipose+Tissue+by+Reversible+Succinylation&rft.jtitle=Molecular+cell&rft.au=Wang%2C+Guoxiao&rft.au=Meyer%2C+Jesse+G.&rft.au=Cai%2C+Weikang&rft.au=Softic%2C+Samir&rft.date=2019-05-16&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=74&rft.issue=4&rft.spage=844&rft.epage=857.e7&rft_id=info:doi/10.1016%2Fj.molcel.2019.03.021&rft_id=info%3Apmid%2F31000437&rft.externalDocID=PMC6525068 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |