Antibiofilm activity of nanosized magnesium fluoride

Abstract The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical implant-associated infections and results in prolonged hospitalization periods and patient mortality. This raises the urgent need to develop compounds that...

Full description

Saved in:
Bibliographic Details
Published inBiomaterials Vol. 30; no. 30; pp. 5969 - 5978
Main Authors Lellouche, Jonathan, Kahana, Edith, Elias, Sivan, Gedanken, Aharon, Banin, Ehud
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.10.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical implant-associated infections and results in prolonged hospitalization periods and patient mortality. This raises the urgent need to develop compounds that can inhibit bacterial colonization of surfaces. In this study, we present an unreported microwave-based synthesis of MgF2 nanoparticles (Nps) using ionic liquid. We demonstrate the antimicrobial activity of these fluoride nanomaterials and their ability to restrict biofilm formation of common bacterial pathogens. Scanning and transmission electron microscopic techniques indicated that the MgF2 ·Nps attach and penetrate into the cells. Flow cytometry analysis revealed that the Nps caused a disruption in the membrane potential. The MgF2 ·Nps also induced membrane lipid peroxidation and once internalized can interact with chromosomal DNA. Based on these findings we further explored the possibility of using the MgF2 ·Nps to coat surfaces and inhibit biofilm formation. A microwave synthesis and coating procedure was utilized to coat glass coupons. The MgF2 coated surfaces effectively restricted biofilm formation of the tested bacteria. Taken together these results highlight the potential for developing MgF2 nanoparticles in order to inhibit bacterial infections.
AbstractList The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical implant-associated infections and results in prolonged hospitalization periods and patient mortality. This raises the urgent need to develop compounds that can inhibit bacterial colonization of surfaces. In this study, we present an unreported microwave-based synthesis of MgF(2) nanoparticles (Nps) using ionic liquid. We demonstrate the antimicrobial activity of these fluoride nanomaterials and their ability to restrict biofilm formation of common bacterial pathogens. Scanning and transmission electron microscopic techniques indicated that the MgF(2).Nps attach and penetrate into the cells. Flow cytometry analysis revealed that the Nps caused a disruption in the membrane potential. The MgF(2).Nps also induced membrane lipid peroxidation and once internalized can interact with chromosomal DNA. Based on these findings we further explored the possibility of using the MgF(2).Nps to coat surfaces and inhibit biofilm formation. A microwave synthesis and coating procedure was utilized to coat glass coupons. The MgF(2) coated surfaces effectively restricted biofilm formation of the tested bacteria. Taken together these results highlight the potential for developing MgF(2) nanoparticles in order to inhibit bacterial infections.
Abstract The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical implant-associated infections and results in prolonged hospitalization periods and patient mortality. This raises the urgent need to develop compounds that can inhibit bacterial colonization of surfaces. In this study, we present an unreported microwave-based synthesis of MgF2 nanoparticles (Nps) using ionic liquid. We demonstrate the antimicrobial activity of these fluoride nanomaterials and their ability to restrict biofilm formation of common bacterial pathogens. Scanning and transmission electron microscopic techniques indicated that the MgF2 ·Nps attach and penetrate into the cells. Flow cytometry analysis revealed that the Nps caused a disruption in the membrane potential. The MgF2 ·Nps also induced membrane lipid peroxidation and once internalized can interact with chromosomal DNA. Based on these findings we further explored the possibility of using the MgF2 ·Nps to coat surfaces and inhibit biofilm formation. A microwave synthesis and coating procedure was utilized to coat glass coupons. The MgF2 coated surfaces effectively restricted biofilm formation of the tested bacteria. Taken together these results highlight the potential for developing MgF2 nanoparticles in order to inhibit bacterial infections.
The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical implant-associated infections and results in prolonged hospitalization periods and patient mortality. This raises the urgent need to develop compounds that can inhibit bacterial colonization of surfaces. In this study, we present an unreported microwave-based synthesis of MgF sub(2) nanoparticles (Nps) using ionic liquid. We demonstrate the antimicrobial activity of these fluoride nanomaterials and their ability to restrict biofilm formation of common bacterial pathogens. Scanning and transmission electron microscopic techniques indicated that the MgF sub(2).Nps attach and penetrate into the cells. Flow cytometry analysis revealed that the Nps caused a disruption in the membrane potential. The MgF sub(2).Nps also induced membrane lipid peroxidation and once internalized can interact with chromosomal DNA. Based on these findings we further explored the possibility of using the MgF sub(2).Nps to coat surfaces and inhibit biofilm formation. A microwave synthesis and coating procedure was utilized to coat glass coupons. The MgF sub(2) coated surfaces effectively restricted biofilm formation of the tested bacteria. Taken together these results highlight the potential for developing MgF sub(2) nanoparticles in order to inhibit bacterial infections.
The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical implant-associated infections and results in prolonged hospitalization periods and patient mortality. This raises the urgent need to develop compounds that can inhibit bacterial colonization of surfaces. In this study, we present an unreported microwave-based synthesis of MgF2 nanoparticles (Nps) using ionic liquid. We demonstrate the antimicrobial activity of these fluoride nanomaterials and their ability to restrict biofilm formation of common bacterial pathogens. Scanning and transmission electron microscopic techniques indicated that the MgF2·Nps attach and penetrate into the cells. Flow cytometry analysis revealed that the Nps caused a disruption in the membrane potential. The MgF2·Nps also induced membrane lipid peroxidation and once internalized can interact with chromosomal DNA. Based on these findings we further explored the possibility of using the MgF2·Nps to coat surfaces and inhibit biofilm formation. A microwave synthesis and coating procedure was utilized to coat glass coupons. The MgF2 coated surfaces effectively restricted biofilm formation of the tested bacteria. Taken together these results highlight the potential for developing MgF2 nanoparticles in order to inhibit bacterial infections.
Author Kahana, Edith
Banin, Ehud
Elias, Sivan
Gedanken, Aharon
Lellouche, Jonathan
Author_xml – sequence: 1
  fullname: Lellouche, Jonathan
– sequence: 2
  fullname: Kahana, Edith
– sequence: 3
  fullname: Elias, Sivan
– sequence: 4
  fullname: Gedanken, Aharon
– sequence: 5
  fullname: Banin, Ehud
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19664818$$D View this record in MEDLINE/PubMed
BookMark eNqNkk-L1TAUxYOMOG9Gv4IUF86q9SZtk8aFMIx_YcCFug5JeiN5tsmYtAPPT2_Ke6C4UFfhht89B865F-QsxICEPKPQUKD8xb4xPs56weT1lBsGIBsQDbTiAdnRQQx1L6E_IzugHaslp-ycXOS8hzJDxx6Rcyo57wY67Eh3HRZf5Jyf5krbxd_75VBFVwUdYvY_cKxm_TVg9utcuWmNyY_4mDx0xRmfnN5L8uXtm8837-vbj-8-3Fzf1rbnbKnZiJIN3AmHBkC4kbe0bZlttWXCGWF6IV1vjegpM5yNffljunNoDRiwrr0kV0fduxS_r5gXNftscZp0wLhmJdoOGAUJhXz-V7LtxCD6Xv4TZCAkk5wV8OURtCnmnNCpu-RnnQ6KgtpqUHv1ew1qq0GBUKWGsvz05LKaGcdfq6fcC_D6CGCJ795jUtl6DBZHn9Auaoz-_3xe_SFjJx-81dM3PGDexzWFbYeqzBSoT9tBbPdQIoMSx9D-BFjCttM
CitedBy_id crossref_primary_10_1515_ntrev_2016_0042
crossref_primary_10_1080_14787210_2021_1908125
crossref_primary_10_3390_molecules26196045
crossref_primary_10_1016_j_dental_2018_04_007
crossref_primary_10_1016_j_apsusc_2018_04_270
crossref_primary_10_1016_j_dental_2013_12_001
crossref_primary_10_1021_acsbiomaterials_8b00198
crossref_primary_10_1002_admi_201600501
crossref_primary_10_1016_j_pharmthera_2016_02_006
crossref_primary_10_3390_ma11020321
crossref_primary_10_1039_C6MD00124F
crossref_primary_10_1021_acs_nanolett_0c04451
crossref_primary_10_1016_j_ijbiomac_2020_06_118
crossref_primary_10_1016_j_mimet_2019_105656
crossref_primary_10_5897_AJMR2016_8178
crossref_primary_10_1021_nn507168x
crossref_primary_10_1016_j_colsurfb_2016_12_020
crossref_primary_10_1021_ie301522w
crossref_primary_10_1039_c3tb20598c
crossref_primary_10_1016_j_bcab_2021_102209
crossref_primary_10_1016_j_apsusc_2024_160393
crossref_primary_10_1039_C6NR07729C
crossref_primary_10_5254_rct_21_79901
crossref_primary_10_1088_0031_8949_84_03_035801
crossref_primary_10_1002_jbm_b_34392
crossref_primary_10_1016_j_msec_2018_04_095
crossref_primary_10_1039_D0SM01979H
crossref_primary_10_1016_j_ijbiomac_2013_09_011
crossref_primary_10_1039_C6TB01728B
crossref_primary_10_14202_IJOH_2022_86_100
crossref_primary_10_1016_j_apsusc_2018_08_194
crossref_primary_10_1002_adfm_201302425
crossref_primary_10_1021_acsami_5b00563
crossref_primary_10_3390_ijms19041179
crossref_primary_10_1016_j_susc_2011_03_022
crossref_primary_10_1016_j_jmst_2018_04_009
crossref_primary_10_1007_s10853_011_5785_0
crossref_primary_10_3390_nu11102363
crossref_primary_10_1016_j_jenvman_2018_07_084
crossref_primary_10_1007_s00253_012_4603_1
crossref_primary_10_3390_nano9091295
crossref_primary_10_1002_slct_201800547
crossref_primary_10_1016_j_ijmm_2018_11_002
crossref_primary_10_1002_adfm_201101557
crossref_primary_10_1002_adhm_202303870
crossref_primary_10_1016_j_apsusc_2011_10_033
crossref_primary_10_1016_j_biomaterials_2013_07_089
crossref_primary_10_1016_j_corsci_2012_04_041
crossref_primary_10_1016_j_jconrel_2011_07_002
crossref_primary_10_1128_AEM_00576_10
crossref_primary_10_1002_adhm_201200278
crossref_primary_10_1128_JB_00332_10
crossref_primary_10_1002_adhm_201200275
crossref_primary_10_3390_ma13225115
crossref_primary_10_1007_s10646_012_0975_3
crossref_primary_10_1039_c2ra00602b
crossref_primary_10_1007_s40883_019_00116_3
crossref_primary_10_1016_j_actbio_2020_09_023
crossref_primary_10_1016_j_addr_2014_08_004
crossref_primary_10_5812_archcid_107919
crossref_primary_10_1016_j_surfcoat_2014_03_032
crossref_primary_10_1016_j_apsusc_2019_144077
crossref_primary_10_1007_s10904_016_0392_9
crossref_primary_10_1088_2053_1591_1_3_032003
crossref_primary_10_3390_ma13163566
crossref_primary_10_1016_j_wear_2017_05_005
crossref_primary_10_1016_j_ceramint_2015_10_031
crossref_primary_10_1016_j_jddst_2020_101880
crossref_primary_10_1016_j_ceramint_2021_07_148
crossref_primary_10_1155_2014_543974
crossref_primary_10_1021_la301432a
crossref_primary_10_1016_j_jhin_2014_09_009
crossref_primary_10_1016_j_enzmictec_2016_06_009
crossref_primary_10_1039_c1jm13691g
crossref_primary_10_1002_adhm_201400631
crossref_primary_10_1021_acsbiomaterials_8b00787
crossref_primary_10_1155_2015_246012
crossref_primary_10_1016_j_jfluchem_2016_11_014
crossref_primary_10_3390_polym14194211
crossref_primary_10_1016_j_mssp_2014_12_044
crossref_primary_10_1139_er_2016_0046
crossref_primary_10_1080_14786435_2014_921349
crossref_primary_10_1016_j_msec_2015_10_078
crossref_primary_10_3109_03639045_2012_665459
crossref_primary_10_1016_j_dental_2016_07_003
crossref_primary_10_1155_2014_938272
crossref_primary_10_3389_fbioe_2016_00082
crossref_primary_10_1016_j_molliq_2022_118507
crossref_primary_10_3389_fmicb_2018_01441
crossref_primary_10_1002_jbm_a_35576
crossref_primary_10_1088_0022_3727_46_49_495302
crossref_primary_10_1016_j_bioactmat_2021_01_011
crossref_primary_10_1016_j_chemosphere_2022_133571
crossref_primary_10_3390_antibiotics13020154
crossref_primary_10_1021_am500139m
crossref_primary_10_1016_j_nantod_2014_06_003
crossref_primary_10_1016_j_jma_2020_11_005
crossref_primary_10_1039_c0jm03376f
crossref_primary_10_1016_j_mib_2013_06_013
crossref_primary_10_1038_nrurol_2012_68
crossref_primary_10_1088_0957_4484_24_19_195101
crossref_primary_10_1016_j_scitotenv_2019_06_482
crossref_primary_10_1016_j_jma_2020_11_011
crossref_primary_10_1039_C3TB21565B
crossref_primary_10_1016_j_nano_2011_09_002
crossref_primary_10_1016_j_bbrep_2018_11_007
crossref_primary_10_1016_j_cis_2017_06_010
crossref_primary_10_1002_jbm_a_34741
crossref_primary_10_1002_admt_202200598
Cites_doi 10.1146/annurev.micro.54.1.49
10.1016/j.jcis.2004.02.012
10.1016/j.chemphyslip.2008.09.004
10.1021/nl0727056
10.1016/S0142-9612(99)00176-3
10.1021/la701385m
10.1111/j.1574-6976.2003.tb00627.x
10.1002/(SICI)1097-0320(19990101)35:1<55::AID-CYTO8>3.0.CO;2-2
10.1016/j.biomaterials.2005.11.036
10.1021/la0202374
10.1021/es801869m
10.1021/cm060782g
10.1128/AAC.44.4.827-834.2000
10.1007/BF00291269
10.2166/wst.2008.282
10.1016/S0027-5107(99)00010-X
10.1056/NEJMra035415
10.1007/s10646-008-0217-x
10.1016/j.biomaterials.2008.07.003
10.1021/es060999b
10.1126/science.284.5418.1318
10.1128/AEM.02218-06
10.1002/adfm.200500029
10.1093/jac/dkn034
10.1111/j.1399-302X.1997.tb00623.x
10.1159/000262421
10.1586/14787210.1.4.667
10.1021/nl052326h
10.1126/science.766187
10.1038/nrd1008
10.1139/m95-133
10.1021/la701067r
10.1111/j.1574-6968.2007.01012.x
10.1093/jac/dkn281
10.1046/j.1365-2958.1998.00797.x
10.1021/la060661v
10.1016/j.tim.2004.11.010
10.1016/j.jinorgbio.2008.05.003
10.1016/j.chembiol.2005.09.008
10.1038/nrmicro821
ContentType Journal Article
Copyright Elsevier Ltd
2009 Elsevier Ltd
Copyright_xml – notice: Elsevier Ltd
– notice: 2009 Elsevier Ltd
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7T7
8FD
C1K
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
DOI 10.1016/j.biomaterials.2009.07.037
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biotechnology Research Abstracts
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 5978
ExternalDocumentID 10_1016_j_biomaterials_2009_07_037
19664818
S0142961209007558
1_s2_0_S0142961209007558
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYOK
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AEVXI
AEZYN
AFCTW
AFFNX
AFJKZ
AFKWA
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ACRPL
ADNMO
CITATION
7QL
7QO
7T7
8FD
C1K
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
7X8
ID FETCH-LOGICAL-c562t-2de9286f7feb007fd631332c3ac27fb7b579f5cb7512b62d5fb72a4fecb0b0cf3
IEDL.DBID AIKHN
ISSN 0142-9612
IngestDate Fri Oct 25 09:38:02 EDT 2024
Fri Oct 25 11:17:48 EDT 2024
Wed Dec 04 14:23:16 EST 2024
Fri Dec 06 04:49:14 EST 2024
Sat Sep 28 07:56:18 EDT 2024
Fri Feb 23 02:17:06 EST 2024
Tue Oct 15 22:54:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords Nanoparticles
Sterile surfaces
Magnesium fluoride
Biofilms
Antimicrobial properties
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-2de9286f7feb007fd631332c3ac27fb7b579f5cb7512b62d5fb72a4fecb0b0cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 19664818
PQID 20792962
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_734021090
proquest_miscellaneous_34787559
proquest_miscellaneous_20792962
crossref_primary_10_1016_j_biomaterials_2009_07_037
pubmed_primary_19664818
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2009_07_037
elsevier_clinicalkeyesjournals_1_s2_0_S0142961209007558
PublicationCentury 2000
PublicationDate 2009-10-01
PublicationDateYYYYMMDD 2009-10-01
PublicationDate_xml – month: 10
  year: 2009
  text: 2009-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Flemming, Capelli, Cooper, Proctor (bib12) 2000; 21
Novo, Perlmutter, Hunt, Shapiro (bib31) 1999; 35
Darouiche (bib7) 2004; 350
Marnett (bib35) 1999; 424
Lovric, Cho, Winnik, Maysinger (bib41) 2005; 12
Kang, Pinault, Pfefferle, Elimelech (bib42) 2007; 23
Roe, Karandikar, Bonn-Savage, Gibbins, Roullet (bib11) 2008; 61
Guha-Chowdhury, Clark, Sissons (bib21) 1997; 12
Shi, Neoh, Kang, Wang (bib14) 2006; 27
O'Toole, Kolter (bib24) 1998; 28
Beyth, Houri-Haddad, Baraness-Hadar, Yudovin-Farber, Domb, Weiss (bib16) 2008; 29
Neal (bib39) 2008; 17
Jacob, Bitton, Grinblat, Felner, Koltypin, Gedanken (bib22) 2006; 18
Fux, Stoodley, Hall-Stoodley, Costerton (bib6) 2003; 1
Davies (bib1) 2003; 2
Delattre, Bonnefont-Rousselot (bib38) 2005
Jones, Ray, Ranjit, Manna (bib9) 2008; 279
Michel, Bonnefont-Rousselot, Mas, Drai, Therond (bib37) 2008; 66
Chang, He, Ma (bib15) 2008; 102
Sturr, Marquis (bib19) 1990; 155
Novo, Perlmutter, Hunt, Shapiro (bib30) 2000; 44
Stoimenov, Klinger, Marchin, Klabunde (bib29) 2002; 18
Marquis (bib17) 1995; 41
Thill, Zeyons, Spalla, Chauvat, Rose, Auffan (bib40) 2006; 40
Guha-Chowdhury, Iwami, Yamada (bib20) 1997; 31
Mukai, Goldstein (bib36) 1976; 191
Lyon, Alvarez (bib33) 2008; 42
Raad, Reitzel, Jiang, Chemaly, Dvorak, Hachem (bib13) 2008; 62
Gogoi, Gopinath, Paul, Ramesh, Ghosh, Chattopadhyay (bib25) 2006; 22
Sondi, Salopek-Sondi (bib27) 2004; 275
Pal, Tak, Song (bib26) 2007; 73
Hall-Stoodley, Costerton, Stoodley (bib3) 2004; 2
Lyon, Brown, Alvarez (bib32) 2008; 57
Fux, Costerton, Stewart, Stoodley (bib4) 2005; 13
Catala (bib34) 2009; 157
Brayner, Ferrari-Iliou, Brivois, Djediat, Benedetti, Fievet (bib8) 2006; 6
Irzh, Perkas, Gedanken (bib43) 2007; 23
Makhluf, Dror, Nitzan, Abramovich, Jelinek, Gedanken (bib28) 2005; 15
O'Toole, Kaplan, Kolter (bib2) 2000; 54
Croft S. Methods in molecular biology: electron microscopy methods and protocols. 1999. p. 117.
Norman, Stone, Gole, Murphy, Sabo-Attwood (bib10) 2008; 8
Costerton, Stewart, Greenberg (bib5) 1999; 284
Marquis, Clock, Mota-Meira (bib18) 2003; 26
Novo (10.1016/j.biomaterials.2009.07.037_bib30) 2000; 44
Lyon (10.1016/j.biomaterials.2009.07.037_bib32) 2008; 57
Davies (10.1016/j.biomaterials.2009.07.037_bib1) 2003; 2
Irzh (10.1016/j.biomaterials.2009.07.037_bib43) 2007; 23
Marnett (10.1016/j.biomaterials.2009.07.037_bib35) 1999; 424
Beyth (10.1016/j.biomaterials.2009.07.037_bib16) 2008; 29
Marquis (10.1016/j.biomaterials.2009.07.037_bib18) 2003; 26
Hall-Stoodley (10.1016/j.biomaterials.2009.07.037_bib3) 2004; 2
Darouiche (10.1016/j.biomaterials.2009.07.037_bib7) 2004; 350
Brayner (10.1016/j.biomaterials.2009.07.037_bib8) 2006; 6
Raad (10.1016/j.biomaterials.2009.07.037_bib13) 2008; 62
Kang (10.1016/j.biomaterials.2009.07.037_bib42) 2007; 23
Guha-Chowdhury (10.1016/j.biomaterials.2009.07.037_bib20) 1997; 31
Norman (10.1016/j.biomaterials.2009.07.037_bib10) 2008; 8
Shi (10.1016/j.biomaterials.2009.07.037_bib14) 2006; 27
Flemming (10.1016/j.biomaterials.2009.07.037_bib12) 2000; 21
Delattre (10.1016/j.biomaterials.2009.07.037_bib38) 2005
Roe (10.1016/j.biomaterials.2009.07.037_bib11) 2008; 61
Chang (10.1016/j.biomaterials.2009.07.037_bib15) 2008; 102
Sondi (10.1016/j.biomaterials.2009.07.037_bib27) 2004; 275
Novo (10.1016/j.biomaterials.2009.07.037_bib31) 1999; 35
Costerton (10.1016/j.biomaterials.2009.07.037_bib5) 1999; 284
O'Toole (10.1016/j.biomaterials.2009.07.037_bib24) 1998; 28
Michel (10.1016/j.biomaterials.2009.07.037_bib37) 2008; 66
Neal (10.1016/j.biomaterials.2009.07.037_bib39) 2008; 17
Mukai (10.1016/j.biomaterials.2009.07.037_bib36) 1976; 191
Lovric (10.1016/j.biomaterials.2009.07.037_bib41) 2005; 12
Stoimenov (10.1016/j.biomaterials.2009.07.037_bib29) 2002; 18
Gogoi (10.1016/j.biomaterials.2009.07.037_bib25) 2006; 22
Marquis (10.1016/j.biomaterials.2009.07.037_bib17) 1995; 41
Fux (10.1016/j.biomaterials.2009.07.037_bib4) 2005; 13
10.1016/j.biomaterials.2009.07.037_bib23
O'Toole (10.1016/j.biomaterials.2009.07.037_bib2) 2000; 54
Fux (10.1016/j.biomaterials.2009.07.037_bib6) 2003; 1
Lyon (10.1016/j.biomaterials.2009.07.037_bib33) 2008; 42
Makhluf (10.1016/j.biomaterials.2009.07.037_bib28) 2005; 15
Jones (10.1016/j.biomaterials.2009.07.037_bib9) 2008; 279
Jacob (10.1016/j.biomaterials.2009.07.037_bib22) 2006; 18
Thill (10.1016/j.biomaterials.2009.07.037_bib40) 2006; 40
Guha-Chowdhury (10.1016/j.biomaterials.2009.07.037_bib21) 1997; 12
Sturr (10.1016/j.biomaterials.2009.07.037_bib19) 1990; 155
Pal (10.1016/j.biomaterials.2009.07.037_bib26) 2007; 73
Catala (10.1016/j.biomaterials.2009.07.037_bib34) 2009; 157
References_xml – volume: 26
  start-page: 493
  year: 2003
  end-page: 510
  ident: bib18
  article-title: Fluoride and organic weak acids as modulators of microbial physiology
  publication-title: FEMS Microbiol Rev
  contributor:
    fullname: Mota-Meira
– volume: 23
  start-page: 9891
  year: 2007
  end-page: 9897
  ident: bib43
  article-title: Microwave-assisted coating of PMMA beads by silver nanoparticles
  publication-title: Langmuir
  contributor:
    fullname: Gedanken
– volume: 157
  start-page: 1
  year: 2009
  end-page: 11
  ident: bib34
  article-title: Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions
  publication-title: Chem Phys Lipids
  contributor:
    fullname: Catala
– volume: 41
  start-page: 955
  year: 1995
  end-page: 964
  ident: bib17
  article-title: Antimicrobial actions of fluoride for oral bacteria
  publication-title: Can J Microbiol
  contributor:
    fullname: Marquis
– volume: 1
  start-page: 667
  year: 2003
  end-page: 683
  ident: bib6
  article-title: Bacterial biofilms: a diagnostic and therapeutic challenge
  publication-title: Expert Rev Anti Infect Ther
  contributor:
    fullname: Costerton
– volume: 12
  start-page: 91
  year: 1997
  end-page: 97
  ident: bib21
  article-title: Inhibition of purified enolases from oral bacteria by fluoride
  publication-title: Oral Microbiol Immunol
  contributor:
    fullname: Sissons
– volume: 102
  start-page: 1736
  year: 2008
  end-page: 1742
  ident: bib15
  article-title: Efficient disinfection of
  publication-title: J Inorg Biochem
  contributor:
    fullname: Ma
– volume: 21
  start-page: 273
  year: 2000
  end-page: 281
  ident: bib12
  article-title: Bacterial colonization of functionalized polyurethanes
  publication-title: Biomaterials
  contributor:
    fullname: Proctor
– volume: 22
  start-page: 9322
  year: 2006
  end-page: 9328
  ident: bib25
  article-title: Green fluorescent protein-expressing
  publication-title: Langmuir
  contributor:
    fullname: Chattopadhyay
– volume: 28
  start-page: 449
  year: 1998
  end-page: 461
  ident: bib24
  article-title: Initiation of biofilm formation in
  publication-title: Mol Microbiol
  contributor:
    fullname: Kolter
– volume: 23
  start-page: 8670
  year: 2007
  end-page: 8673
  ident: bib42
  article-title: Single-walled carbon nanotubes exhibit strong antimicrobial activity
  publication-title: Langmuir
  contributor:
    fullname: Elimelech
– volume: 284
  start-page: 1318
  year: 1999
  end-page: 1322
  ident: bib5
  article-title: Bacterial biofilms: a common cause of persistent infections
  publication-title: Science
  contributor:
    fullname: Greenberg
– volume: 44
  start-page: 827
  year: 2000
  end-page: 834
  ident: bib30
  article-title: Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of
  publication-title: Antimicrob Agents Chemother
  contributor:
    fullname: Shapiro
– volume: 17
  start-page: 362
  year: 2008
  end-page: 371
  ident: bib39
  article-title: What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?
  publication-title: Ecotoxicology
  contributor:
    fullname: Neal
– volume: 13
  start-page: 34
  year: 2005
  end-page: 40
  ident: bib4
  article-title: Survival strategies of infectious biofilms
  publication-title: Trends Microbiol
  contributor:
    fullname: Stoodley
– volume: 350
  start-page: 1422
  year: 2004
  end-page: 1429
  ident: bib7
  article-title: Treatment of infections associated with surgical implants
  publication-title: N Engl J Med
  contributor:
    fullname: Darouiche
– volume: 61
  start-page: 869
  year: 2008
  end-page: 876
  ident: bib11
  article-title: Antimicrobial surface functionalization of plastic catheters by silver nanoparticles
  publication-title: J Antimicrob Chemother
  contributor:
    fullname: Roullet
– volume: 31
  start-page: 373
  year: 1997
  end-page: 378
  ident: bib20
  article-title: Effect of low levels of fluoride on proton excretion and intracellular pH in glycolysing streptococcal cells under strictly anaerobic conditions
  publication-title: Caries Res
  contributor:
    fullname: Yamada
– volume: 66
  start-page: 605
  year: 2008
  end-page: 620
  ident: bib37
  article-title: Biomarkers of lipid peroxidation: analytical aspects
  publication-title: Ann Biol Clin (Paris)
  contributor:
    fullname: Therond
– start-page: 261
  year: 2005
  end-page: 281
  ident: bib38
  article-title: Aspects biologiques et pathologiques
  publication-title: Radicaux libres et stress oxydant
  contributor:
    fullname: Bonnefont-Rousselot
– volume: 29
  start-page: 4157
  year: 2008
  end-page: 4163
  ident: bib16
  article-title: Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles
  publication-title: Biomaterials
  contributor:
    fullname: Weiss
– volume: 279
  start-page: 71
  year: 2008
  end-page: 76
  ident: bib9
  article-title: Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms
  publication-title: FEMS Microbiol Lett
  contributor:
    fullname: Manna
– volume: 12
  start-page: 1227
  year: 2005
  end-page: 1234
  ident: bib41
  article-title: Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death
  publication-title: Chem Biol
  contributor:
    fullname: Maysinger
– volume: 6
  start-page: 866
  year: 2006
  end-page: 870
  ident: bib8
  article-title: Toxicological impact studies based on
  publication-title: Nano Lett
  contributor:
    fullname: Fievet
– volume: 42
  start-page: 8127
  year: 2008
  end-page: 8132
  ident: bib33
  article-title: Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation
  publication-title: Environ Sci Technol
  contributor:
    fullname: Alvarez
– volume: 40
  start-page: 6151
  year: 2006
  end-page: 6156
  ident: bib40
  article-title: Cytotoxicity of CeO2 nanoparticles for
  publication-title: Environ Sci Technol
  contributor:
    fullname: Auffan
– volume: 191
  start-page: 868
  year: 1976
  end-page: 969
  ident: bib36
  article-title: Mutagenicity of malonaldehyde, a decomposition product of peroxidized polyunsaturated fatty acids
  publication-title: Science
  contributor:
    fullname: Goldstein
– volume: 15
  start-page: 1708
  year: 2005
  end-page: 1715
  ident: bib28
  article-title: Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide
  publication-title: Adv Funct Mater
  contributor:
    fullname: Gedanken
– volume: 424
  start-page: 83
  year: 1999
  end-page: 95
  ident: bib35
  article-title: Lipid peroxidation – DNA damage by malondialdehyde
  publication-title: Mutat Res
  contributor:
    fullname: Marnett
– volume: 54
  start-page: 49
  year: 2000
  end-page: 79
  ident: bib2
  article-title: Biofilm formation as microbial development
  publication-title: Annu Rev Microbiol
  contributor:
    fullname: Kolter
– volume: 275
  start-page: 177
  year: 2004
  end-page: 182
  ident: bib27
  article-title: Silver nanoparticles as antimicrobial agent: a case study on
  publication-title: J Colloid Interface Sci
  contributor:
    fullname: Salopek-Sondi
– volume: 27
  start-page: 2440
  year: 2006
  end-page: 2449
  ident: bib14
  article-title: Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles
  publication-title: Biomaterials
  contributor:
    fullname: Wang
– volume: 2
  start-page: 114
  year: 2003
  end-page: 122
  ident: bib1
  article-title: Understanding biofilm resistance to antibacterial agents
  publication-title: Nat Rev Drug Discov
  contributor:
    fullname: Davies
– volume: 35
  start-page: 55
  year: 1999
  end-page: 63
  ident: bib31
  article-title: Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique
  publication-title: Cytometry
  contributor:
    fullname: Shapiro
– volume: 8
  start-page: 302
  year: 2008
  end-page: 306
  ident: bib10
  article-title: Targeted photothermal lysis of the pathogenic bacteria,
  publication-title: Nano Lett
  contributor:
    fullname: Sabo-Attwood
– volume: 18
  start-page: 6679
  year: 2002
  end-page: 6686
  ident: bib29
  article-title: Metal oxide nanoparticles as bactericidal agents
  publication-title: Langmuir
  contributor:
    fullname: Klabunde
– volume: 62
  start-page: 746
  year: 2008
  end-page: 750
  ident: bib13
  article-title: Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria
  publication-title: J Antimicrob Chemother
  contributor:
    fullname: Hachem
– volume: 73
  start-page: 1712
  year: 2007
  end-page: 1720
  ident: bib26
  article-title: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium
  publication-title: Appl Environ Microbiol
  contributor:
    fullname: Song
– volume: 18
  start-page: 3162
  year: 2006
  end-page: 3168
  ident: bib22
  article-title: Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides
  publication-title: Chem Mater
  contributor:
    fullname: Gedanken
– volume: 155
  start-page: 22
  year: 1990
  end-page: 27
  ident: bib19
  article-title: Inhibition of proton-translocating ATPases of
  publication-title: Arch Microbiol
  contributor:
    fullname: Marquis
– volume: 2
  start-page: 95
  year: 2004
  end-page: 108
  ident: bib3
  article-title: Bacterial biofilms: from the natural environment to infectious diseases
  publication-title: Nat Rev Microbiol
  contributor:
    fullname: Stoodley
– volume: 57
  start-page: 1533
  year: 2008
  end-page: 1538
  ident: bib32
  article-title: Implications and potential applications of bactericidal fullerene water suspensions: effect of nC(60) concentration, exposure conditions and shelf life
  publication-title: Water Sci Technol
  contributor:
    fullname: Alvarez
– volume: 54
  start-page: 49
  year: 2000
  ident: 10.1016/j.biomaterials.2009.07.037_bib2
  article-title: Biofilm formation as microbial development
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.54.1.49
  contributor:
    fullname: O'Toole
– volume: 275
  start-page: 177
  year: 2004
  ident: 10.1016/j.biomaterials.2009.07.037_bib27
  article-title: Silver nanoparticles as antimicrobial agent: a case study on Escherichia coli as a model for gram-negative bacteria
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2004.02.012
  contributor:
    fullname: Sondi
– ident: 10.1016/j.biomaterials.2009.07.037_bib23
– volume: 157
  start-page: 1
  year: 2009
  ident: 10.1016/j.biomaterials.2009.07.037_bib34
  article-title: Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions
  publication-title: Chem Phys Lipids
  doi: 10.1016/j.chemphyslip.2008.09.004
  contributor:
    fullname: Catala
– volume: 8
  start-page: 302
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib10
  article-title: Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods
  publication-title: Nano Lett
  doi: 10.1021/nl0727056
  contributor:
    fullname: Norman
– volume: 21
  start-page: 273
  year: 2000
  ident: 10.1016/j.biomaterials.2009.07.037_bib12
  article-title: Bacterial colonization of functionalized polyurethanes
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00176-3
  contributor:
    fullname: Flemming
– volume: 23
  start-page: 9891
  year: 2007
  ident: 10.1016/j.biomaterials.2009.07.037_bib43
  article-title: Microwave-assisted coating of PMMA beads by silver nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la701385m
  contributor:
    fullname: Irzh
– volume: 26
  start-page: 493
  year: 2003
  ident: 10.1016/j.biomaterials.2009.07.037_bib18
  article-title: Fluoride and organic weak acids as modulators of microbial physiology
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2003.tb00627.x
  contributor:
    fullname: Marquis
– volume: 35
  start-page: 55
  year: 1999
  ident: 10.1016/j.biomaterials.2009.07.037_bib31
  article-title: Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique
  publication-title: Cytometry
  doi: 10.1002/(SICI)1097-0320(19990101)35:1<55::AID-CYTO8>3.0.CO;2-2
  contributor:
    fullname: Novo
– volume: 27
  start-page: 2440
  year: 2006
  ident: 10.1016/j.biomaterials.2009.07.037_bib14
  article-title: Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.11.036
  contributor:
    fullname: Shi
– volume: 18
  start-page: 6679
  year: 2002
  ident: 10.1016/j.biomaterials.2009.07.037_bib29
  article-title: Metal oxide nanoparticles as bactericidal agents
  publication-title: Langmuir
  doi: 10.1021/la0202374
  contributor:
    fullname: Stoimenov
– volume: 42
  start-page: 8127
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib33
  article-title: Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation
  publication-title: Environ Sci Technol
  doi: 10.1021/es801869m
  contributor:
    fullname: Lyon
– volume: 66
  start-page: 605
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib37
  article-title: Biomarkers of lipid peroxidation: analytical aspects
  publication-title: Ann Biol Clin (Paris)
  contributor:
    fullname: Michel
– volume: 18
  start-page: 3162
  year: 2006
  ident: 10.1016/j.biomaterials.2009.07.037_bib22
  article-title: Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides
  publication-title: Chem Mater
  doi: 10.1021/cm060782g
  contributor:
    fullname: Jacob
– volume: 44
  start-page: 827
  year: 2000
  ident: 10.1016/j.biomaterials.2009.07.037_bib30
  article-title: Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.44.4.827-834.2000
  contributor:
    fullname: Novo
– volume: 155
  start-page: 22
  year: 1990
  ident: 10.1016/j.biomaterials.2009.07.037_bib19
  article-title: Inhibition of proton-translocating ATPases of Streptococcus mutans and Lactobacillus casei by fluoride and aluminum
  publication-title: Arch Microbiol
  doi: 10.1007/BF00291269
  contributor:
    fullname: Sturr
– volume: 57
  start-page: 1533
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib32
  article-title: Implications and potential applications of bactericidal fullerene water suspensions: effect of nC(60) concentration, exposure conditions and shelf life
  publication-title: Water Sci Technol
  doi: 10.2166/wst.2008.282
  contributor:
    fullname: Lyon
– volume: 424
  start-page: 83
  year: 1999
  ident: 10.1016/j.biomaterials.2009.07.037_bib35
  article-title: Lipid peroxidation – DNA damage by malondialdehyde
  publication-title: Mutat Res
  doi: 10.1016/S0027-5107(99)00010-X
  contributor:
    fullname: Marnett
– volume: 350
  start-page: 1422
  year: 2004
  ident: 10.1016/j.biomaterials.2009.07.037_bib7
  article-title: Treatment of infections associated with surgical implants
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra035415
  contributor:
    fullname: Darouiche
– start-page: 261
  year: 2005
  ident: 10.1016/j.biomaterials.2009.07.037_bib38
  article-title: Aspects biologiques et pathologiques
  contributor:
    fullname: Delattre
– volume: 17
  start-page: 362
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib39
  article-title: What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-008-0217-x
  contributor:
    fullname: Neal
– volume: 29
  start-page: 4157
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib16
  article-title: Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.07.003
  contributor:
    fullname: Beyth
– volume: 40
  start-page: 6151
  year: 2006
  ident: 10.1016/j.biomaterials.2009.07.037_bib40
  article-title: Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism
  publication-title: Environ Sci Technol
  doi: 10.1021/es060999b
  contributor:
    fullname: Thill
– volume: 284
  start-page: 1318
  year: 1999
  ident: 10.1016/j.biomaterials.2009.07.037_bib5
  article-title: Bacterial biofilms: a common cause of persistent infections
  publication-title: Science
  doi: 10.1126/science.284.5418.1318
  contributor:
    fullname: Costerton
– volume: 73
  start-page: 1712
  year: 2007
  ident: 10.1016/j.biomaterials.2009.07.037_bib26
  article-title: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02218-06
  contributor:
    fullname: Pal
– volume: 15
  start-page: 1708
  year: 2005
  ident: 10.1016/j.biomaterials.2009.07.037_bib28
  article-title: Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200500029
  contributor:
    fullname: Makhluf
– volume: 61
  start-page: 869
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib11
  article-title: Antimicrobial surface functionalization of plastic catheters by silver nanoparticles
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkn034
  contributor:
    fullname: Roe
– volume: 12
  start-page: 91
  year: 1997
  ident: 10.1016/j.biomaterials.2009.07.037_bib21
  article-title: Inhibition of purified enolases from oral bacteria by fluoride
  publication-title: Oral Microbiol Immunol
  doi: 10.1111/j.1399-302X.1997.tb00623.x
  contributor:
    fullname: Guha-Chowdhury
– volume: 31
  start-page: 373
  year: 1997
  ident: 10.1016/j.biomaterials.2009.07.037_bib20
  article-title: Effect of low levels of fluoride on proton excretion and intracellular pH in glycolysing streptococcal cells under strictly anaerobic conditions
  publication-title: Caries Res
  doi: 10.1159/000262421
  contributor:
    fullname: Guha-Chowdhury
– volume: 1
  start-page: 667
  year: 2003
  ident: 10.1016/j.biomaterials.2009.07.037_bib6
  article-title: Bacterial biofilms: a diagnostic and therapeutic challenge
  publication-title: Expert Rev Anti Infect Ther
  doi: 10.1586/14787210.1.4.667
  contributor:
    fullname: Fux
– volume: 6
  start-page: 866
  year: 2006
  ident: 10.1016/j.biomaterials.2009.07.037_bib8
  article-title: Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium
  publication-title: Nano Lett
  doi: 10.1021/nl052326h
  contributor:
    fullname: Brayner
– volume: 191
  start-page: 868
  year: 1976
  ident: 10.1016/j.biomaterials.2009.07.037_bib36
  article-title: Mutagenicity of malonaldehyde, a decomposition product of peroxidized polyunsaturated fatty acids
  publication-title: Science
  doi: 10.1126/science.766187
  contributor:
    fullname: Mukai
– volume: 2
  start-page: 114
  year: 2003
  ident: 10.1016/j.biomaterials.2009.07.037_bib1
  article-title: Understanding biofilm resistance to antibacterial agents
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd1008
  contributor:
    fullname: Davies
– volume: 41
  start-page: 955
  year: 1995
  ident: 10.1016/j.biomaterials.2009.07.037_bib17
  article-title: Antimicrobial actions of fluoride for oral bacteria
  publication-title: Can J Microbiol
  doi: 10.1139/m95-133
  contributor:
    fullname: Marquis
– volume: 23
  start-page: 8670
  year: 2007
  ident: 10.1016/j.biomaterials.2009.07.037_bib42
  article-title: Single-walled carbon nanotubes exhibit strong antimicrobial activity
  publication-title: Langmuir
  doi: 10.1021/la701067r
  contributor:
    fullname: Kang
– volume: 279
  start-page: 71
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib9
  article-title: Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2007.01012.x
  contributor:
    fullname: Jones
– volume: 62
  start-page: 746
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib13
  article-title: Anti-adherence activity and antimicrobial durability of anti-infective-coated catheters against multidrug-resistant bacteria
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkn281
  contributor:
    fullname: Raad
– volume: 28
  start-page: 449
  year: 1998
  ident: 10.1016/j.biomaterials.2009.07.037_bib24
  article-title: Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1998.00797.x
  contributor:
    fullname: O'Toole
– volume: 22
  start-page: 9322
  year: 2006
  ident: 10.1016/j.biomaterials.2009.07.037_bib25
  article-title: Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles
  publication-title: Langmuir
  doi: 10.1021/la060661v
  contributor:
    fullname: Gogoi
– volume: 13
  start-page: 34
  year: 2005
  ident: 10.1016/j.biomaterials.2009.07.037_bib4
  article-title: Survival strategies of infectious biofilms
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2004.11.010
  contributor:
    fullname: Fux
– volume: 102
  start-page: 1736
  year: 2008
  ident: 10.1016/j.biomaterials.2009.07.037_bib15
  article-title: Efficient disinfection of Escherichia coli in water by silver loaded alumina
  publication-title: J Inorg Biochem
  doi: 10.1016/j.jinorgbio.2008.05.003
  contributor:
    fullname: Chang
– volume: 12
  start-page: 1227
  year: 2005
  ident: 10.1016/j.biomaterials.2009.07.037_bib41
  article-title: Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2005.09.008
  contributor:
    fullname: Lovric
– volume: 2
  start-page: 95
  year: 2004
  ident: 10.1016/j.biomaterials.2009.07.037_bib3
  article-title: Bacterial biofilms: from the natural environment to infectious diseases
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro821
  contributor:
    fullname: Hall-Stoodley
SSID ssj0014042
Score 2.3990457
Snippet Abstract The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical...
The ability of bacteria to develop antibiotic resistance and colonize abiotic surfaces by forming biofilms is a major cause of medical implant-associated...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 5969
SubjectTerms Advanced Basic Science
Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - pharmacology
Antimicrobial properties
Biocompatible Materials
Biofilms
Chromosomes - metabolism
Dentistry
Drug Resistance, Bacterial
Escherichia coli - metabolism
Flow Cytometry - methods
Fluorides - chemistry
Fluorides - pharmacology
Lipid Peroxidation
Magnesium Compounds - chemistry
Magnesium Compounds - pharmacology
Magnesium fluoride
Microbial Sensitivity Tests
Microscopy, Electron, Scanning - methods
Microscopy, Electron, Transmission - methods
Nanoparticles
Nanoparticles - chemistry
Nanotechnology - methods
Staphylococcus aureus - metabolism
Sterile surfaces
Surface Properties
Title Antibiofilm activity of nanosized magnesium fluoride
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0142961209007558
https://dx.doi.org/10.1016/j.biomaterials.2009.07.037
https://www.ncbi.nlm.nih.gov/pubmed/19664818
https://search.proquest.com/docview/20792962
https://search.proquest.com/docview/34787559
https://search.proquest.com/docview/734021090
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLb6kBAcUCmvQCk5cE13OjPJbA4cVlWrBdSeqNTbaJ4oqJtU3d0LB347djIpRbBSJa6RR0nssf1ZfgF8qJn00rtY9PBNmppUyqG6Sysk92WsSmpOPr-o5pfy81V5tQUnYy8MlVUm2z_Y9N5apyeTxM3JTdNMqCyJ1xX1fpLfK6fbsIvuiHK1u7NPX-YXd8kEyfodOkRf0IFx9mhf5kVd7mY1SDuNr1RHjNai_9tPbcKhvT8624OnCUjms-Fbn8FWaPfhyb3xgvvw6Dwlzp-DnLXUHEL7uRc59TLQyoi8i3lr2m7Z_Ag-X5hvaPaa9SKP1-vutvHhBVyenX49mRdpYULhEMasCu5DzadVVJE2AqnoK4EhKHfCOK6iVbZUdSydVejlbUWSsIobGYOzzDIXxUvYabs2vIbceR-948KgPktvptZZtJvMISARQriQgRjZo2-GuRh6LBj7ru8zlRZd1popjUzNQI2c1GPnJ9qqsEyKs9THesk1038JN4OPdyf_uB8aTf-D3vx-FJxGBaKsiGlDtyYihRCx4pspBA0wwsgrg3wDhRKSYueaZfBquBS_mYLxpERU9OY_f-AtPO4TWX0d4QHsrG7X4R3ioZU9hO2jn8eH6db_AluzC-c
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RkFp6QC19uS986NWNu7v2xoceIgQKheQEErfVPiujxkYkufDrO2OvKVUbCYmrNSvb8_xGOw-AL1UunHA2ZB18E7oik7Jo7sJwwVwRyoKak2fzcnohflwWl1twOPTCUFll9P29T--8dXwyitwcXdf1iMqSWFVS7yfFvWL8BHYQDUhU7Z3Jyel0fneZIPJuhw7RZ3RgmD3alXlRl7te9dKO4yvl15zWov8_Tm3CoV08On4BexFIppP-W1_Clm_24fm98YL78HQWL85fgZg01BxC-7kXKfUy0MqItA1po5t2Wd96ly70T3R79XqRhl_r9qZ2_jVcHB-dH06zuDAhswhjVhlzvmLjMshAG4FkcCXHFJRZri2TwUhTyCoU1kiM8qYkSRjJtAjemtzkNvA3sN20jX8HqXUuOMu4RnsWTo-NNeg3c4uAhHNufQJ8YI-67udiqKFg7ErdZyotuqxULhUyNQE5cFINnZ_oq_wyGs5SfVNLpnL1j3AT-H538i_9UOj6H_Tmg0FwCg2IbkV049s1EUmEiCXbTMFpgBFmXgmkGygkF5Q7V3kCb3ul-MMUzCcFoqL3j_yBA3g2PZ-dqbOT-ekH2O0utbqawo-wvbpZ-0-IjVbmc9T93--EDeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibiofilm+activity+of+nanosized+magnesium+fluoride&rft.jtitle=Biomaterials&rft.au=Lellouche%2C+Jonathan&rft.au=Kahana%2C+Edith&rft.au=Elias%2C+Sivan&rft.au=Gedanken%2C+Aharon&rft.date=2009-10-01&rft.eissn=1878-5905&rft.volume=30&rft.issue=30&rft.spage=5969&rft.epage=5978&rft_id=info:doi/10.1016%2Fj.biomaterials.2009.07.037&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2FS0142961209X00232%2Fcov150h.gif