Long-term exposure to air-pollution and COVID-19 mortality in England: A hierarchical spatial analysis

•We downscaled the coarse spatial resolution of deaths to mitigate ecological bias.•We accounted for confounding, spatial autocorrelation and pre-existing conditions.•We found some evidence of an effect of NO2 on COVID-19 mortality.•The effect of long-term PM2.5 exposure remains more uncertain.•Our...

Full description

Saved in:
Bibliographic Details
Published inEnvironment international Vol. 146; p. 106316
Main Authors Konstantinoudis, Garyfallos, Padellini, Tullia, Bennett, James, Davies, Bethan, Ezzati, Majid, Blangiardo, Marta
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.01.2021
The Authors. Published by Elsevier Ltd
Elsevier
Subjects
Online AccessGet full text
ISSN0160-4120
1873-6750
1873-6750
DOI10.1016/j.envint.2020.106316

Cover

Abstract •We downscaled the coarse spatial resolution of deaths to mitigate ecological bias.•We accounted for confounding, spatial autocorrelation and pre-existing conditions.•We found some evidence of an effect of NO2 on COVID-19 mortality.•The effect of long-term PM2.5 exposure remains more uncertain.•Our spatial model captured strong patterns likely reflecting disease spread. Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain.
AbstractList •We downscaled the coarse spatial resolution of deaths to mitigate ecological bias.•We accounted for confounding, spatial autocorrelation and pre-existing conditions.•We found some evidence of an effect of NO2 on COVID-19 mortality.•The effect of long-term PM2.5 exposure remains more uncertain.•Our spatial model captured strong patterns likely reflecting disease spread. Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain.
Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain.
Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO 2 and PM 2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO 2 and PM 2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m 3 increase in NO 2 and PM 2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO 2 exposure on COVID-19 mortality, while the effect of PM 2.5 remains more uncertain.
Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014-2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: -0.2%, 1.2%) and 1.4% (95% CrI: -2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain.Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014-2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: -0.2%, 1.2%) and 1.4% (95% CrI: -2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain.
Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO and PM on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO and PM concentration during 2014-2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: -0.2%, 1.2%) and 1.4% (95% CrI: -2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m increase in NO and PM respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO exposure on COVID-19 mortality, while the effect of PM remains more uncertain.
Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO₂ and PM₂.₅ on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO₂ and PM₂.₅ concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m³ increase in NO₂ and PM₂.₅ respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO₂ exposure on COVID-19 mortality, while the effect of PM₂.₅ remains more uncertain.
ArticleNumber 106316
Author Davies, Bethan
Konstantinoudis, Garyfallos
Blangiardo, Marta
Padellini, Tullia
Ezzati, Majid
Bennett, James
Author_xml – sequence: 1
  givenname: Garyfallos
  surname: Konstantinoudis
  fullname: Konstantinoudis, Garyfallos
  email: g.konstantinoudis@imperial.ac.uk
– sequence: 2
  givenname: Tullia
  surname: Padellini
  fullname: Padellini, Tullia
– sequence: 3
  givenname: James
  surname: Bennett
  fullname: Bennett, James
– sequence: 4
  givenname: Bethan
  surname: Davies
  fullname: Davies, Bethan
– sequence: 5
  givenname: Majid
  surname: Ezzati
  fullname: Ezzati, Majid
– sequence: 6
  givenname: Marta
  surname: Blangiardo
  fullname: Blangiardo, Marta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33395952$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCP0Boj1w2-NvrHpCqUCBSpF6Aq-W1vYmjjR1sJ2r-PQ4JFeVATyPNPPNqPt4rcBFicAC8RXCKIOIf1lMX9j6UKYb4mOIE8RdggjpBWi4YvACTisGWIgwvwVXOawghph17BS4JIZJJhidgWMSwbItLm8Y9bGPeJdeU2Gif2m0cx13xMTQ62GZ2_2P-qUWy2cRU9OjLofGhuQvLsVZvmttm5V3Syay80WOTt7r4GnXQ4yH7_Bq8HPSY3ZtzvAbfP999m31tF_df5rPbRWsYx6XFRgrOeyIkdQ4JziTuBes4MbYTgmJLIKGDpsZIaHDXa6KZFZoYjc3Ah55cg_lJ10a9VtvkNzodVNRe_U7EtFQ6FW9Gp6S1AsLeic4MlFkmNes7a6R0Fmrbk6r18aS13fUbZ40LJenxiejTSvArtYx7JUTHOcVV4P1ZIMWfO5eL2vhs3Fgv5uIuK8wYhghRCp9HqWAVI4JX9N3fYz3O8-enFaAnwKSYc3LDI4KgOlpHrdXJOupoHXWyTm27-afN-KKP_6_L-fG55vOtXH3uvjpBZeNdMM765Eyp1_f_F_gFQ9biMA
CitedBy_id crossref_primary_10_1093_aje_kwac139
crossref_primary_10_1186_s12302_021_00575_y
crossref_primary_10_1136_bmjresp_2020_000866
crossref_primary_10_1080_09603123_2023_2210109
crossref_primary_10_3917_vse_216_0346
crossref_primary_10_1080_23748834_2024_2442840
crossref_primary_10_1016_j_sste_2023_100579
crossref_primary_10_1002_psp_2724
crossref_primary_10_1016_j_scs_2024_105301
crossref_primary_10_3390_ijerph20031953
crossref_primary_10_1016_j_heliyon_2024_e32385
crossref_primary_10_3390_ijerph22020166
crossref_primary_10_1080_00207233_2025_2464470
crossref_primary_10_1038_s41598_023_50474_w
crossref_primary_10_1186_s12940_021_00804_0
crossref_primary_10_1016_j_envres_2022_114662
crossref_primary_10_1111_jebm_12430
crossref_primary_10_1016_j_socscimed_2023_116330
crossref_primary_10_1038_s41598_024_60964_0
crossref_primary_10_1016_j_uclim_2022_101312
crossref_primary_10_1088_2515_7620_ad7a5e
crossref_primary_10_3390_ijerph19052859
crossref_primary_10_1038_s41598_022_15664_y
crossref_primary_10_3390_data6120125
crossref_primary_10_1177_1420326X231154011
crossref_primary_10_1007_s11356_021_18195_7
crossref_primary_10_3390_f13050736
crossref_primary_10_1186_s12889_021_10949_9
crossref_primary_10_1007_s11356_022_19025_0
crossref_primary_10_3390_su132011164
crossref_primary_10_1016_j_envres_2022_112871
crossref_primary_10_1007_s11356_021_15494_x
crossref_primary_10_1111_all_15239
crossref_primary_10_3917_re1_104_0036
crossref_primary_10_3390_v15010175
crossref_primary_10_1016_j_envres_2021_111743
crossref_primary_10_3390_atmos12030290
crossref_primary_10_1371_journal_pone_0296154
crossref_primary_10_1136_thoraxjnl_2021_218374
crossref_primary_10_3390_ijerph19031421
crossref_primary_10_1016_j_envpol_2022_119686
crossref_primary_10_1017_eds_2025_9
crossref_primary_10_1088_2752_5309_ad67fb
crossref_primary_10_1016_j_psep_2021_04_039
crossref_primary_10_1016_j_envint_2021_106422
crossref_primary_10_1016_j_apr_2023_101782
crossref_primary_10_1038_s41467_022_28157_3
crossref_primary_10_1007_s00477_022_02205_2
crossref_primary_10_1007_s11356_021_16786_y
crossref_primary_10_1016_j_heliyon_2023_e23412
crossref_primary_10_1016_j_envres_2022_114481
crossref_primary_10_1093_toxsci_kfad003
crossref_primary_10_1007_s11869_024_01630_2
crossref_primary_10_1016_j_envpol_2021_118584
crossref_primary_10_1016_j_sste_2021_100443
crossref_primary_10_1186_s12940_021_00714_1
crossref_primary_10_18097_pbmc20216705383
crossref_primary_10_1057_s41599_024_04202_y
crossref_primary_10_1016_j_xinn_2021_100139
crossref_primary_10_24057_2071_9388_2021_076
crossref_primary_10_1017_S095026882100248X
crossref_primary_10_1016_j_envadv_2022_100270
crossref_primary_10_1137_23M1561531
crossref_primary_10_1016_j_envpol_2022_120013
crossref_primary_10_1134_S2079970524600082
crossref_primary_10_1111_grow_12604
crossref_primary_10_1039_D2EM00333C
crossref_primary_10_3390_ijerph19052788
crossref_primary_10_1164_rccm_202010_3844LE
crossref_primary_10_1016_j_spasta_2021_100508
crossref_primary_10_1029_2021GH000450
crossref_primary_10_1016_j_scitotenv_2023_167542
crossref_primary_10_1038_s41597_021_01068_6
crossref_primary_10_1016_j_chemosphere_2022_134650
crossref_primary_10_1016_j_csda_2023_107692
crossref_primary_10_1080_19338244_2023_2167799
crossref_primary_10_2196_54421
crossref_primary_10_1016_j_envres_2021_112065
crossref_primary_10_1016_j_sste_2022_100523
crossref_primary_10_1016_j_envpol_2022_118984
crossref_primary_10_1016_j_envres_2021_112348
crossref_primary_10_1289_EHP11882
crossref_primary_10_1007_s11356_021_16600_9
crossref_primary_10_1371_journal_pgph_0002178
crossref_primary_10_1016_j_envsoft_2024_106131
crossref_primary_10_1093_exposome_osad005
crossref_primary_10_1016_j_envint_2021_106695
crossref_primary_10_1093_jrsssc_qlae067
crossref_primary_10_1016_j_envpol_2021_117584
crossref_primary_10_1371_journal_pone_0280355
crossref_primary_10_1016_j_envpol_2021_118396
crossref_primary_10_1080_10962247_2023_2232744
crossref_primary_10_2196_57807
crossref_primary_10_1016_j_scitotenv_2022_158333
crossref_primary_10_1016_j_jes_2022_02_016
crossref_primary_10_1038_s41467_021_23935_x
crossref_primary_10_1016_j_jiph_2023_06_002
crossref_primary_10_1088_1742_6596_2123_1_012001
crossref_primary_10_1007_s10661_022_09924_7
crossref_primary_10_1016_j_heliyon_2024_e25810
crossref_primary_10_1146_annurev_publhealth_071521_120424
crossref_primary_10_1016_j_enconman_2021_114337
crossref_primary_10_1016_j_scitotenv_2020_144832
crossref_primary_10_1007_s11222_022_10192_1
crossref_primary_10_1134_S1990750822020068
crossref_primary_10_1016_j_envpol_2021_118302
Cites_doi 10.1016/j.envpol.2020.114465
10.5114/aoms.2020.95336
10.1161/STROKEAHA.115.009913
10.2174/1381612822666151109111712
10.1214/16-STS576
10.1161/HYPERTENSIONAHA.116.07218
10.3390/econometrics8020023
10.1289/EHP7411
10.1016/j.envint.2019.104909
10.1038/s41591-020-1112-0
10.1002/env.2348
10.1021/acs.est.8b06392
10.2139/ssrn.3628242
10.1007/BF00116466
10.1146/annurev.publhealth.29.020907.090821
10.1371/journal.pmed.1003189
10.1101/2020.04.16.20067405
10.1021/acs.est.9b03358
10.1007/s11356-018-1629-7
10.1093/biostatistics/kxl008
10.1191/0962280205sm388oa
10.1016/j.xinn.2020.100047
10.1038/s41586-020-2521-4
10.1016/j.ijid.2020.03.017
10.1016/j.diabres.2014.08.010
10.1111/j.1467-9868.2008.00700.x
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.envint.2020.106316
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
Environmental Sciences
EISSN 1873-6750
EndPage 106316
ExternalDocumentID oai_doaj_org_article_9dd700be78cf45d59a5b8dc99ed0adb3
PMC7786642
33395952
10_1016_j_envint_2020_106316
S0160412020322716
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations England
GeographicLocations_xml – name: England
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MR/S019669/1
– fundername: Medical Research Council
  grantid: MR/L01341X/1
– fundername: NICHD NIH HHS
  grantid: R01 HD092580
– fundername: Medical Research Council
  grantid: MR/T025352/1
– fundername: EPA
  grantid: R835873
– fundername: Medical Research Council
  grantid: MR/T03226X/1
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SSJ
SSZ
T5K
TN5
WUQ
XPP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c562t-2c9766b3794ee176592b75863cd87742d3034fa4cc90c28ba3a5d7a3ca2cf6fb3
IEDL.DBID DOA
ISSN 0160-4120
1873-6750
IngestDate Wed Aug 27 01:31:46 EDT 2025
Thu Aug 21 14:13:16 EDT 2025
Fri Sep 05 03:02:45 EDT 2025
Fri Sep 05 11:26:14 EDT 2025
Mon Jul 21 05:35:13 EDT 2025
Tue Jul 01 02:38:08 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Fri Feb 23 02:46:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Nitrogen dioxide
Mortality
Particular matter
Bayesian spatial models
Air-pollution
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c562t-2c9766b3794ee176592b75863cd87742d3034fa4cc90c28ba3a5d7a3ca2cf6fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/9dd700be78cf45d59a5b8dc99ed0adb3
PMID 33395952
PQID 2475403376
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_9dd700be78cf45d59a5b8dc99ed0adb3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7786642
proquest_miscellaneous_2552011440
proquest_miscellaneous_2475403376
pubmed_primary_33395952
crossref_primary_10_1016_j_envint_2020_106316
crossref_citationtrail_10_1016_j_envint_2020_106316
elsevier_sciencedirect_doi_10_1016_j_envint_2020_106316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Environment international
PublicationTitleAlternate Environ Int
PublicationYear 2021
Publisher Elsevier Ltd
The Authors. Published by Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: The Authors. Published by Elsevier Ltd
– name: Elsevier
References Simpson, Rue, Riebler, Martins, Sørbye (b0115) 2017; 32
Office for National Statistics. 2020. Coronavirus (COVID-19) related mortality rates and the effects of air pollution in England.
Rue, Martino, Chopin (b0105) 2009; 71
Yang, Zheng, Gou, Pu, Chen, Guo (b0165) 2020; 94
Villeneuve, Goldberg (b0135) 2020; 128
Wu, Nethery, Sabath, Braun, Dominici (b0160) 2020; 6
Van Donkelaar, Martin, Li, Burnett (b0130) 2019; 53
Zhang, Wang, Lu (b0170) 2018; 25
Scheers, Jacobs, Casas, Nemery, Nawrot (b0110) 2015; 46
Brookes, D.S., John; Kent, Andrew; Whiting, Sally; Rose, Rebecca; Williams, Chris. 2017. Technical report on UK supplementary assessment under the air quality directive (2008/50/ec), the air quality framework directive (96/62/ec) and fourth daughter directive (2004/107/ec) for 2015.
Best, Richardson, Thomson (b0015) 2005; 14
Hauser, Counotte, Margossian, Konstantinoudis, Low, Althaus (b0080) 2020; 17
Ortiz, A., 2019. Air quality in Europe-2019 report. European Environment Agency, Luxembourg.
Cole, M., Ozgen, C., Strobl, E., 2020. Air pollution exposure and covid-19.
Conticini, Frediani, Caro (b0050) 2020; 261
Williamson, Walker, Bhaskaran, Bacon, Bates, Morton (b0155) 2020; 584
Cai, Zhang, Ke, Feng, Lin, Xiao (b0035) 2016; 68
Wakefield (b0150) 2008; 29
Di, Amini, Shi, Kloog, Silvern, Kelly (b0055) 2019; 54
Wakefield, Best, Waller (b0140) 2000
Giorgini, Di Giosia, Grassi, Rubenfire, Brook, Ferri (b0070) 2016; 22
Liang, Shi, Zhao, Liu, Sarnat, Gao (b0095) 2020; 1
Kontis, Bennett, Rashid, Parks, Pearson-Stuttard, Guillot (b0085) 2020
Lee, Sarran (b0090) 2015; 26
Gómez-Rubio, Bivand, Rue (b0075) 2020; 8
Bianconi, Bronzo, Banach, Sahebkar, Mannarino, Pirro (b0020) 2020; 16
Burgess, Quinio (b0030) 2020
Balti, Echouffo-Tcheugui, Yako, Kengne (b0005) 2014; 106
Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., et al., 2019b. An ensemble-based model of PM2.5 concentration across the contiguous united states with high spatiotemporal resolution. Environ. Int. 130, 104909.
Travaglio, M., Yu, Y., Popovic, R., Leal, N.S., Martins, L.M., 2020. Links between air pollution and COVID-19 in England. medRxiv.
Besag, York, Mollié (b0010) 1991; 43
Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded population of the world, version 4 (gpwv4): Population count, revision 11. Palisades, NY:NASA Socioeconomic Data and Applications Center (SEDAC).
Wakefield (b0145) 2006; 8
EpiCell. 2020. Techincal summary: Public Health England data series on deaths in people with COVID-19. Public Health England.
Bianconi (10.1016/j.envint.2020.106316_b0020) 2020; 16
Conticini (10.1016/j.envint.2020.106316_b0050) 2020; 261
Besag (10.1016/j.envint.2020.106316_b0010) 1991; 43
Zhang (10.1016/j.envint.2020.106316_b0170) 2018; 25
Wakefield (10.1016/j.envint.2020.106316_b0150) 2008; 29
Williamson (10.1016/j.envint.2020.106316_b0155) 2020; 584
Yang (10.1016/j.envint.2020.106316_b0165) 2020; 94
Scheers (10.1016/j.envint.2020.106316_b0110) 2015; 46
Wu (10.1016/j.envint.2020.106316_b0160) 2020; 6
Rue (10.1016/j.envint.2020.106316_b0105) 2009; 71
Balti (10.1016/j.envint.2020.106316_b0005) 2014; 106
Di (10.1016/j.envint.2020.106316_b0055) 2019; 54
Gómez-Rubio (10.1016/j.envint.2020.106316_b0075) 2020; 8
Best (10.1016/j.envint.2020.106316_b0015) 2005; 14
Cai (10.1016/j.envint.2020.106316_b0035) 2016; 68
Simpson (10.1016/j.envint.2020.106316_b0115) 2017; 32
Lee (10.1016/j.envint.2020.106316_b0090) 2015; 26
Van Donkelaar (10.1016/j.envint.2020.106316_b0130) 2019; 53
Burgess (10.1016/j.envint.2020.106316_b0030) 2020
Giorgini (10.1016/j.envint.2020.106316_b0070) 2016; 22
10.1016/j.envint.2020.106316_b0045
10.1016/j.envint.2020.106316_b0100
10.1016/j.envint.2020.106316_b0065
10.1016/j.envint.2020.106316_b0120
Wakefield (10.1016/j.envint.2020.106316_b0145) 2006; 8
10.1016/j.envint.2020.106316_b0125
Wakefield (10.1016/j.envint.2020.106316_b0140) 2000
Kontis (10.1016/j.envint.2020.106316_b0085) 2020
10.1016/j.envint.2020.106316_b0025
10.1016/j.envint.2020.106316_b0040
Hauser (10.1016/j.envint.2020.106316_b0080) 2020; 17
Villeneuve (10.1016/j.envint.2020.106316_b0135) 2020; 128
10.1016/j.envint.2020.106316_b0060
Liang (10.1016/j.envint.2020.106316_b0095) 2020; 1
32817974 - medRxiv. 2020 Aug 11:2020.08.10.20171421. doi: 10.1101/2020.08.10.20171421.
33561670 - Environ Int. 2021 May;150:106422. doi: 10.1016/j.envint.2021.106422.
References_xml – volume: 1
  year: 2020
  ident: b0095
  article-title: Urban air pollution may enhance COVID-19 case-fatality and mortality rates in the united states
  publication-title: The Innovation
– reference: EpiCell. 2020. Techincal summary: Public Health England data series on deaths in people with COVID-19. Public Health England.
– reference: Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded population of the world, version 4 (gpwv4): Population count, revision 11. Palisades, NY:NASA Socioeconomic Data and Applications Center (SEDAC).
– volume: 43
  start-page: 1
  year: 1991
  end-page: 20
  ident: b0010
  article-title: Bayesian image restoration, with two applications in spatial statistics
  publication-title: Ann. Inst. Stat. Math.
– reference: Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., et al., 2019b. An ensemble-based model of PM2.5 concentration across the contiguous united states with high spatiotemporal resolution. Environ. Int. 130, 104909.
– volume: 584
  start-page: 430
  year: 2020
  end-page: 436
  ident: b0155
  article-title: Factors associated with COVID-19-related death using OpenSAFELY
  publication-title: Nature
– volume: 16
  year: 2020
  ident: b0020
  article-title: Particulate matter pollution and the COVID-19 outbreak: Results from Italian regions and provinces
  publication-title: Arch. Med. Sci.
– reference: Travaglio, M., Yu, Y., Popovic, R., Leal, N.S., Martins, L.M., 2020. Links between air pollution and COVID-19 in England. medRxiv.
– volume: 25
  start-page: 15133
  year: 2018
  end-page: 15145
  ident: b0170
  article-title: Exposure to nitrogen dioxide and chronic obstructive pulmonary disease (COPD) in adults: A systematic review and meta-analysis
  publication-title: Environ. Sci. Pollut. Res.
– start-page: 104
  year: 2000
  end-page: 127
  ident: b0140
  article-title: Bayesian approaches to disease mapping
  publication-title: Spatial Epidemiol.: Methods Appl.
– start-page: 1
  year: 2020
  end-page: 16
  ident: b0030
  article-title: Unpicking the downsizing discourse: Understanding the housing moves made by older people in England
  publication-title: Housing Stud.
– volume: 22
  start-page: 28
  year: 2016
  end-page: 51
  ident: b0070
  article-title: Air pollution exposure and blood pressure: An updated review of the literature
  publication-title: Curr. Pharm. Des.
– volume: 106
  start-page: 161
  year: 2014
  end-page: 172
  ident: b0005
  article-title: Air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis
  publication-title: Diabetes Res. Clin. Pract.
– volume: 128
  start-page: 95001
  year: 2020
  ident: b0135
  article-title: Methodological considerations for epidemiological studies of air pollution and the sars and COVID-19 coronavirus outbreaks
  publication-title: Environ. Health Perspect.
– volume: 53
  start-page: 2595
  year: 2019
  end-page: 2611
  ident: b0130
  article-title: Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors
  publication-title: Environ. Sci. Technol.
– reference: Brookes, D.S., John; Kent, Andrew; Whiting, Sally; Rose, Rebecca; Williams, Chris. 2017. Technical report on UK supplementary assessment under the air quality directive (2008/50/ec), the air quality framework directive (96/62/ec) and fourth daughter directive (2004/107/ec) for 2015.
– volume: 8
  start-page: 23
  year: 2020
  ident: b0075
  article-title: Bayesian model averaging with the Integrated Nested Laplace Approximation
  publication-title: Econometrics
– volume: 26
  start-page: 477
  year: 2015
  end-page: 487
  ident: b0090
  article-title: Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies
  publication-title: Environmetrics
– reference: Ortiz, A., 2019. Air quality in Europe-2019 report. European Environment Agency, Luxembourg.
– reference: Office for National Statistics. 2020. Coronavirus (COVID-19) related mortality rates and the effects of air pollution in England.
– volume: 261
  year: 2020
  ident: b0050
  article-title: Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in northern italy?
  publication-title: Environ. Pollut.
– volume: 54
  start-page: 1372
  year: 2019
  end-page: 1384
  ident: b0055
  article-title: Assessing NO
  publication-title: Environ. Sci. Technol.
– volume: 6
  year: 2020
  ident: b0160
  article-title: Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis
  publication-title: Sci. Adv.
– volume: 14
  start-page: 35
  year: 2005
  end-page: 59
  ident: b0015
  article-title: A comparison of Bayesian spatial models for disease mapping
  publication-title: Stat. Methods Med. Res.
– volume: 17
  year: 2020
  ident: b0080
  article-title: Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe
  publication-title: PLoS Med.
– year: 2020
  ident: b0085
  article-title: Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries
  publication-title: Nat. Med.
– volume: 8
  start-page: 158
  year: 2006
  end-page: 183
  ident: b0145
  article-title: Disease mapping and spatial regression with count data
  publication-title: Biostatistics
– reference: Cole, M., Ozgen, C., Strobl, E., 2020. Air pollution exposure and covid-19.
– volume: 94
  start-page: 91
  year: 2020
  end-page: 95
  ident: b0165
  article-title: Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis
  publication-title: Int. J. Infect. Dis.
– volume: 68
  start-page: 62
  year: 2016
  end-page: 70
  ident: b0035
  article-title: Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis
  publication-title: Hypertension
– volume: 29
  start-page: 75
  year: 2008
  end-page: 90
  ident: b0150
  article-title: Ecologic studies revisited
  publication-title: Annu. Rev. Public Health
– volume: 32
  start-page: 1
  year: 2017
  end-page: 28
  ident: b0115
  article-title: Penalising model component complexity: A principled, practical approach to constructing priors
  publication-title: Statist. Sci.
– volume: 71
  start-page: 319
  year: 2009
  end-page: 392
  ident: b0105
  article-title: Approximate Bayesian inference for latent Gaussian models by using Integrated Nested Laplace Approximations
  publication-title: J. Roy. Statist. Soc.: Ser. B (Statist. Methodol.)
– volume: 46
  start-page: 3058
  year: 2015
  end-page: 3066
  ident: b0110
  article-title: Long-term exposure to particulate matter air pollution is a risk factor for stroke: Meta-analytical evidence
  publication-title: Stroke
– volume: 261
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0050
  article-title: Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in northern italy?
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114465
– volume: 16
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0020
  article-title: Particulate matter pollution and the COVID-19 outbreak: Results from Italian regions and provinces
  publication-title: Arch. Med. Sci.
  doi: 10.5114/aoms.2020.95336
– volume: 46
  start-page: 3058
  year: 2015
  ident: 10.1016/j.envint.2020.106316_b0110
  article-title: Long-term exposure to particulate matter air pollution is a risk factor for stroke: Meta-analytical evidence
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.009913
– volume: 22
  start-page: 28
  year: 2016
  ident: 10.1016/j.envint.2020.106316_b0070
  article-title: Air pollution exposure and blood pressure: An updated review of the literature
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612822666151109111712
– volume: 32
  start-page: 1
  year: 2017
  ident: 10.1016/j.envint.2020.106316_b0115
  article-title: Penalising model component complexity: A principled, practical approach to constructing priors
  publication-title: Statist. Sci.
  doi: 10.1214/16-STS576
– volume: 68
  start-page: 62
  year: 2016
  ident: 10.1016/j.envint.2020.106316_b0035
  article-title: Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.116.07218
– volume: 8
  start-page: 23
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0075
  article-title: Bayesian model averaging with the Integrated Nested Laplace Approximation
  publication-title: Econometrics
  doi: 10.3390/econometrics8020023
– volume: 128
  start-page: 95001
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0135
  article-title: Methodological considerations for epidemiological studies of air pollution and the sars and COVID-19 coronavirus outbreaks
  publication-title: Environ. Health Perspect.
  doi: 10.1289/EHP7411
– ident: 10.1016/j.envint.2020.106316_b0060
  doi: 10.1016/j.envint.2019.104909
– ident: 10.1016/j.envint.2020.106316_b0100
– year: 2020
  ident: 10.1016/j.envint.2020.106316_b0085
  article-title: Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-1112-0
– volume: 26
  start-page: 477
  year: 2015
  ident: 10.1016/j.envint.2020.106316_b0090
  article-title: Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies
  publication-title: Environmetrics
  doi: 10.1002/env.2348
– volume: 53
  start-page: 2595
  year: 2019
  ident: 10.1016/j.envint.2020.106316_b0130
  article-title: Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b06392
– ident: 10.1016/j.envint.2020.106316_b0045
  doi: 10.2139/ssrn.3628242
– volume: 43
  start-page: 1
  year: 1991
  ident: 10.1016/j.envint.2020.106316_b0010
  article-title: Bayesian image restoration, with two applications in spatial statistics
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF00116466
– start-page: 104
  year: 2000
  ident: 10.1016/j.envint.2020.106316_b0140
  article-title: Bayesian approaches to disease mapping
  publication-title: Spatial Epidemiol.: Methods Appl.
– volume: 29
  start-page: 75
  year: 2008
  ident: 10.1016/j.envint.2020.106316_b0150
  article-title: Ecologic studies revisited
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev.publhealth.29.020907.090821
– volume: 17
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0080
  article-title: Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1003189
– volume: 6
  issue: eabd4049
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0160
  article-title: Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis
  publication-title: Sci. Adv.
– ident: 10.1016/j.envint.2020.106316_b0125
  doi: 10.1101/2020.04.16.20067405
– volume: 54
  start-page: 1372
  year: 2019
  ident: 10.1016/j.envint.2020.106316_b0055
  article-title: Assessing NO2 concentration and model uncertainty with high spatiotemporal resolution across the contiguous United States using ensemble model averaging
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03358
– ident: 10.1016/j.envint.2020.106316_b0120
– volume: 25
  start-page: 15133
  year: 2018
  ident: 10.1016/j.envint.2020.106316_b0170
  article-title: Exposure to nitrogen dioxide and chronic obstructive pulmonary disease (COPD) in adults: A systematic review and meta-analysis
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-1629-7
– volume: 8
  start-page: 158
  year: 2006
  ident: 10.1016/j.envint.2020.106316_b0145
  article-title: Disease mapping and spatial regression with count data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxl008
– volume: 14
  start-page: 35
  year: 2005
  ident: 10.1016/j.envint.2020.106316_b0015
  article-title: A comparison of Bayesian spatial models for disease mapping
  publication-title: Stat. Methods Med. Res.
  doi: 10.1191/0962280205sm388oa
– start-page: 1
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0030
  article-title: Unpicking the downsizing discourse: Understanding the housing moves made by older people in England
  publication-title: Housing Stud.
– volume: 1
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0095
  article-title: Urban air pollution may enhance COVID-19 case-fatality and mortality rates in the united states
  publication-title: The Innovation
  doi: 10.1016/j.xinn.2020.100047
– volume: 584
  start-page: 430
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0155
  article-title: Factors associated with COVID-19-related death using OpenSAFELY
  publication-title: Nature
  doi: 10.1038/s41586-020-2521-4
– volume: 94
  start-page: 91
  year: 2020
  ident: 10.1016/j.envint.2020.106316_b0165
  article-title: Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.03.017
– volume: 106
  start-page: 161
  year: 2014
  ident: 10.1016/j.envint.2020.106316_b0005
  article-title: Air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2014.08.010
– ident: 10.1016/j.envint.2020.106316_b0040
– volume: 71
  start-page: 319
  year: 2009
  ident: 10.1016/j.envint.2020.106316_b0105
  article-title: Approximate Bayesian inference for latent Gaussian models by using Integrated Nested Laplace Approximations
  publication-title: J. Roy. Statist. Soc.: Ser. B (Statist. Methodol.)
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: 10.1016/j.envint.2020.106316_b0065
– ident: 10.1016/j.envint.2020.106316_b0025
– reference: 32817974 - medRxiv. 2020 Aug 11:2020.08.10.20171421. doi: 10.1101/2020.08.10.20171421.
– reference: 33561670 - Environ Int. 2021 May;150:106422. doi: 10.1016/j.envint.2021.106422.
SSID ssj0002485
Score 2.6093073
Snippet •We downscaled the coarse spatial resolution of deaths to mitigate ecological bias.•We accounted for confounding, spatial autocorrelation and pre-existing...
Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106316
SubjectTerms Air Pollutants - analysis
Air Pollutants - toxicity
Air Pollution - adverse effects
Air Pollution - analysis
Air-pollution
autocorrelation
Bayes Theorem
Bayesian spatial models
Bayesian theory
chronic exposure
climate
COVID-19
COVID-19 infection
Cross-Sectional Studies
disease transmission
England
England - epidemiology
environment
Environmental Exposure - adverse effects
Environmental Exposure - analysis
Humans
Mortality
Nitrogen dioxide
Nitrogen Dioxide - analysis
Nitrogen Dioxide - toxicity
Particular matter
Particulate Matter - analysis
Particulate Matter - toxicity
relative risk
SARS-CoV-2
Spatial Analysis
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW7gWEEBQWyktG4mo1tZ2HuZWyqy6P5QCL9mb5kSxBkFRtV-LnM-M4pQGJlbgkkus83BnPfLFnviHkZcVNqkyVMJ4VnknPc2YVHJxILHjrQrog6Q9n2fJcvr1ILw7Ios-FwbDKaPs7mx6sdWyZxn9zuqrr6SfkRpMzHmqAc4D9N8ghFypLR-RwfvpuebYzyMja1VF8Jwwv6DPoQpgX5pM1GFTJsSkTWPh8z0MFIv-Bo_obiP4ZT7nnoE7ukjsRWdJ59_L3yEHZjMmtPb7BMTk6_p3WBl3jvN6Mye1u9Y52SUn3SfW-bS4ZWm1a_ly1uIpIty019ZqtsDYySpOaxtPFxy-nb9hM0R8BxgOkp3VDY2WQV3ROsdR22KwAXaAbDN-Gs4lMKA_I-cnx58WSxYoMzAFO2jLuAL1kVsAkLstZjluyFj44MuF8ATiSe3CIsjLSOZU4XlgjTOpzI5zhrsoqK47IqGmb8hGhqjCZEwXPfY6gorLKYwKYhTsnmbJyQkQvBe0iXTlWzfiu-7i0b7qTnUbZ6U52E8J2V606uo5r-r9GAe_6Itl2aGjXlzpqm1be50liy7xwlUw96HZqC--UKn1ivBUTkvfqoQe6C7eqr3n8i16bNExr3KsxTdlebTSXOWBpAeb_H33SFOGblMmEPOw0cDcQIYRKVcrh3Qa6ORjp8Jem_hroxZFREL5KH__3qJ6Qmxwjf8JC1VMy2q6vymcA3bb2eZyavwBxWkKN
  priority: 102
  providerName: Elsevier
Title Long-term exposure to air-pollution and COVID-19 mortality in England: A hierarchical spatial analysis
URI https://dx.doi.org/10.1016/j.envint.2020.106316
https://www.ncbi.nlm.nih.gov/pubmed/33395952
https://www.proquest.com/docview/2475403376
https://www.proquest.com/docview/2552011440
https://pubmed.ncbi.nlm.nih.gov/PMC7786642
https://doaj.org/article/9dd700be78cf45d59a5b8dc99ed0adb3
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZguYBWCAq7W2ArI3E1uLbzMLeyD3V5LBcW7c3yI4GuIKm2XYkTv50ZOyktSPTCJZESx4kzY89ne-YbQl7Uwmba1pyJvAxMBVEwp-HgJXdgrUvlo6Q_nOfTC_X2MrtcS_WFPmGJHjj9uFc6hIJzVxWlr1UWoOLMlcFrXQVug4s8n1zzfjLVjcFI1JVYvTlTY8H7oLno2YUhZA36UQq8lEvMdb5mlCJ3_4Zt-ht7_ulCuWaTTh-Q-x2YpJPUiIfkVtUMyL01isEB2Tv5HckGRbuuvBiQ3bRgR1Mc0iNSv2-bLwwHalr9mLe4cEiXLbWzazbHdMgoQGqbQI8-fj47ZmNNv0fkDiiezhraJQN5TScUs2vH_QkQP12gxzacbUd-8phcnJ58OpqyLgkD8wCNlkx4ACy5k9Bvq2pc4C6sgzlGLn0oATqKADZQ1VZ5r7kXpbPSZqGw0lvh67x2co_sNG1THRCqS5t7WYoiFIgjaqcDxnw5qJnn2qkhkb0UjO8YyjFRxjfTu6JdmSQ7g7IzSXZDwlZPzRNDx5byb1DAq7LIrx0vgNaZTuvMNq0bkqJXD9NBlQRBoKrZltc_77XJQE_G7RnbVO3NwghVAHyWMOL_o0yWIWJTig_JftLAVUOklDrTmYBv29DNjZZu3mlmXyOjOJIIwkT0yf_4NU_JXYF-P3GZ6hnZWV7fVIcA3JZuRG6__DkekTuTs3fT81Hssb8AQMBEbQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeACEEBTGyqeReDVNbefDvI2yqYNuPLChvVn-SLYgllRtJ_HE386dk3QNSEzipZXcaxr3zne_2He_I-RtwU2sTBExnmSeSc9TZhW8OBFZiNaZdEHTR8fJ9FR-OovPtsikq4XBtMrW9zc-PXjrdmTU_pujeVmOviI3mhzz0AOcA-y_RW7LWKSY1_fu13WeB3J2NQTfEUPxrn4uJHlhNVmFKZUchxKBbc834lOg8e-Fqb9h6J_ZlBvh6eAhedDiSrrX3PojspVXA3Jvg21wQHb2r4vaQLRd1csBud_s3dGmJOkxKWZ1dc7QZ9P857zGPUS6qqkpF2yOnZFRl9RUnk6-fDv8yMaKXgYQD4CelhVt-4K8p3sUG22HowqwBLrE5G14Ny0PyhNyerB_Mpmyth8Dc4CSVow7wC6JFbCE83yc4oGshceNRDifAYrkHsKhLIx0TkWOZ9YIE_vUCGe4K5LCih2yXdVVvkuoykziRMZTnyKkKKzyWP5l4cpRoqwcEtFpQbuWrBx7ZvzQXVbad93oTqPudKO7IWHrb80bso4b5D-ggteySLUdBurFuW5tTSvv0yiyeZq5QsYeLDu2mXdK5T4y3oohSTvz0D3LhUuVN_z8m86aNCxqPKkxVV5fLTWXKSBpAc7_HzJxjOBNymhInjYWuJ6IEELFKuZwbz3b7M20_0lVXgRyceQThGfSZ_89q9fkzvTkaKZnh8efn5O7HHOAwpbVC7K9WlzlLwHEreyrsEh_A8szRFY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+exposure+to+air-pollution+and+COVID-19+mortality+in+England%3A+A+hierarchical+spatial+analysis&rft.jtitle=Environment+international&rft.au=Konstantinoudis%2C+Garyfallos&rft.au=Padellini%2C+Tullia&rft.au=Bennett%2C+James&rft.au=Davies%2C+Bethan&rft.date=2021-01-01&rft.issn=0160-4120&rft.volume=146&rft.spage=106316&rft_id=info:doi/10.1016%2Fj.envint.2020.106316&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envint_2020_106316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon