Long-term exposure to air-pollution and COVID-19 mortality in England: A hierarchical spatial analysis
•We downscaled the coarse spatial resolution of deaths to mitigate ecological bias.•We accounted for confounding, spatial autocorrelation and pre-existing conditions.•We found some evidence of an effect of NO2 on COVID-19 mortality.•The effect of long-term PM2.5 exposure remains more uncertain.•Our...
Saved in:
Published in | Environment international Vol. 146; p. 106316 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Ltd
01.01.2021
The Authors. Published by Elsevier Ltd Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0160-4120 1873-6750 1873-6750 |
DOI | 10.1016/j.envint.2020.106316 |
Cover
Abstract | •We downscaled the coarse spatial resolution of deaths to mitigate ecological bias.•We accounted for confounding, spatial autocorrelation and pre-existing conditions.•We found some evidence of an effect of NO2 on COVID-19 mortality.•The effect of long-term PM2.5 exposure remains more uncertain.•Our spatial model captured strong patterns likely reflecting disease spread.
Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain. |
---|---|
AbstractList | •We downscaled the coarse spatial resolution of deaths to mitigate ecological bias.•We accounted for confounding, spatial autocorrelation and pre-existing conditions.•We found some evidence of an effect of NO2 on COVID-19 mortality.•The effect of long-term PM2.5 exposure remains more uncertain.•Our spatial model captured strong patterns likely reflecting disease spread.
Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain. Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain. Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO 2 and PM 2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO 2 and PM 2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m 3 increase in NO 2 and PM 2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO 2 exposure on COVID-19 mortality, while the effect of PM 2.5 remains more uncertain. Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014-2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: -0.2%, 1.2%) and 1.4% (95% CrI: -2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain.Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014-2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: -0.2%, 1.2%) and 1.4% (95% CrI: -2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain. Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO and PM on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO and PM concentration during 2014-2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: -0.2%, 1.2%) and 1.4% (95% CrI: -2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m increase in NO and PM respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO exposure on COVID-19 mortality, while the effect of PM remains more uncertain. Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO₂ and PM₂.₅ on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO₂ and PM₂.₅ concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m³ increase in NO₂ and PM₂.₅ respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO₂ exposure on COVID-19 mortality, while the effect of PM₂.₅ remains more uncertain. |
ArticleNumber | 106316 |
Author | Davies, Bethan Konstantinoudis, Garyfallos Blangiardo, Marta Padellini, Tullia Ezzati, Majid Bennett, James |
Author_xml | – sequence: 1 givenname: Garyfallos surname: Konstantinoudis fullname: Konstantinoudis, Garyfallos email: g.konstantinoudis@imperial.ac.uk – sequence: 2 givenname: Tullia surname: Padellini fullname: Padellini, Tullia – sequence: 3 givenname: James surname: Bennett fullname: Bennett, James – sequence: 4 givenname: Bethan surname: Davies fullname: Davies, Bethan – sequence: 5 givenname: Majid surname: Ezzati fullname: Ezzati, Majid – sequence: 6 givenname: Marta surname: Blangiardo fullname: Blangiardo, Marta |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33395952$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1URNPCP0Boj1w2-NvrHpCqUCBSpF6Aq-W1vYmjjR1sJ2r-PQ4JFeVATyPNPPNqPt4rcBFicAC8RXCKIOIf1lMX9j6UKYb4mOIE8RdggjpBWi4YvACTisGWIgwvwVXOawghph17BS4JIZJJhidgWMSwbItLm8Y9bGPeJdeU2Gif2m0cx13xMTQ62GZ2_2P-qUWy2cRU9OjLofGhuQvLsVZvmttm5V3Syay80WOTt7r4GnXQ4yH7_Bq8HPSY3ZtzvAbfP999m31tF_df5rPbRWsYx6XFRgrOeyIkdQ4JziTuBes4MbYTgmJLIKGDpsZIaHDXa6KZFZoYjc3Ah55cg_lJ10a9VtvkNzodVNRe_U7EtFQ6FW9Gp6S1AsLeic4MlFkmNes7a6R0Fmrbk6r18aS13fUbZ40LJenxiejTSvArtYx7JUTHOcVV4P1ZIMWfO5eL2vhs3Fgv5uIuK8wYhghRCp9HqWAVI4JX9N3fYz3O8-enFaAnwKSYc3LDI4KgOlpHrdXJOupoHXWyTm27-afN-KKP_6_L-fG55vOtXH3uvjpBZeNdMM765Eyp1_f_F_gFQ9biMA |
CitedBy_id | crossref_primary_10_1093_aje_kwac139 crossref_primary_10_1186_s12302_021_00575_y crossref_primary_10_1136_bmjresp_2020_000866 crossref_primary_10_1080_09603123_2023_2210109 crossref_primary_10_3917_vse_216_0346 crossref_primary_10_1080_23748834_2024_2442840 crossref_primary_10_1016_j_sste_2023_100579 crossref_primary_10_1002_psp_2724 crossref_primary_10_1016_j_scs_2024_105301 crossref_primary_10_3390_ijerph20031953 crossref_primary_10_1016_j_heliyon_2024_e32385 crossref_primary_10_3390_ijerph22020166 crossref_primary_10_1080_00207233_2025_2464470 crossref_primary_10_1038_s41598_023_50474_w crossref_primary_10_1186_s12940_021_00804_0 crossref_primary_10_1016_j_envres_2022_114662 crossref_primary_10_1111_jebm_12430 crossref_primary_10_1016_j_socscimed_2023_116330 crossref_primary_10_1038_s41598_024_60964_0 crossref_primary_10_1016_j_uclim_2022_101312 crossref_primary_10_1088_2515_7620_ad7a5e crossref_primary_10_3390_ijerph19052859 crossref_primary_10_1038_s41598_022_15664_y crossref_primary_10_3390_data6120125 crossref_primary_10_1177_1420326X231154011 crossref_primary_10_1007_s11356_021_18195_7 crossref_primary_10_3390_f13050736 crossref_primary_10_1186_s12889_021_10949_9 crossref_primary_10_1007_s11356_022_19025_0 crossref_primary_10_3390_su132011164 crossref_primary_10_1016_j_envres_2022_112871 crossref_primary_10_1007_s11356_021_15494_x crossref_primary_10_1111_all_15239 crossref_primary_10_3917_re1_104_0036 crossref_primary_10_3390_v15010175 crossref_primary_10_1016_j_envres_2021_111743 crossref_primary_10_3390_atmos12030290 crossref_primary_10_1371_journal_pone_0296154 crossref_primary_10_1136_thoraxjnl_2021_218374 crossref_primary_10_3390_ijerph19031421 crossref_primary_10_1016_j_envpol_2022_119686 crossref_primary_10_1017_eds_2025_9 crossref_primary_10_1088_2752_5309_ad67fb crossref_primary_10_1016_j_psep_2021_04_039 crossref_primary_10_1016_j_envint_2021_106422 crossref_primary_10_1016_j_apr_2023_101782 crossref_primary_10_1038_s41467_022_28157_3 crossref_primary_10_1007_s00477_022_02205_2 crossref_primary_10_1007_s11356_021_16786_y crossref_primary_10_1016_j_heliyon_2023_e23412 crossref_primary_10_1016_j_envres_2022_114481 crossref_primary_10_1093_toxsci_kfad003 crossref_primary_10_1007_s11869_024_01630_2 crossref_primary_10_1016_j_envpol_2021_118584 crossref_primary_10_1016_j_sste_2021_100443 crossref_primary_10_1186_s12940_021_00714_1 crossref_primary_10_18097_pbmc20216705383 crossref_primary_10_1057_s41599_024_04202_y crossref_primary_10_1016_j_xinn_2021_100139 crossref_primary_10_24057_2071_9388_2021_076 crossref_primary_10_1017_S095026882100248X crossref_primary_10_1016_j_envadv_2022_100270 crossref_primary_10_1137_23M1561531 crossref_primary_10_1016_j_envpol_2022_120013 crossref_primary_10_1134_S2079970524600082 crossref_primary_10_1111_grow_12604 crossref_primary_10_1039_D2EM00333C crossref_primary_10_3390_ijerph19052788 crossref_primary_10_1164_rccm_202010_3844LE crossref_primary_10_1016_j_spasta_2021_100508 crossref_primary_10_1029_2021GH000450 crossref_primary_10_1016_j_scitotenv_2023_167542 crossref_primary_10_1038_s41597_021_01068_6 crossref_primary_10_1016_j_chemosphere_2022_134650 crossref_primary_10_1016_j_csda_2023_107692 crossref_primary_10_1080_19338244_2023_2167799 crossref_primary_10_2196_54421 crossref_primary_10_1016_j_envres_2021_112065 crossref_primary_10_1016_j_sste_2022_100523 crossref_primary_10_1016_j_envpol_2022_118984 crossref_primary_10_1016_j_envres_2021_112348 crossref_primary_10_1289_EHP11882 crossref_primary_10_1007_s11356_021_16600_9 crossref_primary_10_1371_journal_pgph_0002178 crossref_primary_10_1016_j_envsoft_2024_106131 crossref_primary_10_1093_exposome_osad005 crossref_primary_10_1016_j_envint_2021_106695 crossref_primary_10_1093_jrsssc_qlae067 crossref_primary_10_1016_j_envpol_2021_117584 crossref_primary_10_1371_journal_pone_0280355 crossref_primary_10_1016_j_envpol_2021_118396 crossref_primary_10_1080_10962247_2023_2232744 crossref_primary_10_2196_57807 crossref_primary_10_1016_j_scitotenv_2022_158333 crossref_primary_10_1016_j_jes_2022_02_016 crossref_primary_10_1038_s41467_021_23935_x crossref_primary_10_1016_j_jiph_2023_06_002 crossref_primary_10_1088_1742_6596_2123_1_012001 crossref_primary_10_1007_s10661_022_09924_7 crossref_primary_10_1016_j_heliyon_2024_e25810 crossref_primary_10_1146_annurev_publhealth_071521_120424 crossref_primary_10_1016_j_enconman_2021_114337 crossref_primary_10_1016_j_scitotenv_2020_144832 crossref_primary_10_1007_s11222_022_10192_1 crossref_primary_10_1134_S1990750822020068 crossref_primary_10_1016_j_envpol_2021_118302 |
Cites_doi | 10.1016/j.envpol.2020.114465 10.5114/aoms.2020.95336 10.1161/STROKEAHA.115.009913 10.2174/1381612822666151109111712 10.1214/16-STS576 10.1161/HYPERTENSIONAHA.116.07218 10.3390/econometrics8020023 10.1289/EHP7411 10.1016/j.envint.2019.104909 10.1038/s41591-020-1112-0 10.1002/env.2348 10.1021/acs.est.8b06392 10.2139/ssrn.3628242 10.1007/BF00116466 10.1146/annurev.publhealth.29.020907.090821 10.1371/journal.pmed.1003189 10.1101/2020.04.16.20067405 10.1021/acs.est.9b03358 10.1007/s11356-018-1629-7 10.1093/biostatistics/kxl008 10.1191/0962280205sm388oa 10.1016/j.xinn.2020.100047 10.1038/s41586-020-2521-4 10.1016/j.ijid.2020.03.017 10.1016/j.diabres.2014.08.010 10.1111/j.1467-9868.2008.00700.x |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.1016/j.envint.2020.106316 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health Environmental Sciences |
EISSN | 1873-6750 |
EndPage | 106316 |
ExternalDocumentID | oai_doaj_org_article_9dd700be78cf45d59a5b8dc99ed0adb3 PMC7786642 33395952 10_1016_j_envint_2020_106316 S0160412020322716 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | England |
GeographicLocations_xml | – name: England |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MR/S019669/1 – fundername: Medical Research Council grantid: MR/L01341X/1 – fundername: NICHD NIH HHS grantid: R01 HD092580 – fundername: Medical Research Council grantid: MR/T025352/1 – fundername: EPA grantid: R835873 – fundername: Medical Research Council grantid: MR/T03226X/1 |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SEN SES SEW SSJ SSZ T5K TN5 WUQ XPP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c562t-2c9766b3794ee176592b75863cd87742d3034fa4cc90c28ba3a5d7a3ca2cf6fb3 |
IEDL.DBID | DOA |
ISSN | 0160-4120 1873-6750 |
IngestDate | Wed Aug 27 01:31:46 EDT 2025 Thu Aug 21 14:13:16 EDT 2025 Fri Sep 05 03:02:45 EDT 2025 Fri Sep 05 11:26:14 EDT 2025 Mon Jul 21 05:35:13 EDT 2025 Tue Jul 01 02:38:08 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Fri Feb 23 02:46:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Nitrogen dioxide Mortality Particular matter Bayesian spatial models Air-pollution |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c562t-2c9766b3794ee176592b75863cd87742d3034fa4cc90c28ba3a5d7a3ca2cf6fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/9dd700be78cf45d59a5b8dc99ed0adb3 |
PMID | 33395952 |
PQID | 2475403376 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9dd700be78cf45d59a5b8dc99ed0adb3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7786642 proquest_miscellaneous_2552011440 proquest_miscellaneous_2475403376 pubmed_primary_33395952 crossref_primary_10_1016_j_envint_2020_106316 crossref_citationtrail_10_1016_j_envint_2020_106316 elsevier_sciencedirect_doi_10_1016_j_envint_2020_106316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Environment international |
PublicationTitleAlternate | Environ Int |
PublicationYear | 2021 |
Publisher | Elsevier Ltd The Authors. Published by Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: The Authors. Published by Elsevier Ltd – name: Elsevier |
References | Simpson, Rue, Riebler, Martins, Sørbye (b0115) 2017; 32 Office for National Statistics. 2020. Coronavirus (COVID-19) related mortality rates and the effects of air pollution in England. Rue, Martino, Chopin (b0105) 2009; 71 Yang, Zheng, Gou, Pu, Chen, Guo (b0165) 2020; 94 Villeneuve, Goldberg (b0135) 2020; 128 Wu, Nethery, Sabath, Braun, Dominici (b0160) 2020; 6 Van Donkelaar, Martin, Li, Burnett (b0130) 2019; 53 Zhang, Wang, Lu (b0170) 2018; 25 Scheers, Jacobs, Casas, Nemery, Nawrot (b0110) 2015; 46 Brookes, D.S., John; Kent, Andrew; Whiting, Sally; Rose, Rebecca; Williams, Chris. 2017. Technical report on UK supplementary assessment under the air quality directive (2008/50/ec), the air quality framework directive (96/62/ec) and fourth daughter directive (2004/107/ec) for 2015. Best, Richardson, Thomson (b0015) 2005; 14 Hauser, Counotte, Margossian, Konstantinoudis, Low, Althaus (b0080) 2020; 17 Ortiz, A., 2019. Air quality in Europe-2019 report. European Environment Agency, Luxembourg. Cole, M., Ozgen, C., Strobl, E., 2020. Air pollution exposure and covid-19. Conticini, Frediani, Caro (b0050) 2020; 261 Williamson, Walker, Bhaskaran, Bacon, Bates, Morton (b0155) 2020; 584 Cai, Zhang, Ke, Feng, Lin, Xiao (b0035) 2016; 68 Wakefield (b0150) 2008; 29 Di, Amini, Shi, Kloog, Silvern, Kelly (b0055) 2019; 54 Wakefield, Best, Waller (b0140) 2000 Giorgini, Di Giosia, Grassi, Rubenfire, Brook, Ferri (b0070) 2016; 22 Liang, Shi, Zhao, Liu, Sarnat, Gao (b0095) 2020; 1 Kontis, Bennett, Rashid, Parks, Pearson-Stuttard, Guillot (b0085) 2020 Lee, Sarran (b0090) 2015; 26 Gómez-Rubio, Bivand, Rue (b0075) 2020; 8 Bianconi, Bronzo, Banach, Sahebkar, Mannarino, Pirro (b0020) 2020; 16 Burgess, Quinio (b0030) 2020 Balti, Echouffo-Tcheugui, Yako, Kengne (b0005) 2014; 106 Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., et al., 2019b. An ensemble-based model of PM2.5 concentration across the contiguous united states with high spatiotemporal resolution. Environ. Int. 130, 104909. Travaglio, M., Yu, Y., Popovic, R., Leal, N.S., Martins, L.M., 2020. Links between air pollution and COVID-19 in England. medRxiv. Besag, York, Mollié (b0010) 1991; 43 Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded population of the world, version 4 (gpwv4): Population count, revision 11. Palisades, NY:NASA Socioeconomic Data and Applications Center (SEDAC). Wakefield (b0145) 2006; 8 EpiCell. 2020. Techincal summary: Public Health England data series on deaths in people with COVID-19. Public Health England. Bianconi (10.1016/j.envint.2020.106316_b0020) 2020; 16 Conticini (10.1016/j.envint.2020.106316_b0050) 2020; 261 Besag (10.1016/j.envint.2020.106316_b0010) 1991; 43 Zhang (10.1016/j.envint.2020.106316_b0170) 2018; 25 Wakefield (10.1016/j.envint.2020.106316_b0150) 2008; 29 Williamson (10.1016/j.envint.2020.106316_b0155) 2020; 584 Yang (10.1016/j.envint.2020.106316_b0165) 2020; 94 Scheers (10.1016/j.envint.2020.106316_b0110) 2015; 46 Wu (10.1016/j.envint.2020.106316_b0160) 2020; 6 Rue (10.1016/j.envint.2020.106316_b0105) 2009; 71 Balti (10.1016/j.envint.2020.106316_b0005) 2014; 106 Di (10.1016/j.envint.2020.106316_b0055) 2019; 54 Gómez-Rubio (10.1016/j.envint.2020.106316_b0075) 2020; 8 Best (10.1016/j.envint.2020.106316_b0015) 2005; 14 Cai (10.1016/j.envint.2020.106316_b0035) 2016; 68 Simpson (10.1016/j.envint.2020.106316_b0115) 2017; 32 Lee (10.1016/j.envint.2020.106316_b0090) 2015; 26 Van Donkelaar (10.1016/j.envint.2020.106316_b0130) 2019; 53 Burgess (10.1016/j.envint.2020.106316_b0030) 2020 Giorgini (10.1016/j.envint.2020.106316_b0070) 2016; 22 10.1016/j.envint.2020.106316_b0045 10.1016/j.envint.2020.106316_b0100 10.1016/j.envint.2020.106316_b0065 10.1016/j.envint.2020.106316_b0120 Wakefield (10.1016/j.envint.2020.106316_b0145) 2006; 8 10.1016/j.envint.2020.106316_b0125 Wakefield (10.1016/j.envint.2020.106316_b0140) 2000 Kontis (10.1016/j.envint.2020.106316_b0085) 2020 10.1016/j.envint.2020.106316_b0025 10.1016/j.envint.2020.106316_b0040 Hauser (10.1016/j.envint.2020.106316_b0080) 2020; 17 Villeneuve (10.1016/j.envint.2020.106316_b0135) 2020; 128 10.1016/j.envint.2020.106316_b0060 Liang (10.1016/j.envint.2020.106316_b0095) 2020; 1 32817974 - medRxiv. 2020 Aug 11:2020.08.10.20171421. doi: 10.1101/2020.08.10.20171421. 33561670 - Environ Int. 2021 May;150:106422. doi: 10.1016/j.envint.2021.106422. |
References_xml | – volume: 1 year: 2020 ident: b0095 article-title: Urban air pollution may enhance COVID-19 case-fatality and mortality rates in the united states publication-title: The Innovation – reference: EpiCell. 2020. Techincal summary: Public Health England data series on deaths in people with COVID-19. Public Health England. – reference: Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded population of the world, version 4 (gpwv4): Population count, revision 11. Palisades, NY:NASA Socioeconomic Data and Applications Center (SEDAC). – volume: 43 start-page: 1 year: 1991 end-page: 20 ident: b0010 article-title: Bayesian image restoration, with two applications in spatial statistics publication-title: Ann. Inst. Stat. Math. – reference: Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., et al., 2019b. An ensemble-based model of PM2.5 concentration across the contiguous united states with high spatiotemporal resolution. Environ. Int. 130, 104909. – volume: 584 start-page: 430 year: 2020 end-page: 436 ident: b0155 article-title: Factors associated with COVID-19-related death using OpenSAFELY publication-title: Nature – volume: 16 year: 2020 ident: b0020 article-title: Particulate matter pollution and the COVID-19 outbreak: Results from Italian regions and provinces publication-title: Arch. Med. Sci. – reference: Travaglio, M., Yu, Y., Popovic, R., Leal, N.S., Martins, L.M., 2020. Links between air pollution and COVID-19 in England. medRxiv. – volume: 25 start-page: 15133 year: 2018 end-page: 15145 ident: b0170 article-title: Exposure to nitrogen dioxide and chronic obstructive pulmonary disease (COPD) in adults: A systematic review and meta-analysis publication-title: Environ. Sci. Pollut. Res. – start-page: 104 year: 2000 end-page: 127 ident: b0140 article-title: Bayesian approaches to disease mapping publication-title: Spatial Epidemiol.: Methods Appl. – start-page: 1 year: 2020 end-page: 16 ident: b0030 article-title: Unpicking the downsizing discourse: Understanding the housing moves made by older people in England publication-title: Housing Stud. – volume: 22 start-page: 28 year: 2016 end-page: 51 ident: b0070 article-title: Air pollution exposure and blood pressure: An updated review of the literature publication-title: Curr. Pharm. Des. – volume: 106 start-page: 161 year: 2014 end-page: 172 ident: b0005 article-title: Air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis publication-title: Diabetes Res. Clin. Pract. – volume: 128 start-page: 95001 year: 2020 ident: b0135 article-title: Methodological considerations for epidemiological studies of air pollution and the sars and COVID-19 coronavirus outbreaks publication-title: Environ. Health Perspect. – volume: 53 start-page: 2595 year: 2019 end-page: 2611 ident: b0130 article-title: Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors publication-title: Environ. Sci. Technol. – reference: Brookes, D.S., John; Kent, Andrew; Whiting, Sally; Rose, Rebecca; Williams, Chris. 2017. Technical report on UK supplementary assessment under the air quality directive (2008/50/ec), the air quality framework directive (96/62/ec) and fourth daughter directive (2004/107/ec) for 2015. – volume: 8 start-page: 23 year: 2020 ident: b0075 article-title: Bayesian model averaging with the Integrated Nested Laplace Approximation publication-title: Econometrics – volume: 26 start-page: 477 year: 2015 end-page: 487 ident: b0090 article-title: Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies publication-title: Environmetrics – reference: Ortiz, A., 2019. Air quality in Europe-2019 report. European Environment Agency, Luxembourg. – reference: Office for National Statistics. 2020. Coronavirus (COVID-19) related mortality rates and the effects of air pollution in England. – volume: 261 year: 2020 ident: b0050 article-title: Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in northern italy? publication-title: Environ. Pollut. – volume: 54 start-page: 1372 year: 2019 end-page: 1384 ident: b0055 article-title: Assessing NO publication-title: Environ. Sci. Technol. – volume: 6 year: 2020 ident: b0160 article-title: Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis publication-title: Sci. Adv. – volume: 14 start-page: 35 year: 2005 end-page: 59 ident: b0015 article-title: A comparison of Bayesian spatial models for disease mapping publication-title: Stat. Methods Med. Res. – volume: 17 year: 2020 ident: b0080 article-title: Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe publication-title: PLoS Med. – year: 2020 ident: b0085 article-title: Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries publication-title: Nat. Med. – volume: 8 start-page: 158 year: 2006 end-page: 183 ident: b0145 article-title: Disease mapping and spatial regression with count data publication-title: Biostatistics – reference: Cole, M., Ozgen, C., Strobl, E., 2020. Air pollution exposure and covid-19. – volume: 94 start-page: 91 year: 2020 end-page: 95 ident: b0165 article-title: Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis publication-title: Int. J. Infect. Dis. – volume: 68 start-page: 62 year: 2016 end-page: 70 ident: b0035 article-title: Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis publication-title: Hypertension – volume: 29 start-page: 75 year: 2008 end-page: 90 ident: b0150 article-title: Ecologic studies revisited publication-title: Annu. Rev. Public Health – volume: 32 start-page: 1 year: 2017 end-page: 28 ident: b0115 article-title: Penalising model component complexity: A principled, practical approach to constructing priors publication-title: Statist. Sci. – volume: 71 start-page: 319 year: 2009 end-page: 392 ident: b0105 article-title: Approximate Bayesian inference for latent Gaussian models by using Integrated Nested Laplace Approximations publication-title: J. Roy. Statist. Soc.: Ser. B (Statist. Methodol.) – volume: 46 start-page: 3058 year: 2015 end-page: 3066 ident: b0110 article-title: Long-term exposure to particulate matter air pollution is a risk factor for stroke: Meta-analytical evidence publication-title: Stroke – volume: 261 year: 2020 ident: 10.1016/j.envint.2020.106316_b0050 article-title: Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in northern italy? publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114465 – volume: 16 year: 2020 ident: 10.1016/j.envint.2020.106316_b0020 article-title: Particulate matter pollution and the COVID-19 outbreak: Results from Italian regions and provinces publication-title: Arch. Med. Sci. doi: 10.5114/aoms.2020.95336 – volume: 46 start-page: 3058 year: 2015 ident: 10.1016/j.envint.2020.106316_b0110 article-title: Long-term exposure to particulate matter air pollution is a risk factor for stroke: Meta-analytical evidence publication-title: Stroke doi: 10.1161/STROKEAHA.115.009913 – volume: 22 start-page: 28 year: 2016 ident: 10.1016/j.envint.2020.106316_b0070 article-title: Air pollution exposure and blood pressure: An updated review of the literature publication-title: Curr. Pharm. Des. doi: 10.2174/1381612822666151109111712 – volume: 32 start-page: 1 year: 2017 ident: 10.1016/j.envint.2020.106316_b0115 article-title: Penalising model component complexity: A principled, practical approach to constructing priors publication-title: Statist. Sci. doi: 10.1214/16-STS576 – volume: 68 start-page: 62 year: 2016 ident: 10.1016/j.envint.2020.106316_b0035 article-title: Associations of short-term and long-term exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.116.07218 – volume: 8 start-page: 23 year: 2020 ident: 10.1016/j.envint.2020.106316_b0075 article-title: Bayesian model averaging with the Integrated Nested Laplace Approximation publication-title: Econometrics doi: 10.3390/econometrics8020023 – volume: 128 start-page: 95001 year: 2020 ident: 10.1016/j.envint.2020.106316_b0135 article-title: Methodological considerations for epidemiological studies of air pollution and the sars and COVID-19 coronavirus outbreaks publication-title: Environ. Health Perspect. doi: 10.1289/EHP7411 – ident: 10.1016/j.envint.2020.106316_b0060 doi: 10.1016/j.envint.2019.104909 – ident: 10.1016/j.envint.2020.106316_b0100 – year: 2020 ident: 10.1016/j.envint.2020.106316_b0085 article-title: Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries publication-title: Nat. Med. doi: 10.1038/s41591-020-1112-0 – volume: 26 start-page: 477 year: 2015 ident: 10.1016/j.envint.2020.106316_b0090 article-title: Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies publication-title: Environmetrics doi: 10.1002/env.2348 – volume: 53 start-page: 2595 year: 2019 ident: 10.1016/j.envint.2020.106316_b0130 article-title: Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b06392 – ident: 10.1016/j.envint.2020.106316_b0045 doi: 10.2139/ssrn.3628242 – volume: 43 start-page: 1 year: 1991 ident: 10.1016/j.envint.2020.106316_b0010 article-title: Bayesian image restoration, with two applications in spatial statistics publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF00116466 – start-page: 104 year: 2000 ident: 10.1016/j.envint.2020.106316_b0140 article-title: Bayesian approaches to disease mapping publication-title: Spatial Epidemiol.: Methods Appl. – volume: 29 start-page: 75 year: 2008 ident: 10.1016/j.envint.2020.106316_b0150 article-title: Ecologic studies revisited publication-title: Annu. Rev. Public Health doi: 10.1146/annurev.publhealth.29.020907.090821 – volume: 17 year: 2020 ident: 10.1016/j.envint.2020.106316_b0080 article-title: Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China, and six regions in Europe publication-title: PLoS Med. doi: 10.1371/journal.pmed.1003189 – volume: 6 issue: eabd4049 year: 2020 ident: 10.1016/j.envint.2020.106316_b0160 article-title: Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis publication-title: Sci. Adv. – ident: 10.1016/j.envint.2020.106316_b0125 doi: 10.1101/2020.04.16.20067405 – volume: 54 start-page: 1372 year: 2019 ident: 10.1016/j.envint.2020.106316_b0055 article-title: Assessing NO2 concentration and model uncertainty with high spatiotemporal resolution across the contiguous United States using ensemble model averaging publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03358 – ident: 10.1016/j.envint.2020.106316_b0120 – volume: 25 start-page: 15133 year: 2018 ident: 10.1016/j.envint.2020.106316_b0170 article-title: Exposure to nitrogen dioxide and chronic obstructive pulmonary disease (COPD) in adults: A systematic review and meta-analysis publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-1629-7 – volume: 8 start-page: 158 year: 2006 ident: 10.1016/j.envint.2020.106316_b0145 article-title: Disease mapping and spatial regression with count data publication-title: Biostatistics doi: 10.1093/biostatistics/kxl008 – volume: 14 start-page: 35 year: 2005 ident: 10.1016/j.envint.2020.106316_b0015 article-title: A comparison of Bayesian spatial models for disease mapping publication-title: Stat. Methods Med. Res. doi: 10.1191/0962280205sm388oa – start-page: 1 year: 2020 ident: 10.1016/j.envint.2020.106316_b0030 article-title: Unpicking the downsizing discourse: Understanding the housing moves made by older people in England publication-title: Housing Stud. – volume: 1 year: 2020 ident: 10.1016/j.envint.2020.106316_b0095 article-title: Urban air pollution may enhance COVID-19 case-fatality and mortality rates in the united states publication-title: The Innovation doi: 10.1016/j.xinn.2020.100047 – volume: 584 start-page: 430 year: 2020 ident: 10.1016/j.envint.2020.106316_b0155 article-title: Factors associated with COVID-19-related death using OpenSAFELY publication-title: Nature doi: 10.1038/s41586-020-2521-4 – volume: 94 start-page: 91 year: 2020 ident: 10.1016/j.envint.2020.106316_b0165 article-title: Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.03.017 – volume: 106 start-page: 161 year: 2014 ident: 10.1016/j.envint.2020.106316_b0005 article-title: Air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2014.08.010 – ident: 10.1016/j.envint.2020.106316_b0040 – volume: 71 start-page: 319 year: 2009 ident: 10.1016/j.envint.2020.106316_b0105 article-title: Approximate Bayesian inference for latent Gaussian models by using Integrated Nested Laplace Approximations publication-title: J. Roy. Statist. Soc.: Ser. B (Statist. Methodol.) doi: 10.1111/j.1467-9868.2008.00700.x – ident: 10.1016/j.envint.2020.106316_b0065 – ident: 10.1016/j.envint.2020.106316_b0025 – reference: 32817974 - medRxiv. 2020 Aug 11:2020.08.10.20171421. doi: 10.1101/2020.08.10.20171421. – reference: 33561670 - Environ Int. 2021 May;150:106422. doi: 10.1016/j.envint.2021.106422. |
SSID | ssj0002485 |
Score | 2.6093073 |
Snippet | •We downscaled the coarse spatial resolution of deaths to mitigate ecological bias.•We accounted for confounding, spatial autocorrelation and pre-existing... Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106316 |
SubjectTerms | Air Pollutants - analysis Air Pollutants - toxicity Air Pollution - adverse effects Air Pollution - analysis Air-pollution autocorrelation Bayes Theorem Bayesian spatial models Bayesian theory chronic exposure climate COVID-19 COVID-19 infection Cross-Sectional Studies disease transmission England England - epidemiology environment Environmental Exposure - adverse effects Environmental Exposure - analysis Humans Mortality Nitrogen dioxide Nitrogen Dioxide - analysis Nitrogen Dioxide - toxicity Particular matter Particulate Matter - analysis Particulate Matter - toxicity relative risk SARS-CoV-2 Spatial Analysis |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW7gWEEBQWyktG4mo1tZ2HuZWyqy6P5QCL9mb5kSxBkFRtV-LnM-M4pQGJlbgkkus83BnPfLFnviHkZcVNqkyVMJ4VnknPc2YVHJxILHjrQrog6Q9n2fJcvr1ILw7Ios-FwbDKaPs7mx6sdWyZxn9zuqrr6SfkRpMzHmqAc4D9N8ghFypLR-RwfvpuebYzyMja1VF8Jwwv6DPoQpgX5pM1GFTJsSkTWPh8z0MFIv-Bo_obiP4ZT7nnoE7ukjsRWdJ59_L3yEHZjMmtPb7BMTk6_p3WBl3jvN6Mye1u9Y52SUn3SfW-bS4ZWm1a_ly1uIpIty019ZqtsDYySpOaxtPFxy-nb9hM0R8BxgOkp3VDY2WQV3ROsdR22KwAXaAbDN-Gs4lMKA_I-cnx58WSxYoMzAFO2jLuAL1kVsAkLstZjluyFj44MuF8ATiSe3CIsjLSOZU4XlgjTOpzI5zhrsoqK47IqGmb8hGhqjCZEwXPfY6gorLKYwKYhTsnmbJyQkQvBe0iXTlWzfiu-7i0b7qTnUbZ6U52E8J2V606uo5r-r9GAe_6Itl2aGjXlzpqm1be50liy7xwlUw96HZqC--UKn1ivBUTkvfqoQe6C7eqr3n8i16bNExr3KsxTdlebTSXOWBpAeb_H33SFOGblMmEPOw0cDcQIYRKVcrh3Qa6ORjp8Jem_hroxZFREL5KH__3qJ6Qmxwjf8JC1VMy2q6vymcA3bb2eZyavwBxWkKN priority: 102 providerName: Elsevier |
Title | Long-term exposure to air-pollution and COVID-19 mortality in England: A hierarchical spatial analysis |
URI | https://dx.doi.org/10.1016/j.envint.2020.106316 https://www.ncbi.nlm.nih.gov/pubmed/33395952 https://www.proquest.com/docview/2475403376 https://www.proquest.com/docview/2552011440 https://pubmed.ncbi.nlm.nih.gov/PMC7786642 https://doaj.org/article/9dd700be78cf45d59a5b8dc99ed0adb3 |
Volume | 146 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZguYBWCAq7W2ArI3E1uLbzMLeyD3V5LBcW7c3yI4GuIKm2XYkTv50ZOyktSPTCJZESx4kzY89ne-YbQl7Uwmba1pyJvAxMBVEwp-HgJXdgrUvlo6Q_nOfTC_X2MrtcS_WFPmGJHjj9uFc6hIJzVxWlr1UWoOLMlcFrXQVug4s8n1zzfjLVjcFI1JVYvTlTY8H7oLno2YUhZA36UQq8lEvMdb5mlCJ3_4Zt-ht7_ulCuWaTTh-Q-x2YpJPUiIfkVtUMyL01isEB2Tv5HckGRbuuvBiQ3bRgR1Mc0iNSv2-bLwwHalr9mLe4cEiXLbWzazbHdMgoQGqbQI8-fj47ZmNNv0fkDiiezhraJQN5TScUs2vH_QkQP12gxzacbUd-8phcnJ58OpqyLgkD8wCNlkx4ACy5k9Bvq2pc4C6sgzlGLn0oATqKADZQ1VZ5r7kXpbPSZqGw0lvh67x2co_sNG1THRCqS5t7WYoiFIgjaqcDxnw5qJnn2qkhkb0UjO8YyjFRxjfTu6JdmSQ7g7IzSXZDwlZPzRNDx5byb1DAq7LIrx0vgNaZTuvMNq0bkqJXD9NBlQRBoKrZltc_77XJQE_G7RnbVO3NwghVAHyWMOL_o0yWIWJTig_JftLAVUOklDrTmYBv29DNjZZu3mlmXyOjOJIIwkT0yf_4NU_JXYF-P3GZ6hnZWV7fVIcA3JZuRG6__DkekTuTs3fT81Hssb8AQMBEbQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGeACEEBTGyqeReDVNbefDvI2yqYNuPLChvVn-SLYgllRtJ_HE386dk3QNSEzipZXcaxr3zne_2He_I-RtwU2sTBExnmSeSc9TZhW8OBFZiNaZdEHTR8fJ9FR-OovPtsikq4XBtMrW9zc-PXjrdmTU_pujeVmOviI3mhzz0AOcA-y_RW7LWKSY1_fu13WeB3J2NQTfEUPxrn4uJHlhNVmFKZUchxKBbc834lOg8e-Fqb9h6J_ZlBvh6eAhedDiSrrX3PojspVXA3Jvg21wQHb2r4vaQLRd1csBud_s3dGmJOkxKWZ1dc7QZ9P857zGPUS6qqkpF2yOnZFRl9RUnk6-fDv8yMaKXgYQD4CelhVt-4K8p3sUG22HowqwBLrE5G14Ny0PyhNyerB_Mpmyth8Dc4CSVow7wC6JFbCE83yc4oGshceNRDifAYrkHsKhLIx0TkWOZ9YIE_vUCGe4K5LCih2yXdVVvkuoykziRMZTnyKkKKzyWP5l4cpRoqwcEtFpQbuWrBx7ZvzQXVbad93oTqPudKO7IWHrb80bso4b5D-ggteySLUdBurFuW5tTSvv0yiyeZq5QsYeLDu2mXdK5T4y3oohSTvz0D3LhUuVN_z8m86aNCxqPKkxVV5fLTWXKSBpAc7_HzJxjOBNymhInjYWuJ6IEELFKuZwbz3b7M20_0lVXgRyceQThGfSZ_89q9fkzvTkaKZnh8efn5O7HHOAwpbVC7K9WlzlLwHEreyrsEh_A8szRFY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+exposure+to+air-pollution+and+COVID-19+mortality+in+England%3A+A+hierarchical+spatial+analysis&rft.jtitle=Environment+international&rft.au=Konstantinoudis%2C+Garyfallos&rft.au=Padellini%2C+Tullia&rft.au=Bennett%2C+James&rft.au=Davies%2C+Bethan&rft.date=2021-01-01&rft.issn=0160-4120&rft.volume=146&rft.spage=106316&rft_id=info:doi/10.1016%2Fj.envint.2020.106316&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envint_2020_106316 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-4120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-4120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-4120&client=summon |