Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long‐term nitrogen enrichment

Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration. Reduction in below‐gro...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 30; no. 4; pp. 658 - 669
Main Authors Chen, Dima, Li, Jianjun, Lan, Zhichun, Hu, Shuijin, Bai, Yongfei, Niu, Shuli
Format Journal Article
LanguageEnglish
Published London British Ecological Society 01.04.2016
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration. Reduction in below‐ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12‐year N enrichment experiment and a 4‐year complementary acid addition experiment in a semi‐arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long‐term N enrichment. These findings suggest that N‐induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios.
AbstractList Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration. Reduction in below‐ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12‐year N enrichment experiment and a 4‐year complementary acid addition experiment in a semi‐arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long‐term N enrichment. These findings suggest that N‐induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios.
1. Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide-range of impacts on biotic communities and hence on soil respiration. 2. Reduction in below-ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. 3. We conducted a 12-year N enrichment experiment and a 4-year complementary acid addition experiment in a semi-arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. 4. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long-term N enrichment. 5. These findings suggest that N-induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios. Lay Summary
Summary Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration. Reduction in below‐ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12‐year N enrichment experiment and a 4‐year complementary acid addition experiment in a semi‐arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long‐term N enrichment. These findings suggest that N‐induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios. Lay Summary
Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration. Reduction in below‐ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12‐year N enrichment experiment and a 4‐year complementary acid addition experiment in a semi‐arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long‐term N enrichment. These findings suggest that N‐induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios.
Summary Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide-range of impacts on biotic communities and hence on soil respiration. Reduction in below-ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12-year N enrichment experiment and a 4-year complementary acid addition experiment in a semi-arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long-term N enrichment. These findings suggest that N-induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios.
Author Chen, Dima
Bai, Yongfei
Niu, Shuli
Li, Jianjun
Lan, Zhichun
Hu, Shuijin
Author_xml – sequence: 1
  fullname: Chen, Dima
– sequence: 2
  fullname: Li, Jianjun
– sequence: 3
  fullname: Lan, Zhichun
– sequence: 4
  fullname: Hu, Shuijin
– sequence: 5
  fullname: Bai, Yongfei
– sequence: 6
  fullname: Niu, Shuli
BookMark eNqNkc9uVCEUh4mpidPq2pWRxI2b2_LnwoWlmbRq0sRF7ZrAnXOnTO7ACIx1dj6Cax-vT1Kmt9akCysbEs73nQP8DtFBiAEQek3JMa3rhHIpGtZycUyZYOIZmj2cHKAZYVI3qpX8BTrMeUUI0YKxGfp9Ef2Ibe8XfvC9LT4GDD8glYwtXiawBRLuYygpjrjW8h5PkDc-TXC5svenwVdoCQHb79aP1vnRlx32obaxOY82LDLOW7eCvsACl4jHGJY3P3_VCeu_MoTk-6s1hPISPR_smOHV_X6ELs9Ov84_NedfPn6efzhveiGZaLTrOKfSka5loDpHlFVAGHBtaU-0a7lj0mrRCk21I0zwQSnnhAToJAPGj9D7qe8mxW9byMWsfe5hrDeGuM2GKsIp5VT_B9opIghlnFT03SN0Fbcp1IcYqokkUmml_0l1XaepaImo1MlE9SnmnGAwm-TXNu0MJWYfvtlHbfZRm7vwqyEeGb0vd4GVVMN52rv2I-yeGmPOTud_vDeTt8olpgevVUKxtqW1_naqDzYau0w-m8sLRqgk9bdEDYffAjnl178
CODEN FECOE5
CitedBy_id crossref_primary_10_3390_f11030260
crossref_primary_10_1007_s10021_019_00357_x
crossref_primary_10_1111_gcb_14368
crossref_primary_10_1111_gcb_15731
crossref_primary_10_1016_j_pedobi_2019_150612
crossref_primary_10_1016_j_soilbio_2022_108812
crossref_primary_10_1007_s10021_018_0232_6
crossref_primary_10_1016_j_ecolind_2022_108953
crossref_primary_10_3390_f9090544
crossref_primary_10_1016_j_scitotenv_2017_11_119
crossref_primary_10_1038_s41467_024_47323_3
crossref_primary_10_2139_ssrn_4156071
crossref_primary_10_1016_j_soilbio_2021_108495
crossref_primary_10_1016_j_scitotenv_2017_12_292
crossref_primary_10_1016_S1002_0160_19_60832_5
crossref_primary_10_1016_j_apsoil_2021_104023
crossref_primary_10_1080_03650340_2021_1895432
crossref_primary_10_1016_j_catena_2023_107015
crossref_primary_10_3390_agriculture14091616
crossref_primary_10_3390_f15040684
crossref_primary_10_1016_j_jia_2024_08_010
crossref_primary_10_1111_ejss_13564
crossref_primary_10_3390_agronomy12092128
crossref_primary_10_1111_ele_13083
crossref_primary_10_1007_s10021_016_0079_7
crossref_primary_10_1016_j_soilbio_2020_108006
crossref_primary_10_1016_j_geoderma_2020_114222
crossref_primary_10_1016_j_soilbio_2017_10_039
crossref_primary_10_3390_su14127493
crossref_primary_10_1007_s11676_023_01675_6
crossref_primary_10_1016_j_scitotenv_2023_161986
crossref_primary_10_2480_agrmet_D_20_00013
crossref_primary_10_1016_j_agrformet_2019_01_028
crossref_primary_10_1016_j_scitotenv_2024_171170
crossref_primary_10_1111_1365_2435_70033
crossref_primary_10_1371_journal_pone_0174632
crossref_primary_10_3390_f8110416
crossref_primary_10_1016_j_jaridenv_2018_01_017
crossref_primary_10_1002_ldr_4259
crossref_primary_10_1016_j_jenvman_2023_119715
crossref_primary_10_1016_j_scitotenv_2017_09_131
crossref_primary_10_1038_s41598_019_50142_y
crossref_primary_10_1016_j_gecco_2020_e01228
crossref_primary_10_1007_s11270_019_4144_7
crossref_primary_10_1186_s13717_022_00382_0
crossref_primary_10_3389_ffgc_2023_1154934
crossref_primary_10_1016_j_agrformet_2019_03_021
crossref_primary_10_1007_s42729_023_01135_4
crossref_primary_10_1002_ecy_4515
crossref_primary_10_1016_j_scitotenv_2020_137270
crossref_primary_10_1016_j_agrformet_2020_108106
crossref_primary_10_1016_j_agee_2024_109330
crossref_primary_10_1016_j_envpol_2019_03_069
crossref_primary_10_1016_j_ejsobi_2024_103601
crossref_primary_10_1002_ldr_4642
crossref_primary_10_1080_10549811_2020_1822873
crossref_primary_10_1016_j_catena_2019_104100
crossref_primary_10_3389_fpls_2022_947279
crossref_primary_10_1111_1365_2745_14051
crossref_primary_10_1093_femsec_fiaa174
crossref_primary_10_1111_1365_2435_13783
crossref_primary_10_1007_s11104_024_06962_7
crossref_primary_10_1111_1365_2435_14510
crossref_primary_10_1016_j_soilbio_2022_108590
crossref_primary_10_1111_1365_2435_13433
crossref_primary_10_1139_er_2019_0064
crossref_primary_10_1016_j_apsoil_2022_104740
crossref_primary_10_1080_20442041_2024_2431400
crossref_primary_10_1016_j_agrformet_2018_03_016
crossref_primary_10_1016_j_soilbio_2020_107732
crossref_primary_10_1016_j_envpol_2019_05_045
crossref_primary_10_1007_s10021_021_00647_3
crossref_primary_10_7717_peerj_7631
crossref_primary_10_1016_j_soilbio_2019_107656
crossref_primary_10_3390_f11020235
crossref_primary_10_1111_gcb_15220
crossref_primary_10_1016_j_scitotenv_2023_168350
crossref_primary_10_1111_gcb_16869
crossref_primary_10_1007_s11104_017_3367_x
crossref_primary_10_1007_s13595_021_01060_5
crossref_primary_10_1016_j_scitotenv_2024_171246
crossref_primary_10_1016_j_envpol_2018_03_081
crossref_primary_10_1016_j_ejsobi_2019_103097
crossref_primary_10_1016_j_scitotenv_2022_159919
crossref_primary_10_1016_j_agee_2022_108182
crossref_primary_10_1111_1365_2435_13045
crossref_primary_10_1093_jpe_rtac015
crossref_primary_10_1111_gcb_16746
crossref_primary_10_1016_j_pedobi_2021_150709
crossref_primary_10_3390_ijerph182010998
crossref_primary_10_1016_j_agrformet_2017_10_032
crossref_primary_10_1016_j_fecs_2022_100054
crossref_primary_10_1007_s10021_024_00946_5
crossref_primary_10_1016_j_agee_2024_109154
crossref_primary_10_1016_j_soilbio_2024_109705
crossref_primary_10_1016_j_scitotenv_2020_143211
crossref_primary_10_1016_j_ecolind_2022_108918
crossref_primary_10_1016_j_pedobi_2020_150663
crossref_primary_10_1007_s11368_018_2148_3
crossref_primary_10_1029_2018JG004488
crossref_primary_10_1111_1365_2435_12914
crossref_primary_10_1186_s40663_021_00313_z
crossref_primary_10_1016_j_catena_2021_105434
crossref_primary_10_1111_gcb_14163
crossref_primary_10_1016_j_geoderma_2018_05_022
crossref_primary_10_1007_s10661_022_10705_5
crossref_primary_10_1111_ejss_13487
crossref_primary_10_1016_j_scitotenv_2017_03_034
crossref_primary_10_1007_s11104_021_05221_3
crossref_primary_10_1088_1748_9326_ada45b
crossref_primary_10_3389_fpls_2022_834184
crossref_primary_10_1016_j_catena_2023_107343
crossref_primary_10_1007_s11104_018_3702_x
crossref_primary_10_1007_s11104_022_05332_5
crossref_primary_10_1016_j_chemosphere_2023_139378
crossref_primary_10_1111_gcb_13980
crossref_primary_10_1016_j_agee_2023_108748
crossref_primary_10_1016_j_geoderma_2017_01_013
crossref_primary_10_1007_s11104_019_04169_9
crossref_primary_10_1111_1365_2435_12525
crossref_primary_10_3390_f13122064
crossref_primary_10_1007_s11104_019_04410_5
crossref_primary_10_1016_j_geoderma_2020_114829
crossref_primary_10_5194_bg_14_3947_2017
crossref_primary_10_1016_j_scitotenv_2024_175943
crossref_primary_10_3390_plants11030286
crossref_primary_10_1016_j_scitotenv_2024_172671
crossref_primary_10_1016_j_apsoil_2023_104851
crossref_primary_10_3389_fmicb_2024_1375300
crossref_primary_10_1007_s11104_024_06600_2
crossref_primary_10_1016_j_apsoil_2022_104537
crossref_primary_10_1016_j_funeco_2018_11_011
crossref_primary_10_1016_j_agee_2024_109373
crossref_primary_10_1016_j_atmosenv_2016_06_062
crossref_primary_10_1038_srep18496
crossref_primary_10_1007_s11356_023_29585_4
crossref_primary_10_1016_j_geoderma_2020_114234
crossref_primary_10_1007_s10533_020_00661_y
crossref_primary_10_1111_1365_2435_13622
crossref_primary_10_1088_1748_9326_aa5ba6
crossref_primary_10_1016_j_scitotenv_2024_175435
crossref_primary_10_3389_fpls_2021_681113
crossref_primary_10_1016_j_apsoil_2023_105134
crossref_primary_10_1016_j_geoderma_2024_116822
crossref_primary_10_1016_j_catena_2021_105617
crossref_primary_10_1016_j_scitotenv_2023_168568
crossref_primary_10_1016_j_soilbio_2020_108107
crossref_primary_10_1029_2021JG006607
crossref_primary_10_1007_s10661_019_7463_7
crossref_primary_10_3390_agronomy13071734
crossref_primary_10_1002_ece3_3536
crossref_primary_10_1016_j_scitotenv_2020_142011
crossref_primary_10_1002_ecm_70005
crossref_primary_10_1007_s11356_022_21502_5
crossref_primary_10_1016_j_agrformet_2022_109155
crossref_primary_10_1016_j_gecco_2021_e01452
crossref_primary_10_3832_ifor3533_013
crossref_primary_10_1016_j_agrformet_2018_11_034
crossref_primary_10_1016_j_jenvman_2024_123253
crossref_primary_10_1016_j_catena_2020_104750
crossref_primary_10_1111_1365_2435_13118
crossref_primary_10_3390_f10111038
Cites_doi 10.1016/j.envpol.2010.08.002
10.1016/S0016-7037(00)00614-1
10.1007/s10021-004-0149-0
10.1021/es901430n
10.1039/b001496f
10.1038/ngeo721
10.1890/06-2057.1
10.1111/j.1365-2486.2011.02468.x
10.1371/journal.pone.0001299
10.1111/j.1469-185X.1988.tb00725.x
10.1111/j.1365-2486.2009.01950.x
10.1007/s11284-010-0722-2
10.1016/S0168-1923(02)00100-4
10.1111/j.1461-0248.2008.01230.x
10.1016/j.agrformet.2003.10.004
10.1111/j.1365-2486.2007.01420.x
10.1126/science.272.5259.244
10.1016/j.foreco.2009.02.018
10.1111/j.1365-2486.2009.01894.x
10.1016/j.agrformet.2011.04.011
10.1111/j.1469-8137.2005.01338.x
10.1126/science.1136674
10.1111/j.1469-8137.2008.02488.x
10.1111/j.1365-2486.2011.02527.x
10.1111/j.1365-2486.2012.02694.x
10.1111/j.1461-0248.2010.01482.x
10.1126/science.1182570
10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
10.1016/j.soilbio.2005.08.020
10.1111/j.1365-2486.2004.00816.x
10.1111/1365-2745.12119
10.1111/j.1365-2486.2007.01465.x
10.1038/nature11917
10.1038/nature05847
10.1111/j.1365-2486.2006.01102.x
10.1890/08-1140.1
10.1034/j.1600-0889.1992.t01-1-00001.x
10.1128/AEM.02775-08
10.1007/s002489900087
10.1111/j.1469-8137.2007.02204.x
10.1016/j.soilbio.2009.11.014
10.1111/j.1365-2486.2006.01117.x
10.1111/1365-2435.12525
10.1038/ngeo339
10.1093/treephys/22.1.67
10.1016/S0038-0717(00)00194-2
10.1111/j.1365-2435.2009.01663.x
10.1038/ngeo844
ContentType Journal Article
Copyright 2015 The Authors. © 2015 British Ecological Society
2015 The Authors. Functional Ecology © 2015 British Ecological Society
Functional Ecology © 2016 British Ecological Society
Copyright_xml – notice: 2015 The Authors. © 2015 British Ecological Society
– notice: 2015 The Authors. Functional Ecology © 2015 British Ecological Society
– notice: Functional Ecology © 2016 British Ecological Society
DBID FBQ
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/1365-2435.12525
DatabaseName AGRIS
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Ecology Abstracts


AGRICOLA
Entomology Abstracts
Entomology Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 669
ExternalDocumentID 4008765421
10_1111_1365_2435_12525
FEC12525
48582441
US201600125954
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Chinese National Key Development Program for Basic Research
  funderid: 2015CB954201
– fundername: Natural Science Foundation of China
  funderid: 31320103916; 31030013
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA05050400
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAJUZ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPTK
ABPVW
ABTAH
ABTLG
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAMMB
AAYCA
ABSQW
ABXSQ
ACHIC
AEFGJ
AFWVQ
AGHNM
AGXDD
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
IPSME
OIG
ACCMX
HGLYW
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c5625-9b73316b0742e87b08a8e02e39a1c09b43b26a9545919b0253f88bb56ee762e23
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jul 11 18:23:21 EDT 2025
Thu Jul 10 23:10:22 EDT 2025
Fri Jul 25 20:54:47 EDT 2025
Fri Jul 25 08:00:07 EDT 2025
Tue Jul 01 01:15:44 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Wed Jan 22 16:49:26 EST 2025
Thu Jul 03 22:16:56 EDT 2025
Wed Dec 27 19:15:34 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5625-9b73316b0742e87b08a8e02e39a1c09b43b26a9545919b0253f88bb56ee762e23
Notes http://dx.doi.org/10.1111/1365-2435.12525
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12525
PQID 1777915405
PQPubID 1066355
PageCount 12
ParticipantIDs proquest_miscellaneous_1803113192
proquest_miscellaneous_1780501230
proquest_journals_1906068989
proquest_journals_1777915405
crossref_primary_10_1111_1365_2435_12525
crossref_citationtrail_10_1111_1365_2435_12525
wiley_primary_10_1111_1365_2435_12525_FEC12525
jstor_primary_48582441
fao_agris_US201600125954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2016
Publisher British Ecological Society
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: British Ecological Society
– name: Wiley
– name: Wiley Subscription Services, Inc
References 2004; 123
2011; 159
2010; 16
2009; 43
2010; 13
2007; 447
2010; 327
2006; 12
2002; 113
2006; 38
2006; 9
2013; 101
1998
2008; 14
2009
2012; 18
2000; 2
2008; 11
2008; 1
2011; 17
2011; 151
2008; 320
2009; 257
2007; 13
1997; 7
2001; 65
2004; 10
2010; 20
2010; 42
2010; 25
2009; 75
2010; 24
2000
2005; 166
2007; 176
2002; 22
1996; 272
2008; 89
2015
1988; 63
2007; 2
2013; 494
2008; 179
2001; 33
2010; 3
1992; 44
1998; 36
e_1_2_7_5_1
e_1_2_7_3_1
R Development Core Team (e_1_2_7_34_1) 2009
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
ISSS Working Group RB (e_1_2_7_20_1) 1998
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
Robin W.S.M. (e_1_2_7_37_1) 2000
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 17
  start-page: 3115
  year: 2011
  end-page: 3129
  article-title: Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition
  publication-title: Global Change Biology
– volume: 3
  start-page: 13
  year: 2010
  end-page: 17
  article-title: Increased tree carbon storage in response to nitrogen deposition in the US
  publication-title: Nature Geoscience
– year: 2009
– volume: 33
  start-page: 533
  year: 2001
  end-page: 551
  article-title: Accounting for variability in soil microbial communities of temperate upland grassland ecosystems
  publication-title: Soil Biology and Biochemistry
– volume: 320
  start-page: 889
  year: 2008
  end-page: 892
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
– volume: 327
  start-page: 1008
  year: 2010
  end-page: 1010
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
– volume: 159
  start-page: 2251
  year: 2011
  end-page: 2264
  article-title: Nitrogen deposition and its ecological impact in China: an overview
  publication-title: Environmental Pollution
– volume: 2
  start-page: e1299
  year: 2007
  article-title: Increased litterfall in tropical forests boosts the transfer of soil CO to the atmosphere
  publication-title: PLoS One
– volume: 20
  start-page: 30
  year: 2010
  end-page: 59
  article-title: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis
  publication-title: Ecological Applications
– volume: 14
  start-page: 142
  year: 2008
  end-page: 153
  article-title: Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests
  publication-title: Global Change Biology
– volume: 24
  start-page: 478
  year: 2010
  end-page: 484
  article-title: Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition
  publication-title: Functional Ecology
– volume: 18
  start-page: 258
  year: 2012
  end-page: 266
  article-title: Chronic N deposition alters root respiration‐tissue N relationship in northern hardwood forests
  publication-title: Global Change Biology
– volume: 447
  start-page: 849
  year: 2007
  end-page: 851
  article-title: The human footprint in the carbon cycle of temperate and boreal forests
  publication-title: Nature
– volume: 113
  start-page: 21
  year: 2002
  end-page: 37
  article-title: Minimizing artifacts and biases in chamber‐based measurements of soil respiration
  publication-title: Agricultural and Forest Meteorology
– year: 1998
– volume: 75
  start-page: 1589
  year: 2009
  end-page: 1596
  article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization
  publication-title: Applied and Environmental Microbiology
– volume: 11
  start-page: 1111
  year: 2008
  end-page: 1120
  article-title: Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies
  publication-title: Ecology Letters
– volume: 12
  start-page: 921
  year: 2006
  end-page: 943
  article-title: Trends and methodological impacts in soil CO efflux partitioning: a metaanalytical review
  publication-title: Global Change Biology
– volume: 12
  start-page: 489
  year: 2006
  end-page: 499
  article-title: Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest
  publication-title: Global Change Biology
– volume: 43
  start-page: 8021
  year: 2009
  end-page: 8026
  article-title: Soil acidification in China: is controlling SO emissions enough?
  publication-title: Environmental Science and Technology
– volume: 494
  start-page: 459
  year: 2013
  end-page: 462
  article-title: Enhanced nitrogen deposition over China
  publication-title: Nature
– volume: 44
  start-page: 81
  year: 1992
  end-page: 99
  article-title: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate
  publication-title: Tellus Series B
– volume: 36
  start-page: 1
  year: 1998
  end-page: 12
  article-title: Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles
  publication-title: Microbial Ecology
– volume: 38
  start-page: 425
  year: 2006
  end-page: 448
  article-title: Sources of CO efflux from soil and review of partitioning methods
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 921
  year: 2006
  end-page: 933
  article-title: Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon
  publication-title: Ecosystems
– volume: 18
  start-page: 2292
  year: 2012
  end-page: 2300
  article-title: Significant soil acidification across northern China's grasslands during 1980s–2000s
  publication-title: Global Change Biology
– volume: 16
  start-page: 144
  year: 2010
  end-page: 155
  article-title: Nitrogen effects on net ecosystem carbon exchange in a temperate steppe
  publication-title: Global Change Biology
– volume: 10
  start-page: 1756
  year: 2004
  end-page: 1766
  article-title: A global relationship between the heterotrophic and autotrophic components of soil respiration?
  publication-title: Global Change Biology
– volume: 22
  start-page: 67
  year: 2002
  end-page: 72
  article-title: Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field
  publication-title: Tree Physiology
– volume: 65
  start-page: 1087
  year: 2001
  end-page: 1099
  article-title: Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils
  publication-title: Geochimica et Cosmochimica Acta
– volume: 176
  start-page: 655
  year: 2007
  end-page: 664
  article-title: Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils
  publication-title: New Phytologist
– volume: 166
  start-page: 551
  year: 2005
  end-page: 564
  article-title: Decline of acid‐sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH
  publication-title: New Phytologist
– volume: 101
  start-page: 1322
  year: 2013
  end-page: 1334
  article-title: Evidence that acidification‐induced declines in plant diversity and productivity are mediated by changes in below‐ground communities and soil properties in a semi‐arid steppe
  publication-title: Journal of Ecology
– year: 2000
– volume: 3
  start-page: 315
  year: 2010
  end-page: 322
  article-title: Reduction of forest soil respiration in response to nitrogen deposition
  publication-title: Nature Geoscience
– volume: 179
  start-page: 428
  year: 2008
  end-page: 439
  article-title: Global response patterns of terrestrial plant species to nitrogen addition
  publication-title: New Phytologist
– volume: 13
  start-page: 819
  year: 2010
  end-page: 828
  article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment
  publication-title: Ecology Letters
– volume: 272
  start-page: 244
  year: 1996
  end-page: 245
  article-title: Long‐term effects of acid rain: response and recovery of a forest ecosystem
  publication-title: Science
– volume: 1
  start-page: 767
  year: 2008
  end-page: 770
  article-title: Negative impact of nitrogen deposition on soil buffering capacity
  publication-title: Nature Geoscience
– volume: 63
  start-page: 433
  year: 1988
  end-page: 462
  article-title: The effect of added nitrogen on the rate of decomposition of organic matter
  publication-title: Biological Reviews
– volume: 151
  start-page: 1214
  year: 2011
  end-page: 1225
  article-title: Subtropical plantations are large carbon sinks: evidence from two monoculture plantations in South China
  publication-title: Agricultural and Forest Meteorology
– volume: 2
  start-page: 228
  year: 2000
  end-page: 233
  article-title: Application of a modified BCR sequential extraction (three‐step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three‐year stability study of acetic acid and EDTA extractable metal content
  publication-title: Journal of Environmental Monitoring
– volume: 257
  start-page: 2088
  year: 2009
  end-page: 2097
  article-title: Stand level estimation of root respiration for two subtropical plantations based on in situ measurement of specific root respiration
  publication-title: Forest Ecology and Management
– volume: 16
  start-page: 358
  year: 2010
  end-page: 372
  article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands
  publication-title: Global Change Biology
– volume: 89
  start-page: 371
  year: 2008
  end-page: 379
  article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed
  publication-title: Ecology
– volume: 13
  start-page: 2089
  year: 2007
  end-page: 2109
  article-title: Carbon allocation in forest ecosystems
  publication-title: Global Change Biology
– volume: 123
  start-page: 79
  year: 2004
  end-page: 96
  article-title: Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California
  publication-title: Agricultural and Forest Meteorology
– volume: 25
  start-page: 983
  year: 2010
  end-page: 993
  article-title: Effects of root diameter and root nitrogen concentration on in situ root respiration among different seasons and tree species
  publication-title: Ecological Research
– volume: 7
  start-page: 737
  year: 1997
  end-page: 750
  article-title: Human alteration of the global nitrogen cycle: sources and consequences
  publication-title: Ecological Applications
– volume: 42
  start-page: 347
  year: 2010
  end-page: 352
  article-title: A new approach to trenching experiments for measuring root–rhizosphere respiration in a lowland tropical forest
  publication-title: Soil Biology and Biochemistry
– year: 2015
  article-title: Data from: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long‐term nitrogen enrichment
– ident: e_1_2_7_27_1
  doi: 10.1016/j.envpol.2010.08.002
– ident: e_1_2_7_42_1
  doi: 10.1016/S0016-7037(00)00614-1
– ident: e_1_2_7_48_1
  doi: 10.1007/s10021-004-0149-0
– ident: e_1_2_7_52_1
  doi: 10.1021/es901430n
– ident: e_1_2_7_36_1
  doi: 10.1039/b001496f
– ident: e_1_2_7_44_1
  doi: 10.1038/ngeo721
– ident: e_1_2_7_23_1
  doi: 10.1890/06-2057.1
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-2486.2011.02468.x
– ident: e_1_2_7_39_1
  doi: 10.1371/journal.pone.0001299
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1469-185X.1988.tb00725.x
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1365-2486.2009.01950.x
– ident: e_1_2_7_10_1
  doi: 10.1007/s11284-010-0722-2
– ident: e_1_2_7_14_1
  doi: 10.1016/S0168-1923(02)00100-4
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1461-0248.2008.01230.x
– ident: e_1_2_7_50_1
  doi: 10.1016/j.agrformet.2003.10.004
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1365-2486.2007.01420.x
– ident: e_1_2_7_24_1
  doi: 10.1126/science.272.5259.244
– ident: e_1_2_7_9_1
  doi: 10.1016/j.foreco.2009.02.018
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1365-2486.2009.01894.x
– ident: e_1_2_7_11_1
  doi: 10.1016/j.agrformet.2011.04.011
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1469-8137.2005.01338.x
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1136674
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1469-8137.2008.02488.x
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1365-2486.2011.02527.x
– ident: e_1_2_7_51_1
  doi: 10.1111/j.1365-2486.2012.02694.x
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1461-0248.2010.01482.x
– ident: e_1_2_7_18_1
  doi: 10.1126/science.1182570
– ident: e_1_2_7_47_1
  doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
– ident: e_1_2_7_22_1
  doi: 10.1016/j.soilbio.2005.08.020
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-2486.2004.00816.x
– ident: e_1_2_7_12_1
  doi: 10.1111/1365-2745.12119
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1365-2486.2007.01465.x
– ident: e_1_2_7_28_1
  doi: 10.1038/nature11917
– ident: e_1_2_7_29_1
  doi: 10.1038/nature05847
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-2486.2006.01102.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2009
  ident: e_1_2_7_34_1
– ident: e_1_2_7_3_1
  doi: 10.1890/08-1140.1
– ident: e_1_2_7_35_1
  doi: 10.1034/j.1600-0889.1992.t01-1-00001.x
– volume-title: World Reference Base for Soil Resources. Introduction
  year: 1998
  ident: e_1_2_7_20_1
– ident: e_1_2_7_38_1
  doi: 10.1128/AEM.02775-08
– volume-title: Pilot Analysis of Global Ecosystem: Grassland Ecosystems
  year: 2000
  ident: e_1_2_7_37_1
– ident: e_1_2_7_5_1
  doi: 10.1007/s002489900087
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1469-8137.2007.02204.x
– ident: e_1_2_7_40_1
  doi: 10.1016/j.soilbio.2009.11.014
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-2486.2006.01117.x
– ident: e_1_2_7_13_1
  doi: 10.1111/1365-2435.12525
– ident: e_1_2_7_6_1
  doi: 10.1038/ngeo339
– ident: e_1_2_7_7_1
  doi: 10.1093/treephys/22.1.67
– ident: e_1_2_7_17_1
  doi: 10.1016/S0038-0717(00)00194-2
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-2435.2009.01663.x
– ident: e_1_2_7_21_1
  doi: 10.1038/ngeo844
SSID ssj0009522
Score 2.5690792
Snippet Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This...
Summary Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities....
Summary Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities....
1. Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This...
SourceID proquest
crossref
wiley
jstor
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 658
SubjectTerms Acidification
Acidity
anthropogenic activities
Anthropogenic factors
Aridity
Availability
base mineral cations
below‐ground carbon allocation
Biomass
Carbon
China
Communities
Community composition
Community ecology
community structure
Composition effects
Deposition
Ecosystems
Enrichment
Experiments
Fertilization
Grasslands
Herbivores
Human influences
microbial activity
microbial biomass
microbial communities
microbial respiration
Microorganisms
Nitrogen
nitrogen content
Nitrogen enrichment
plant functional group
prediction
Respiration
root nitrogen content
root respiration
root specific respiration
Soil acidification
soil microbial community
soil pH
soil respiration
Soils
Terrestrial ecosystems
Title Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long‐term nitrogen enrichment
URI https://www.jstor.org/stable/48582441
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12525
https://www.proquest.com/docview/1777915405
https://www.proquest.com/docview/1906068989
https://www.proquest.com/docview/1780501230
https://www.proquest.com/docview/1803113192
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEA66IHjxPey4q0Tw4KWHdNKP5CjLDIugB9cBb02STo-NQ_cy3SOsJ3-C5_15_hKrku7Z2cUH4i10UiHp1ONLUqki5CUrc81LJqIsq0yU8NhEoANVlNtKGrCAOnX4UPjtu-x0mbz5mI7ehPgWJsSH2B24oWR4fY0Crk23J-TBPwus_QxsNMdn5vgFYdF7vhd2N9wj8EzBGDIxBPdBX54b9Nfs0u1Kt6OD4jXouQ9gvQVa3CdmHHtwPPk82_ZmZr_eCOv4X5N7QO4N-JS-Dgz1kNxyzSNyJ2SsvIDS3A6lyfzqiRwQDDqie0wuz9p6TbWtS_RC8gtPMbFT31FNV4hR3YYOHvIU6jpsvhlu_LExHuaHr6BuNi1wONVfdL0OEcUvaN1AN4D5_Stl2m0NHiW5kvYtXbfN6se372hurohBQmr7Ccf5hCwX8w8np9GQASKyuDGLlMGUkpnBDbyTuWFSS8e4E0rHlimTCMMzrQAFqlgZgG-iktKYNHMOlLzjYkIOmrZxh4QmPGdJViVllYikUhYD3QldilIzkVoVT8lsXP_CDuHRMUvHuhi3SbgmBa5J4ddkSl7tCM5DZJDfNz0Ehir0CvR2sTzjGNUPgEEKY5iSieeyXReJTCVALhjP8ch2xaBWuiLO81zFCLJ_Xa0Y7EcxIeiUvNhVg77ASyDduHaLXUiWIpBmf2gjQdXHoJw5_BXPpn-bYbGYn_jC038lOCJ38X8EZ6hjctBvtu4Z4LzePPei_BMnbUSa
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYIL71UXChiJA5esHDsvH1G1qwXaHmhX6s2yHWcbsUrQbhapnPgJnPl5_BJmnGS7rXgIcbPih-x4Ht_Y4xlCXrE81TxnIkiSwgQRD00AMlAGqS0yAxpQxw4fCh8dJ9NZ9O4sPtt6C9PGh9gcuCFneHmNDI4H0ltc3jpogbofgZLm8Q65iXm9vVn1gW8F3m1vEngiYRaJ6ML7oDfPtQGuaKadQte9i-IV8LkNYb0Omtwjtp9963rycbRuzMh-uRbY8f-Wd5_c7SAqfdPS1ANyw1UPya02aeUFlMa2Kw3Gl6_koEMnJlaPyPeTulxQbcscHZH83lPM7dSsqKZzhKluSTsneQp1K2y-7C79sTGe57dfQeIsayByqj_rctEGFb-gZQXDAOz3D5Xpam3wNMnltKnpoq7mP75-Q41z2RmYpLTnOM_HZDYZnx5Mgy4JRGDRNgukwaySiUEb3mWpYZnOHONOSB1aJk0kDE-0BCAoQ2kAwYkiy4yJE-dAzjsuBmS3qiu3R2jEUxYlRZQXkYgKaTHWndC5yDUTsZXhkIx6AlC2i5COiToWqreUcE8U7onyezIkrzcdPrXBQX7fdA8oSuk5iG41O-EY2A-wQQxzGJKBJ7PNEFEWZ4C6YD77Pd2pTrKsVJimqQwRZ_-6WjIwSTEn6JC83FSDyMB7IF25eo1DZCxGLM3-0CYDaR-CfObwVzyd_m2FajI-8IUn_9rhBbk9PT06VIdvj98_JXfw37S-Uftkt1mu3TOAfY157vn6J2QUSLU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZoEYhLWUcdKGAkDlwycuzEsY-onVHZKkQZiZtlJ850xCipJhmk9sRP4MzP45fwXpbptGIR4mbFi-y87bP9_B4hz1mWWJ4xEUiZuyDioQtAB-ogSXPlwALa2OND4XdH8nAavf4U996E-BamjQ-xPnBDyWj0NQr4aZZvCHnrnwXWfgQ2msdb5HokmULGPvjAN-LuthcJXGqYhBRddB905rkywCXDtJXbsvdQvIQ9NxFsY4Imt4nrJ996nnwerWo3Ss-vxHX8r9XdITsdQKUvW466S6754h650aasPIPSOO1Kg_HFGzno0CmJ6j75flzOF9Sm8wzdkBrKU8zsVFfU0hmCVL-knYs8hboKmy-7K39sjKf57VfQN8sSWJzaL3a-aEOKn9F5AcMA6G-eKdNq5fAsyWe0LumiLGY_vn5De3PRGURknp7gPB-Q6WT8cf8w6FJABCnuzALtMKekdLiD9ypxTFnlGfdC2zBl2kXCcWk1wEAdagf4TeRKORdL70HLey4GZLsoC79LaMQTFsk8yvJIRLlOMdKdsJnILBNxqsMhGfX0N2kXHx3TdCxMv09CmhikiWloMiQv1h1O29Agv2-6Cwxl7AwUt5kecwzrB8gghjkMyaDhsvUQkYoVYC6Yz17PdqbTK5UJkyTRIaLsX1drBhtSzAg6JM_W1aAw8BbIFr5c4RCKxYik2R_aKND1IWhnDn-lYdO_rdBMxvtN4eG_dnhKbr4_mJi3r47ePCK38Ne0jlF7ZLtervxjwHy1e9JI9U9do0dt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+acidification+exerts+a+greater+control+on+soil+respiration+than+soil+nitrogen+availability+in+grasslands+subjected+to+long%E2%80%90term+nitrogen+enrichment&rft.jtitle=Functional+ecology&rft.au=Chen%2C+Dima&rft.au=Li%2C+Jianjun&rft.au=Lan%2C+Zhichun&rft.au=Hu%2C+Shuijin&rft.date=2016-04-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=30&rft.issue=4&rft.spage=658&rft.epage=669&rft_id=info:doi/10.1111%2F1365-2435.12525&rft.externalDBID=10.1111%252F1365-2435.12525&rft.externalDocID=FEC12525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon