Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long‐term nitrogen enrichment
Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration. Reduction in below‐gro...
Saved in:
Published in | Functional ecology Vol. 30; no. 4; pp. 658 - 669 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
British Ecological Society
01.04.2016
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration. Reduction in below‐ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12‐year N enrichment experiment and a 4‐year complementary acid addition experiment in a semi‐arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long‐term N enrichment. These findings suggest that N‐induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios. |
---|---|
AbstractList | Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration.
Reduction in below‐ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear.
We conducted a 12‐year N enrichment experiment and a 4‐year complementary acid addition experiment in a semi‐arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition.
The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long‐term N enrichment.
These findings suggest that N‐induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios. 1. Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide-range of impacts on biotic communities and hence on soil respiration. 2. Reduction in below-ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. 3. We conducted a 12-year N enrichment experiment and a 4-year complementary acid addition experiment in a semi-arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. 4. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long-term N enrichment. 5. These findings suggest that N-induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios. Lay Summary Summary Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration. Reduction in below‐ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12‐year N enrichment experiment and a 4‐year complementary acid addition experiment in a semi‐arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long‐term N enrichment. These findings suggest that N‐induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios. Lay Summary Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide‐range of impacts on biotic communities and hence on soil respiration. Reduction in below‐ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12‐year N enrichment experiment and a 4‐year complementary acid addition experiment in a semi‐arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long‐term N enrichment. These findings suggest that N‐induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios. Summary Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This intended or unintended fertilization can have a wide-range of impacts on biotic communities and hence on soil respiration. Reduction in below-ground carbon (C) allocation induced by high N availability has been assumed to be a major mechanism determining the effects of N enrichment on soil respiration. In addition to increasing available N, however, N enrichment causes soil acidification, which may also affect root and microbial activities. The relative importance of increased N availability vs. soil acidification on soil respiration in natural ecosystems experiencing N enrichment is unclear. We conducted a 12-year N enrichment experiment and a 4-year complementary acid addition experiment in a semi-arid Inner Mongolian grassland. We found that N enrichment had contrasting effects on root and microbial respiration. N enrichment significantly increased root biomass, root N content and specific root respiration, thereby promoting root respiration. In contrast, N enrichment significantly suppressed microbial respiration likely by reducing total microbial biomass and changing the microbial community composition. The effect on root activities was due to both soil acidity and increased available N, while the effect on microbes primarily stemmed from soil acidity, which was further confirmed by results from the acid addition experiment. Our results indicate that soil acidification exerts a greater control than soil N availability on soil respiration in grasslands experiencing long-term N enrichment. These findings suggest that N-induced soil acidification should be included in predicting terrestrial ecosystem C balance under future N deposition scenarios. |
Author | Chen, Dima Bai, Yongfei Niu, Shuli Li, Jianjun Lan, Zhichun Hu, Shuijin |
Author_xml | – sequence: 1 fullname: Chen, Dima – sequence: 2 fullname: Li, Jianjun – sequence: 3 fullname: Lan, Zhichun – sequence: 4 fullname: Hu, Shuijin – sequence: 5 fullname: Bai, Yongfei – sequence: 6 fullname: Niu, Shuli |
BookMark | eNqNkc9uVCEUh4mpidPq2pWRxI2b2_LnwoWlmbRq0sRF7ZrAnXOnTO7ACIx1dj6Cax-vT1Kmt9akCysbEs73nQP8DtFBiAEQek3JMa3rhHIpGtZycUyZYOIZmj2cHKAZYVI3qpX8BTrMeUUI0YKxGfp9Ef2Ibe8XfvC9LT4GDD8glYwtXiawBRLuYygpjrjW8h5PkDc-TXC5svenwVdoCQHb79aP1vnRlx32obaxOY82LDLOW7eCvsACl4jHGJY3P3_VCeu_MoTk-6s1hPISPR_smOHV_X6ELs9Ov84_NedfPn6efzhveiGZaLTrOKfSka5loDpHlFVAGHBtaU-0a7lj0mrRCk21I0zwQSnnhAToJAPGj9D7qe8mxW9byMWsfe5hrDeGuM2GKsIp5VT_B9opIghlnFT03SN0Fbcp1IcYqokkUmml_0l1XaepaImo1MlE9SnmnGAwm-TXNu0MJWYfvtlHbfZRm7vwqyEeGb0vd4GVVMN52rv2I-yeGmPOTud_vDeTt8olpgevVUKxtqW1_naqDzYau0w-m8sLRqgk9bdEDYffAjnl178 |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_3390_f11030260 crossref_primary_10_1007_s10021_019_00357_x crossref_primary_10_1111_gcb_14368 crossref_primary_10_1111_gcb_15731 crossref_primary_10_1016_j_pedobi_2019_150612 crossref_primary_10_1016_j_soilbio_2022_108812 crossref_primary_10_1007_s10021_018_0232_6 crossref_primary_10_1016_j_ecolind_2022_108953 crossref_primary_10_3390_f9090544 crossref_primary_10_1016_j_scitotenv_2017_11_119 crossref_primary_10_1038_s41467_024_47323_3 crossref_primary_10_2139_ssrn_4156071 crossref_primary_10_1016_j_soilbio_2021_108495 crossref_primary_10_1016_j_scitotenv_2017_12_292 crossref_primary_10_1016_S1002_0160_19_60832_5 crossref_primary_10_1016_j_apsoil_2021_104023 crossref_primary_10_1080_03650340_2021_1895432 crossref_primary_10_1016_j_catena_2023_107015 crossref_primary_10_3390_agriculture14091616 crossref_primary_10_3390_f15040684 crossref_primary_10_1016_j_jia_2024_08_010 crossref_primary_10_1111_ejss_13564 crossref_primary_10_3390_agronomy12092128 crossref_primary_10_1111_ele_13083 crossref_primary_10_1007_s10021_016_0079_7 crossref_primary_10_1016_j_soilbio_2020_108006 crossref_primary_10_1016_j_geoderma_2020_114222 crossref_primary_10_1016_j_soilbio_2017_10_039 crossref_primary_10_3390_su14127493 crossref_primary_10_1007_s11676_023_01675_6 crossref_primary_10_1016_j_scitotenv_2023_161986 crossref_primary_10_2480_agrmet_D_20_00013 crossref_primary_10_1016_j_agrformet_2019_01_028 crossref_primary_10_1016_j_scitotenv_2024_171170 crossref_primary_10_1111_1365_2435_70033 crossref_primary_10_1371_journal_pone_0174632 crossref_primary_10_3390_f8110416 crossref_primary_10_1016_j_jaridenv_2018_01_017 crossref_primary_10_1002_ldr_4259 crossref_primary_10_1016_j_jenvman_2023_119715 crossref_primary_10_1016_j_scitotenv_2017_09_131 crossref_primary_10_1038_s41598_019_50142_y crossref_primary_10_1016_j_gecco_2020_e01228 crossref_primary_10_1007_s11270_019_4144_7 crossref_primary_10_1186_s13717_022_00382_0 crossref_primary_10_3389_ffgc_2023_1154934 crossref_primary_10_1016_j_agrformet_2019_03_021 crossref_primary_10_1007_s42729_023_01135_4 crossref_primary_10_1002_ecy_4515 crossref_primary_10_1016_j_scitotenv_2020_137270 crossref_primary_10_1016_j_agrformet_2020_108106 crossref_primary_10_1016_j_agee_2024_109330 crossref_primary_10_1016_j_envpol_2019_03_069 crossref_primary_10_1016_j_ejsobi_2024_103601 crossref_primary_10_1002_ldr_4642 crossref_primary_10_1080_10549811_2020_1822873 crossref_primary_10_1016_j_catena_2019_104100 crossref_primary_10_3389_fpls_2022_947279 crossref_primary_10_1111_1365_2745_14051 crossref_primary_10_1093_femsec_fiaa174 crossref_primary_10_1111_1365_2435_13783 crossref_primary_10_1007_s11104_024_06962_7 crossref_primary_10_1111_1365_2435_14510 crossref_primary_10_1016_j_soilbio_2022_108590 crossref_primary_10_1111_1365_2435_13433 crossref_primary_10_1139_er_2019_0064 crossref_primary_10_1016_j_apsoil_2022_104740 crossref_primary_10_1080_20442041_2024_2431400 crossref_primary_10_1016_j_agrformet_2018_03_016 crossref_primary_10_1016_j_soilbio_2020_107732 crossref_primary_10_1016_j_envpol_2019_05_045 crossref_primary_10_1007_s10021_021_00647_3 crossref_primary_10_7717_peerj_7631 crossref_primary_10_1016_j_soilbio_2019_107656 crossref_primary_10_3390_f11020235 crossref_primary_10_1111_gcb_15220 crossref_primary_10_1016_j_scitotenv_2023_168350 crossref_primary_10_1111_gcb_16869 crossref_primary_10_1007_s11104_017_3367_x crossref_primary_10_1007_s13595_021_01060_5 crossref_primary_10_1016_j_scitotenv_2024_171246 crossref_primary_10_1016_j_envpol_2018_03_081 crossref_primary_10_1016_j_ejsobi_2019_103097 crossref_primary_10_1016_j_scitotenv_2022_159919 crossref_primary_10_1016_j_agee_2022_108182 crossref_primary_10_1111_1365_2435_13045 crossref_primary_10_1093_jpe_rtac015 crossref_primary_10_1111_gcb_16746 crossref_primary_10_1016_j_pedobi_2021_150709 crossref_primary_10_3390_ijerph182010998 crossref_primary_10_1016_j_agrformet_2017_10_032 crossref_primary_10_1016_j_fecs_2022_100054 crossref_primary_10_1007_s10021_024_00946_5 crossref_primary_10_1016_j_agee_2024_109154 crossref_primary_10_1016_j_soilbio_2024_109705 crossref_primary_10_1016_j_scitotenv_2020_143211 crossref_primary_10_1016_j_ecolind_2022_108918 crossref_primary_10_1016_j_pedobi_2020_150663 crossref_primary_10_1007_s11368_018_2148_3 crossref_primary_10_1029_2018JG004488 crossref_primary_10_1111_1365_2435_12914 crossref_primary_10_1186_s40663_021_00313_z crossref_primary_10_1016_j_catena_2021_105434 crossref_primary_10_1111_gcb_14163 crossref_primary_10_1016_j_geoderma_2018_05_022 crossref_primary_10_1007_s10661_022_10705_5 crossref_primary_10_1111_ejss_13487 crossref_primary_10_1016_j_scitotenv_2017_03_034 crossref_primary_10_1007_s11104_021_05221_3 crossref_primary_10_1088_1748_9326_ada45b crossref_primary_10_3389_fpls_2022_834184 crossref_primary_10_1016_j_catena_2023_107343 crossref_primary_10_1007_s11104_018_3702_x crossref_primary_10_1007_s11104_022_05332_5 crossref_primary_10_1016_j_chemosphere_2023_139378 crossref_primary_10_1111_gcb_13980 crossref_primary_10_1016_j_agee_2023_108748 crossref_primary_10_1016_j_geoderma_2017_01_013 crossref_primary_10_1007_s11104_019_04169_9 crossref_primary_10_1111_1365_2435_12525 crossref_primary_10_3390_f13122064 crossref_primary_10_1007_s11104_019_04410_5 crossref_primary_10_1016_j_geoderma_2020_114829 crossref_primary_10_5194_bg_14_3947_2017 crossref_primary_10_1016_j_scitotenv_2024_175943 crossref_primary_10_3390_plants11030286 crossref_primary_10_1016_j_scitotenv_2024_172671 crossref_primary_10_1016_j_apsoil_2023_104851 crossref_primary_10_3389_fmicb_2024_1375300 crossref_primary_10_1007_s11104_024_06600_2 crossref_primary_10_1016_j_apsoil_2022_104537 crossref_primary_10_1016_j_funeco_2018_11_011 crossref_primary_10_1016_j_agee_2024_109373 crossref_primary_10_1016_j_atmosenv_2016_06_062 crossref_primary_10_1038_srep18496 crossref_primary_10_1007_s11356_023_29585_4 crossref_primary_10_1016_j_geoderma_2020_114234 crossref_primary_10_1007_s10533_020_00661_y crossref_primary_10_1111_1365_2435_13622 crossref_primary_10_1088_1748_9326_aa5ba6 crossref_primary_10_1016_j_scitotenv_2024_175435 crossref_primary_10_3389_fpls_2021_681113 crossref_primary_10_1016_j_apsoil_2023_105134 crossref_primary_10_1016_j_geoderma_2024_116822 crossref_primary_10_1016_j_catena_2021_105617 crossref_primary_10_1016_j_scitotenv_2023_168568 crossref_primary_10_1016_j_soilbio_2020_108107 crossref_primary_10_1029_2021JG006607 crossref_primary_10_1007_s10661_019_7463_7 crossref_primary_10_3390_agronomy13071734 crossref_primary_10_1002_ece3_3536 crossref_primary_10_1016_j_scitotenv_2020_142011 crossref_primary_10_1002_ecm_70005 crossref_primary_10_1007_s11356_022_21502_5 crossref_primary_10_1016_j_agrformet_2022_109155 crossref_primary_10_1016_j_gecco_2021_e01452 crossref_primary_10_3832_ifor3533_013 crossref_primary_10_1016_j_agrformet_2018_11_034 crossref_primary_10_1016_j_jenvman_2024_123253 crossref_primary_10_1016_j_catena_2020_104750 crossref_primary_10_1111_1365_2435_13118 crossref_primary_10_3390_f10111038 |
Cites_doi | 10.1016/j.envpol.2010.08.002 10.1016/S0016-7037(00)00614-1 10.1007/s10021-004-0149-0 10.1021/es901430n 10.1039/b001496f 10.1038/ngeo721 10.1890/06-2057.1 10.1111/j.1365-2486.2011.02468.x 10.1371/journal.pone.0001299 10.1111/j.1469-185X.1988.tb00725.x 10.1111/j.1365-2486.2009.01950.x 10.1007/s11284-010-0722-2 10.1016/S0168-1923(02)00100-4 10.1111/j.1461-0248.2008.01230.x 10.1016/j.agrformet.2003.10.004 10.1111/j.1365-2486.2007.01420.x 10.1126/science.272.5259.244 10.1016/j.foreco.2009.02.018 10.1111/j.1365-2486.2009.01894.x 10.1016/j.agrformet.2011.04.011 10.1111/j.1469-8137.2005.01338.x 10.1126/science.1136674 10.1111/j.1469-8137.2008.02488.x 10.1111/j.1365-2486.2011.02527.x 10.1111/j.1365-2486.2012.02694.x 10.1111/j.1461-0248.2010.01482.x 10.1126/science.1182570 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 10.1016/j.soilbio.2005.08.020 10.1111/j.1365-2486.2004.00816.x 10.1111/1365-2745.12119 10.1111/j.1365-2486.2007.01465.x 10.1038/nature11917 10.1038/nature05847 10.1111/j.1365-2486.2006.01102.x 10.1890/08-1140.1 10.1034/j.1600-0889.1992.t01-1-00001.x 10.1128/AEM.02775-08 10.1007/s002489900087 10.1111/j.1469-8137.2007.02204.x 10.1016/j.soilbio.2009.11.014 10.1111/j.1365-2486.2006.01117.x 10.1111/1365-2435.12525 10.1038/ngeo339 10.1093/treephys/22.1.67 10.1016/S0038-0717(00)00194-2 10.1111/j.1365-2435.2009.01663.x 10.1038/ngeo844 |
ContentType | Journal Article |
Copyright | 2015 The Authors. © 2015 British Ecological Society 2015 The Authors. Functional Ecology © 2015 British Ecological Society Functional Ecology © 2016 British Ecological Society |
Copyright_xml | – notice: 2015 The Authors. © 2015 British Ecological Society – notice: 2015 The Authors. Functional Ecology © 2015 British Ecological Society – notice: Functional Ecology © 2016 British Ecological Society |
DBID | FBQ AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
DOI | 10.1111/1365-2435.12525 |
DatabaseName | AGRIS CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Ecology Abstracts AGRICOLA Entomology Abstracts Entomology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 669 |
ExternalDocumentID | 4008765421 10_1111_1365_2435_12525 FEC12525 48582441 US201600125954 |
Genre | article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Chinese National Key Development Program for Basic Research funderid: 2015CB954201 – fundername: Natural Science Foundation of China funderid: 31320103916; 31030013 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA05050400 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAJUZ AAKGQ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABEFU ABEML ABHUG ABJNI ABLJU ABPLY ABPTK ABPVW ABTAH ABTLG ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HZI HZ~ IHE IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAMMB AAYCA ABSQW ABXSQ ACHIC AEFGJ AFWVQ AGHNM AGXDD AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM IPSME OIG ACCMX HGLYW AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 |
ID | FETCH-LOGICAL-c5625-9b73316b0742e87b08a8e02e39a1c09b43b26a9545919b0253f88bb56ee762e23 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri Jul 11 18:23:21 EDT 2025 Thu Jul 10 23:10:22 EDT 2025 Fri Jul 25 20:54:47 EDT 2025 Fri Jul 25 08:00:07 EDT 2025 Tue Jul 01 01:15:44 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Wed Jan 22 16:49:26 EST 2025 Thu Jul 03 22:16:56 EDT 2025 Wed Dec 27 19:15:34 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5625-9b73316b0742e87b08a8e02e39a1c09b43b26a9545919b0253f88bb56ee762e23 |
Notes | http://dx.doi.org/10.1111/1365-2435.12525 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12525 |
PQID | 1777915405 |
PQPubID | 1066355 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1803113192 proquest_miscellaneous_1780501230 proquest_journals_1906068989 proquest_journals_1777915405 crossref_primary_10_1111_1365_2435_12525 crossref_citationtrail_10_1111_1365_2435_12525 wiley_primary_10_1111_1365_2435_12525_FEC12525 jstor_primary_48582441 fao_agris_US201600125954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2016 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2016 |
Publisher | British Ecological Society Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: British Ecological Society – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2004; 123 2011; 159 2010; 16 2009; 43 2010; 13 2007; 447 2010; 327 2006; 12 2002; 113 2006; 38 2006; 9 2013; 101 1998 2008; 14 2009 2012; 18 2000; 2 2008; 11 2008; 1 2011; 17 2011; 151 2008; 320 2009; 257 2007; 13 1997; 7 2001; 65 2004; 10 2010; 20 2010; 42 2010; 25 2009; 75 2010; 24 2000 2005; 166 2007; 176 2002; 22 1996; 272 2008; 89 2015 1988; 63 2007; 2 2013; 494 2008; 179 2001; 33 2010; 3 1992; 44 1998; 36 e_1_2_7_5_1 e_1_2_7_3_1 R Development Core Team (e_1_2_7_34_1) 2009 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 ISSS Working Group RB (e_1_2_7_20_1) 1998 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 Robin W.S.M. (e_1_2_7_37_1) 2000 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 17 start-page: 3115 year: 2011 end-page: 3129 article-title: Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition publication-title: Global Change Biology – volume: 3 start-page: 13 year: 2010 end-page: 17 article-title: Increased tree carbon storage in response to nitrogen deposition in the US publication-title: Nature Geoscience – year: 2009 – volume: 33 start-page: 533 year: 2001 end-page: 551 article-title: Accounting for variability in soil microbial communities of temperate upland grassland ecosystems publication-title: Soil Biology and Biochemistry – volume: 320 start-page: 889 year: 2008 end-page: 892 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science – volume: 327 start-page: 1008 year: 2010 end-page: 1010 article-title: Significant acidification in major Chinese croplands publication-title: Science – volume: 159 start-page: 2251 year: 2011 end-page: 2264 article-title: Nitrogen deposition and its ecological impact in China: an overview publication-title: Environmental Pollution – volume: 2 start-page: e1299 year: 2007 article-title: Increased litterfall in tropical forests boosts the transfer of soil CO to the atmosphere publication-title: PLoS One – volume: 20 start-page: 30 year: 2010 end-page: 59 article-title: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis publication-title: Ecological Applications – volume: 14 start-page: 142 year: 2008 end-page: 153 article-title: Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests publication-title: Global Change Biology – volume: 24 start-page: 478 year: 2010 end-page: 484 article-title: Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition publication-title: Functional Ecology – volume: 18 start-page: 258 year: 2012 end-page: 266 article-title: Chronic N deposition alters root respiration‐tissue N relationship in northern hardwood forests publication-title: Global Change Biology – volume: 447 start-page: 849 year: 2007 end-page: 851 article-title: The human footprint in the carbon cycle of temperate and boreal forests publication-title: Nature – volume: 113 start-page: 21 year: 2002 end-page: 37 article-title: Minimizing artifacts and biases in chamber‐based measurements of soil respiration publication-title: Agricultural and Forest Meteorology – year: 1998 – volume: 75 start-page: 1589 year: 2009 end-page: 1596 article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Applied and Environmental Microbiology – volume: 11 start-page: 1111 year: 2008 end-page: 1120 article-title: Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies publication-title: Ecology Letters – volume: 12 start-page: 921 year: 2006 end-page: 943 article-title: Trends and methodological impacts in soil CO efflux partitioning: a metaanalytical review publication-title: Global Change Biology – volume: 12 start-page: 489 year: 2006 end-page: 499 article-title: Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest publication-title: Global Change Biology – volume: 43 start-page: 8021 year: 2009 end-page: 8026 article-title: Soil acidification in China: is controlling SO emissions enough? publication-title: Environmental Science and Technology – volume: 494 start-page: 459 year: 2013 end-page: 462 article-title: Enhanced nitrogen deposition over China publication-title: Nature – volume: 44 start-page: 81 year: 1992 end-page: 99 article-title: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate publication-title: Tellus Series B – volume: 36 start-page: 1 year: 1998 end-page: 12 article-title: Determinants of soil microbial communities: effects of agricultural management, season, and soil type on phospholipid fatty acid profiles publication-title: Microbial Ecology – volume: 38 start-page: 425 year: 2006 end-page: 448 article-title: Sources of CO efflux from soil and review of partitioning methods publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 921 year: 2006 end-page: 933 article-title: Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon publication-title: Ecosystems – volume: 18 start-page: 2292 year: 2012 end-page: 2300 article-title: Significant soil acidification across northern China's grasslands during 1980s–2000s publication-title: Global Change Biology – volume: 16 start-page: 144 year: 2010 end-page: 155 article-title: Nitrogen effects on net ecosystem carbon exchange in a temperate steppe publication-title: Global Change Biology – volume: 10 start-page: 1756 year: 2004 end-page: 1766 article-title: A global relationship between the heterotrophic and autotrophic components of soil respiration? publication-title: Global Change Biology – volume: 22 start-page: 67 year: 2002 end-page: 72 article-title: Measurement carbon dioxide concentration does not affect root respiration of nine tree species in the field publication-title: Tree Physiology – volume: 65 start-page: 1087 year: 2001 end-page: 1099 article-title: Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils publication-title: Geochimica et Cosmochimica Acta – volume: 176 start-page: 655 year: 2007 end-page: 664 article-title: Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils publication-title: New Phytologist – volume: 166 start-page: 551 year: 2005 end-page: 564 article-title: Decline of acid‐sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH publication-title: New Phytologist – volume: 101 start-page: 1322 year: 2013 end-page: 1334 article-title: Evidence that acidification‐induced declines in plant diversity and productivity are mediated by changes in below‐ground communities and soil properties in a semi‐arid steppe publication-title: Journal of Ecology – year: 2000 – volume: 3 start-page: 315 year: 2010 end-page: 322 article-title: Reduction of forest soil respiration in response to nitrogen deposition publication-title: Nature Geoscience – volume: 179 start-page: 428 year: 2008 end-page: 439 article-title: Global response patterns of terrestrial plant species to nitrogen addition publication-title: New Phytologist – volume: 13 start-page: 819 year: 2010 end-page: 828 article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment publication-title: Ecology Letters – volume: 272 start-page: 244 year: 1996 end-page: 245 article-title: Long‐term effects of acid rain: response and recovery of a forest ecosystem publication-title: Science – volume: 1 start-page: 767 year: 2008 end-page: 770 article-title: Negative impact of nitrogen deposition on soil buffering capacity publication-title: Nature Geoscience – volume: 63 start-page: 433 year: 1988 end-page: 462 article-title: The effect of added nitrogen on the rate of decomposition of organic matter publication-title: Biological Reviews – volume: 151 start-page: 1214 year: 2011 end-page: 1225 article-title: Subtropical plantations are large carbon sinks: evidence from two monoculture plantations in South China publication-title: Agricultural and Forest Meteorology – volume: 2 start-page: 228 year: 2000 end-page: 233 article-title: Application of a modified BCR sequential extraction (three‐step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three‐year stability study of acetic acid and EDTA extractable metal content publication-title: Journal of Environmental Monitoring – volume: 257 start-page: 2088 year: 2009 end-page: 2097 article-title: Stand level estimation of root respiration for two subtropical plantations based on in situ measurement of specific root respiration publication-title: Forest Ecology and Management – volume: 16 start-page: 358 year: 2010 end-page: 372 article-title: Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands publication-title: Global Change Biology – volume: 89 start-page: 371 year: 2008 end-page: 379 article-title: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed publication-title: Ecology – volume: 13 start-page: 2089 year: 2007 end-page: 2109 article-title: Carbon allocation in forest ecosystems publication-title: Global Change Biology – volume: 123 start-page: 79 year: 2004 end-page: 96 article-title: Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California publication-title: Agricultural and Forest Meteorology – volume: 25 start-page: 983 year: 2010 end-page: 993 article-title: Effects of root diameter and root nitrogen concentration on in situ root respiration among different seasons and tree species publication-title: Ecological Research – volume: 7 start-page: 737 year: 1997 end-page: 750 article-title: Human alteration of the global nitrogen cycle: sources and consequences publication-title: Ecological Applications – volume: 42 start-page: 347 year: 2010 end-page: 352 article-title: A new approach to trenching experiments for measuring root–rhizosphere respiration in a lowland tropical forest publication-title: Soil Biology and Biochemistry – year: 2015 article-title: Data from: Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long‐term nitrogen enrichment – ident: e_1_2_7_27_1 doi: 10.1016/j.envpol.2010.08.002 – ident: e_1_2_7_42_1 doi: 10.1016/S0016-7037(00)00614-1 – ident: e_1_2_7_48_1 doi: 10.1007/s10021-004-0149-0 – ident: e_1_2_7_52_1 doi: 10.1021/es901430n – ident: e_1_2_7_36_1 doi: 10.1039/b001496f – ident: e_1_2_7_44_1 doi: 10.1038/ngeo721 – ident: e_1_2_7_23_1 doi: 10.1890/06-2057.1 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-2486.2011.02468.x – ident: e_1_2_7_39_1 doi: 10.1371/journal.pone.0001299 – ident: e_1_2_7_15_1 doi: 10.1111/j.1469-185X.1988.tb00725.x – ident: e_1_2_7_2_1 doi: 10.1111/j.1365-2486.2009.01950.x – ident: e_1_2_7_10_1 doi: 10.1007/s11284-010-0722-2 – ident: e_1_2_7_14_1 doi: 10.1016/S0168-1923(02)00100-4 – ident: e_1_2_7_45_1 doi: 10.1111/j.1461-0248.2008.01230.x – ident: e_1_2_7_50_1 doi: 10.1016/j.agrformet.2003.10.004 – ident: e_1_2_7_25_1 doi: 10.1111/j.1365-2486.2007.01420.x – ident: e_1_2_7_24_1 doi: 10.1126/science.272.5259.244 – ident: e_1_2_7_9_1 doi: 10.1016/j.foreco.2009.02.018 – ident: e_1_2_7_30_1 doi: 10.1111/j.1365-2486.2009.01894.x – ident: e_1_2_7_11_1 doi: 10.1016/j.agrformet.2011.04.011 – ident: e_1_2_7_46_1 doi: 10.1111/j.1469-8137.2005.01338.x – ident: e_1_2_7_16_1 doi: 10.1126/science.1136674 – ident: e_1_2_7_49_1 doi: 10.1111/j.1469-8137.2008.02488.x – ident: e_1_2_7_8_1 doi: 10.1111/j.1365-2486.2011.02527.x – ident: e_1_2_7_51_1 doi: 10.1111/j.1365-2486.2012.02694.x – ident: e_1_2_7_26_1 doi: 10.1111/j.1461-0248.2010.01482.x – ident: e_1_2_7_18_1 doi: 10.1126/science.1182570 – ident: e_1_2_7_47_1 doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2 – ident: e_1_2_7_22_1 doi: 10.1016/j.soilbio.2005.08.020 – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-2486.2004.00816.x – ident: e_1_2_7_12_1 doi: 10.1111/1365-2745.12119 – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-2486.2007.01465.x – ident: e_1_2_7_28_1 doi: 10.1038/nature11917 – ident: e_1_2_7_29_1 doi: 10.1038/nature05847 – ident: e_1_2_7_19_1 doi: 10.1111/j.1365-2486.2006.01102.x – volume-title: R: A Language and Environment for Statistical Computing year: 2009 ident: e_1_2_7_34_1 – ident: e_1_2_7_3_1 doi: 10.1890/08-1140.1 – ident: e_1_2_7_35_1 doi: 10.1034/j.1600-0889.1992.t01-1-00001.x – volume-title: World Reference Base for Soil Resources. Introduction year: 1998 ident: e_1_2_7_20_1 – ident: e_1_2_7_38_1 doi: 10.1128/AEM.02775-08 – volume-title: Pilot Analysis of Global Ecosystem: Grassland Ecosystems year: 2000 ident: e_1_2_7_37_1 – ident: e_1_2_7_5_1 doi: 10.1007/s002489900087 – ident: e_1_2_7_32_1 doi: 10.1111/j.1469-8137.2007.02204.x – ident: e_1_2_7_40_1 doi: 10.1016/j.soilbio.2009.11.014 – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-2486.2006.01117.x – ident: e_1_2_7_13_1 doi: 10.1111/1365-2435.12525 – ident: e_1_2_7_6_1 doi: 10.1038/ngeo339 – ident: e_1_2_7_7_1 doi: 10.1093/treephys/22.1.67 – ident: e_1_2_7_17_1 doi: 10.1016/S0038-0717(00)00194-2 – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-2435.2009.01663.x – ident: e_1_2_7_21_1 doi: 10.1038/ngeo844 |
SSID | ssj0009522 |
Score | 2.5690792 |
Snippet | Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This... Summary Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities.... Summary Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities.... 1. Terrestrial ecosystems worldwide are receiving increasing amounts of biologically reactive nitrogen (N) as a consequence of anthropogenic activities. This... |
SourceID | proquest crossref wiley jstor fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 658 |
SubjectTerms | Acidification Acidity anthropogenic activities Anthropogenic factors Aridity Availability base mineral cations below‐ground carbon allocation Biomass Carbon China Communities Community composition Community ecology community structure Composition effects Deposition Ecosystems Enrichment Experiments Fertilization Grasslands Herbivores Human influences microbial activity microbial biomass microbial communities microbial respiration Microorganisms Nitrogen nitrogen content Nitrogen enrichment plant functional group prediction Respiration root nitrogen content root respiration root specific respiration Soil acidification soil microbial community soil pH soil respiration Soils Terrestrial ecosystems |
Title | Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long‐term nitrogen enrichment |
URI | https://www.jstor.org/stable/48582441 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12525 https://www.proquest.com/docview/1777915405 https://www.proquest.com/docview/1906068989 https://www.proquest.com/docview/1780501230 https://www.proquest.com/docview/1803113192 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEA66IHjxPey4q0Tw4KWHdNKP5CjLDIugB9cBb02STo-NQ_cy3SOsJ3-C5_15_hKrku7Z2cUH4i10UiHp1ONLUqki5CUrc81LJqIsq0yU8NhEoANVlNtKGrCAOnX4UPjtu-x0mbz5mI7ehPgWJsSH2B24oWR4fY0Crk23J-TBPwus_QxsNMdn5vgFYdF7vhd2N9wj8EzBGDIxBPdBX54b9Nfs0u1Kt6OD4jXouQ9gvQVa3CdmHHtwPPk82_ZmZr_eCOv4X5N7QO4N-JS-Dgz1kNxyzSNyJ2SsvIDS3A6lyfzqiRwQDDqie0wuz9p6TbWtS_RC8gtPMbFT31FNV4hR3YYOHvIU6jpsvhlu_LExHuaHr6BuNi1wONVfdL0OEcUvaN1AN4D5_Stl2m0NHiW5kvYtXbfN6se372hurohBQmr7Ccf5hCwX8w8np9GQASKyuDGLlMGUkpnBDbyTuWFSS8e4E0rHlimTCMMzrQAFqlgZgG-iktKYNHMOlLzjYkIOmrZxh4QmPGdJViVllYikUhYD3QldilIzkVoVT8lsXP_CDuHRMUvHuhi3SbgmBa5J4ddkSl7tCM5DZJDfNz0Ehir0CvR2sTzjGNUPgEEKY5iSieeyXReJTCVALhjP8ch2xaBWuiLO81zFCLJ_Xa0Y7EcxIeiUvNhVg77ASyDduHaLXUiWIpBmf2gjQdXHoJw5_BXPpn-bYbGYn_jC038lOCJ38X8EZ6hjctBvtu4Z4LzePPei_BMnbUSa |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEYIL71UXChiJA5esHDsvH1G1qwXaHmhX6s2yHWcbsUrQbhapnPgJnPl5_BJmnGS7rXgIcbPih-x4Ht_Y4xlCXrE81TxnIkiSwgQRD00AMlAGqS0yAxpQxw4fCh8dJ9NZ9O4sPtt6C9PGh9gcuCFneHmNDI4H0ltc3jpogbofgZLm8Q65iXm9vVn1gW8F3m1vEngiYRaJ6ML7oDfPtQGuaKadQte9i-IV8LkNYb0Omtwjtp9963rycbRuzMh-uRbY8f-Wd5_c7SAqfdPS1ANyw1UPya02aeUFlMa2Kw3Gl6_koEMnJlaPyPeTulxQbcscHZH83lPM7dSsqKZzhKluSTsneQp1K2y-7C79sTGe57dfQeIsayByqj_rctEGFb-gZQXDAOz3D5Xpam3wNMnltKnpoq7mP75-Q41z2RmYpLTnOM_HZDYZnx5Mgy4JRGDRNgukwaySiUEb3mWpYZnOHONOSB1aJk0kDE-0BCAoQ2kAwYkiy4yJE-dAzjsuBmS3qiu3R2jEUxYlRZQXkYgKaTHWndC5yDUTsZXhkIx6AlC2i5COiToWqreUcE8U7onyezIkrzcdPrXBQX7fdA8oSuk5iG41O-EY2A-wQQxzGJKBJ7PNEFEWZ4C6YD77Pd2pTrKsVJimqQwRZ_-6WjIwSTEn6JC83FSDyMB7IF25eo1DZCxGLM3-0CYDaR-CfObwVzyd_m2FajI-8IUn_9rhBbk9PT06VIdvj98_JXfw37S-Uftkt1mu3TOAfY157vn6J2QUSLU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLZoEYhLWUcdKGAkDlwycuzEsY-onVHZKkQZiZtlJ850xCipJhmk9sRP4MzP45fwXpbptGIR4mbFi-y87bP9_B4hz1mWWJ4xEUiZuyDioQtAB-ogSXPlwALa2OND4XdH8nAavf4U996E-BamjQ-xPnBDyWj0NQr4aZZvCHnrnwXWfgQ2msdb5HokmULGPvjAN-LuthcJXGqYhBRddB905rkywCXDtJXbsvdQvIQ9NxFsY4Imt4nrJ996nnwerWo3Ss-vxHX8r9XdITsdQKUvW466S6754h650aasPIPSOO1Kg_HFGzno0CmJ6j75flzOF9Sm8wzdkBrKU8zsVFfU0hmCVL-knYs8hboKmy-7K39sjKf57VfQN8sSWJzaL3a-aEOKn9F5AcMA6G-eKdNq5fAsyWe0LumiLGY_vn5De3PRGURknp7gPB-Q6WT8cf8w6FJABCnuzALtMKekdLiD9ypxTFnlGfdC2zBl2kXCcWk1wEAdagf4TeRKORdL70HLey4GZLsoC79LaMQTFsk8yvJIRLlOMdKdsJnILBNxqsMhGfX0N2kXHx3TdCxMv09CmhikiWloMiQv1h1O29Agv2-6Cwxl7AwUt5kecwzrB8gghjkMyaDhsvUQkYoVYC6Yz17PdqbTK5UJkyTRIaLsX1drBhtSzAg6JM_W1aAw8BbIFr5c4RCKxYik2R_aKND1IWhnDn-lYdO_rdBMxvtN4eG_dnhKbr4_mJi3r47ePCK38Ne0jlF7ZLtervxjwHy1e9JI9U9do0dt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soil+acidification+exerts+a+greater+control+on+soil+respiration+than+soil+nitrogen+availability+in+grasslands+subjected+to+long%E2%80%90term+nitrogen+enrichment&rft.jtitle=Functional+ecology&rft.au=Chen%2C+Dima&rft.au=Li%2C+Jianjun&rft.au=Lan%2C+Zhichun&rft.au=Hu%2C+Shuijin&rft.date=2016-04-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=30&rft.issue=4&rft.spage=658&rft.epage=669&rft_id=info:doi/10.1111%2F1365-2435.12525&rft.externalDBID=10.1111%252F1365-2435.12525&rft.externalDocID=FEC12525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |