Turnover of labile and recalcitrant soil carbon differ in response to nitrate and ammonium deposition in an ombrotrophic peatland

The effects of 4 years of simulated nitrogen deposition, as nitrate (NO₃⁻) and ammonium (NH₄⁺), on microbial carbon turnover were studied in an ombrotrophic peatland. We investigated the mineralization of simple forms of carbon using MicroResp[trade mark sign] measurements (a multiple substrate indu...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 16; no. 8; pp. 2307 - 2321
Main Authors CURREY, PAULINE M, JOHNSON, DAVID, SHEPPARD, LUCY J, LEITH, IAN D, TOBERMAN, HANNAH, van derWAL, RENÉ, DAWSON, LORNA A, ARTZ, REBEKKA R.E
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.08.2010
Blackwell Publishing Ltd
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effects of 4 years of simulated nitrogen deposition, as nitrate (NO₃⁻) and ammonium (NH₄⁺), on microbial carbon turnover were studied in an ombrotrophic peatland. We investigated the mineralization of simple forms of carbon using MicroResp[trade mark sign] measurements (a multiple substrate induced respiration technique) and the activities of four soil enzymes involved in the decomposition of more complex forms of carbon or in nutrient acquisition: N-acetyl-glucosaminidase (NAG), cellobiohydrolase (CBH), acid phosphatase (AP), and phenol oxidase (PO). The potential mineralization of labile forms of carbon was significantly enhanced at the higher N additions, especially with NH₄⁺ amendments, while potential enzyme activities involved in breakdown of more complex forms of carbon or nutrient acquisition decreased slightly (NAG and CBH) or remained unchanged (AP and PO) with N amendments. This study also showed the importance of distinguishing between NO₃⁻ and NH₄⁺ amendments, as their impact often differed. It is possible that the limited response on potential extracellular enzyme activity is due to other factors, such as limited exposure to the added N in the deeper soil or continued suboptimal functioning of the enzymes due to the low pH, possibly via the inhibitory effect of low phenol oxidase activity.
AbstractList The effects of 4 years of simulated nitrogen deposition, as nitrate (NO₃⁻) and ammonium (NH₄⁺), on microbial carbon turnover were studied in an ombrotrophic peatland. We investigated the mineralization of simple forms of carbon using MicroResp[trade mark sign] measurements (a multiple substrate induced respiration technique) and the activities of four soil enzymes involved in the decomposition of more complex forms of carbon or in nutrient acquisition: N-acetyl-glucosaminidase (NAG), cellobiohydrolase (CBH), acid phosphatase (AP), and phenol oxidase (PO). The potential mineralization of labile forms of carbon was significantly enhanced at the higher N additions, especially with NH₄⁺ amendments, while potential enzyme activities involved in breakdown of more complex forms of carbon or nutrient acquisition decreased slightly (NAG and CBH) or remained unchanged (AP and PO) with N amendments. This study also showed the importance of distinguishing between NO₃⁻ and NH₄⁺ amendments, as their impact often differed. It is possible that the limited response on potential extracellular enzyme activity is due to other factors, such as limited exposure to the added N in the deeper soil or continued suboptimal functioning of the enzymes due to the low pH, possibly via the inhibitory effect of low phenol oxidase activity.
The effects of 4 years of simulated nitrogen deposition, as nitrate (NO3-) and ammonium (NH4+), on microbial carbon turnover were studied in an ombrotrophic peatland. We investigated the mineralization of simple forms of carbon using MicroResp measurements (a multiple substrate induced respiration technique) and the activities of four soil enzymes involved in the decomposition of more complex forms of carbon or in nutrient acquisition: N-acetyl-glucosaminidase (NAG), cellobiohydrolase (CBH), acid phosphatase (AP), and phenol oxidase (PO). The potential mineralization of labile forms of carbon was significantly enhanced at the higher N additions, especially with NH4+ amendments, while potential enzyme activities involved in breakdown of more complex forms of carbon or nutrient acquisition decreased slightly (NAG and CBH) or remained unchanged (AP and PO) with N amendments. This study also showed the importance of distinguishing between NO3- and NH4+ amendments, as their impact often differed. It is possible that the limited response on potential extracellular enzyme activity is due to other factors, such as limited exposure to the added N in the deeper soil or continued suboptimal functioning of the enzymes due to the low pH, possibly via the inhibitory effect of low phenol oxidase activity. [PUBLICATION ABSTRACT]
The effects of 4 years of simulated nitrogen deposition, as nitrate (NO3−) and ammonium (NH4+), on microbial carbon turnover were studied in an ombrotrophic peatland. We investigated the mineralization of simple forms of carbon using MicroResp™ measurements (a multiple substrate induced respiration technique) and the activities of four soil enzymes involved in the decomposition of more complex forms of carbon or in nutrient acquisition: N‐acetyl‐glucosaminidase (NAG), cellobiohydrolase (CBH), acid phosphatase (AP), and phenol oxidase (PO). The potential mineralization of labile forms of carbon was significantly enhanced at the higher N additions, especially with NH4+ amendments, while potential enzyme activities involved in breakdown of more complex forms of carbon or nutrient acquisition decreased slightly (NAG and CBH) or remained unchanged (AP and PO) with N amendments. This study also showed the importance of distinguishing between NO3− and NH4+ amendments, as their impact often differed. It is possible that the limited response on potential extracellular enzyme activity is due to other factors, such as limited exposure to the added N in the deeper soil or continued suboptimal functioning of the enzymes due to the low pH, possibly via the inhibitory effect of low phenol oxidase activity.
The effects of 4 years of simulated nitrogen deposition, as nitrate (NO 3 − ) and ammonium (NH 4 + ), on microbial carbon turnover were studied in an ombrotrophic peatland. We investigated the mineralization of simple forms of carbon using MicroResp ™ measurements (a multiple substrate induced respiration technique) and the activities of four soil enzymes involved in the decomposition of more complex forms of carbon or in nutrient acquisition: N ‐acetyl‐glucosaminidase (NAG), cellobiohydrolase (CBH), acid phosphatase (AP), and phenol oxidase (PO). The potential mineralization of labile forms of carbon was significantly enhanced at the higher N additions, especially with NH 4 + amendments, while potential enzyme activities involved in breakdown of more complex forms of carbon or nutrient acquisition decreased slightly (NAG and CBH) or remained unchanged (AP and PO) with N amendments. This study also showed the importance of distinguishing between NO 3 − and NH 4 + amendments, as their impact often differed. It is possible that the limited response on potential extracellular enzyme activity is due to other factors, such as limited exposure to the added N in the deeper soil or continued suboptimal functioning of the enzymes due to the low pH, possibly via the inhibitory effect of low phenol oxidase activity.
The effects of 4 years of simulated nitrogen deposition, as nitrate (NO3-) and ammonium (NH4+), on microbial carbon turnover were studied in an ombrotrophic peatland. We investigated the mineralization of simple forms of carbon using MicroResp+ measurements (a multiple substrate induced respiration technique) and the activities of four soil enzymes involved in the decomposition of more complex forms of carbon or in nutrient acquisition: N-acetyl-glucosaminidase (NAG), cellobiohydrolase (CBH), acid phosphatase (AP), and phenol oxidase (PO). The potential mineralization of labile forms of carbon was significantly enhanced at the higher N additions, especially with NH4+ amendments, while potential enzyme activities involved in breakdown of more complex forms of carbon or nutrient acquisition decreased slightly (NAG and CBH) or remained unchanged (AP and PO) with N amendments. This study also showed the importance of distinguishing between NO3- and NH4+ amendments, as their impact often differed. It is possible that the limited response on potential extracellular enzyme activity is due to other factors, such as limited exposure to the added N in the deeper soil or continued suboptimal functioning of the enzymes due to the low pH, possibly via the inhibitory effect of low phenol oxidase activity.
Author CURREY, PAULINE M.
LEITH, IAN D.
ARTZ, REBEKKA R. E.
TOBERMAN, HANNAH
JOHNSON, DAVID
SHEPPARD, LUCY J.
Van Der WAL, RENÉ
DAWSON, LORNA A.
Author_xml – sequence: 1
  fullname: CURREY, PAULINE M
– sequence: 2
  fullname: JOHNSON, DAVID
– sequence: 3
  fullname: SHEPPARD, LUCY J
– sequence: 4
  fullname: LEITH, IAN D
– sequence: 5
  fullname: TOBERMAN, HANNAH
– sequence: 6
  fullname: van derWAL, RENÉ
– sequence: 7
  fullname: DAWSON, LORNA A
– sequence: 8
  fullname: ARTZ, REBEKKA R.E
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23030165$$DView record in Pascal Francis
BookMark eNqNkkFv1DAQhSNUJNrCb8BCQpyyjO3ETg4g0RVskQpI0ALiYjmOA14SO9hZ2B7550xI6aEX6otH8vfGnvd8lB344G2WEQoriuvpdkW5KHNWVGLFAOoVMKjYan8nO7w-OJjrssgpUH4vO0ppCwCcgTjMfp_vog8_bSShI71uXG-J9i2J1ujeuClqP5EUXE-Mjk3wpHVdh7TziKQx-GTJFIifyWmR6mEI3u0G0toxJDc5VCGuPQlDE8MUw_jNGTJaPfXI38_udrpP9sHVfpxdvHp5vj7Nz95tXq9fnOWmFIzlOJUsAApjoKASsObG8FqIpmoks42wbWdNo5llZVd1Fmpo60ZWWktTQtHy4-zJ0neM4cfOpkkNLhnb4xts2CUly4Kyqq7Z_8lCcKgEVEg-ukFuA_qJY6hSyrKWjBYIPb6CdEJTO7TUuKTG6AYdLxXjwIGKErnnC2diSCnaTqH_erYPvXW9oqDmxNVWzcGqOVg1J67-Jq722KC60eDfHbeQPlukv_ADXN5apzbrk7lCfb7oXZrs_lqv43clJJel-vR2o-r3b07lF_5ZfUT-4cJ3Oij9NaIfFx8Yfk-glUDPav4Hr3XeQA
CitedBy_id crossref_primary_10_1016_j_geoderma_2018_03_006
crossref_primary_10_1088_1755_1315_308_1_012073
crossref_primary_10_1002_saj2_20022
crossref_primary_10_1371_journal_pone_0134039
crossref_primary_10_5194_bg_10_821_2013
crossref_primary_10_1017_S0021859620000520
crossref_primary_10_1111_1365_2435_13925
crossref_primary_10_1002_ldr_3733
crossref_primary_10_1016_j_soilbio_2012_10_003
crossref_primary_10_1111_gcb_12902
crossref_primary_10_3389_fpls_2023_1190929
crossref_primary_10_1111_j_1365_2486_2011_02585_x
crossref_primary_10_1016_j_soilbio_2010_11_003
crossref_primary_10_1007_s11356_019_07316_y
crossref_primary_10_1016_j_envpol_2010_12_008
crossref_primary_10_1007_s11368_013_0822_z
crossref_primary_10_1016_j_scitotenv_2023_164071
crossref_primary_10_1007_s40333_013_0241_4
crossref_primary_10_1007_s10333_014_0427_1
crossref_primary_10_5194_bg_19_5187_2022
crossref_primary_10_1007_s11104_022_05663_3
crossref_primary_10_1038_srep03602
crossref_primary_10_1111_ejss_12154
crossref_primary_10_1007_s10021_017_0209_x
crossref_primary_10_5194_bg_14_4815_2017
crossref_primary_10_1016_j_catena_2022_106034
crossref_primary_10_1016_j_apsoil_2015_04_019
crossref_primary_10_1016_j_atmosenv_2019_02_024
crossref_primary_10_1080_00380768_2013_857579
crossref_primary_10_1016_j_soilbio_2013_02_019
crossref_primary_10_5194_gmd_6_1173_2013
crossref_primary_10_1007_s10533_016_0224_6
crossref_primary_10_1007_s10533_021_00828_1
crossref_primary_10_1080_15226514_2021_1895715
crossref_primary_10_1007_s11284_013_1060_y
crossref_primary_10_3161_15052249PJE2017_65_1_008
crossref_primary_10_1016_j_scitotenv_2022_154725
crossref_primary_10_1016_j_soilbio_2016_05_020
crossref_primary_10_1016_j_catena_2020_104996
crossref_primary_10_1016_j_scitotenv_2016_06_237
crossref_primary_10_1111_nph_16671
crossref_primary_10_1007_s11284_011_0805_8
crossref_primary_10_1016_j_jenvman_2024_122126
crossref_primary_10_1111_gcb_16765
crossref_primary_10_1139_cjfr_2013_0485
crossref_primary_10_1007_s11104_011_0942_4
crossref_primary_10_1007_s11676_020_01148_0
crossref_primary_10_1016_j_soilbio_2015_08_013
crossref_primary_10_1016_j_catena_2014_05_007
crossref_primary_10_1016_j_ejsobi_2021_103287
crossref_primary_10_1042_BST0390309
crossref_primary_10_1016_j_soilbio_2011_08_019
crossref_primary_10_1016_j_ejsobi_2024_103603
crossref_primary_10_1016_j_soilbio_2019_107528
crossref_primary_10_1016_j_geoderma_2021_115127
crossref_primary_10_1007_s11104_023_06163_8
crossref_primary_10_1038_s41598_021_96885_5
crossref_primary_10_1016_j_scitotenv_2016_05_189
crossref_primary_10_5814_j_issn_1674_764x_2015_03_001
crossref_primary_10_1111_j_1365_2486_2011_02548_x
crossref_primary_10_1016_j_geoderma_2017_01_023
crossref_primary_10_3389_fenvs_2021_670769
crossref_primary_10_1016_j_envpol_2010_06_038
crossref_primary_10_1016_j_pedsph_2024_05_007
crossref_primary_10_1016_j_scitotenv_2016_07_152
crossref_primary_10_1186_s13717_025_00597_x
crossref_primary_10_1016_S1002_0160_17_60488_0
crossref_primary_10_1016_j_catena_2021_105613
crossref_primary_10_1007_s10533_022_01007_6
crossref_primary_10_3390_f10100914
crossref_primary_10_1016_j_ecss_2022_107835
crossref_primary_10_1111_gcb_13402
crossref_primary_10_1021_acs_est_4c09001
crossref_primary_10_1007_s13157_013_0432_y
crossref_primary_10_1016_j_agee_2016_09_036
crossref_primary_10_1080_02705060_2019_1584128
crossref_primary_10_1007_s40974_016_0024_9
crossref_primary_10_1016_j_catena_2018_02_025
crossref_primary_10_1016_j_atmosenv_2018_05_009
crossref_primary_10_1016_j_soilbio_2019_107532
crossref_primary_10_1029_2017JG004211
crossref_primary_10_1016_j_apsoil_2017_09_018
crossref_primary_10_1186_s13717_024_00565_x
crossref_primary_10_1016_j_soilbio_2021_108280
Cites_doi 10.1016/S0269-7491(98)00115-8
10.1016/S0038-0717(03)00015-4
10.1080/00103629409369253
10.1016/S0038-0717(00)00127-9
10.1016/j.soilbio.2005.02.032
10.1111/j.1365-2486.2007.01346.x
10.1007/s10021-002-0201-x
10.1111/j.1574-6941.2008.00560.x
10.2307/1941811
10.1007/s11258-007-9338-1
10.1007/BF00009285
10.1017/9780511623363
10.1016/S0038-0717(02)00074-3
10.1016/0038-0717(92)90039-Z
10.1065/jss2007.10.259
10.1007/BF02413020
10.1016/0038-0717(88)90039-9
10.1029/2003GB002154
10.1016/0038-0717(93)90113-P
10.1128/AEM.69.6.3593-3599.2003
10.1007/s10021-008-9199-z
10.1890/05-0150
10.1016/S0038-0717(99)00038-3
10.1016/0167-8809(91)90092-C
10.1016/j.soilbio.2004.09.005
10.1007/s00442-007-0836-6
10.1111/j.1475-2743.2008.00174.x
10.1073/pnas.0606629104
10.2136/sssaj2004.1320
10.1080/11956860.1997.11682384
10.1139/x83-110
10.1128/AEM.02775-08
10.1007/s11267-004-3030-4
10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
10.1111/j.1469-8137.2007.01966.x
10.1111/j.1365-2486.2007.01380.x
10.1016/j.soilbio.2006.04.017
10.1890/03-5120
10.1023/A:1006112000616
10.1038/35051650
10.1007/s00442-005-0247-5
10.1111/j.1469-185X.1988.tb00725.x
10.1111/j.1365-2486.2008.01638.x
10.1890/0012-9658(2006)87[1659:MCCAFA]2.0.CO;2
10.1111/j.1461-0248.2008.01245.x
10.2136/sssaj1947.036159950011000C0050x
10.1016/S0038-0717(98)00150-3
10.1672/0277-5212(2000)020[0416:POAIPI]2.0.CO;2
10.1111/j.1365-2486.2008.01549.x
10.1016/j.atmosenv.2005.09.054
10.1007/BF00015418
10.2307/1940086
10.1016/S0167-7012(97)00041-9
10.1016/j.scitotenv.2007.02.016
10.1017/9780521235587
10.1097/00010694-192904000-00002
10.1007/BF00341342
10.1111/j.1529-8817.2003.00783.x
10.1034/j.1600-0706.2003.12707.x
10.1128/AEM.64.6.2173-2180.1998
10.1016/0038-0717(94)90211-9
ContentType Journal Article
Copyright 2009 Blackwell Publishing Ltd
2015 INIST-CNRS
2010 Blackwell Publishing
Copyright_xml – notice: 2009 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2010 Blackwell Publishing
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
7TV
H95
H96
SOI
7S9
L.6
DOI 10.1111/j.1365-2486.2009.02082.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Pollution Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Pollution Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 2321
ExternalDocumentID 2071588551
23030165
10_1111_j_1365_2486_2009_02082_x
GCB2082
ark_67375_WNG_9RMH7Z3X_V
US201301861439
Genre article
Feature
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
7TV
H95
H96
SOI
7S9
L.6
ID FETCH-LOGICAL-c5622-20874004cc041707403cc3966b8b72eb6edfecba2e25f8fe090d9b78aa7c504d3
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Fri Jul 11 15:11:39 EDT 2025
Fri Jul 11 11:49:17 EDT 2025
Fri Jul 25 10:59:31 EDT 2025
Mon Jul 21 09:15:45 EDT 2025
Tue Jul 01 03:52:45 EDT 2025
Thu Apr 24 23:00:52 EDT 2025
Wed Jan 22 16:46:03 EST 2025
Wed Oct 30 09:49:11 EDT 2024
Wed Dec 27 19:39:33 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Ammonium
Atmospheric fallout
nitrogen deposition
peatland
Nitrates
carbon turnover
Nitrogen
Carbon
Peat bog
Substrate
Soils
Enzymatic activity
enzyme activity
Turnover
Respiration
substrate-induced respiration
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5622-20874004cc041707403cc3966b8b72eb6edfecba2e25f8fe090d9b78aa7c504d3
Notes http://dx.doi.org/10.1111/j.1365-2486.2009.02082.x
ArticleID:GCB2082
istex:1FA3F129C7ACE397229684BE0D9A676C27A7F19B
ark:/67375/WNG-9RMH7Z3X-V
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 577597214
PQPubID 30327
PageCount 15
ParticipantIDs proquest_miscellaneous_754128992
proquest_miscellaneous_746308608
proquest_journals_577597214
pascalfrancis_primary_23030165
crossref_citationtrail_10_1111_j_1365_2486_2009_02082_x
crossref_primary_10_1111_j_1365_2486_2009_02082_x
wiley_primary_10_1111_j_1365_2486_2009_02082_x_GCB2082
istex_primary_ark_67375_WNG_9RMH7Z3X_V
fao_agris_US201301861439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Global change biology
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Kang H, Freeman C (1999) Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biology and Biochemistry, 31, 449-454.
Vitousek PM, Aber JD, Howarth RW et al. (1997) Human alteration of the global N cycle: sources and consequences. Ecological Applications, 7, 737-750.
Pennanen T, Fritze H, Vanhala P, Kiikkila H, Neuvonen S, Bååth E (1998) Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Applied and Environmental Microbiology, 64, 2173-2180.
Turunen J, Roulet NT, Moore TR, Richard PJH (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in Eastern Canada. Global Biogeochemical Cycles, 18, GB3002, doi: DOI: 10.1029/2003GB002154.
Broadbent FE, Norman AG (1947) Some factors affecting the availability of the organic nitrogen in soil - a preliminary report. Soil Science Society American Procedures, 11, 264-267.
Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods, 30, 33-41.
McAndrew DW, Malhi SD (1992) Long-term N fertilization of a solonetzic soil: effects on chemical and biological properties. Soil Biology and Biochemistry, 24, 619-623.
Bubier JL, Moore TR, Bledzki LA (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13, 1168-1186.
Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biology and Biochemistry, 26, 1305-1311.
Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1993) Wood decomposition: N and phosphorus dynamics in relation to extracellular enzyme activity. Ecology, 74, 1586-1593.
Heijmans MMPD, Klees H, De Visser W, Berendse F (2002) Effects of increased nitrogen deposition on the distribution of N-15 labeled nitrogen between Sphagnum and vascular plants. Ecosystems, 5, 500-508.
Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L (2007) Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Global Change Biology, 13, 1810-1821.
Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90.
Aerts R, Van Logtestijn R, Van Staalduinen M, Toet S (1995) N supply effects on productivity and potential leaf litter decay of Carex species from peatlands differing in nutrient limitation. Oecologia, 104, 447-453.
Fenner N, Freeman C, Reynolds B (2005) Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biology and Biochemistry, 37, 1814-1821.
Toberman H, Freeman C, Artz RRE, Evans CD, Fenner N (2008a) Impeded drainage stimulates extracellular phenol oxidase activity in riparian peat cores. Soil Use and Management, 24, 357-365.
Bragazza L, Freeman C (2007) High nitrogen availability reduces polyphenol content in Sphagnum peat. Science of the Total Environment, 377, 439-443.
Freeman C, Ostle N, Kang H (2001) An enzymic 'latch' on a global carbon store - a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature, 409, 149.
Sinsabaugh RL, Lauber CL, Weintraub MN et al. (2008) Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecology, 196, 111-121.
Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecological Applications, 14, 1172-1177.
Criquet S, Tagger S, Vogt G, Iacazio G, Le petit J (1999) Laccase activity of forest litter. Soil Biology and Biochemistry, 31, 1239-1244.
Chapman SJ, Campbell CD, Artz RRE (2007) Assessing CLPPs using MicroResp™- a comparison with Biolog and multi-SIR. Journal of Soils and Sediments, 7, 406-410.
Flanagen PW, Van Cleve K (1983) Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Canadian Journal of Forest Research, 13, 795-817.
Leith ID, Pitcairn CER, Sheppard LJ et al. (2002) A comparison of impacts of N deposition applied as NH3 or as NH4Cl on ombrotrophic mire vegetation. Phyton - Annales Rei Botanicae, 42, 83-88.
Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.
Rodwell JS (1991) British Plant Communities: Mires and Heath's. Cambridge University Press, Cambridge, UK.
Artz RRE, Chapman SJ, Campbell CD (2006) Substrate utilisation profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biology and Biochemistry, 38, 2958-2962.
Skinner RA, Ineson P, Jones H, Sleep D, Leith ID, Sheppard LJ (2006) Heathland vegetation as a biomonitor for nitrogen deposition and source attribution using δ15N values. Atmospheric Environment, 40, 498-507.
Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems, 12, 1-15.
Pulford ID, Tabatabai MA (1988) Effect of waterlogging on enzyme activities in soils. Soil Biology and Biochemistry, 20, 215-219.
Zak DR, Kling GW (2006) Microbial community composition and function across an arctic tundra landscape. Ecology, 87, 1659-1670.
DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America Journal, 68, 132-138.
Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos, 103, 537-547.
Waksman SA, Stevens KR (1929) Contributions to the chemical composition of peat. III. Chemical studies of two Florida peat profiles. Soil Science, 27, 271-281.
Li YH, Vitt DH (1997) Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. Ecoscience, 4, 106-117.
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term N deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34, 1309-1315.
Toberman H, Freeman C, Evans C, Fenner N, Artz RRE (2008b) Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiology Ecology, 66, 426-436.
Fogg K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biological Review, 63, 433-462.
Williams CJ, Shingara EA, Yavitt JB (2000) Phenol oxidase activity in peatlands in New York state: response to summer drought and peat type. Wetlands, 20, 416-421.
Freeman C, Liska G, Ostle NJ, Hudson JA, Lock MA, Reynolds B (1996) Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant and Soil, 180, 121-127.
Killham K (1994) Soil Ecology. Cambridge University Press, Cambridge.
Pind A, Freeman C, Lock MA (1994) Enzymatic degradation of phenolic materials in peatlands - measurement of phenol oxidase activity. Plant and Soil, 159, 227-231.
Cai TT, Yost RS, Olsen TW (1994) Potential errors in the use of the Murphy and Riley method for determination of phosphorus in soil extracts. Communications in Soil Science and Plant Analysis, 25, 3129-3146.
Sinsabaugh RL, Antibus RK, Linkins AE (1991) Method for assessing soil microbial population, activity and biomass. An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agriculture, Ecosystems & Environment, 34, 43-54.
Vance ED, Chapin FS III (2001) Substrate limitations to microbial activity in taiga forest floors. Soil Biology and Biochemistry, 33, 173-188.
Verschot LV, Borelli T (2005) Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biology and Biochemistry, 37, 625-633.
Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen additions in three contrasting grassland ecosystems. Oecologia, 154, 349-359.
Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry, 35, 549-563.
Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75, 1589-1596.
Aerts R, Van Logtestijn R, Karlsson PS (2006) Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species. Oecologia, 146, 652-658.
Freeman C, Liska G, Ostle NJ, Jones SE, Lock MA (1995) The use of fluorogenic substrates for measuring enzyme activity in peatlands. Plant and Soil, 175, 147-152.
Bragazza L, Freeman C, Jones T et al. (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389.
Gunnarson U, Bronge LB, Rydin H, Ohlson M (2008) Near-zero recent carbon accumulation in a bog with high nitrogen deposition in SW Sweden. Global Change Biology, 14, 2152-2165.
Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 3252-3257.
Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Micr
1993; 25
2000; 48
2006; 38
2004; 68
2004; 4
1994; 25
1994; 26
1995; 175
1997; 4
1983; 13
1997; 7
2009; 12
2007; 377
2007; 173
2002; 42
1996; 180
1993; 74
2007; 7
2005; 37
2008; 196
1991; 1
1994; 159
1991; 34
2002; 5
2002; 34
2000; 20
2008; 14
2003; 35
2005; 86
2001; 409
1994
1929; 27
2004
2008; 11
1991
1998; 64
2007; 13
2004; 10
2008a; 24
2009; 75
2006; 40
2004; 18
1990; 28
2006; 87
1947; 11
1997; 30
2004; 14
2007; 154
2003; 69
2008b; 66
1995; 104
2000; 81
1999; 31
1992; 24
1998; 103
1988; 63
1988; 20
2001; 33
2003; 103
2006; 103
2006; 146
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
Malmer N (e_1_2_6_39_1) 1990; 28
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
Gruber N (e_1_2_6_27_1) 2004
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
Rodwell JS (e_1_2_6_46_1) 1991
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
Leith ID (e_1_2_6_36_1) 2002; 42
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
Vitousek PM (e_1_2_6_61_1) 1997; 7
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
References_xml – reference: Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75, 1589-1596.
– reference: Aerts R, Van Logtestijn R, Van Staalduinen M, Toet S (1995) N supply effects on productivity and potential leaf litter decay of Carex species from peatlands differing in nutrient limitation. Oecologia, 104, 447-453.
– reference: McAndrew DW, Malhi SD (1992) Long-term N fertilization of a solonetzic soil: effects on chemical and biological properties. Soil Biology and Biochemistry, 24, 619-623.
– reference: Pennanen T, Fritze H, Vanhala P, Kiikkila H, Neuvonen S, Bååth E (1998) Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Applied and Environmental Microbiology, 64, 2173-2180.
– reference: Sinsabaugh RL, Antibus RK, Linkins AE, McClaugherty CA, Rayburn L, Repert D, Weiland T (1993) Wood decomposition: N and phosphorus dynamics in relation to extracellular enzyme activity. Ecology, 74, 1586-1593.
– reference: Chapman SJ, Campbell CD, Artz RRE (2007) Assessing CLPPs using MicroResp™- a comparison with Biolog and multi-SIR. Journal of Soils and Sediments, 7, 406-410.
– reference: Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 3252-3257.
– reference: Malmer N (1990) Constant or increasing nitrogen concentrations in Sphagnum mosses on mires in Southern Sweden during the last few decades. Aquilo Series Botanica, 28, 57-65.
– reference: Bragazza L, Freeman C, Jones T et al. (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389.
– reference: Turunen J, Roulet NT, Moore TR, Richard PJH (2004) Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in Eastern Canada. Global Biogeochemical Cycles, 18, GB3002, doi: DOI: 10.1029/2003GB002154.
– reference: Gorham E (1991) Northern peatlands: role in the C cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
– reference: Li YH, Vitt DH (1997) Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands. Ecoscience, 4, 106-117.
– reference: Toberman H, Freeman C, Evans C, Fenner N, Artz RRE (2008b) Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiology Ecology, 66, 426-436.
– reference: Williams CJ, Shingara EA, Yavitt JB (2000) Phenol oxidase activity in peatlands in New York state: response to summer drought and peat type. Wetlands, 20, 416-421.
– reference: Vance ED, Chapin FS III (2001) Substrate limitations to microbial activity in taiga forest floors. Soil Biology and Biochemistry, 33, 173-188.
– reference: Broadbent FE, Norman AG (1947) Some factors affecting the availability of the organic nitrogen in soil - a preliminary report. Soil Science Society American Procedures, 11, 264-267.
– reference: Freeman C, Ostle N, Kang H (2001) An enzymic 'latch' on a global carbon store - a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature, 409, 149.
– reference: Flanagen PW, Van Cleve K (1983) Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Canadian Journal of Forest Research, 13, 795-817.
– reference: Kang H, Freeman C (1999) Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biology and Biochemistry, 31, 449-454.
– reference: Sinsabaugh RL, Antibus RK, Linkins AE (1991) Method for assessing soil microbial population, activity and biomass. An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agriculture, Ecosystems & Environment, 34, 43-54.
– reference: Fogg K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biological Review, 63, 433-462.
– reference: Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology, 69, 3593-3599.
– reference: DeForest JL, Zak DR, Pregitzer KS, Burton AJ (2004) Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America Journal, 68, 132-138.
– reference: Johnson D, Leake JR, Lee JA, Campbell CD (1998) Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands. Environmental Pollution, 103, 239-250.
– reference: Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry, 48, 71-90.
– reference: Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL (2007) Microbial responses to nitrogen additions in three contrasting grassland ecosystems. Oecologia, 154, 349-359.
– reference: Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology, 81, 2359-2365.
– reference: Fenner N, Freeman C, Reynolds B (2005) Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biology and Biochemistry, 37, 1814-1821.
– reference: Pind A, Freeman C, Lock MA (1994) Enzymatic degradation of phenolic materials in peatlands - measurement of phenol oxidase activity. Plant and Soil, 159, 227-231.
– reference: Heijmans MMPD, Klees H, De Visser W, Berendse F (2002) Effects of increased nitrogen deposition on the distribution of N-15 labeled nitrogen between Sphagnum and vascular plants. Ecosystems, 5, 500-508.
– reference: Aerts R, Van Logtestijn R, Karlsson PS (2006) Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species. Oecologia, 146, 652-658.
– reference: Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2008) Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecology, 196, 111-121.
– reference: Frostegård Å, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723-730.
– reference: Vitousek PM, Aber JD, Howarth RW et al. (1997) Human alteration of the global N cycle: sources and consequences. Ecological Applications, 7, 737-750.
– reference: Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry, 35, 549-563.
– reference: Verschot LV, Borelli T (2005) Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils. Soil Biology and Biochemistry, 37, 625-633.
– reference: Artz RRE, Chapman SJ, Campbell CD (2006) Substrate utilisation profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles. Soil Biology and Biochemistry, 38, 2958-2962.
– reference: Zak DR, Kling GW (2006) Microbial community composition and function across an arctic tundra landscape. Ecology, 87, 1659-1670.
– reference: Toberman H, Freeman C, Artz RRE, Evans CD, Fenner N (2008a) Impeded drainage stimulates extracellular phenol oxidase activity in riparian peat cores. Soil Use and Management, 24, 357-365.
– reference: Bubier JL, Moore TR, Bledzki LA (2007) Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Global Change Biology, 13, 1168-1186.
– reference: Cai TT, Yost RS, Olsen TW (1994) Potential errors in the use of the Murphy and Riley method for determination of phosphorus in soil extracts. Communications in Soil Science and Plant Analysis, 25, 3129-3146.
– reference: Bragazza L, Freeman C (2007) High nitrogen availability reduces polyphenol content in Sphagnum peat. Science of the Total Environment, 377, 439-443.
– reference: Belyea LR, Malmer N (2004) C sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biology, 10, 1043-1052.
– reference: Allison SD, Czimczik CI, Treseder KK (2008) Microbial activity and soil respiration under nitrogen additions in Alaskan boreal forest. Global Change Biology, 14, 1156-1168.
– reference: Hill PW, Marshall C, Williams GG, Blum H, Harmens H, Jones DL, Farrar JF (2007) The fate of photosynthetically-fixed carbon in Lolium perenne grassland as modified by elevated CO2 and sward management. New Phytologist, 173, 766-777.
– reference: Pulford ID, Tabatabai MA (1988) Effect of waterlogging on enzyme activities in soils. Soil Biology and Biochemistry, 20, 215-219.
– reference: Sinsabaugh RL, Lauber CL, Weintraub MN et al. (2008) Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
– reference: Leith ID, Pitcairn CER, Sheppard LJ et al. (2002) A comparison of impacts of N deposition applied as NH3 or as NH4Cl on ombrotrophic mire vegetation. Phyton - Annales Rei Botanicae, 42, 83-88.
– reference: Waksman SA, Stevens KR (1929) Contributions to the chemical composition of peat. III. Chemical studies of two Florida peat profiles. Soil Science, 27, 271-281.
– reference: Freeman C, Liska G, Ostle NJ, Jones SE, Lock MA (1995) The use of fluorogenic substrates for measuring enzyme activity in peatlands. Plant and Soil, 175, 147-152.
– reference: Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002) The effects of long term N deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34, 1309-1315.
– reference: Sheppard LJ, Crossley A, Leith ID et al. (2004) An automated wet deposition system to compare the effects of reduced and oxidised N on ombrotrophic bog species: practical considerations. Water, Air, and Soil Pollution: Focus, 4, 197-205.
– reference: Sinsabaugh RL, Moorhead DL (1994) Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biology and Biochemistry, 26, 1305-1311.
– reference: Limpens J, Berendse F (2003) How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos, 103, 537-547.
– reference: Criquet S, Tagger S, Vogt G, Iacazio G, Le petit J (1999) Laccase activity of forest litter. Soil Biology and Biochemistry, 31, 1239-1244.
– reference: Killham K (1994) Soil Ecology. Cambridge University Press, Cambridge.
– reference: Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems, 12, 1-15.
– reference: Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecological Applications, 14, 1172-1177.
– reference: Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L (2007) Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Global Change Biology, 13, 1810-1821.
– reference: Freeman C, Liska G, Ostle NJ, Hudson JA, Lock MA, Reynolds B (1996) Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant and Soil, 180, 121-127.
– reference: Gunnarson U, Bronge LB, Rydin H, Ohlson M (2008) Near-zero recent carbon accumulation in a bog with high nitrogen deposition in SW Sweden. Global Change Biology, 14, 2152-2165.
– reference: Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. Journal of Microbiological Methods, 30, 33-41.
– reference: Rodwell JS (1991) British Plant Communities: Mires and Heath's. Cambridge University Press, Cambridge, UK.
– reference: Skinner RA, Ineson P, Jones H, Sleep D, Leith ID, Sheppard LJ (2006) Heathland vegetation as a biomonitor for nitrogen deposition and source attribution using δ15N values. Atmospheric Environment, 40, 498-507.
– volume: 31
  start-page: 449
  year: 1999
  end-page: 454
  article-title: Phosphatase and arylsulphatase activities in wetland soils
  publication-title: Soil Biology and Biochemistry
– volume: 48
  start-page: 71
  year: 2000
  end-page: 90
  article-title: Vegetation and soil respiration
  publication-title: Biogeochemistry
– volume: 34
  start-page: 43
  year: 1991
  end-page: 54
  article-title: Method for assessing soil microbial population, activity and biomass. An enzymic approach to the analysis of microbial activity during plant litter decomposition
  publication-title: Agriculture, Ecosystems & Environment
– volume: 180
  start-page: 121
  year: 1996
  end-page: 127
  article-title: Microbial activity and enzymic decomposition processes following peatland water table drawdown
  publication-title: Plant and Soil
– volume: 104
  start-page: 447
  year: 1995
  end-page: 453
  article-title: N supply effects on productivity and potential leaf litter decay of species from peatlands differing in nutrient limitation
  publication-title: Oecologia
– volume: 42
  start-page: 83
  year: 2002
  end-page: 88
  article-title: A comparison of impacts of N deposition applied as NH3 or as NH4Cl on ombrotrophic mire vegetation
  publication-title: Phyton – Annales Rei Botanicae
– volume: 28
  start-page: 57
  year: 1990
  end-page: 65
  article-title: Constant or increasing nitrogen concentrations in mosses on mires in Southern Sweden during the last few decades
  publication-title: Aquilo Series Botanica
– volume: 103
  start-page: 537
  year: 2003
  end-page: 547
  article-title: How litter quality affects mass loss and N loss from decomposing
  publication-title: Oikos
– volume: 81
  start-page: 2359
  year: 2000
  end-page: 2365
  article-title: Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition
  publication-title: Ecology
– volume: 37
  start-page: 625
  year: 2005
  end-page: 633
  article-title: Application of para‐nitrophenol (pNP) enzyme assays in degraded tropical soils
  publication-title: Soil Biology and Biochemistry
– volume: 87
  start-page: 1659
  year: 2006
  end-page: 1670
  article-title: Microbial community composition and function across an arctic tundra landscape
  publication-title: Ecology
– volume: 12
  start-page: 1
  year: 2009
  end-page: 15
  article-title: Effects of long‐term nitrogen addition on microbial enzyme activity in eight forested and grassland sites
  publication-title: Ecosystems
– volume: 63
  start-page: 433
  year: 1988
  end-page: 462
  article-title: The effect of added nitrogen on the rate of decomposition of organic matter
  publication-title: Biological Review
– year: 1994
– volume: 75
  start-page: 1589
  year: 2009
  end-page: 1596
  article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization
  publication-title: Applied and Environmental Microbiology
– volume: 11
  start-page: 1252
  year: 2008
  end-page: 1264
  article-title: Stoichiometry of soil enzyme activity at global scale
  publication-title: Ecology Letters
– volume: 5
  start-page: 500
  year: 2002
  end-page: 508
  article-title: Effects of increased nitrogen deposition on the distribution of N‐15 labeled nitrogen between and vascular plants
  publication-title: Ecosystems
– volume: 24
  start-page: 357
  year: 2008a
  end-page: 365
  article-title: Impeded drainage stimulates extracellular phenol oxidase activity in riparian peat cores
  publication-title: Soil Use and Management
– volume: 11
  start-page: 264
  year: 1947
  end-page: 267
  article-title: Some factors affecting the availability of the organic nitrogen in soil – a preliminary report
  publication-title: Soil Science Society American Procedures
– volume: 25
  start-page: 723
  year: 1993
  end-page: 730
  article-title: Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis
  publication-title: Soil Biology & Biochemistry
– volume: 13
  start-page: 795
  year: 1983
  end-page: 817
  article-title: Nutrient cycling in relation to decomposition and organic‐matter quality in taiga ecosystems
  publication-title: Canadian Journal of Forest Research
– volume: 10
  start-page: 1043
  year: 2004
  end-page: 1052
  article-title: C sequestration in peatland
  publication-title: Global Change Biology
– volume: 30
  start-page: 33
  year: 1997
  end-page: 41
  article-title: Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities
  publication-title: Journal of Microbiological Methods
– volume: 175
  start-page: 147
  year: 1995
  end-page: 152
  article-title: The use of fluorogenic substrates for measuring enzyme activity in peatlands
  publication-title: Plant and Soil
– start-page: 45
  year: 2004
  end-page: 76
– volume: 7
  start-page: 737
  year: 1997
  end-page: 750
  article-title: Human alteration of the global N cycle
  publication-title: Ecological Applications
– volume: 409
  start-page: 149
  year: 2001
  article-title: An enzymic ‘latch’ on a global carbon store – a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme
  publication-title: Nature
– volume: 27
  start-page: 271
  year: 1929
  end-page: 281
  article-title: Contributions to the chemical composition of peat. III. Chemical studies of two Florida peat profiles
  publication-title: Soil Science
– volume: 40
  start-page: 498
  year: 2006
  end-page: 507
  article-title: Heathland vegetation as a biomonitor for nitrogen deposition and source attribution using δ N values
  publication-title: Atmospheric Environment
– volume: 14
  start-page: 1172
  year: 2004
  end-page: 1177
  article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity
  publication-title: Ecological Applications
– volume: 20
  start-page: 416
  year: 2000
  end-page: 421
  article-title: Phenol oxidase activity in peatlands in New York state
  publication-title: Wetlands
– volume: 26
  start-page: 1305
  year: 1994
  end-page: 1311
  article-title: Resource allocation to extracellular enzyme production
  publication-title: Soil Biology and Biochemistry
– volume: 14
  start-page: 2152
  year: 2008
  end-page: 2165
  article-title: Near‐zero recent carbon accumulation in a bog with high nitrogen deposition in SW Sweden
  publication-title: Global Change Biology
– volume: 1
  start-page: 182
  year: 1991
  end-page: 195
  article-title: Northern peatlands
  publication-title: Ecological Applications
– volume: 31
  start-page: 1239
  year: 1999
  end-page: 1244
  article-title: Laccase activity of forest litter
  publication-title: Soil Biology and Biochemistry
– volume: 14
  start-page: 1156
  year: 2008
  end-page: 1168
  article-title: Microbial activity and soil respiration under nitrogen additions in Alaskan boreal forest
  publication-title: Global Change Biology
– volume: 33
  start-page: 173
  year: 2001
  end-page: 188
  article-title: Substrate limitations to microbial activity in taiga forest floors
  publication-title: Soil Biology and Biochemistry
– volume: 66
  start-page: 426
  year: 2008b
  end-page: 436
  article-title: Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland heathland soil
  publication-title: FEMS Microbiology Ecology
– volume: 154
  start-page: 349
  year: 2007
  end-page: 359
  article-title: Microbial responses to nitrogen additions in three contrasting grassland ecosystems
  publication-title: Oecologia
– volume: 68
  start-page: 132
  year: 2004
  end-page: 138
  article-title: Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests
  publication-title: Soil Science Society of America Journal
– volume: 4
  start-page: 106
  year: 1997
  end-page: 117
  article-title: Patterns of retention and utilization of aerially deposited nitrogen in boreal peatlands
  publication-title: Ecoscience
– volume: 13
  start-page: 1168
  year: 2007
  end-page: 1186
  article-title: Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog
  publication-title: Global Change Biology
– volume: 4
  start-page: 197
  year: 2004
  end-page: 205
  article-title: An automated wet deposition system to compare the effects of reduced and oxidised N on ombrotrophic bog species
  publication-title: Water, Air, and Soil Pollution: Focus
– volume: 146
  start-page: 652
  year: 2006
  end-page: 658
  article-title: Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub‐arctic bog species
  publication-title: Oecologia
– volume: 103
  start-page: 19386
  year: 2006
  end-page: 19389
  article-title: Atmospheric nitrogen deposition promotes carbon loss from peat bogs
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 25
  start-page: 3129
  year: 1994
  end-page: 3146
  article-title: Potential errors in the use of the Murphy and Riley method for determination of phosphorus in soil extracts
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 377
  start-page: 439
  year: 2007
  end-page: 443
  article-title: High nitrogen availability reduces polyphenol content in peat
  publication-title: Science of the Total Environment
– volume: 86
  start-page: 3252
  year: 2005
  end-page: 3257
  article-title: Nitrogen additions and litter decomposition
  publication-title: Ecology
– volume: 159
  start-page: 227
  year: 1994
  end-page: 231
  article-title: Enzymatic degradation of phenolic materials in peatlands – measurement of phenol oxidase activity
  publication-title: Plant and Soil
– volume: 69
  start-page: 3593
  year: 2003
  end-page: 3599
  article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil
  publication-title: Applied and Environmental Microbiology
– volume: 20
  start-page: 215
  year: 1988
  end-page: 219
  article-title: Effect of waterlogging on enzyme activities in soils
  publication-title: Soil Biology and Biochemistry
– volume: 18
  year: 2004
  article-title: Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in Eastern Canada
  publication-title: Global Biogeochemical Cycles
– volume: 103
  start-page: 239
  year: 1998
  end-page: 250
  article-title: Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen deposition on a heathland and two grasslands
  publication-title: Environmental Pollution
– volume: 173
  start-page: 766
  year: 2007
  end-page: 777
  article-title: The fate of photosynthetically‐fixed carbon in grassland as modified by elevated CO and sward management
  publication-title: New Phytologist
– volume: 74
  start-page: 1586
  year: 1993
  end-page: 1593
  article-title: Wood decomposition
  publication-title: Ecology
– volume: 35
  start-page: 549
  year: 2003
  end-page: 563
  article-title: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil
  publication-title: Soil Biology and Biochemistry
– volume: 37
  start-page: 1814
  year: 2005
  end-page: 1821
  article-title: Observations of a seasonally shifting thermal optimum in peatland carbon‐cycling processes; implications for the global carbon cycle and soil enzyme methodologies
  publication-title: Soil Biology and Biochemistry
– volume: 64
  start-page: 2173
  year: 1998
  end-page: 2180
  article-title: Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain
  publication-title: Applied and Environmental Microbiology
– volume: 38
  start-page: 2958
  year: 2006
  end-page: 2962
  article-title: Substrate utilisation profiles of microbial communities in peat are depth dependent and correlate with whole soil FTIR profiles
  publication-title: Soil Biology and Biochemistry
– year: 1991
– volume: 34
  start-page: 1309
  year: 2002
  end-page: 1315
  article-title: The effects of long term N deposition on extracellular enzyme activity in an forest soil
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 1810
  year: 2007
  end-page: 1821
  article-title: Nitrogen deposition interacts with climate in affecting production and decomposition rates in mosses
  publication-title: Global Change Biology
– volume: 24
  start-page: 619
  year: 1992
  end-page: 623
  article-title: Long‐term N fertilization of a solonetzic soil
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 406
  year: 2007
  end-page: 410
  article-title: Assessing CLPPs using MicroResp – a comparison with Biolog and multi‐SIR
  publication-title: Journal of Soils and Sediments
– volume: 196
  start-page: 111
  year: 2008
  end-page: 121
  article-title: Long‐term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog
  publication-title: Plant Ecology
– ident: e_1_2_6_31_1
  doi: 10.1016/S0269-7491(98)00115-8
– ident: e_1_2_6_49_1
  doi: 10.1016/S0038-0717(03)00015-4
– ident: e_1_2_6_11_1
  doi: 10.1080/00103629409369253
– ident: e_1_2_6_59_1
  doi: 10.1016/S0038-0717(00)00127-9
– ident: e_1_2_6_18_1
  doi: 10.1016/j.soilbio.2005.02.032
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2486.2007.01346.x
– ident: e_1_2_6_29_1
  doi: 10.1007/s10021-002-0201-x
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1574-6941.2008.00560.x
– ident: e_1_2_6_26_1
  doi: 10.2307/1941811
– ident: e_1_2_6_42_1
  doi: 10.1007/s11258-007-9338-1
– ident: e_1_2_6_43_1
  doi: 10.1007/BF00009285
– ident: e_1_2_6_34_1
  doi: 10.1017/9780511623363
– ident: e_1_2_6_48_1
  doi: 10.1016/S0038-0717(02)00074-3
– volume: 28
  start-page: 57
  year: 1990
  ident: e_1_2_6_39_1
  article-title: Constant or increasing nitrogen concentrations in Sphagnum mosses on mires in Southern Sweden during the last few decades
  publication-title: Aquilo Series Botanica
– ident: e_1_2_6_40_1
  doi: 10.1016/0038-0717(92)90039-Z
– ident: e_1_2_6_15_1
  doi: 10.1065/jss2007.10.259
– ident: e_1_2_6_22_1
  doi: 10.1007/BF02413020
– ident: e_1_2_6_44_1
  doi: 10.1016/0038-0717(88)90039-9
– ident: e_1_2_6_58_1
  doi: 10.1029/2003GB002154
– ident: e_1_2_6_24_1
  doi: 10.1016/0038-0717(93)90113-P
– ident: e_1_2_6_12_1
  doi: 10.1128/AEM.69.6.3593-3599.2003
– ident: e_1_2_6_33_1
  doi: 10.1007/s10021-008-9199-z
– ident: e_1_2_6_35_1
  doi: 10.1890/05-0150
– ident: e_1_2_6_16_1
  doi: 10.1016/S0038-0717(99)00038-3
– ident: e_1_2_6_51_1
  doi: 10.1016/0167-8809(91)90092-C
– ident: e_1_2_6_60_1
  doi: 10.1016/j.soilbio.2004.09.005
– ident: e_1_2_6_66_1
  doi: 10.1007/s00442-007-0836-6
– ident: e_1_2_6_56_1
  doi: 10.1111/j.1475-2743.2008.00174.x
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.0606629104
– ident: e_1_2_6_17_1
  doi: 10.2136/sssaj2004.1320
– ident: e_1_2_6_37_1
  doi: 10.1080/11956860.1997.11682384
– ident: e_1_2_6_19_1
  doi: 10.1139/x83-110
– ident: e_1_2_6_47_1
  doi: 10.1128/AEM.02775-08
– ident: e_1_2_6_50_1
  doi: 10.1007/s11267-004-3030-4
– ident: e_1_2_6_14_1
  doi: 10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1469-8137.2007.01966.x
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2486.2007.01380.x
– ident: e_1_2_6_5_1
  doi: 10.1016/j.soilbio.2006.04.017
– ident: e_1_2_6_63_1
  doi: 10.1890/03-5120
– volume: 42
  start-page: 83
  year: 2002
  ident: e_1_2_6_36_1
  article-title: A comparison of impacts of N deposition applied as NH3 or as NH4Cl on ombrotrophic mire vegetation
  publication-title: Phyton – Annales Rei Botanicae
– ident: e_1_2_6_45_1
  doi: 10.1023/A:1006112000616
– ident: e_1_2_6_23_1
  doi: 10.1038/35051650
– ident: e_1_2_6_2_1
  doi: 10.1007/s00442-005-0247-5
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1469-185X.1988.tb00725.x
– volume: 7
  start-page: 737
  year: 1997
  ident: e_1_2_6_61_1
  article-title: Human alteration of the global N cycle
  publication-title: Ecological Applications
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-2486.2008.01638.x
– ident: e_1_2_6_65_1
  doi: 10.1890/0012-9658(2006)87[1659:MCCAFA]2.0.CO;2
– ident: e_1_2_6_53_1
  doi: 10.1111/j.1461-0248.2008.01245.x
– ident: e_1_2_6_9_1
  doi: 10.2136/sssaj1947.036159950011000C0050x
– ident: e_1_2_6_32_1
  doi: 10.1016/S0038-0717(98)00150-3
– ident: e_1_2_6_64_1
  doi: 10.1672/0277-5212(2000)020[0416:POAIPI]2.0.CO;2
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1365-2486.2008.01549.x
– ident: e_1_2_6_55_1
  doi: 10.1016/j.atmosenv.2005.09.054
– ident: e_1_2_6_21_1
  doi: 10.1007/BF00015418
– ident: e_1_2_6_52_1
  doi: 10.2307/1940086
– ident: e_1_2_6_13_1
  doi: 10.1016/S0167-7012(97)00041-9
– ident: e_1_2_6_7_1
  doi: 10.1016/j.scitotenv.2007.02.016
– volume-title: British Plant Communities: Mires and Heath's
  year: 1991
  ident: e_1_2_6_46_1
  doi: 10.1017/9780521235587
– start-page: 45
  volume-title: Toward CO2 Stabilization, Issues, Strategies and Consequences
  year: 2004
  ident: e_1_2_6_27_1
– ident: e_1_2_6_62_1
  doi: 10.1097/00010694-192904000-00002
– ident: e_1_2_6_3_1
  doi: 10.1007/BF00341342
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1529-8817.2003.00783.x
– ident: e_1_2_6_38_1
  doi: 10.1034/j.1600-0706.2003.12707.x
– ident: e_1_2_6_41_1
  doi: 10.1128/AEM.64.6.2173-2180.1998
– ident: e_1_2_6_54_1
  doi: 10.1016/0038-0717(94)90211-9
SSID ssj0003206
Score 2.3069794
Snippet The effects of 4 years of simulated nitrogen deposition, as nitrate (NO₃⁻) and ammonium (NH₄⁺), on microbial carbon turnover were studied in an ombrotrophic...
The effects of 4 years of simulated nitrogen deposition, as nitrate (NO3−) and ammonium (NH4+), on microbial carbon turnover were studied in an ombrotrophic...
The effects of 4 years of simulated nitrogen deposition, as nitrate (NO 3 − ) and ammonium (NH 4 + ), on microbial carbon turnover were studied in an...
The effects of 4 years of simulated nitrogen deposition, as nitrate (NO3-) and ammonium (NH4+), on microbial carbon turnover were studied in an ombrotrophic...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2307
SubjectTerms acid phosphatase
Ammonium
ammonium nitrate
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Carbon
carbon turnover
cellulose 1,4-beta-cellobiosidase
Decomposition
Enzymatic activity
enzyme activity
Fundamental and applied biological sciences. Psychology
General aspects
Geochemistry
Mineralization
monophenol monooxygenase
Nitrates
Nitrogen
nitrogen deposition
Nutrients
peatland
peatlands
Phenols
Respiration
Simulation
soil
soil enzymes
Soil sciences
Soils
substrate-induced respiration
Wetlands
Title Turnover of labile and recalcitrant soil carbon differ in response to nitrate and ammonium deposition in an ombrotrophic peatland
URI https://api.istex.fr/ark:/67375/WNG-9RMH7Z3X-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2009.02082.x
https://www.proquest.com/docview/577597214
https://www.proquest.com/docview/746308608
https://www.proquest.com/docview/754128992
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLdgEhIXPgrTwmDyAe3WKonjODlCta1C2g5jhYqLZTsORM2SKkmlwY3_nPectFsRQhPi1irPlmy_j99Lfn6PkLe54koIocY2ND4kKIKNFYShscJSeAC_tdGOIHsRz-bRhwVfDPwnvAvT14fYvnBDy3D-Gg1c6XbXyB1DK0rioexkCOFsgngSHyA-urytJMVC12YzYDwCzxOwXVLPHyfaiVQPc1UDfsWtv0H-pGphC_O-98UOOL0LcV2MOn1KlpvV9dSU5WTd6Yn58Vvhx_-z_GfkyQBl6bte956TB7YakUd9c8vvI7J_cnuHDsQGJ9KOiHcOQL1unBg9ptOyANTs_r0gP69gUmSV0jqnJVb_tVRVGQW_rEpTdLAVHW3roqRGNbquaN_ghRYViDi2r6VdTavCFd11QxVaWrG-ppndMNRQXFW0vtZN3TX16lth6AqCErI8X5L56cnVdDYeukSMDWC3EMwcuwr6kTF-FAhARD4zhkEWpxMtQqtjm-XWaBXakOdJbv3Uz1ItEqWE4X6UsX2yV9WVPSCU6zSwMYR1wLiR5lmisyQz3DIb5AKQk0fERiOkGUqoYyePUt5JpeBUJJ4KNvhMpTsVeeORYDty1ZcRuceYA1A6qb6Ct5fzjyF-Yw4SgFMs9cix08TtXKpZIkNPcPn54kyml-cz8YUt5CePHO2o6nYAZJ4Mb7J55HCju3LwXq3kQnCs6hR5hG6fgtvBb0mqsvW6lSKKGWTDfvIXER4FmM6HHomdJt975fJs-h5_vfrXgYfkcc_yQKLma7LXNWv7BsBjp4-cW_gFAZdeVg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB61RQguPAJVl0LxAXpLtc94c-AA6SOlbQ4lhYqLsb1eWDXdjZKNSLnxu_gr_BhmvJu0QQhVSD1wSxSPlbXn6f38DcCLVEaScy6bxtcuFig8aEoMQ01JVHiYfiutLEC21-qehG9Po9Ml-DG7C1PxQ8wP3MgyrL8mA6cD6UUrtxCtMG7VvJM-xrOtaY2wPDAXX7F-G7_a38bNfun7uzv9TrdZtxhoagz8PuoItaRzQ63d0OMYTt1A6wBLABUr7hvVMklqtJK-8aM0To3bdpO24rGUXEdumAQ47zLcoobiRNy_fXzJXRX4trGnF0Qh-jovWIQR_fGfL8TG5VQWmDHTZk8JsSnHuGlp1W1jIR2-mlTbqLh7H37O1rMCw5xtTUq1pb_9RjX5ny74A7hXZ-vsdWVeD2HJ5A24XfXvvGjA6s7lNUEcVvvJcQOcI6xFipEdxjZZZ5BhYWC_PYLvfZyUgLOsSNmACI4Nk3nCMPTIgc5KXPuSjYtswLQcqSJnVQ8bluU4xAKaDSsLlmeWV9iKSnIm2eScJWYGwqPhMmfFuRoV5agYfsk0G2LcJSDrYzi5kUVbhZW8yM0asEi1PdPCzAXT-FBFSaySONGRCYyXckwOHeAzFRS6ZomnZiUDcaVaRC0QpAXUw7QtrBaIqQPeXHJYMaVcQ2YNtVzIzxjQxMk7n16jezFmjEHbgU2r-vO55OiMQIg8Eh96e6J9fNTlH4NT8d6BjQXbmAtgcR3QZT0H1mfGImoHPRYR5xERV4UOsPmv6FnpdZnMTTEZCx62Aiz43fgvQ6LQoxML34GWNZ1rP7nY67yhT0_-VfA53On2jw7F4X7vYB3uVqAWwqU-hZVyNDHPMFcu1Yb1SQw-3bRN_gKvGLv_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61RSAuPAJVTaHsAXpL5PfaBw6QNk0prVBpIOKy7K7XYDW1I8cRKTf-Fn-FP8Ps2kkbhFCF1AM3R55dObvz-Mb-dgbgWcoDTinlbeVKGxMU6rU5hqE216XwEH4LKQxB9ijsD_zXw2C4Aj_mZ2Hq-hCLF27aMoy_1gY-TtJlIzcMLT8Km7KTLoazzqwhWB6o86-Yvk1e7O_gXj933d7uSbffbjoMtCXGfRdVRHeks30pbd-hGE1tT0oPMwARCeoqEaokVVJwV7lBGqXKju0kFjTinMrA9hMP512FG36INzQgO74oXeW5pq-n4wU-ujrHW2YR_fHJl0LjasoLBMx6r2easMknuGdp3WxjCQ1fxtQmKPbuws_5ctZcmNPOtBId-e23SpP_53rfgzsNVicva-O6Dysqb8HNunvneQvWdy8OCaJY4yUnLbAOMRMpSiNGtkl3lGFaYH49gO8nOKmmzZIiJSNd3lgRnicEAw8fyazCpa_IpMhGRPJSFDmpO9iQLEcRQ2dWpCpInpmqwmYo164km56RRM0peFqc56Q4E2VRlcX4SybJGKOuprE-hMG1LNo6rOVFrjaABCJ2VIi4BUG8L4IkEkmUyEB5ykkpQkML6FwDmWxqxOtWJSN2KVdELWBaC3QH05gZLWAzC5zFyHFdJ-UKYzZQyRn_jOGMDd65-iO6EyFe9GILto3mL-bi5ammINKAfTjaY_HxYZ9-9IbsvQVbS6axGICptaeP6lmwObcV1rjnCQsoDXTZKt8CsriLflV_LOO5KqYTRv3Qw3Tfjv4iEviOfl_hWhAay7nyP2d73Vf66tG_DnwKt97u9Nib_aODTbhdM1o0KfUxrFXlVD1BoFyJLeORCHy6bpP8BZ39uq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turnover+of+labile+and+recalcitrant+soil+carbon+differ+in+response+to+nitrate+and+ammonium+deposition+in+an+ombrotrophic+peatland&rft.jtitle=Global+change+biology&rft.au=CURREY%2C+PAULINE+M&rft.au=JOHNSON%2C+DAVID&rft.au=SHEPPARD%2C+LUCY+J&rft.au=LEITH%2C+IAN+D&rft.date=2010-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=16&rft.issue=8&rft.spage=2307&rft_id=info:doi/10.1111%2Fj.1365-2486.2009.02082.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2071588551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon