TENG-Boosted Smart Sports with Energy Autonomy and Digital Intelligence
Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study...
Saved in:
Published in | Nano-micro letters Vol. 17; no. 1; pp. 265 - 40 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed.
Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study.
Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized.
Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity. |
---|---|
AbstractList | The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed.
Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study.
Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized.
Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity. HighlightsThe recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed.Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study.Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized.Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity. Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study. Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized. Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity. Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study. Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized. Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity. Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports-encompassing performance analytics, training statistical evaluations and metrics-have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports-encompassing performance analytics, training statistical evaluations and metrics-have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity. |
ArticleNumber | 265 |
Author | Sun, Qijun Mao, Yupeng Wang, Yunlu Xiong, Yao Luo, Jianjun Wu, Wei Wang, Zhong Lin Gao, Zihao |
Author_xml | – sequence: 1 givenname: Yunlu surname: Wang fullname: Wang, Yunlu organization: Physical Education Department, Northeastern University, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences – sequence: 2 givenname: Zihao surname: Gao fullname: Gao, Zihao organization: Physical Education Department, Northeastern University – sequence: 3 givenname: Wei surname: Wu fullname: Wu, Wei organization: Physical Education Department, Northeastern University – sequence: 4 givenname: Yao surname: Xiong fullname: Xiong, Yao organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences – sequence: 5 givenname: Jianjun surname: Luo fullname: Luo, Jianjun organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences – sequence: 6 givenname: Qijun surname: Sun fullname: Sun, Qijun email: sunqijun@binn.cas.cn organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Shandong Zhongke Naneng Energy Technology Co., Ltd – sequence: 7 givenname: Yupeng surname: Mao fullname: Mao, Yupeng email: maoyupeng@pe.neu.edu.cn organization: Physical Education Department, Northeastern University, School of Strength and Conditioning Training, Beijing Sport University – sequence: 8 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin email: zhong.wang@mse.gatech.edu organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40397052$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhS1URMvQF2CBIrFhE7j-d1aolGEYqYJFy9pyEjtNlbEH2wHN2-M2pVAWrGxdf_f4-Po8R0c-eIvQSwxvMYB8lxgoAjUQXgOWUtX4CTohmEPNOcdHZU8xroUEcYxOUxpb4IRJIjl7ho4Z0EaWwgnaXK2_bOoPIaRs--pyZ2KuLvch5lT9HPN1tfY2DofqbM7Bh92hMr6vPo7DmM1UbX220zQO1nf2BXrqzJTs6f26Qt8-ra_OP9cXXzfb87OLuuMC59o5oILRtuM9NU410FBDnJS9oooLC8wqKR0o3GIw0rTKckdt23NCGOGM0RXaLrp9MDd6H8fi-KCDGfVdIcRBlyeM3WS1YRxEK7gyQjFpRGtax1rX9cpZgGJghd4vWvu53dm-sz5HMz0SfXzix2s9hB8aE2i4ok1ReHOvEMP32aasd2PqylCMt2FOmhIQhMqGiIK-_ge9CXP0ZVa3lBRKKSoL9epvSw9efn9YAcgCdDGkFK17QDDo22DoJRi6BEPfBUPj0kSXplRgP9j45-7_dP0C_k-5Kw |
Cites_doi | 10.1016/j.nanoen.2023.109080 10.1038/s41928-021-00558-0 10.1038/nature25476 10.1149/1945-7111/ad3a18 10.1007/s40843-019-9446-1 10.3390/su142114422 10.1002/adfm.202313458 10.1109/MAES.2017.160248 10.1016/j.jacc.2022.02.036 10.1123/ijspp.2016-0516 10.1016/S2468-2667(21)00302-9 10.1016/j.jclepro.2020.120978 10.1038/s41467-019-10433-4 10.1016/j.nanoen.2025.110689 10.1002/advs.202401076 10.1590/2236-9996.2023-5603 10.3390/s17020364 10.1016/j.gaitpost.2014.01.008 10.1016/j.cej.2024.158637 10.1002/admt.202201766 10.1007/s42765-024-00385-w 10.3389/fphys.2018.00115 10.1002/adsu.202000108 10.1007/978-3-319-41129-3_3 10.3390/bios12020060 10.1371/journal.pone.0170902 10.1002/adfm.202210571 10.1016/j.bspc.2017.09.025 10.1016/j.apenergy.2024.123590 10.1149/07707.0051ecst 10.1038/s41746-024-01261-y 10.1016/j.chempr.2017.12.028 10.1002/aenm.201802906 10.1002/inf2.12520 10.1021/acsnano.8b09642 10.1007/s40820-023-01170-x 10.1016/j.cej.2022.137937 10.1002/adma.201902151 10.1007/s12283-017-0252-z 10.1016/j.ejrad.2012.07.024 10.1002/admt.202000918 10.1126/sciadv.abj0694 10.1039/c8ra05305g 10.1021/acsnano.1c11321 10.1038/s41467-019-13166-6 10.1021/acsnano.4c03115 10.1016/0268-0033(95)00035-6 10.1016/j.scs.2023.104850 10.1080/02640414.2021.1882726 10.1021/acsami.1c13420 10.1007/s40820-021-00621-7 10.1021/acs.nanolett.4c00918 10.1038/s43586-023-00220-3 10.1002/adma.201770272 10.1021/acsami.4c03113 10.1126/sciadv.adg5152 10.1109/IPIN.2012.6418932 10.1016/j.cej.2024.158760 10.1109/JIOT.2014.2377238 10.1007/s40820-023-01081-x 10.1007/s42114-020-00201-0 10.1249/jsr.0b013e31827dc1fb 10.1016/j.nanoen.2017.09.030 10.1007/s40820-024-01432-2 10.1002/adfm.202303562 10.1007/s12283-019-0315-4 10.1021/acsnano.7b03818 10.1007/s42765-024-00381-0 10.1172/JCI168121 10.1021/acsnano.8b02562 10.1016/j.jcis.2024.05.127 10.1109/TII.2020.2988944 10.1002/adfm.202005584 10.1016/j.nanoen.2024.109266 10.1021/acs.chemrev.7b00019 10.1016/j.nanoen.2024.109817 10.3390/polym13152484 10.1021/acssensors.3c00708 10.1016/j.isci.2024.109615 10.1007/s40820-024-01536-9 10.1002/aenm.202000426 10.1016/j.jbiomech.2023.111637 10.1126/science.aaa8415 10.1002/adfm.202400277 10.1016/j.sna.2019.06.049 10.3390/electronics3020282 10.1002/admt.201800360 10.1249/01.mss.0000880588.05542.db 10.1002/advs.202401515 10.1016/j.rser.2016.10.079 10.1016/j.cej.2023.147898 10.1002/adma.202004178 10.1021/acssensors.4c02186 10.1002/adma.201504299 10.1007/s40820-022-00965-8 10.1109/JSEN.2017.2749233 10.1021/acsnano.7b02975 10.1002/adfm.202414395 10.3390/s22114035 10.1002/adfm.201900098 10.1007/s40820-022-00981-8 10.1016/S0140-6736(24)01610-6 10.1109/JPROC.2019.2954595 10.1016/j.nanoen.2024.109772 10.1016/j.nanoen.2018.04.060 10.1148/radiol.2016164015 10.1002/admt.202302083 10.1016/j.mcn.2015.03.001 10.3390/bios11040108 10.1136/BJSM.2009.059360 10.1016/j.nanoen.2024.109403 10.1007/s10439-015-1420-6 10.1109/ICTC.2016.7763408 10.1021/acsnano.0c03294 10.3389/fphys.2024.1344887 10.1016/j.nanoen.2019.01.001 10.1002/adma.201704107 10.1002/adfm.201504755 10.1088/2631-7990/acf172 10.1039/D0TA09440D 10.1001/jamanetworkopen.2022.28510 10.1002/advs.202101834 10.1109/TII.2022.3201588 10.1109/ICSENS.2015.7370311 10.1038/s41467-021-23207-8 10.1016/j.jechem.2022.12.024 10.1002/adfm.202201335 10.1038/nnano.2017.125 10.1166/jno.2024.3529 10.1126/sciadv.ado6793 10.1002/adfm.201605630 10.3390/electronics11091306 10.1038/nature23018 10.1007/s12274-022-4218-5 10.1016/j.csm.2010.08.006 10.1002/admt.201700241 10.1016/j.eng.2023.02.021 10.1016/j.nanoen.2024.110297 10.1021/acs.chemrev.8b00728 10.1109/JSEN.2024.3443229 10.1016/j.nanoen.2024.109490 10.1007/s40279-016-0645-3 10.1016/j.nanoen.2019.02.057 10.1021/acsnano.1c04384 10.3390/nano8090657 10.1016/j.nanoen.2020.105508 10.1038/s41467-021-24173-x 10.1002/adfm.202310742 10.1002/adfm.201805108 10.5755/j02.mech.33756 10.1136/bjsports-2016-097298 10.1007/s12274-022-4409-0 10.1016/j.cej.2024.151050 10.1021/nn501204t 10.1038/s41467-020-17807-z 10.1002/adfm.202001553 10.1126/scirobotics.aar5438 10.1016/j.nanoen.2023.108212 10.1016/j.susmat.2025.e01262 10.1007/s11431-021-1984-9 10.1021/acs.chemrev.1c00502 10.1126/science.aau9101 10.1109/TEC.2013.2281075 10.1021/acsnano.8b00140 10.1016/j.eiar.2020.106543 10.1109/JSEN.2020.3019016 10.1016/j.nanoen.2024.109276 10.1002/anie.202405357 10.1016/j.ijbiomac.2022.04.110 10.3390/polym15204035 10.1136/bmj-2023-077925 10.1016/j.nanoen.2024.110377 10.1016/j.compscitech.2022.109693 10.1088/0967-3334/34/8/N63 10.1016/j.nanoen.2019.104068 10.1002/aenm.201901875 10.1021/acssensors.9b01917 10.1002/aenm.201901124 10.1002/inf2.12360 10.1161/CIRCULATIONAHA.121.058162 10.1021/acssuschemeng.3c00124 10.1007/s41095-020-0191-7 10.1109/CIDM.2011.5949430 10.1038/s41746-019-0149-2 10.1007/s40279-016-0490-4 10.1016/j.nanoen.2022.107852 10.1002/advs.202302009 10.1038/s41551-018-0305-z 10.1016/j.nanoen.2024.110453 10.1021/acsnano.1c10144 10.1002/adma.201504244 10.1016/j.nanoen.2024.110322 10.1016/j.nanoen.2024.110275 10.1016/j.scs.2014.07.007 10.1007/s12274-017-1824-8 10.1016/j.mtphys.2022.100701 10.1021/acsami.9b01964 10.1002/adfm.202307609 10.1016/j.cej.2023.143800 10.1001/jama.2021.0495 10.1016/S0924-4247(96)01324-6 10.1088/1361-6501/ad44c8 10.3390/s20092459 10.1007/s40820-024-01539-6 10.1016/j.jbiomech.2016.08.031 10.1007/s40820-022-00943-0 10.1007/s12274-022-5273-7 10.1186/s11671-023-03783-y 10.3390/s20113040 10.1021/acsami.0c12709 10.1002/adma.202400085 10.1021/acsnano.1c09096 10.1038/s41569-020-0426-4 10.1016/j.cej.2023.143572 10.1016/j.jsams.2013.01.007 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Springer Nature B.V. Dec 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Springer Nature B.V. Dec 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-025-01778-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 40 |
ExternalDocumentID | oai_doaj_org_article_a4506b658a6847a6babf4bfcd8fe005d PMC12095839 40397052 10_1007_s40820_025_01778_1 |
Genre | Journal Article Review |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 9D9 9DB AAFWJ AAJSJ AAKKN AASML ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS ESX GROUPED_DOAJ GX1 HCIFZ IAO IHR ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS Q-- RNS RPM RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AAYXX AFUIB AHSBF C1A CITATION EJD IPNFZ RIG NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c561t-ff03643bc5d3af89093a2f77d83856e04e877f081b10a7ab8e5f3ebd522425443 |
IEDL.DBID | DOA |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:24:23 EDT 2025 Thu Aug 21 18:30:08 EDT 2025 Fri Jul 11 17:23:14 EDT 2025 Fri Jul 25 09:35:32 EDT 2025 Fri Aug 01 03:41:22 EDT 2025 Thu Aug 07 06:18:18 EDT 2025 Fri Aug 01 03:41:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Triboelectric nanogenerator Self-powered sensing Intelligent sports Sports injury prevention Physiological monitoring |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-ff03643bc5d3af89093a2f77d83856e04e877f081b10a7ab8e5f3ebd522425443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/a4506b658a6847a6babf4bfcd8fe005d |
PMID | 40397052 |
PQID | 3207688837 |
PQPubID | 2044332 |
PageCount | 40 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4506b658a6847a6babf4bfcd8fe005d pubmedcentral_primary_oai_pubmedcentral_nih_gov_12095839 proquest_miscellaneous_3206237926 proquest_journals_3207688837 pubmed_primary_40397052 crossref_primary_10_1007_s40820_025_01778_1 springer_journals_10_1007_s40820_025_01778_1 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2025 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | H Niu (1778_CR184) 2018; 8 D Liu (1778_CR124) 2024; 9 Y-H Tsao (1778_CR44) 2017; 77 A Ahmadi (1778_CR10) 2015; 2 J Luo (1778_CR165) 2021; 33 D Chen (1778_CR57) 2017; 117 Y Yu (1778_CR164) 2022; 25 X Ge (1778_CR210) 2024; 9 TM Seeberg (1778_CR63) 2017; 20 AE Paluch (1778_CR6) 2022; 7 Q Feng (1778_CR132) 2025; 43 B Adamová (1778_CR176) 2018; 40 Y Nemirovsky (1778_CR36) 1996; 56 C Li (1778_CR38) 2024; 34 K Trompeter (1778_CR102) 2017; 47 MI Jordan (1778_CR111) 2015; 349 X Lu (1778_CR126) 2024; 63 P Ding (1778_CR43) 2024; 124 S Zhang (1778_CR40) 2023; 33 L Zhao (1778_CR29) 2025; 503 H Duo (1778_CR42) 2024; 131 Y Yang (1778_CR62) 2022; 65 RC Cantu (1778_CR93) 2013; 12 JM Robbins (1778_CR1) 2023; 133 G Su (1778_CR127) 2024; 36 J Cholewicki (1778_CR98) 1996; 11 A Yu (1778_CR178) 2019; 29 C Ning (1778_CR194) 2023; 16 J Wu (1778_CR203) 2024; 30 Z Lu (1778_CR205) 2021; 11 M Wang (1778_CR59) 2018; 12 H Gao (1778_CR209) 2023; 18 Y Ding (1778_CR34) 2018; 3 TJ Gabbett (1778_CR85) 2017; 51 M Gerth (1778_CR64) 2019; 23 DH Daneshvar (1778_CR89) 2011; 30 C Cai (1778_CR41) 2024; 24 L Zhao (1778_CR27) 2024; 6 Y Shen (1778_CR88) 2024; 404 X Lu (1778_CR206) 2023; 15 Z Yang (1778_CR215) 2024; 11 K Yan (1778_CR112) 2020; 16 A Vinod (1778_CR181) 2020; 258 F Xing (1778_CR196) 2024; 11 J Abbasi (1778_CR8) 2021; 325 J Choi (1778_CR52) 2021; 7 Z Cheng (1778_CR107) 2025; 504 F Peng (1778_CR60) 2019; 65 A Galli (1778_CR150) 2022; 22 J-T Zhang (1778_CR143) 2013; 34 Y Jiang (1778_CR170) 2021; 31 J Yuan (1778_CR113) 2021; 7 J Yi (1778_CR187) 2021; 13 H Wei (1778_CR201) 2021; 4 S Gao (1778_CR106) 2021; 8 R Umapathi (1778_CR141) 2025; 136 X Yang (1778_CR134) 2019; 119 Y Wang (1778_CR120) 2024 J Yuan (1778_CR125) 2024; 132 EL Watts (1778_CR3) 2022; 5 DR Seshadri (1778_CR87) 2019; 2 P Lu (1778_CR17) 2024; 16 H Ahmadi (1778_CR129) 2024; 24 J Song (1778_CR73) 2018; 554 P Saxena (1778_CR32) 2024; 171 J Liao (1778_CR136) 2023; 98 T Althoff (1778_CR2) 2017; 547 Y Shi (1778_CR58) 2021; 13 Z Wang (1778_CR135) 2017; 75 M Amjadi (1778_CR189) 2016; 26 C Hrysomallis (1778_CR92) 2016; 46 M Armitage (1778_CR155) 2021; 39 RC Gardner (1778_CR90) 2015; 66 C Li (1778_CR99) 2021; 12 S He (1778_CR22) 2024; 10 P Slade (1778_CR103) 2021; 12 H Lei (1778_CR12) 2023; 15 MM Abe (1778_CR182) 2021; 13 G Chen (1778_CR190) 2022; 122 K Wang (1778_CR192) 2024; 6 H Xiang (1778_CR83) 2024; 123 P Tan (1778_CR18) 2019; 9 S Wang (1778_CR177) 2018; 8 Q Chen (1778_CR128) 2025; 35 W Yang (1778_CR55) 2018; 3 A Al-Hamrani (1778_CR116) 2021; 87 I Bayios (1778_CR152) 2022; 54 H He (1778_CR197) 2022; 16 S Liu (1778_CR24) 2024; 17 C He (1778_CR53) 2018; 11 K Xia (1778_CR15) 2020; 10 DY Park (1778_CR68) 2017; 29 Z Wu (1778_CR61) 2019; 9 MS Rasel (1778_CR81) 2018; 49 F Mo (1778_CR191) 2020; 32 CB Cooper (1778_CR66) 2017; 27 D Bhatia (1778_CR86) 2021; 80 Y Yang (1778_CR121) 2023; 5 Y Hao (1778_CR147) 2022; 209 F Sun (1778_CR145) 2023; 79 1778_CR180 MV Ferrari (1778_CR117) 2023; 25 T Tamura (1778_CR156) 2014; 3 Z Lin (1778_CR50) 2019; 4 G Liu (1778_CR188) 2024; 39 B Zhang (1778_CR159) 2017; 11 GP Siegmund (1778_CR154) 2016; 44 B Liu (1778_CR131) 2024; 131 F Brocherie (1778_CR118) 2024 DE Bolanakis (1778_CR162) 2017; 32 L Liu (1778_CR214) 2024; 128 FR Fan (1778_CR123) 2016; 28 C Wu (1778_CR72) 2019; 9 M Amjadi (1778_CR70) 2014; 8 K-H Yu (1778_CR133) 2018; 2 M Zhu (1778_CR74) 2017; 29 ACN Rodrigues (1778_CR46) 2020; 20 HG Menge (1778_CR39) 2023; 33 H Liu (1778_CR82) 2023; 8 Y Zhao (1778_CR211) 2020; 30 Q Wu (1778_CR104) 2020; 14 1778_CR174 C Chen (1778_CR76) 2018; 4 J Yu (1778_CR198) 2019; 62 D Khan (1778_CR171) 2024; 15 1778_CR175 D Sun (1778_CR80) 2022; 32 AM Walker (1778_CR13) 2016; 49 S Chen (1778_CR173) 2018; 28 P Sofotasiou (1778_CR115) 2015; 14 R Mooney (1778_CR138) 2017; 12 Y Xin (1778_CR95) 2019; 296 Y Wang (1778_CR19) 2024; 119 YM Mekki (1778_CR130) 2024; 7 S Kim (1778_CR71) 2019; 11 X Cao (1778_CR9) 2022; 15 T Cheng (1778_CR23) 2023; 3 T Li (1778_CR75) 2019; 364 S Hu (1778_CR79) 2024; 34 1778_CR161 J Wang (1778_CR183) 2020; 20 MZA Bhuiyan (1778_CR114) 2023; 19 B Galna (1778_CR166) 2014; 39 J Luo (1778_CR77) 2019; 10 Z Liu (1778_CR37) 2019; 59 X Han (1778_CR31) 2022; 14 L Wang (1778_CR54) 2023; 11 D Yang (1778_CR200) 2021; 15 S Barrett (1778_CR172) 2017; 12 N Gonzalez-Jaramillo (1778_CR4) 2022; 79 H Yin (1778_CR11) 2024; 17 H Wen (1778_CR21) 2023; 10 Y Zou (1778_CR49) 2019; 10 F Tang (1778_CR137) 2020; 108 Ł Kidziński (1778_CR33) 2020; 11 TQ Trung (1778_CR122) 2016; 28 TS Bincy (1778_CR139) 2024; 370 M-Z Huang (1778_CR213) 2024; 122 1778_CR151 L Zhao (1778_CR26) 2024; 127 F Sun (1778_CR94) 2024; 34 Y Hao (1778_CR65) 2022; 16 Y Luo (1778_CR105) 2021; 4 R Izzo (1778_CR97) 2013; 82 A Miyamoto (1778_CR56) 2017; 12 L Zhao (1778_CR25) 2024; 479 M Cheng (1778_CR167) 2023; 468 Y Mu (1778_CR20) 2023; 5 MD Bucknor (1778_CR100) 2016; 280 X He (1778_CR207) 2022; 450 Y Wen (1778_CR168) 2024; 27 S Shen (1778_CR28) 2022; 14 X Gao (1778_CR204) 2022; 229 F Sun (1778_CR47) 2022; 11 EM Nijmeijer (1778_CR163) 2023; 154 L Zu (1778_CR91) 2023; 9 Y Gao (1778_CR193) 2024; 18 Z Wu (1778_CR35) 2013; 28 Q Zheng (1778_CR48) 2021; 18 SN Blair (1778_CR7) 2009; 43 J Pan (1778_CR96) 2024; 671 S Hong (1778_CR69) 2019; 4 Y Jiang (1778_CR195) 2022; 15 JH Park (1778_CR199) 2019; 57 C Yeh (1778_CR110) 2022; 104 SM Sohel Rana (1778_CR148) 2024; 488 B Baro (1778_CR160) 2023; 108 X Xuan (1778_CR45) 2023; 8 W Liu (1778_CR202) 2022; 12 J Wang (1778_CR30) 2019; 13 P Yang (1778_CR109) 2022; 16 PB Gastin (1778_CR153) 2013; 16 L Jin (1778_CR14) 2021; 6 M Pieralisi (1778_CR212) 2017; 17 H Guo (1778_CR186) 2018; 12 Y-J Huang (1778_CR108) 2023; 15 J Lan (1778_CR144) 2024; 35 K Xia (1778_CR16) 2020; 8 LS Luteberget (1778_CR140) 2018; 9 C Jia (1778_CR51) 2022; 14 H Yang (1778_CR179) 2020; 4 J Shen (1778_CR119) 2025; 133 C Wei (1778_CR101) 2023; 33 Z Feng (1778_CR208) 2024; 6 DH Lee (1778_CR5) 2022; 146 Q Wang (1778_CR185) 2017; 41 M Rana (1778_CR146) 2021; 21 Z Lin (1778_CR157) 2017; 11 SW Park (1778_CR67) 2017; 17 Y Li (1778_CR169) 2023; 468 D Liu (1778_CR158) 2024; 19 Z Tian (1778_CR84) 2024; 122 J Xu (1778_CR78) 2022; 15 Z Bai (1778_CR142) 2020; 12 W Akram (1778_CR149) 2024; 131 |
References_xml | – volume: 119 start-page: 109080 year: 2024 ident: 1778_CR19 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.109080 – volume: 4 start-page: 193 issue: 3 year: 2021 ident: 1778_CR105 publication-title: Nat. Electron. doi: 10.1038/s41928-021-00558-0 – volume: 554 start-page: 224 issue: 7691 year: 2018 ident: 1778_CR73 publication-title: Nature doi: 10.1038/nature25476 – volume: 171 start-page: 047504 issue: 4 year: 2024 ident: 1778_CR32 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ad3a18 – volume: 62 start-page: 1423 issue: 10 year: 2019 ident: 1778_CR198 publication-title: Sci. China Mater. doi: 10.1007/s40843-019-9446-1 – volume: 14 start-page: 14422 issue: 21 year: 2022 ident: 1778_CR51 publication-title: Sustainability doi: 10.3390/su142114422 – volume: 34 start-page: 2313458 issue: 16 year: 2024 ident: 1778_CR79 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202313458 – volume: 32 start-page: 34 issue: 9 year: 2017 ident: 1778_CR162 publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2017.160248 – volume: 79 start-page: 1690 issue: 17 year: 2022 ident: 1778_CR4 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2022.02.036 – volume: 12 start-page: 1285 issue: 10 year: 2017 ident: 1778_CR172 publication-title: Int. J. Sports Physiol. Perform. doi: 10.1123/ijspp.2016-0516 – volume: 7 start-page: e219 issue: 3 year: 2022 ident: 1778_CR6 publication-title: Lancet Public Health doi: 10.1016/S2468-2667(21)00302-9 – volume: 258 start-page: 120978 year: 2020 ident: 1778_CR181 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120978 – volume: 10 start-page: 2695 issue: 1 year: 2019 ident: 1778_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10433-4 – volume: 136 start-page: 110689 year: 2025 ident: 1778_CR141 publication-title: Nano Energy doi: 10.1016/j.nanoen.2025.110689 – volume: 11 start-page: 2401076 issue: 21 year: 2024 ident: 1778_CR196 publication-title: Adv. Sci. doi: 10.1002/advs.202401076 – volume: 25 start-page: 75 issue: 56 year: 2023 ident: 1778_CR117 publication-title: Cad. Metrop. doi: 10.1590/2236-9996.2023-5603 – volume: 17 start-page: 364 issue: 2 year: 2017 ident: 1778_CR212 publication-title: Sensors doi: 10.3390/s17020364 – volume: 39 start-page: 1062 issue: 4 year: 2014 ident: 1778_CR166 publication-title: Gait Posture doi: 10.1016/j.gaitpost.2014.01.008 – volume: 503 start-page: 158637 year: 2025 ident: 1778_CR29 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.158637 – volume: 8 start-page: 2201766 issue: 8 year: 2023 ident: 1778_CR82 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202201766 – volume: 6 start-page: 786 issue: 3 year: 2024 ident: 1778_CR192 publication-title: Adv. Fiber Mater. doi: 10.1007/s42765-024-00385-w – volume: 9 start-page: 115 year: 2018 ident: 1778_CR140 publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00115 – volume: 4 start-page: 2000108 issue: 9 year: 2020 ident: 1778_CR179 publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.202000108 – ident: 1778_CR180 doi: 10.1007/978-3-319-41129-3_3 – volume: 12 start-page: 60 issue: 2 year: 2022 ident: 1778_CR202 publication-title: Biosensors doi: 10.3390/bios12020060 – volume: 12 start-page: e0170902 issue: 2 year: 2017 ident: 1778_CR138 publication-title: PLoS ONE doi: 10.1371/journal.pone.0170902 – volume: 33 start-page: 2210571 issue: 7 year: 2023 ident: 1778_CR39 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210571 – volume: 40 start-page: 378 year: 2018 ident: 1778_CR176 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.09.025 – volume: 370 start-page: 123590 year: 2024 ident: 1778_CR139 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.123590 – volume: 77 start-page: 51 issue: 7 year: 2017 ident: 1778_CR44 publication-title: ECS Trans. doi: 10.1149/07707.0051ecst – volume: 7 start-page: 291 year: 2024 ident: 1778_CR130 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-024-01261-y – volume: 4 start-page: 544 issue: 3 year: 2018 ident: 1778_CR76 publication-title: Chem doi: 10.1016/j.chempr.2017.12.028 – volume: 9 start-page: 1802906 issue: 1 year: 2019 ident: 1778_CR72 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802906 – volume: 6 start-page: e12520 issue: 5 year: 2024 ident: 1778_CR27 publication-title: InfoMat doi: 10.1002/inf2.12520 – volume: 13 start-page: 2587 issue: 2 year: 2019 ident: 1778_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.8b09642 – volume: 15 start-page: 196 issue: 1 year: 2023 ident: 1778_CR206 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01170-x – volume: 450 start-page: 137937 year: 2022 ident: 1778_CR207 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137937 – volume: 32 start-page: 1902151 issue: 5 year: 2020 ident: 1778_CR191 publication-title: Adv. Mater. doi: 10.1002/adma.201902151 – volume: 20 start-page: 313 issue: 4 year: 2017 ident: 1778_CR63 publication-title: Phys. Eng. doi: 10.1007/s12283-017-0252-z – volume: 82 start-page: 118 issue: 1 year: 2013 ident: 1778_CR97 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2012.07.024 – volume: 6 start-page: 2000918 issue: 3 year: 2021 ident: 1778_CR14 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000918 – volume: 7 start-page: eabj0694 issue: 42 year: 2021 ident: 1778_CR52 publication-title: Sci. Adv. doi: 10.1126/sciadv.abj0694 – volume: 8 start-page: 30661 issue: 54 year: 2018 ident: 1778_CR184 publication-title: RSC Adv. doi: 10.1039/c8ra05305g – volume: 16 start-page: 4654 issue: 3 year: 2022 ident: 1778_CR109 publication-title: ACS Nano doi: 10.1021/acsnano.1c11321 – volume: 10 start-page: 5147 issue: 1 year: 2019 ident: 1778_CR77 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13166-6 – volume: 18 start-page: 16958 issue: 26 year: 2024 ident: 1778_CR193 publication-title: ACS Nano doi: 10.1021/acsnano.4c03115 – volume: 11 start-page: 1 issue: 1 year: 1996 ident: 1778_CR98 publication-title: Clin. Biomech. doi: 10.1016/0268-0033(95)00035-6 – volume: 98 start-page: 104850 year: 2023 ident: 1778_CR136 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2023.104850 – volume: 39 start-page: 1512 issue: 13 year: 2021 ident: 1778_CR155 publication-title: J. Sports Sci. doi: 10.1080/02640414.2021.1882726 – volume: 13 start-page: 50329 issue: 42 year: 2021 ident: 1778_CR58 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c13420 – volume: 13 start-page: 103 issue: 1 year: 2021 ident: 1778_CR187 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00621-7 – volume: 24 start-page: 3826 issue: 12 year: 2024 ident: 1778_CR41 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.4c00918 – volume: 3 start-page: 39 year: 2023 ident: 1778_CR23 publication-title: Nat. Rev. Meth. Primers doi: 10.1038/s43586-023-00220-3 – volume: 29 start-page: 1770272 issue: 37 year: 2017 ident: 1778_CR68 publication-title: Adv. Mater. doi: 10.1002/adma.201770272 – year: 2024 ident: 1778_CR120 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c03113 – volume: 9 start-page: eadg5152 issue: 20 year: 2023 ident: 1778_CR91 publication-title: Sci. Adv. doi: 10.1126/sciadv.adg5152 – ident: 1778_CR174 doi: 10.1109/IPIN.2012.6418932 – volume: 504 start-page: 158760 year: 2025 ident: 1778_CR107 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.158760 – volume: 2 start-page: 23 issue: 1 year: 2015 ident: 1778_CR10 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2014.2377238 – volume: 15 start-page: 109 issue: 1 year: 2023 ident: 1778_CR12 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01081-x – volume: 4 start-page: 86 issue: 1 year: 2021 ident: 1778_CR201 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-020-00201-0 – volume: 12 start-page: 14 issue: 1 year: 2013 ident: 1778_CR93 publication-title: Curr. Phys. Med. Rep. doi: 10.1249/jsr.0b013e31827dc1fb – volume: 41 start-page: 128 year: 2017 ident: 1778_CR185 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.030 – volume: 16 start-page: 206 issue: 1 year: 2024 ident: 1778_CR17 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-024-01432-2 – volume: 33 start-page: 2303562 issue: 35 year: 2023 ident: 1778_CR101 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202303562 – volume: 23 start-page: 1 issue: 1 year: 2019 ident: 1778_CR64 publication-title: Phys. Eng. doi: 10.1007/s12283-019-0315-4 – volume: 11 start-page: 7440 issue: 7 year: 2017 ident: 1778_CR159 publication-title: ACS Nano doi: 10.1021/acsnano.7b03818 – volume: 6 start-page: 925 issue: 3 year: 2024 ident: 1778_CR208 publication-title: Adv. Fiber Mater. doi: 10.1007/s42765-024-00381-0 – volume: 133 start-page: e168121 issue: 11 year: 2023 ident: 1778_CR1 publication-title: J. Clin. Invest. doi: 10.1172/JCI168121 – volume: 12 start-page: 6156 issue: 6 year: 2018 ident: 1778_CR59 publication-title: ACS Nano doi: 10.1021/acsnano.8b02562 – volume: 671 start-page: 336 year: 2024 ident: 1778_CR96 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2024.05.127 – volume: 16 start-page: 6626 issue: 10 year: 2020 ident: 1778_CR112 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2988944 – volume: 31 start-page: 2005584 issue: 1 year: 2021 ident: 1778_CR170 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005584 – volume: 122 start-page: 109266 year: 2024 ident: 1778_CR213 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109266 – volume: 117 start-page: 11239 issue: 17 year: 2017 ident: 1778_CR57 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00019 – volume: 128 start-page: 109817 year: 2024 ident: 1778_CR214 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109817 – volume: 13 start-page: 2484 issue: 15 year: 2021 ident: 1778_CR182 publication-title: Polymers doi: 10.3390/polym13152484 – volume: 8 start-page: 2401 issue: 6 year: 2023 ident: 1778_CR45 publication-title: ACS Sens. doi: 10.1021/acssensors.3c00708 – volume: 27 start-page: 109615 issue: 4 year: 2024 ident: 1778_CR168 publication-title: iScience doi: 10.1016/j.isci.2024.109615 – volume: 17 start-page: 44 issue: 1 year: 2024 ident: 1778_CR24 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-024-01536-9 – volume: 10 start-page: 2000426 issue: 28 year: 2020 ident: 1778_CR15 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000426 – volume: 154 start-page: 111637 year: 2023 ident: 1778_CR163 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2023.111637 – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 1778_CR111 publication-title: Science doi: 10.1126/science.aaa8415 – volume: 34 start-page: 2400277 issue: 29 year: 2024 ident: 1778_CR38 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202400277 – volume: 296 start-page: 357 year: 2019 ident: 1778_CR95 publication-title: Sens. Actuat. A Phys. doi: 10.1016/j.sna.2019.06.049 – volume: 3 start-page: 282 issue: 2 year: 2014 ident: 1778_CR156 publication-title: Electronics doi: 10.3390/electronics3020282 – volume: 4 start-page: 1800360 issue: 2 year: 2019 ident: 1778_CR50 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800360 – volume: 54 start-page: 440 issue: 9S year: 2022 ident: 1778_CR152 publication-title: Med. Sci. Phys. Exerc. doi: 10.1249/01.mss.0000880588.05542.db – volume: 11 start-page: 2401515 issue: 25 year: 2024 ident: 1778_CR215 publication-title: Adv. Sci. doi: 10.1002/advs.202401515 – volume: 75 start-page: 796 year: 2017 ident: 1778_CR135 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.10.079 – volume: 479 start-page: 147898 year: 2024 ident: 1778_CR25 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.147898 – volume: 33 start-page: e2004178 issue: 17 year: 2021 ident: 1778_CR165 publication-title: Adv. Mater. doi: 10.1002/adma.202004178 – volume: 9 start-page: 6236 issue: 11 year: 2024 ident: 1778_CR124 publication-title: ACS Sens. doi: 10.1021/acssensors.4c02186 – volume: 28 start-page: 4283 issue: 22 year: 2016 ident: 1778_CR123 publication-title: Adv. Mater. doi: 10.1002/adma.201504299 – volume: 14 start-page: 225 issue: 1 year: 2022 ident: 1778_CR28 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00965-8 – volume: 17 start-page: 6558 issue: 20 year: 2017 ident: 1778_CR67 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2749233 – volume: 11 start-page: 8830 issue: 9 year: 2017 ident: 1778_CR157 publication-title: ACS Nano doi: 10.1021/acsnano.7b02975 – volume: 35 start-page: 2414395 issue: 5 year: 2025 ident: 1778_CR128 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202414395 – volume: 22 start-page: 4035 issue: 11 year: 2022 ident: 1778_CR150 publication-title: Sensors doi: 10.3390/s22114035 – volume: 29 start-page: 1900098 issue: 41 year: 2019 ident: 1778_CR178 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201900098 – volume: 15 start-page: 14 issue: 1 year: 2022 ident: 1778_CR9 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00981-8 – volume: 404 start-page: 843 issue: 10455 year: 2024 ident: 1778_CR88 publication-title: Lancet doi: 10.1016/S0140-6736(24)01610-6 – volume: 108 start-page: 292 issue: 2 year: 2020 ident: 1778_CR137 publication-title: Proc. IEEE doi: 10.1109/JPROC.2019.2954595 – volume: 127 start-page: 109772 year: 2024 ident: 1778_CR26 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109772 – volume: 49 start-page: 603 year: 2018 ident: 1778_CR81 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.060 – volume: 280 start-page: 328 issue: 1 year: 2016 ident: 1778_CR100 publication-title: Radiology doi: 10.1148/radiol.2016164015 – volume: 9 start-page: 2302083 issue: 10 year: 2024 ident: 1778_CR210 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202302083 – volume: 66 start-page: 75 year: 2015 ident: 1778_CR90 publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2015.03.001 – volume: 11 start-page: 108 issue: 4 year: 2021 ident: 1778_CR205 publication-title: Biosensors doi: 10.3390/bios11040108 – volume: 43 start-page: 1 issue: 1 year: 2009 ident: 1778_CR7 publication-title: Br. J. Sports Med. doi: 10.1136/BJSM.2009.059360 – volume: 123 start-page: 109403 year: 2024 ident: 1778_CR83 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109403 – volume: 44 start-page: 1257 issue: 4 year: 2016 ident: 1778_CR154 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1420-6 – ident: 1778_CR151 doi: 10.1109/ICTC.2016.7763408 – volume: 14 start-page: 10104 issue: 8 year: 2020 ident: 1778_CR104 publication-title: ACS Nano doi: 10.1021/acsnano.0c03294 – volume: 15 start-page: 1344887 year: 2024 ident: 1778_CR171 publication-title: Front. Physiol. doi: 10.3389/fphys.2024.1344887 – volume: 57 start-page: 872 year: 2019 ident: 1778_CR199 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.001 – volume: 29 start-page: 1704107 issue: 44 year: 2017 ident: 1778_CR74 publication-title: Adv. Mater. doi: 10.1002/adma.201704107 – volume: 26 start-page: 1678 issue: 11 year: 2016 ident: 1778_CR189 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504755 – volume: 5 start-page: 042008 issue: 4 year: 2023 ident: 1778_CR20 publication-title: Int. J. Extrem. Manuf. doi: 10.1088/2631-7990/acf172 – volume: 8 start-page: 25995 issue: 48 year: 2020 ident: 1778_CR16 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09440D – volume: 5 start-page: e2228510 issue: 8 year: 2022 ident: 1778_CR3 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2022.28510 – volume: 8 start-page: 2101834 issue: 20 year: 2021 ident: 1778_CR106 publication-title: Adv. Sci. doi: 10.1002/advs.202101834 – volume: 19 start-page: 969 issue: 1 year: 2023 ident: 1778_CR114 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3201588 – ident: 1778_CR175 doi: 10.1109/ICSENS.2015.7370311 – volume: 12 start-page: 2950 issue: 1 year: 2021 ident: 1778_CR99 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23207-8 – volume: 79 start-page: 477 year: 2023 ident: 1778_CR145 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.12.024 – volume: 32 start-page: 2201335 issue: 28 year: 2022 ident: 1778_CR80 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202201335 – volume: 12 start-page: 907 issue: 9 year: 2017 ident: 1778_CR56 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.125 – volume: 19 start-page: 1 issue: 1 year: 2024 ident: 1778_CR158 publication-title: J. Nanoelectron. Optoelectron. doi: 10.1166/jno.2024.3529 – volume: 10 start-page: eado6793 issue: 27 year: 2024 ident: 1778_CR22 publication-title: Sci. Adv. doi: 10.1126/sciadv.ado6793 – volume: 27 start-page: 1605630 issue: 20 year: 2017 ident: 1778_CR66 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605630 – volume: 11 start-page: 1306 issue: 9 year: 2022 ident: 1778_CR47 publication-title: Electronics doi: 10.3390/electronics11091306 – volume: 547 start-page: 336 issue: 7663 year: 2017 ident: 1778_CR2 publication-title: Nature doi: 10.1038/nature23018 – volume: 15 start-page: 6483 issue: 7 year: 2022 ident: 1778_CR78 publication-title: Nano Res. doi: 10.1007/s12274-022-4218-5 – volume: 30 start-page: 1 issue: 1 year: 2011 ident: 1778_CR89 publication-title: Clin. Sports Med. doi: 10.1016/j.csm.2010.08.006 – volume: 3 start-page: 1700241 issue: 2 year: 2018 ident: 1778_CR55 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201700241 – volume: 39 start-page: 244 year: 2024 ident: 1778_CR188 publication-title: Engineering doi: 10.1016/j.eng.2023.02.021 – volume: 131 start-page: 110297 year: 2024 ident: 1778_CR42 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.110297 – volume: 119 start-page: 10520 issue: 18 year: 2019 ident: 1778_CR134 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00728 – volume: 24 start-page: 30176 issue: 19 year: 2024 ident: 1778_CR129 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3443229 – volume: 124 start-page: 109490 year: 2024 ident: 1778_CR43 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109490 – volume: 47 start-page: 1183 issue: 6 year: 2017 ident: 1778_CR102 publication-title: Sports Med. doi: 10.1007/s40279-016-0645-3 – volume: 59 start-page: 295 year: 2019 ident: 1778_CR37 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.057 – volume: 15 start-page: 14653 issue: 9 year: 2021 ident: 1778_CR200 publication-title: ACS Nano doi: 10.1021/acsnano.1c04384 – volume: 8 start-page: 657 issue: 9 year: 2018 ident: 1778_CR177 publication-title: Nanomaterials doi: 10.3390/nano8090657 – volume: 80 start-page: 105508 year: 2021 ident: 1778_CR86 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105508 – volume: 12 start-page: 4312 issue: 1 year: 2021 ident: 1778_CR103 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24173-x – volume: 34 start-page: 2310742 issue: 13 year: 2024 ident: 1778_CR94 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202310742 – volume: 28 start-page: 1805108 issue: 46 year: 2018 ident: 1778_CR173 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805108 – volume: 30 start-page: 91 issue: 1 year: 2024 ident: 1778_CR203 publication-title: Mechanics doi: 10.5755/j02.mech.33756 – volume: 51 start-page: 1451 issue: 20 year: 2017 ident: 1778_CR85 publication-title: Br. J. Sports Med. doi: 10.1136/bjsports-2016-097298 – volume: 15 start-page: 8389 issue: 9 year: 2022 ident: 1778_CR195 publication-title: Nano Res. doi: 10.1007/s12274-022-4409-0 – volume: 488 start-page: 151050 year: 2024 ident: 1778_CR148 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.151050 – volume: 8 start-page: 5154 issue: 5 year: 2014 ident: 1778_CR70 publication-title: ACS Nano doi: 10.1021/nn501204t – volume: 11 start-page: 4054 issue: 1 year: 2020 ident: 1778_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17807-z – volume: 30 start-page: 2001553 issue: 25 year: 2020 ident: 1778_CR211 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001553 – volume: 3 start-page: eaar5438 issue: 15 year: 2018 ident: 1778_CR34 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aar5438 – volume: 108 start-page: 108212 year: 2023 ident: 1778_CR160 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108212 – volume: 43 start-page: e01262 year: 2025 ident: 1778_CR132 publication-title: Sustain. Mater. Technol. doi: 10.1016/j.susmat.2025.e01262 – volume: 65 start-page: 826 issue: 4 year: 2022 ident: 1778_CR62 publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-021-1984-9 – volume: 122 start-page: 3259 issue: 3 year: 2022 ident: 1778_CR190 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00502 – volume: 364 start-page: 760 issue: 6442 year: 2019 ident: 1778_CR75 publication-title: Science doi: 10.1126/science.aau9101 – volume: 28 start-page: 921 issue: 4 year: 2013 ident: 1778_CR35 publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2013.2281075 – volume: 12 start-page: 3461 issue: 4 year: 2018 ident: 1778_CR186 publication-title: ACS Nano doi: 10.1021/acsnano.8b00140 – volume: 87 start-page: 106543 year: 2021 ident: 1778_CR116 publication-title: Environ. Impact Assess. Rev. doi: 10.1016/j.eiar.2020.106543 – volume: 21 start-page: 1187 issue: 2 year: 2021 ident: 1778_CR146 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3019016 – volume: 122 start-page: 109276 year: 2024 ident: 1778_CR84 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.109276 – volume: 63 start-page: e202405357 issue: 29 year: 2024 ident: 1778_CR126 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202405357 – volume: 209 start-page: 1271 year: 2022 ident: 1778_CR147 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.04.110 – volume: 15 start-page: 4035 issue: 20 year: 2023 ident: 1778_CR108 publication-title: Polymers doi: 10.3390/polym15204035 – year: 2024 ident: 1778_CR118 publication-title: Br. Medical J doi: 10.1136/bmj-2023-077925 – volume: 132 start-page: 110377 year: 2024 ident: 1778_CR125 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.110377 – volume: 229 start-page: 109693 year: 2022 ident: 1778_CR204 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2022.109693 – volume: 34 start-page: N63 issue: 8 year: 2013 ident: 1778_CR143 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/34/8/N63 – volume: 65 start-page: 104068 year: 2019 ident: 1778_CR60 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104068 – volume: 9 start-page: 1901875 issue: 36 year: 2019 ident: 1778_CR18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901875 – volume: 4 start-page: 3291 issue: 12 year: 2019 ident: 1778_CR69 publication-title: ACS Sens. doi: 10.1021/acssensors.9b01917 – volume: 9 start-page: 1901124 issue: 33 year: 2019 ident: 1778_CR61 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901124 – volume: 5 start-page: e12360 issue: 1 year: 2023 ident: 1778_CR121 publication-title: InfoMat doi: 10.1002/inf2.12360 – volume: 146 start-page: 523 issue: 7 year: 2022 ident: 1778_CR5 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.058162 – volume: 11 start-page: 7102 issue: 18 year: 2023 ident: 1778_CR54 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.3c00124 – volume: 7 start-page: 3 issue: 1 year: 2021 ident: 1778_CR113 publication-title: Comput. Vis. Medium. doi: 10.1007/s41095-020-0191-7 – ident: 1778_CR161 doi: 10.1109/CIDM.2011.5949430 – volume: 2 start-page: 71 year: 2019 ident: 1778_CR87 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0149-2 – volume: 46 start-page: 1111 issue: 8 year: 2016 ident: 1778_CR92 publication-title: Sports Med. doi: 10.1007/s40279-016-0490-4 – volume: 104 start-page: 107852 year: 2022 ident: 1778_CR110 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107852 – volume: 10 start-page: 2302009 issue: 22 year: 2023 ident: 1778_CR21 publication-title: Adv. Sci. doi: 10.1002/advs.202302009 – volume: 2 start-page: 719 issue: 10 year: 2018 ident: 1778_CR133 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0305-z – volume: 133 start-page: 110453 year: 2025 ident: 1778_CR119 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.110453 – volume: 16 start-page: 2953 issue: 2 year: 2022 ident: 1778_CR197 publication-title: ACS Nano doi: 10.1021/acsnano.1c10144 – volume: 28 start-page: 4338 issue: 22 year: 2016 ident: 1778_CR122 publication-title: Adv. Mater. doi: 10.1002/adma.201504244 – volume: 131 start-page: 110322 year: 2024 ident: 1778_CR131 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.110322 – volume: 131 start-page: 110275 year: 2024 ident: 1778_CR149 publication-title: Nano Energy doi: 10.1016/j.nanoen.2024.110275 – volume: 14 start-page: 16 year: 2015 ident: 1778_CR115 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2014.07.007 – volume: 11 start-page: 1157 issue: 2 year: 2018 ident: 1778_CR53 publication-title: Nano Res. doi: 10.1007/s12274-017-1824-8 – volume: 25 start-page: 100701 year: 2022 ident: 1778_CR164 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2022.100701 – volume: 11 start-page: 16006 issue: 17 year: 2019 ident: 1778_CR71 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01964 – volume: 33 start-page: 2307609 issue: 44 year: 2023 ident: 1778_CR40 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202307609 – volume: 468 start-page: 143800 year: 2023 ident: 1778_CR167 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143800 – volume: 325 start-page: 522 issue: 6 year: 2021 ident: 1778_CR8 publication-title: JAMA doi: 10.1001/jama.2021.0495 – volume: 56 start-page: 239 issue: 3 year: 1996 ident: 1778_CR36 publication-title: Sens. Actuat. A Phys. doi: 10.1016/S0924-4247(96)01324-6 – volume: 35 start-page: 086304 issue: 8 year: 2024 ident: 1778_CR144 publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ad44c8 – volume: 20 start-page: 2459 issue: 9 year: 2020 ident: 1778_CR183 publication-title: Sensors doi: 10.3390/s20092459 – volume: 17 start-page: 42 issue: 1 year: 2024 ident: 1778_CR11 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-024-01539-6 – volume: 49 start-page: 3368 issue: 14 year: 2016 ident: 1778_CR13 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.08.031 – volume: 14 start-page: 198 issue: 1 year: 2022 ident: 1778_CR31 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00943-0 – volume: 16 start-page: 7518 issue: 5 year: 2023 ident: 1778_CR194 publication-title: Nano Res. doi: 10.1007/s12274-022-5273-7 – volume: 18 start-page: 17 issue: 1 year: 2023 ident: 1778_CR209 publication-title: Discov. Nano doi: 10.1186/s11671-023-03783-y – volume: 20 start-page: 3040 issue: 11 year: 2020 ident: 1778_CR46 publication-title: Sensors doi: 10.3390/s20113040 – volume: 12 start-page: 42880 issue: 38 year: 2020 ident: 1778_CR142 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12709 – volume: 36 start-page: 2400085 issue: 25 year: 2024 ident: 1778_CR127 publication-title: Adv. Mater. doi: 10.1002/adma.202400085 – volume: 16 start-page: 1271 issue: 1 year: 2022 ident: 1778_CR65 publication-title: ACS Nano doi: 10.1021/acsnano.1c09096 – volume: 18 start-page: 7 issue: 1 year: 2021 ident: 1778_CR48 publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-0426-4 – volume: 468 start-page: 143572 year: 2023 ident: 1778_CR169 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143572 – volume: 16 start-page: 589 issue: 6 year: 2013 ident: 1778_CR153 publication-title: J. Sci. Med. Sport doi: 10.1016/j.jsams.2013.01.007 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.4116855 |
SecondaryResourceType | review_article |
Snippet | Highlights
The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed.
Thorough... Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent... HighlightsThe recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed.Thorough... The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of... Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 265 |
SubjectTerms | Artificial intelligence Autonomy Big Data Biomechanics Data analysis Energy Energy consumption Energy resources Engineering Exercise Incompatibility Injury prevention Intelligent sports Internet of Things Machine learning Monitoring Nanogenerators Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Performance evaluation Physical education Physical fitness Physiological monitoring Physiology Psychological factors Review Self-powered sensing Sensors Sporting goods Sports injuries Sports injury prevention Triboelectric nanogenerator |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge4ED4puUgozEDSyS2I6dE-rCtgWJFYJW6i2yY7v0QNJ2d_8_M15ns8vXdZ2DdzyeefZ43iPktcpN7Q2cTlphAhO-lsy0bc0UF5ZrIV3tsDn5y7w6OROfz-V5unBbpGeVQ0yMgdr1Ld6Rv-Ml1ow0nKfeX10zVI3C6mqS0LhN9iAEaz0he9PZ_Ou3waNKhcpMY50Q5ZXFFluNQG4XPhKaSSQwUyNPpiwF5PeUcNeAWmEpKyrWFQWrVF6lTpzYj4fqzTlDhVhwdDye7WS7KArwNyT754PM36qyMdkd3Sf3Ekqlh2u3ekBu-e4hubvFXfiIHJ_O5sds2scmEfr9J7ggjZLpC4p3u3QWmwrp4WoZ2yao6Rz9eHmBGiX00xYP6GNydjQ7_XDCkioDawFrLVkIWLrktpWOm6DrvOamDEo5zbWsfC68VioA0rBFbpSx2svAvXUA9ATyofEnZNL1nX9GaKiLUDtAfALGAg9a1nmLQSgAzvOlysibwXrN1Zp8o9nQLEdbN2DrJtq6KTIyRQNvvkTi7PhDf3PRpH3YGCHzygLsMhXkZVNZY4OwoXU6eAhILiMHw_I0aTcvmtH3MvJqMwz7EIsrpvP9Kn4DSFLVZZWRp-vV3MxE5ID6wJkyonfWeWequyPd5Y_I9Y2tzRJAbEbeDi4xzuvfttj__994Tu6U6KXxWc4BmSxvVv4FgKulfZl20C8TlhaG priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucABlXfagozEDSI5sR3bxz62LUj0Qiv1FtmJXXogi7q7_78z3jx2oRy4xj5Y4xnP54zn-wA-ae5scHg7aaSLuQxW5a5pbK6F9MJI1dqWmpO_X1TnV_Lbtbrum8IWw2v3oSSZTuqx2Y2kkXlO8qvoRXT3eQxPFN3dqUQ7cY6XmtSYptogSSrLDYYaSXwuYiIxU0RapiduTFVKzOl9kl2DaE3lq6RSVxR5pXnVd988vKytDJeEAB5Cr38_wvyjEpsS3OkuPO-RKTtcu9ILeBS6l_Bsg6_wFZxdzi7O8qN5agxhP36h27Ekk75g9D-XzVIjITtcLVOrBHNdy05ub0iXhH3d4P58DVens8vj87xXYsgbxFfLPEYqVwrfqFa4aCy3wpVR69YIo6rAZTBaR0QXvuBOO2-CiiL4FsGdJA408QZ2unkX3gGLtoi2RZQncSyKaJTlDR08EbFdKHUGnwfr1b_XhBv1SK2cbF2jretk67rI4IgMPM4ksuz0YX53U_exVzupeOURarkKc7GrvPNR-ti0JgY8hNoMDobtqfsIXtSipBqlwft7Bh_HYYw9Kqi4LsxXaQ6iR23LKoO3690cVyI5Ij10pgzM1j5vLXV7pLv9mfi9qZ1ZIXDN4MvgEtO6_m2Lvf-bvg9PS_La9DTnAHaWd6vwHgHW0n9I8XQPXuQRuA priority: 102 providerName: Springer Nature |
Title | TENG-Boosted Smart Sports with Energy Autonomy and Digital Intelligence |
URI | https://link.springer.com/article/10.1007/s40820-025-01778-1 https://www.ncbi.nlm.nih.gov/pubmed/40397052 https://www.proquest.com/docview/3207688837 https://www.proquest.com/docview/3206237926 https://pubmed.ncbi.nlm.nih.gov/PMC12095839 https://doaj.org/article/a4506b658a6847a6babf4bfcd8fe005d |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BcoED4pssS2UkbhCRxnZsH5tu2wWJCsGutLfITmzYAynabf8_M07apnyIC5dEin2wnsee54znDcBrlVnjLZ5OamFDKryRqa1rkyouHNdCNqah5OSPy-LsQny4lJeDUl90J6yTB-6Ae2eFzAqHftIWuJHawlkXhAt1o4NHC2po90WfNzhMoSXliioy7eODVFZZDFRqBGm68L2QmSThMrXXx5S5QL_eO9qOSCsKYcVKdeNxWqis6DNwYh4eVW3OUqoMiwZOx7IDLxeLAfyJwf5-EfOXaGx0cvMHcL9np2zSofIQbvn2EdwbaBY-hsX5bLlIy1VMDmFfviOCLJZKv2H0T5fNYjIhm2zWMV2C2bZhp1dfqTYJez_Q_3wCF_PZ-fQs7asxpDVyrHUaAoUsuatlw23QJjPc5kGpRnMtC58Jr5UKyDDcOLPKOu1l4N41SPAE6aDxp3DUrlr_HFgw42AaZHoC2wIPWpqsps0nIL_zuUrgzRa96kcnulHt5JUj1hViXUWsq3ECJQG860mC2fEDmlHVm1H1LzNK4GQ7PVW_im8qnlOcUuMZPoFXu2ZcfxRUsa1fbWIfZJDK5EUCz7rZ3I1EZMj20JgS0AfzfDDUw5b26lvU-KaUZonkNYG3W5PYj-vvWBz_DyxewN2cbDle2jmBo_X1xr9E6rV2I7it54sR3JmUp-Uc3-Vs-ekzfp3mgp7FdBTX4U8jxyRZ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaCE0QksR0nB4Raui_a7oWt1FvqJHbpgaR0d4X4U_xGZpxks8vr1us6irzj8cznjOf7AF6pQKdG4-mkENr6wqTS10WR-oqLnCdClmlJzclH03h8LD6dyJMt-Nn1wtC1yi4mukBd1gV9I3_HI6oZJXie-nDxzSfVKKqudhIajVscmB_f8cg2fz_Zx_V9HUXDwezj2G9VBfwCscLCt5ZKbzwvZMm1TVI80uvIKlUmPJGxCYRJlLKYKfMw0ErniZGWm7xEoCKIz4vje6_BdcExk1Nn-nDU-W-kSAeqr0qSmLNY48YRxCTDe_o0SXRpqmfllJFANNGm9wa-KyqcOX28MPRjFcRt34_r_iOt6MAnPVrcVnQY3MitToLgb7j5z-ufv9WAXWod3oHbLSZmu40T34UtU92DW2tMifdhNBtMR_5e7VpS2Oev6PDMCbTPGX1JZgPXwsh2lwvXpMF0VbL98zNSRGGTNdbRB3B8Jav1ELarujKPgdk0tGmJ-FLgmOU2kWlQUMiziCpNpDx401kvu2ioPrIVqbOzdYa2zpyts9CDPTLw6kmi6XY_1JdnWbvrMy1kEOcI8nSMKEDHuc6tyG1RJtZg-Cs92OmWJ2tjxzzrPd2Dl6th3PVUytGVqZfuGcStKo1iDx41q7maiQjQM9GZPEg21nljqpsj1fkXxyxOjdQSIbMHbzuX6Of1b1s8-f_feAE3xrOjw-xwMj14Cjcj8lh3IWgHtheXS_MMYd0if-72EoPTq968vwDyvVEc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anYTggPgmMMBIcIJoSWzHzoFDR9utHVRI26TdMiexxw6k09oK8V_xJ_Kem_QDxoHDrrUVWe_D_rnP7_cDeKsik1mDt5NSGBcKm8nQlGUWKi4KroWssoqak7-M04MTMTqVp1vwq-2F8a_d25LkoqeBWJrq2e5l5XaXjW8kkxyFJMWKEUX3oOZZ5aH9-QMvbdOPwx56-F2SDPrHnw7CRlcgLBEtzELnqPjGi1JW3Did4aXeJE6pSnMtUxsJq5VyeFYWcWSUKbSVjtuiQqgiiNGL43dvwbZOMUM7sN3tjo5GbQwnirSgVpVJEnQWa_w4gthk-IpCTRJlmloxc8pEIKJojvgFhFdUPPMaeXEcpipKm96f6w2xcb56GYLrsPPfT0D_qAP743VwH-41uJh1F4H8ALZs_RDurrElPoL94_54P9yb-LYUdvQdg555kfYpo3-TWd-3MbLufOYbNZipK9a7OCdVFDZcYx59DCc34q8n0KkntX0GzGWxyyrEmALHHHdaZlFJ255DZGkTFcD71nr55YLuI18SO3tb52jr3Ns6jwPYIwMvZxJVt_9hcnWeN5mfGyGjtECgZ1JEAiYtTOFE4cpKO4tbYBXATuuevNk_pjlPqEKqNccVvVkOY-ZTOcfUdjL3cxC7qixJA3i68OZyJSJCnInBFIDe8PPGUjdH6otvnl2cmqklwuYAPrQhsVrXv23x_P-mv4bbX3uD_PNwfPgC7iQUwP6N0A50Zldz-xKR3qx41SQXg7Obzuff1ppTnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TENG-Boosted+Smart+Sports+with+Energy+Autonomy+and+Digital+Intelligence&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Yunlu&rft.au=Gao%2C+Zihao&rft.au=Wu%2C+Wei&rft.au=Xiong%2C+Yao&rft.date=2025-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=17&rft.issue=1&rft.spage=265&rft_id=info:doi/10.1007%2Fs40820-025-01778-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |