TENG-Boosted Smart Sports with Energy Autonomy and Digital Intelligence

Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 17; no. 1; pp. 265 - 40
Main Authors Wang, Yunlu, Gao, Zihao, Wu, Wei, Xiong, Yao, Luo, Jianjun, Sun, Qijun, Mao, Yupeng, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study. Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized. Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.
AbstractList The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study. Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized. Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.
HighlightsThe recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed.Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study.Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized.Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.
Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study. Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized.
Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.
Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of combining TENG technology and artificial intelligence/machine learning techniques to enhance smart sports are examined in this study. Comprehensive discussions on the opportunities and challenges of TENG-based smart sports are summarized. Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports—encompassing performance analytics, training statistical evaluations and metrics—have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.
Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports-encompassing performance analytics, training statistical evaluations and metrics-have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent sports-encompassing performance analytics, training statistical evaluations and metrics-have become indispensable. These tools are vital in aiding athletes with their daily training regimens and in devising sophisticated competition strategies, proving crucial in the pursuit of victory. Despite their potential, wearable electronic devices used for motion monitoring are subject to several limitations, including prohibitive cost, extensive energy usage, incompatibility with individual spatial structures, and flawed data analysis methodologies. Triboelectric nanogenerators (TENGs) have become instrumental in the development of self-powered devices/systems owing to their remarkable capacity to harnessing ambient high-entropy energy from the environment. This paper provides a thorough review of the advancements and emerging trends in TENG-based intelligent sports, focusing on physiological data monitoring, sports training performance, event refereeing assistance, and sports injury prevention and rehabilitation. Excluding the potential influence of sports psychological factors, this review provides a detailed discourse on present challenges and prospects for boosting smart sports with energy autonomy and digital intelligence. This study presents innovative insights and motivations for propelling the evolution of intelligent sports toward a more sustainable and efficient future for humanity.
ArticleNumber 265
Author Sun, Qijun
Mao, Yupeng
Wang, Yunlu
Xiong, Yao
Luo, Jianjun
Wu, Wei
Wang, Zhong Lin
Gao, Zihao
Author_xml – sequence: 1
  givenname: Yunlu
  surname: Wang
  fullname: Wang, Yunlu
  organization: Physical Education Department, Northeastern University, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
– sequence: 2
  givenname: Zihao
  surname: Gao
  fullname: Gao, Zihao
  organization: Physical Education Department, Northeastern University
– sequence: 3
  givenname: Wei
  surname: Wu
  fullname: Wu, Wei
  organization: Physical Education Department, Northeastern University
– sequence: 4
  givenname: Yao
  surname: Xiong
  fullname: Xiong, Yao
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
– sequence: 5
  givenname: Jianjun
  surname: Luo
  fullname: Luo, Jianjun
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
– sequence: 6
  givenname: Qijun
  surname: Sun
  fullname: Sun, Qijun
  email: sunqijun@binn.cas.cn
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Shandong Zhongke Naneng Energy Technology Co., Ltd
– sequence: 7
  givenname: Yupeng
  surname: Mao
  fullname: Mao, Yupeng
  email: maoyupeng@pe.neu.edu.cn
  organization: Physical Education Department, Northeastern University, School of Strength and Conditioning Training, Beijing Sport University
– sequence: 8
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zhong.wang@mse.gatech.edu
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40397052$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1URMvQF2CBIrFhE7j-d1aolGEYqYJFy9pyEjtNlbEH2wHN2-M2pVAWrGxdf_f4-Po8R0c-eIvQSwxvMYB8lxgoAjUQXgOWUtX4CTohmEPNOcdHZU8xroUEcYxOUxpb4IRJIjl7ho4Z0EaWwgnaXK2_bOoPIaRs--pyZ2KuLvch5lT9HPN1tfY2DofqbM7Bh92hMr6vPo7DmM1UbX220zQO1nf2BXrqzJTs6f26Qt8-ra_OP9cXXzfb87OLuuMC59o5oILRtuM9NU410FBDnJS9oooLC8wqKR0o3GIw0rTKckdt23NCGOGM0RXaLrp9MDd6H8fi-KCDGfVdIcRBlyeM3WS1YRxEK7gyQjFpRGtax1rX9cpZgGJghd4vWvu53dm-sz5HMz0SfXzix2s9hB8aE2i4ok1ReHOvEMP32aasd2PqylCMt2FOmhIQhMqGiIK-_ge9CXP0ZVa3lBRKKSoL9epvSw9efn9YAcgCdDGkFK17QDDo22DoJRi6BEPfBUPj0kSXplRgP9j45-7_dP0C_k-5Kw
Cites_doi 10.1016/j.nanoen.2023.109080
10.1038/s41928-021-00558-0
10.1038/nature25476
10.1149/1945-7111/ad3a18
10.1007/s40843-019-9446-1
10.3390/su142114422
10.1002/adfm.202313458
10.1109/MAES.2017.160248
10.1016/j.jacc.2022.02.036
10.1123/ijspp.2016-0516
10.1016/S2468-2667(21)00302-9
10.1016/j.jclepro.2020.120978
10.1038/s41467-019-10433-4
10.1016/j.nanoen.2025.110689
10.1002/advs.202401076
10.1590/2236-9996.2023-5603
10.3390/s17020364
10.1016/j.gaitpost.2014.01.008
10.1016/j.cej.2024.158637
10.1002/admt.202201766
10.1007/s42765-024-00385-w
10.3389/fphys.2018.00115
10.1002/adsu.202000108
10.1007/978-3-319-41129-3_3
10.3390/bios12020060
10.1371/journal.pone.0170902
10.1002/adfm.202210571
10.1016/j.bspc.2017.09.025
10.1016/j.apenergy.2024.123590
10.1149/07707.0051ecst
10.1038/s41746-024-01261-y
10.1016/j.chempr.2017.12.028
10.1002/aenm.201802906
10.1002/inf2.12520
10.1021/acsnano.8b09642
10.1007/s40820-023-01170-x
10.1016/j.cej.2022.137937
10.1002/adma.201902151
10.1007/s12283-017-0252-z
10.1016/j.ejrad.2012.07.024
10.1002/admt.202000918
10.1126/sciadv.abj0694
10.1039/c8ra05305g
10.1021/acsnano.1c11321
10.1038/s41467-019-13166-6
10.1021/acsnano.4c03115
10.1016/0268-0033(95)00035-6
10.1016/j.scs.2023.104850
10.1080/02640414.2021.1882726
10.1021/acsami.1c13420
10.1007/s40820-021-00621-7
10.1021/acs.nanolett.4c00918
10.1038/s43586-023-00220-3
10.1002/adma.201770272
10.1021/acsami.4c03113
10.1126/sciadv.adg5152
10.1109/IPIN.2012.6418932
10.1016/j.cej.2024.158760
10.1109/JIOT.2014.2377238
10.1007/s40820-023-01081-x
10.1007/s42114-020-00201-0
10.1249/jsr.0b013e31827dc1fb
10.1016/j.nanoen.2017.09.030
10.1007/s40820-024-01432-2
10.1002/adfm.202303562
10.1007/s12283-019-0315-4
10.1021/acsnano.7b03818
10.1007/s42765-024-00381-0
10.1172/JCI168121
10.1021/acsnano.8b02562
10.1016/j.jcis.2024.05.127
10.1109/TII.2020.2988944
10.1002/adfm.202005584
10.1016/j.nanoen.2024.109266
10.1021/acs.chemrev.7b00019
10.1016/j.nanoen.2024.109817
10.3390/polym13152484
10.1021/acssensors.3c00708
10.1016/j.isci.2024.109615
10.1007/s40820-024-01536-9
10.1002/aenm.202000426
10.1016/j.jbiomech.2023.111637
10.1126/science.aaa8415
10.1002/adfm.202400277
10.1016/j.sna.2019.06.049
10.3390/electronics3020282
10.1002/admt.201800360
10.1249/01.mss.0000880588.05542.db
10.1002/advs.202401515
10.1016/j.rser.2016.10.079
10.1016/j.cej.2023.147898
10.1002/adma.202004178
10.1021/acssensors.4c02186
10.1002/adma.201504299
10.1007/s40820-022-00965-8
10.1109/JSEN.2017.2749233
10.1021/acsnano.7b02975
10.1002/adfm.202414395
10.3390/s22114035
10.1002/adfm.201900098
10.1007/s40820-022-00981-8
10.1016/S0140-6736(24)01610-6
10.1109/JPROC.2019.2954595
10.1016/j.nanoen.2024.109772
10.1016/j.nanoen.2018.04.060
10.1148/radiol.2016164015
10.1002/admt.202302083
10.1016/j.mcn.2015.03.001
10.3390/bios11040108
10.1136/BJSM.2009.059360
10.1016/j.nanoen.2024.109403
10.1007/s10439-015-1420-6
10.1109/ICTC.2016.7763408
10.1021/acsnano.0c03294
10.3389/fphys.2024.1344887
10.1016/j.nanoen.2019.01.001
10.1002/adma.201704107
10.1002/adfm.201504755
10.1088/2631-7990/acf172
10.1039/D0TA09440D
10.1001/jamanetworkopen.2022.28510
10.1002/advs.202101834
10.1109/TII.2022.3201588
10.1109/ICSENS.2015.7370311
10.1038/s41467-021-23207-8
10.1016/j.jechem.2022.12.024
10.1002/adfm.202201335
10.1038/nnano.2017.125
10.1166/jno.2024.3529
10.1126/sciadv.ado6793
10.1002/adfm.201605630
10.3390/electronics11091306
10.1038/nature23018
10.1007/s12274-022-4218-5
10.1016/j.csm.2010.08.006
10.1002/admt.201700241
10.1016/j.eng.2023.02.021
10.1016/j.nanoen.2024.110297
10.1021/acs.chemrev.8b00728
10.1109/JSEN.2024.3443229
10.1016/j.nanoen.2024.109490
10.1007/s40279-016-0645-3
10.1016/j.nanoen.2019.02.057
10.1021/acsnano.1c04384
10.3390/nano8090657
10.1016/j.nanoen.2020.105508
10.1038/s41467-021-24173-x
10.1002/adfm.202310742
10.1002/adfm.201805108
10.5755/j02.mech.33756
10.1136/bjsports-2016-097298
10.1007/s12274-022-4409-0
10.1016/j.cej.2024.151050
10.1021/nn501204t
10.1038/s41467-020-17807-z
10.1002/adfm.202001553
10.1126/scirobotics.aar5438
10.1016/j.nanoen.2023.108212
10.1016/j.susmat.2025.e01262
10.1007/s11431-021-1984-9
10.1021/acs.chemrev.1c00502
10.1126/science.aau9101
10.1109/TEC.2013.2281075
10.1021/acsnano.8b00140
10.1016/j.eiar.2020.106543
10.1109/JSEN.2020.3019016
10.1016/j.nanoen.2024.109276
10.1002/anie.202405357
10.1016/j.ijbiomac.2022.04.110
10.3390/polym15204035
10.1136/bmj-2023-077925
10.1016/j.nanoen.2024.110377
10.1016/j.compscitech.2022.109693
10.1088/0967-3334/34/8/N63
10.1016/j.nanoen.2019.104068
10.1002/aenm.201901875
10.1021/acssensors.9b01917
10.1002/aenm.201901124
10.1002/inf2.12360
10.1161/CIRCULATIONAHA.121.058162
10.1021/acssuschemeng.3c00124
10.1007/s41095-020-0191-7
10.1109/CIDM.2011.5949430
10.1038/s41746-019-0149-2
10.1007/s40279-016-0490-4
10.1016/j.nanoen.2022.107852
10.1002/advs.202302009
10.1038/s41551-018-0305-z
10.1016/j.nanoen.2024.110453
10.1021/acsnano.1c10144
10.1002/adma.201504244
10.1016/j.nanoen.2024.110322
10.1016/j.nanoen.2024.110275
10.1016/j.scs.2014.07.007
10.1007/s12274-017-1824-8
10.1016/j.mtphys.2022.100701
10.1021/acsami.9b01964
10.1002/adfm.202307609
10.1016/j.cej.2023.143800
10.1001/jama.2021.0495
10.1016/S0924-4247(96)01324-6
10.1088/1361-6501/ad44c8
10.3390/s20092459
10.1007/s40820-024-01539-6
10.1016/j.jbiomech.2016.08.031
10.1007/s40820-022-00943-0
10.1007/s12274-022-5273-7
10.1186/s11671-023-03783-y
10.3390/s20113040
10.1021/acsami.0c12709
10.1002/adma.202400085
10.1021/acsnano.1c09096
10.1038/s41569-020-0426-4
10.1016/j.cej.2023.143572
10.1016/j.jsams.2013.01.007
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Springer Nature B.V. Dec 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Springer Nature B.V. Dec 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-025-01778-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 40
ExternalDocumentID oai_doaj_org_article_a4506b658a6847a6babf4bfcd8fe005d
PMC12095839
40397052
10_1007_s40820_025_01778_1
Genre Journal Article
Review
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
ESX
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
Q--
RNS
RPM
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AAYXX
AFUIB
AHSBF
C1A
CITATION
EJD
IPNFZ
RIG
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c561t-ff03643bc5d3af89093a2f77d83856e04e877f081b10a7ab8e5f3ebd522425443
IEDL.DBID DOA
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:24:23 EDT 2025
Thu Aug 21 18:30:08 EDT 2025
Fri Jul 11 17:23:14 EDT 2025
Fri Jul 25 09:35:32 EDT 2025
Fri Aug 01 03:41:22 EDT 2025
Thu Aug 07 06:18:18 EDT 2025
Fri Aug 01 03:41:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Triboelectric nanogenerator
Self-powered sensing
Intelligent sports
Sports injury prevention
Physiological monitoring
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-ff03643bc5d3af89093a2f77d83856e04e877f081b10a7ab8e5f3ebd522425443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/a4506b658a6847a6babf4bfcd8fe005d
PMID 40397052
PQID 3207688837
PQPubID 2044332
PageCount 40
ParticipantIDs doaj_primary_oai_doaj_org_article_a4506b658a6847a6babf4bfcd8fe005d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12095839
proquest_miscellaneous_3206237926
proquest_journals_3207688837
pubmed_primary_40397052
crossref_primary_10_1007_s40820_025_01778_1
springer_journals_10_1007_s40820_025_01778_1
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References H Niu (1778_CR184) 2018; 8
D Liu (1778_CR124) 2024; 9
Y-H Tsao (1778_CR44) 2017; 77
A Ahmadi (1778_CR10) 2015; 2
J Luo (1778_CR165) 2021; 33
D Chen (1778_CR57) 2017; 117
Y Yu (1778_CR164) 2022; 25
X Ge (1778_CR210) 2024; 9
TM Seeberg (1778_CR63) 2017; 20
AE Paluch (1778_CR6) 2022; 7
Q Feng (1778_CR132) 2025; 43
B Adamová (1778_CR176) 2018; 40
Y Nemirovsky (1778_CR36) 1996; 56
C Li (1778_CR38) 2024; 34
K Trompeter (1778_CR102) 2017; 47
MI Jordan (1778_CR111) 2015; 349
X Lu (1778_CR126) 2024; 63
P Ding (1778_CR43) 2024; 124
S Zhang (1778_CR40) 2023; 33
L Zhao (1778_CR29) 2025; 503
H Duo (1778_CR42) 2024; 131
Y Yang (1778_CR62) 2022; 65
RC Cantu (1778_CR93) 2013; 12
JM Robbins (1778_CR1) 2023; 133
G Su (1778_CR127) 2024; 36
J Cholewicki (1778_CR98) 1996; 11
A Yu (1778_CR178) 2019; 29
C Ning (1778_CR194) 2023; 16
J Wu (1778_CR203) 2024; 30
Z Lu (1778_CR205) 2021; 11
M Wang (1778_CR59) 2018; 12
H Gao (1778_CR209) 2023; 18
Y Ding (1778_CR34) 2018; 3
TJ Gabbett (1778_CR85) 2017; 51
M Gerth (1778_CR64) 2019; 23
DH Daneshvar (1778_CR89) 2011; 30
C Cai (1778_CR41) 2024; 24
L Zhao (1778_CR27) 2024; 6
Y Shen (1778_CR88) 2024; 404
X Lu (1778_CR206) 2023; 15
Z Yang (1778_CR215) 2024; 11
K Yan (1778_CR112) 2020; 16
A Vinod (1778_CR181) 2020; 258
F Xing (1778_CR196) 2024; 11
J Abbasi (1778_CR8) 2021; 325
J Choi (1778_CR52) 2021; 7
Z Cheng (1778_CR107) 2025; 504
F Peng (1778_CR60) 2019; 65
A Galli (1778_CR150) 2022; 22
J-T Zhang (1778_CR143) 2013; 34
Y Jiang (1778_CR170) 2021; 31
J Yuan (1778_CR113) 2021; 7
J Yi (1778_CR187) 2021; 13
H Wei (1778_CR201) 2021; 4
S Gao (1778_CR106) 2021; 8
R Umapathi (1778_CR141) 2025; 136
X Yang (1778_CR134) 2019; 119
Y Wang (1778_CR120) 2024
J Yuan (1778_CR125) 2024; 132
EL Watts (1778_CR3) 2022; 5
DR Seshadri (1778_CR87) 2019; 2
P Lu (1778_CR17) 2024; 16
H Ahmadi (1778_CR129) 2024; 24
J Song (1778_CR73) 2018; 554
P Saxena (1778_CR32) 2024; 171
J Liao (1778_CR136) 2023; 98
T Althoff (1778_CR2) 2017; 547
Y Shi (1778_CR58) 2021; 13
Z Wang (1778_CR135) 2017; 75
M Amjadi (1778_CR189) 2016; 26
C Hrysomallis (1778_CR92) 2016; 46
M Armitage (1778_CR155) 2021; 39
RC Gardner (1778_CR90) 2015; 66
C Li (1778_CR99) 2021; 12
S He (1778_CR22) 2024; 10
P Slade (1778_CR103) 2021; 12
H Lei (1778_CR12) 2023; 15
MM Abe (1778_CR182) 2021; 13
G Chen (1778_CR190) 2022; 122
K Wang (1778_CR192) 2024; 6
H Xiang (1778_CR83) 2024; 123
P Tan (1778_CR18) 2019; 9
S Wang (1778_CR177) 2018; 8
Q Chen (1778_CR128) 2025; 35
W Yang (1778_CR55) 2018; 3
A Al-Hamrani (1778_CR116) 2021; 87
I Bayios (1778_CR152) 2022; 54
H He (1778_CR197) 2022; 16
S Liu (1778_CR24) 2024; 17
C He (1778_CR53) 2018; 11
K Xia (1778_CR15) 2020; 10
DY Park (1778_CR68) 2017; 29
Z Wu (1778_CR61) 2019; 9
MS Rasel (1778_CR81) 2018; 49
F Mo (1778_CR191) 2020; 32
CB Cooper (1778_CR66) 2017; 27
D Bhatia (1778_CR86) 2021; 80
Y Yang (1778_CR121) 2023; 5
Y Hao (1778_CR147) 2022; 209
F Sun (1778_CR145) 2023; 79
1778_CR180
MV Ferrari (1778_CR117) 2023; 25
T Tamura (1778_CR156) 2014; 3
Z Lin (1778_CR50) 2019; 4
G Liu (1778_CR188) 2024; 39
B Zhang (1778_CR159) 2017; 11
GP Siegmund (1778_CR154) 2016; 44
B Liu (1778_CR131) 2024; 131
F Brocherie (1778_CR118) 2024
DE Bolanakis (1778_CR162) 2017; 32
L Liu (1778_CR214) 2024; 128
FR Fan (1778_CR123) 2016; 28
C Wu (1778_CR72) 2019; 9
M Amjadi (1778_CR70) 2014; 8
K-H Yu (1778_CR133) 2018; 2
M Zhu (1778_CR74) 2017; 29
ACN Rodrigues (1778_CR46) 2020; 20
HG Menge (1778_CR39) 2023; 33
H Liu (1778_CR82) 2023; 8
Y Zhao (1778_CR211) 2020; 30
Q Wu (1778_CR104) 2020; 14
1778_CR174
C Chen (1778_CR76) 2018; 4
J Yu (1778_CR198) 2019; 62
D Khan (1778_CR171) 2024; 15
1778_CR175
D Sun (1778_CR80) 2022; 32
AM Walker (1778_CR13) 2016; 49
S Chen (1778_CR173) 2018; 28
P Sofotasiou (1778_CR115) 2015; 14
R Mooney (1778_CR138) 2017; 12
Y Xin (1778_CR95) 2019; 296
Y Wang (1778_CR19) 2024; 119
YM Mekki (1778_CR130) 2024; 7
S Kim (1778_CR71) 2019; 11
X Cao (1778_CR9) 2022; 15
T Cheng (1778_CR23) 2023; 3
T Li (1778_CR75) 2019; 364
S Hu (1778_CR79) 2024; 34
1778_CR161
J Wang (1778_CR183) 2020; 20
MZA Bhuiyan (1778_CR114) 2023; 19
B Galna (1778_CR166) 2014; 39
J Luo (1778_CR77) 2019; 10
Z Liu (1778_CR37) 2019; 59
X Han (1778_CR31) 2022; 14
L Wang (1778_CR54) 2023; 11
D Yang (1778_CR200) 2021; 15
S Barrett (1778_CR172) 2017; 12
N Gonzalez-Jaramillo (1778_CR4) 2022; 79
H Yin (1778_CR11) 2024; 17
H Wen (1778_CR21) 2023; 10
Y Zou (1778_CR49) 2019; 10
F Tang (1778_CR137) 2020; 108
Ł Kidziński (1778_CR33) 2020; 11
TQ Trung (1778_CR122) 2016; 28
TS Bincy (1778_CR139) 2024; 370
M-Z Huang (1778_CR213) 2024; 122
1778_CR151
L Zhao (1778_CR26) 2024; 127
F Sun (1778_CR94) 2024; 34
Y Hao (1778_CR65) 2022; 16
Y Luo (1778_CR105) 2021; 4
R Izzo (1778_CR97) 2013; 82
A Miyamoto (1778_CR56) 2017; 12
L Zhao (1778_CR25) 2024; 479
M Cheng (1778_CR167) 2023; 468
Y Mu (1778_CR20) 2023; 5
MD Bucknor (1778_CR100) 2016; 280
X He (1778_CR207) 2022; 450
Y Wen (1778_CR168) 2024; 27
S Shen (1778_CR28) 2022; 14
X Gao (1778_CR204) 2022; 229
F Sun (1778_CR47) 2022; 11
EM Nijmeijer (1778_CR163) 2023; 154
L Zu (1778_CR91) 2023; 9
Y Gao (1778_CR193) 2024; 18
Z Wu (1778_CR35) 2013; 28
Q Zheng (1778_CR48) 2021; 18
SN Blair (1778_CR7) 2009; 43
J Pan (1778_CR96) 2024; 671
S Hong (1778_CR69) 2019; 4
Y Jiang (1778_CR195) 2022; 15
JH Park (1778_CR199) 2019; 57
C Yeh (1778_CR110) 2022; 104
SM Sohel Rana (1778_CR148) 2024; 488
B Baro (1778_CR160) 2023; 108
X Xuan (1778_CR45) 2023; 8
W Liu (1778_CR202) 2022; 12
J Wang (1778_CR30) 2019; 13
P Yang (1778_CR109) 2022; 16
PB Gastin (1778_CR153) 2013; 16
L Jin (1778_CR14) 2021; 6
M Pieralisi (1778_CR212) 2017; 17
H Guo (1778_CR186) 2018; 12
Y-J Huang (1778_CR108) 2023; 15
J Lan (1778_CR144) 2024; 35
K Xia (1778_CR16) 2020; 8
LS Luteberget (1778_CR140) 2018; 9
C Jia (1778_CR51) 2022; 14
H Yang (1778_CR179) 2020; 4
J Shen (1778_CR119) 2025; 133
C Wei (1778_CR101) 2023; 33
Z Feng (1778_CR208) 2024; 6
DH Lee (1778_CR5) 2022; 146
Q Wang (1778_CR185) 2017; 41
M Rana (1778_CR146) 2021; 21
Z Lin (1778_CR157) 2017; 11
SW Park (1778_CR67) 2017; 17
Y Li (1778_CR169) 2023; 468
D Liu (1778_CR158) 2024; 19
Z Tian (1778_CR84) 2024; 122
J Xu (1778_CR78) 2022; 15
Z Bai (1778_CR142) 2020; 12
W Akram (1778_CR149) 2024; 131
References_xml – volume: 119
  start-page: 109080
  year: 2024
  ident: 1778_CR19
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.109080
– volume: 4
  start-page: 193
  issue: 3
  year: 2021
  ident: 1778_CR105
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-021-00558-0
– volume: 554
  start-page: 224
  issue: 7691
  year: 2018
  ident: 1778_CR73
  publication-title: Nature
  doi: 10.1038/nature25476
– volume: 171
  start-page: 047504
  issue: 4
  year: 2024
  ident: 1778_CR32
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ad3a18
– volume: 62
  start-page: 1423
  issue: 10
  year: 2019
  ident: 1778_CR198
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-019-9446-1
– volume: 14
  start-page: 14422
  issue: 21
  year: 2022
  ident: 1778_CR51
  publication-title: Sustainability
  doi: 10.3390/su142114422
– volume: 34
  start-page: 2313458
  issue: 16
  year: 2024
  ident: 1778_CR79
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202313458
– volume: 32
  start-page: 34
  issue: 9
  year: 2017
  ident: 1778_CR162
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2017.160248
– volume: 79
  start-page: 1690
  issue: 17
  year: 2022
  ident: 1778_CR4
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2022.02.036
– volume: 12
  start-page: 1285
  issue: 10
  year: 2017
  ident: 1778_CR172
  publication-title: Int. J. Sports Physiol. Perform.
  doi: 10.1123/ijspp.2016-0516
– volume: 7
  start-page: e219
  issue: 3
  year: 2022
  ident: 1778_CR6
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(21)00302-9
– volume: 258
  start-page: 120978
  year: 2020
  ident: 1778_CR181
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120978
– volume: 10
  start-page: 2695
  issue: 1
  year: 2019
  ident: 1778_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10433-4
– volume: 136
  start-page: 110689
  year: 2025
  ident: 1778_CR141
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2025.110689
– volume: 11
  start-page: 2401076
  issue: 21
  year: 2024
  ident: 1778_CR196
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202401076
– volume: 25
  start-page: 75
  issue: 56
  year: 2023
  ident: 1778_CR117
  publication-title: Cad. Metrop.
  doi: 10.1590/2236-9996.2023-5603
– volume: 17
  start-page: 364
  issue: 2
  year: 2017
  ident: 1778_CR212
  publication-title: Sensors
  doi: 10.3390/s17020364
– volume: 39
  start-page: 1062
  issue: 4
  year: 2014
  ident: 1778_CR166
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.01.008
– volume: 503
  start-page: 158637
  year: 2025
  ident: 1778_CR29
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.158637
– volume: 8
  start-page: 2201766
  issue: 8
  year: 2023
  ident: 1778_CR82
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202201766
– volume: 6
  start-page: 786
  issue: 3
  year: 2024
  ident: 1778_CR192
  publication-title: Adv. Fiber Mater.
  doi: 10.1007/s42765-024-00385-w
– volume: 9
  start-page: 115
  year: 2018
  ident: 1778_CR140
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00115
– volume: 4
  start-page: 2000108
  issue: 9
  year: 2020
  ident: 1778_CR179
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.202000108
– ident: 1778_CR180
  doi: 10.1007/978-3-319-41129-3_3
– volume: 12
  start-page: 60
  issue: 2
  year: 2022
  ident: 1778_CR202
  publication-title: Biosensors
  doi: 10.3390/bios12020060
– volume: 12
  start-page: e0170902
  issue: 2
  year: 2017
  ident: 1778_CR138
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0170902
– volume: 33
  start-page: 2210571
  issue: 7
  year: 2023
  ident: 1778_CR39
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210571
– volume: 40
  start-page: 378
  year: 2018
  ident: 1778_CR176
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.09.025
– volume: 370
  start-page: 123590
  year: 2024
  ident: 1778_CR139
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123590
– volume: 77
  start-page: 51
  issue: 7
  year: 2017
  ident: 1778_CR44
  publication-title: ECS Trans.
  doi: 10.1149/07707.0051ecst
– volume: 7
  start-page: 291
  year: 2024
  ident: 1778_CR130
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-024-01261-y
– volume: 4
  start-page: 544
  issue: 3
  year: 2018
  ident: 1778_CR76
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.028
– volume: 9
  start-page: 1802906
  issue: 1
  year: 2019
  ident: 1778_CR72
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802906
– volume: 6
  start-page: e12520
  issue: 5
  year: 2024
  ident: 1778_CR27
  publication-title: InfoMat
  doi: 10.1002/inf2.12520
– volume: 13
  start-page: 2587
  issue: 2
  year: 2019
  ident: 1778_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09642
– volume: 15
  start-page: 196
  issue: 1
  year: 2023
  ident: 1778_CR206
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01170-x
– volume: 450
  start-page: 137937
  year: 2022
  ident: 1778_CR207
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137937
– volume: 32
  start-page: 1902151
  issue: 5
  year: 2020
  ident: 1778_CR191
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902151
– volume: 20
  start-page: 313
  issue: 4
  year: 2017
  ident: 1778_CR63
  publication-title: Phys. Eng.
  doi: 10.1007/s12283-017-0252-z
– volume: 82
  start-page: 118
  issue: 1
  year: 2013
  ident: 1778_CR97
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2012.07.024
– volume: 6
  start-page: 2000918
  issue: 3
  year: 2021
  ident: 1778_CR14
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000918
– volume: 7
  start-page: eabj0694
  issue: 42
  year: 2021
  ident: 1778_CR52
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abj0694
– volume: 8
  start-page: 30661
  issue: 54
  year: 2018
  ident: 1778_CR184
  publication-title: RSC Adv.
  doi: 10.1039/c8ra05305g
– volume: 16
  start-page: 4654
  issue: 3
  year: 2022
  ident: 1778_CR109
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c11321
– volume: 10
  start-page: 5147
  issue: 1
  year: 2019
  ident: 1778_CR77
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13166-6
– volume: 18
  start-page: 16958
  issue: 26
  year: 2024
  ident: 1778_CR193
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c03115
– volume: 11
  start-page: 1
  issue: 1
  year: 1996
  ident: 1778_CR98
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(95)00035-6
– volume: 98
  start-page: 104850
  year: 2023
  ident: 1778_CR136
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2023.104850
– volume: 39
  start-page: 1512
  issue: 13
  year: 2021
  ident: 1778_CR155
  publication-title: J. Sports Sci.
  doi: 10.1080/02640414.2021.1882726
– volume: 13
  start-page: 50329
  issue: 42
  year: 2021
  ident: 1778_CR58
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c13420
– volume: 13
  start-page: 103
  issue: 1
  year: 2021
  ident: 1778_CR187
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00621-7
– volume: 24
  start-page: 3826
  issue: 12
  year: 2024
  ident: 1778_CR41
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.4c00918
– volume: 3
  start-page: 39
  year: 2023
  ident: 1778_CR23
  publication-title: Nat. Rev. Meth. Primers
  doi: 10.1038/s43586-023-00220-3
– volume: 29
  start-page: 1770272
  issue: 37
  year: 2017
  ident: 1778_CR68
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201770272
– year: 2024
  ident: 1778_CR120
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c03113
– volume: 9
  start-page: eadg5152
  issue: 20
  year: 2023
  ident: 1778_CR91
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adg5152
– ident: 1778_CR174
  doi: 10.1109/IPIN.2012.6418932
– volume: 504
  start-page: 158760
  year: 2025
  ident: 1778_CR107
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.158760
– volume: 2
  start-page: 23
  issue: 1
  year: 2015
  ident: 1778_CR10
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2014.2377238
– volume: 15
  start-page: 109
  issue: 1
  year: 2023
  ident: 1778_CR12
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01081-x
– volume: 4
  start-page: 86
  issue: 1
  year: 2021
  ident: 1778_CR201
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-020-00201-0
– volume: 12
  start-page: 14
  issue: 1
  year: 2013
  ident: 1778_CR93
  publication-title: Curr. Phys. Med. Rep.
  doi: 10.1249/jsr.0b013e31827dc1fb
– volume: 41
  start-page: 128
  year: 2017
  ident: 1778_CR185
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.030
– volume: 16
  start-page: 206
  issue: 1
  year: 2024
  ident: 1778_CR17
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-024-01432-2
– volume: 33
  start-page: 2303562
  issue: 35
  year: 2023
  ident: 1778_CR101
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202303562
– volume: 23
  start-page: 1
  issue: 1
  year: 2019
  ident: 1778_CR64
  publication-title: Phys. Eng.
  doi: 10.1007/s12283-019-0315-4
– volume: 11
  start-page: 7440
  issue: 7
  year: 2017
  ident: 1778_CR159
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03818
– volume: 6
  start-page: 925
  issue: 3
  year: 2024
  ident: 1778_CR208
  publication-title: Adv. Fiber Mater.
  doi: 10.1007/s42765-024-00381-0
– volume: 133
  start-page: e168121
  issue: 11
  year: 2023
  ident: 1778_CR1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI168121
– volume: 12
  start-page: 6156
  issue: 6
  year: 2018
  ident: 1778_CR59
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02562
– volume: 671
  start-page: 336
  year: 2024
  ident: 1778_CR96
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2024.05.127
– volume: 16
  start-page: 6626
  issue: 10
  year: 2020
  ident: 1778_CR112
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.2988944
– volume: 31
  start-page: 2005584
  issue: 1
  year: 2021
  ident: 1778_CR170
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005584
– volume: 122
  start-page: 109266
  year: 2024
  ident: 1778_CR213
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109266
– volume: 117
  start-page: 11239
  issue: 17
  year: 2017
  ident: 1778_CR57
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00019
– volume: 128
  start-page: 109817
  year: 2024
  ident: 1778_CR214
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109817
– volume: 13
  start-page: 2484
  issue: 15
  year: 2021
  ident: 1778_CR182
  publication-title: Polymers
  doi: 10.3390/polym13152484
– volume: 8
  start-page: 2401
  issue: 6
  year: 2023
  ident: 1778_CR45
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.3c00708
– volume: 27
  start-page: 109615
  issue: 4
  year: 2024
  ident: 1778_CR168
  publication-title: iScience
  doi: 10.1016/j.isci.2024.109615
– volume: 17
  start-page: 44
  issue: 1
  year: 2024
  ident: 1778_CR24
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-024-01536-9
– volume: 10
  start-page: 2000426
  issue: 28
  year: 2020
  ident: 1778_CR15
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000426
– volume: 154
  start-page: 111637
  year: 2023
  ident: 1778_CR163
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2023.111637
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 1778_CR111
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 34
  start-page: 2400277
  issue: 29
  year: 2024
  ident: 1778_CR38
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202400277
– volume: 296
  start-page: 357
  year: 2019
  ident: 1778_CR95
  publication-title: Sens. Actuat. A Phys.
  doi: 10.1016/j.sna.2019.06.049
– volume: 3
  start-page: 282
  issue: 2
  year: 2014
  ident: 1778_CR156
  publication-title: Electronics
  doi: 10.3390/electronics3020282
– volume: 4
  start-page: 1800360
  issue: 2
  year: 2019
  ident: 1778_CR50
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800360
– volume: 54
  start-page: 440
  issue: 9S
  year: 2022
  ident: 1778_CR152
  publication-title: Med. Sci. Phys. Exerc.
  doi: 10.1249/01.mss.0000880588.05542.db
– volume: 11
  start-page: 2401515
  issue: 25
  year: 2024
  ident: 1778_CR215
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202401515
– volume: 75
  start-page: 796
  year: 2017
  ident: 1778_CR135
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.10.079
– volume: 479
  start-page: 147898
  year: 2024
  ident: 1778_CR25
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.147898
– volume: 33
  start-page: e2004178
  issue: 17
  year: 2021
  ident: 1778_CR165
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004178
– volume: 9
  start-page: 6236
  issue: 11
  year: 2024
  ident: 1778_CR124
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.4c02186
– volume: 28
  start-page: 4283
  issue: 22
  year: 2016
  ident: 1778_CR123
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504299
– volume: 14
  start-page: 225
  issue: 1
  year: 2022
  ident: 1778_CR28
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00965-8
– volume: 17
  start-page: 6558
  issue: 20
  year: 2017
  ident: 1778_CR67
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2749233
– volume: 11
  start-page: 8830
  issue: 9
  year: 2017
  ident: 1778_CR157
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02975
– volume: 35
  start-page: 2414395
  issue: 5
  year: 2025
  ident: 1778_CR128
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202414395
– volume: 22
  start-page: 4035
  issue: 11
  year: 2022
  ident: 1778_CR150
  publication-title: Sensors
  doi: 10.3390/s22114035
– volume: 29
  start-page: 1900098
  issue: 41
  year: 2019
  ident: 1778_CR178
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900098
– volume: 15
  start-page: 14
  issue: 1
  year: 2022
  ident: 1778_CR9
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00981-8
– volume: 404
  start-page: 843
  issue: 10455
  year: 2024
  ident: 1778_CR88
  publication-title: Lancet
  doi: 10.1016/S0140-6736(24)01610-6
– volume: 108
  start-page: 292
  issue: 2
  year: 2020
  ident: 1778_CR137
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2019.2954595
– volume: 127
  start-page: 109772
  year: 2024
  ident: 1778_CR26
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109772
– volume: 49
  start-page: 603
  year: 2018
  ident: 1778_CR81
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.060
– volume: 280
  start-page: 328
  issue: 1
  year: 2016
  ident: 1778_CR100
  publication-title: Radiology
  doi: 10.1148/radiol.2016164015
– volume: 9
  start-page: 2302083
  issue: 10
  year: 2024
  ident: 1778_CR210
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202302083
– volume: 66
  start-page: 75
  year: 2015
  ident: 1778_CR90
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2015.03.001
– volume: 11
  start-page: 108
  issue: 4
  year: 2021
  ident: 1778_CR205
  publication-title: Biosensors
  doi: 10.3390/bios11040108
– volume: 43
  start-page: 1
  issue: 1
  year: 2009
  ident: 1778_CR7
  publication-title: Br. J. Sports Med.
  doi: 10.1136/BJSM.2009.059360
– volume: 123
  start-page: 109403
  year: 2024
  ident: 1778_CR83
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109403
– volume: 44
  start-page: 1257
  issue: 4
  year: 2016
  ident: 1778_CR154
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1420-6
– ident: 1778_CR151
  doi: 10.1109/ICTC.2016.7763408
– volume: 14
  start-page: 10104
  issue: 8
  year: 2020
  ident: 1778_CR104
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03294
– volume: 15
  start-page: 1344887
  year: 2024
  ident: 1778_CR171
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2024.1344887
– volume: 57
  start-page: 872
  year: 2019
  ident: 1778_CR199
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.001
– volume: 29
  start-page: 1704107
  issue: 44
  year: 2017
  ident: 1778_CR74
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704107
– volume: 26
  start-page: 1678
  issue: 11
  year: 2016
  ident: 1778_CR189
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504755
– volume: 5
  start-page: 042008
  issue: 4
  year: 2023
  ident: 1778_CR20
  publication-title: Int. J. Extrem. Manuf.
  doi: 10.1088/2631-7990/acf172
– volume: 8
  start-page: 25995
  issue: 48
  year: 2020
  ident: 1778_CR16
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09440D
– volume: 5
  start-page: e2228510
  issue: 8
  year: 2022
  ident: 1778_CR3
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2022.28510
– volume: 8
  start-page: 2101834
  issue: 20
  year: 2021
  ident: 1778_CR106
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202101834
– volume: 19
  start-page: 969
  issue: 1
  year: 2023
  ident: 1778_CR114
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3201588
– ident: 1778_CR175
  doi: 10.1109/ICSENS.2015.7370311
– volume: 12
  start-page: 2950
  issue: 1
  year: 2021
  ident: 1778_CR99
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23207-8
– volume: 79
  start-page: 477
  year: 2023
  ident: 1778_CR145
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.12.024
– volume: 32
  start-page: 2201335
  issue: 28
  year: 2022
  ident: 1778_CR80
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202201335
– volume: 12
  start-page: 907
  issue: 9
  year: 2017
  ident: 1778_CR56
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.125
– volume: 19
  start-page: 1
  issue: 1
  year: 2024
  ident: 1778_CR158
  publication-title: J. Nanoelectron. Optoelectron.
  doi: 10.1166/jno.2024.3529
– volume: 10
  start-page: eado6793
  issue: 27
  year: 2024
  ident: 1778_CR22
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.ado6793
– volume: 27
  start-page: 1605630
  issue: 20
  year: 2017
  ident: 1778_CR66
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605630
– volume: 11
  start-page: 1306
  issue: 9
  year: 2022
  ident: 1778_CR47
  publication-title: Electronics
  doi: 10.3390/electronics11091306
– volume: 547
  start-page: 336
  issue: 7663
  year: 2017
  ident: 1778_CR2
  publication-title: Nature
  doi: 10.1038/nature23018
– volume: 15
  start-page: 6483
  issue: 7
  year: 2022
  ident: 1778_CR78
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4218-5
– volume: 30
  start-page: 1
  issue: 1
  year: 2011
  ident: 1778_CR89
  publication-title: Clin. Sports Med.
  doi: 10.1016/j.csm.2010.08.006
– volume: 3
  start-page: 1700241
  issue: 2
  year: 2018
  ident: 1778_CR55
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201700241
– volume: 39
  start-page: 244
  year: 2024
  ident: 1778_CR188
  publication-title: Engineering
  doi: 10.1016/j.eng.2023.02.021
– volume: 131
  start-page: 110297
  year: 2024
  ident: 1778_CR42
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.110297
– volume: 119
  start-page: 10520
  issue: 18
  year: 2019
  ident: 1778_CR134
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00728
– volume: 24
  start-page: 30176
  issue: 19
  year: 2024
  ident: 1778_CR129
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3443229
– volume: 124
  start-page: 109490
  year: 2024
  ident: 1778_CR43
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109490
– volume: 47
  start-page: 1183
  issue: 6
  year: 2017
  ident: 1778_CR102
  publication-title: Sports Med.
  doi: 10.1007/s40279-016-0645-3
– volume: 59
  start-page: 295
  year: 2019
  ident: 1778_CR37
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.057
– volume: 15
  start-page: 14653
  issue: 9
  year: 2021
  ident: 1778_CR200
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04384
– volume: 8
  start-page: 657
  issue: 9
  year: 2018
  ident: 1778_CR177
  publication-title: Nanomaterials
  doi: 10.3390/nano8090657
– volume: 80
  start-page: 105508
  year: 2021
  ident: 1778_CR86
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105508
– volume: 12
  start-page: 4312
  issue: 1
  year: 2021
  ident: 1778_CR103
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24173-x
– volume: 34
  start-page: 2310742
  issue: 13
  year: 2024
  ident: 1778_CR94
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202310742
– volume: 28
  start-page: 1805108
  issue: 46
  year: 2018
  ident: 1778_CR173
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805108
– volume: 30
  start-page: 91
  issue: 1
  year: 2024
  ident: 1778_CR203
  publication-title: Mechanics
  doi: 10.5755/j02.mech.33756
– volume: 51
  start-page: 1451
  issue: 20
  year: 2017
  ident: 1778_CR85
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsports-2016-097298
– volume: 15
  start-page: 8389
  issue: 9
  year: 2022
  ident: 1778_CR195
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4409-0
– volume: 488
  start-page: 151050
  year: 2024
  ident: 1778_CR148
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.151050
– volume: 8
  start-page: 5154
  issue: 5
  year: 2014
  ident: 1778_CR70
  publication-title: ACS Nano
  doi: 10.1021/nn501204t
– volume: 11
  start-page: 4054
  issue: 1
  year: 2020
  ident: 1778_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17807-z
– volume: 30
  start-page: 2001553
  issue: 25
  year: 2020
  ident: 1778_CR211
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001553
– volume: 3
  start-page: eaar5438
  issue: 15
  year: 2018
  ident: 1778_CR34
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aar5438
– volume: 108
  start-page: 108212
  year: 2023
  ident: 1778_CR160
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108212
– volume: 43
  start-page: e01262
  year: 2025
  ident: 1778_CR132
  publication-title: Sustain. Mater. Technol.
  doi: 10.1016/j.susmat.2025.e01262
– volume: 65
  start-page: 826
  issue: 4
  year: 2022
  ident: 1778_CR62
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-021-1984-9
– volume: 122
  start-page: 3259
  issue: 3
  year: 2022
  ident: 1778_CR190
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00502
– volume: 364
  start-page: 760
  issue: 6442
  year: 2019
  ident: 1778_CR75
  publication-title: Science
  doi: 10.1126/science.aau9101
– volume: 28
  start-page: 921
  issue: 4
  year: 2013
  ident: 1778_CR35
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2013.2281075
– volume: 12
  start-page: 3461
  issue: 4
  year: 2018
  ident: 1778_CR186
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00140
– volume: 87
  start-page: 106543
  year: 2021
  ident: 1778_CR116
  publication-title: Environ. Impact Assess. Rev.
  doi: 10.1016/j.eiar.2020.106543
– volume: 21
  start-page: 1187
  issue: 2
  year: 2021
  ident: 1778_CR146
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3019016
– volume: 122
  start-page: 109276
  year: 2024
  ident: 1778_CR84
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.109276
– volume: 63
  start-page: e202405357
  issue: 29
  year: 2024
  ident: 1778_CR126
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202405357
– volume: 209
  start-page: 1271
  year: 2022
  ident: 1778_CR147
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.04.110
– volume: 15
  start-page: 4035
  issue: 20
  year: 2023
  ident: 1778_CR108
  publication-title: Polymers
  doi: 10.3390/polym15204035
– year: 2024
  ident: 1778_CR118
  publication-title: Br. Medical J
  doi: 10.1136/bmj-2023-077925
– volume: 132
  start-page: 110377
  year: 2024
  ident: 1778_CR125
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.110377
– volume: 229
  start-page: 109693
  year: 2022
  ident: 1778_CR204
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2022.109693
– volume: 34
  start-page: N63
  issue: 8
  year: 2013
  ident: 1778_CR143
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/34/8/N63
– volume: 65
  start-page: 104068
  year: 2019
  ident: 1778_CR60
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104068
– volume: 9
  start-page: 1901875
  issue: 36
  year: 2019
  ident: 1778_CR18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901875
– volume: 4
  start-page: 3291
  issue: 12
  year: 2019
  ident: 1778_CR69
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b01917
– volume: 9
  start-page: 1901124
  issue: 33
  year: 2019
  ident: 1778_CR61
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901124
– volume: 5
  start-page: e12360
  issue: 1
  year: 2023
  ident: 1778_CR121
  publication-title: InfoMat
  doi: 10.1002/inf2.12360
– volume: 146
  start-page: 523
  issue: 7
  year: 2022
  ident: 1778_CR5
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.058162
– volume: 11
  start-page: 7102
  issue: 18
  year: 2023
  ident: 1778_CR54
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c00124
– volume: 7
  start-page: 3
  issue: 1
  year: 2021
  ident: 1778_CR113
  publication-title: Comput. Vis. Medium.
  doi: 10.1007/s41095-020-0191-7
– ident: 1778_CR161
  doi: 10.1109/CIDM.2011.5949430
– volume: 2
  start-page: 71
  year: 2019
  ident: 1778_CR87
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0149-2
– volume: 46
  start-page: 1111
  issue: 8
  year: 2016
  ident: 1778_CR92
  publication-title: Sports Med.
  doi: 10.1007/s40279-016-0490-4
– volume: 104
  start-page: 107852
  year: 2022
  ident: 1778_CR110
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107852
– volume: 10
  start-page: 2302009
  issue: 22
  year: 2023
  ident: 1778_CR21
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202302009
– volume: 2
  start-page: 719
  issue: 10
  year: 2018
  ident: 1778_CR133
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0305-z
– volume: 133
  start-page: 110453
  year: 2025
  ident: 1778_CR119
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.110453
– volume: 16
  start-page: 2953
  issue: 2
  year: 2022
  ident: 1778_CR197
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10144
– volume: 28
  start-page: 4338
  issue: 22
  year: 2016
  ident: 1778_CR122
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504244
– volume: 131
  start-page: 110322
  year: 2024
  ident: 1778_CR131
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.110322
– volume: 131
  start-page: 110275
  year: 2024
  ident: 1778_CR149
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2024.110275
– volume: 14
  start-page: 16
  year: 2015
  ident: 1778_CR115
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2014.07.007
– volume: 11
  start-page: 1157
  issue: 2
  year: 2018
  ident: 1778_CR53
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1824-8
– volume: 25
  start-page: 100701
  year: 2022
  ident: 1778_CR164
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2022.100701
– volume: 11
  start-page: 16006
  issue: 17
  year: 2019
  ident: 1778_CR71
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01964
– volume: 33
  start-page: 2307609
  issue: 44
  year: 2023
  ident: 1778_CR40
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202307609
– volume: 468
  start-page: 143800
  year: 2023
  ident: 1778_CR167
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143800
– volume: 325
  start-page: 522
  issue: 6
  year: 2021
  ident: 1778_CR8
  publication-title: JAMA
  doi: 10.1001/jama.2021.0495
– volume: 56
  start-page: 239
  issue: 3
  year: 1996
  ident: 1778_CR36
  publication-title: Sens. Actuat. A Phys.
  doi: 10.1016/S0924-4247(96)01324-6
– volume: 35
  start-page: 086304
  issue: 8
  year: 2024
  ident: 1778_CR144
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ad44c8
– volume: 20
  start-page: 2459
  issue: 9
  year: 2020
  ident: 1778_CR183
  publication-title: Sensors
  doi: 10.3390/s20092459
– volume: 17
  start-page: 42
  issue: 1
  year: 2024
  ident: 1778_CR11
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-024-01539-6
– volume: 49
  start-page: 3368
  issue: 14
  year: 2016
  ident: 1778_CR13
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.08.031
– volume: 14
  start-page: 198
  issue: 1
  year: 2022
  ident: 1778_CR31
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00943-0
– volume: 16
  start-page: 7518
  issue: 5
  year: 2023
  ident: 1778_CR194
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-5273-7
– volume: 18
  start-page: 17
  issue: 1
  year: 2023
  ident: 1778_CR209
  publication-title: Discov. Nano
  doi: 10.1186/s11671-023-03783-y
– volume: 20
  start-page: 3040
  issue: 11
  year: 2020
  ident: 1778_CR46
  publication-title: Sensors
  doi: 10.3390/s20113040
– volume: 12
  start-page: 42880
  issue: 38
  year: 2020
  ident: 1778_CR142
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c12709
– volume: 36
  start-page: 2400085
  issue: 25
  year: 2024
  ident: 1778_CR127
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202400085
– volume: 16
  start-page: 1271
  issue: 1
  year: 2022
  ident: 1778_CR65
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c09096
– volume: 18
  start-page: 7
  issue: 1
  year: 2021
  ident: 1778_CR48
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-020-0426-4
– volume: 468
  start-page: 143572
  year: 2023
  ident: 1778_CR169
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143572
– volume: 16
  start-page: 589
  issue: 6
  year: 2013
  ident: 1778_CR153
  publication-title: J. Sci. Med. Sport
  doi: 10.1016/j.jsams.2013.01.007
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.4116855
SecondaryResourceType review_article
Snippet Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough...
Technological advancements have profoundly transformed the sports domain, ushering it into the digital era. Services leveraging big data in intelligent...
HighlightsThe recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed.Thorough...
The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough explorations of...
Highlights The recent advancements in triboelectric nanogenerator (TENG)-based sports equipment for smart sports are comprehensively reviewed. Thorough...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 265
SubjectTerms Artificial intelligence
Autonomy
Big Data
Biomechanics
Data analysis
Energy
Energy consumption
Energy resources
Engineering
Exercise
Incompatibility
Injury prevention
Intelligent sports
Internet of Things
Machine learning
Monitoring
Nanogenerators
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Performance evaluation
Physical education
Physical fitness
Physiological monitoring
Physiology
Psychological factors
Review
Self-powered sensing
Sensors
Sporting goods
Sports injuries
Sports injury prevention
Triboelectric nanogenerator
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge4ED4puUgozEDSyS2I6dE-rCtgWJFYJW6i2yY7v0QNJ2d_8_M15ns8vXdZ2DdzyeefZ43iPktcpN7Q2cTlphAhO-lsy0bc0UF5ZrIV3tsDn5y7w6OROfz-V5unBbpGeVQ0yMgdr1Ld6Rv-Ml1ow0nKfeX10zVI3C6mqS0LhN9iAEaz0he9PZ_Ou3waNKhcpMY50Q5ZXFFluNQG4XPhKaSSQwUyNPpiwF5PeUcNeAWmEpKyrWFQWrVF6lTpzYj4fqzTlDhVhwdDye7WS7KArwNyT754PM36qyMdkd3Sf3Ekqlh2u3ekBu-e4hubvFXfiIHJ_O5sds2scmEfr9J7ggjZLpC4p3u3QWmwrp4WoZ2yao6Rz9eHmBGiX00xYP6GNydjQ7_XDCkioDawFrLVkIWLrktpWOm6DrvOamDEo5zbWsfC68VioA0rBFbpSx2svAvXUA9ATyofEnZNL1nX9GaKiLUDtAfALGAg9a1nmLQSgAzvOlysibwXrN1Zp8o9nQLEdbN2DrJtq6KTIyRQNvvkTi7PhDf3PRpH3YGCHzygLsMhXkZVNZY4OwoXU6eAhILiMHw_I0aTcvmtH3MvJqMwz7EIsrpvP9Kn4DSFLVZZWRp-vV3MxE5ID6wJkyonfWeWequyPd5Y_I9Y2tzRJAbEbeDi4xzuvfttj__994Tu6U6KXxWc4BmSxvVv4FgKulfZl20C8TlhaG
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucABlXfagozEDSI5sR3bxz62LUj0Qiv1FtmJXXogi7q7_78z3jx2oRy4xj5Y4xnP54zn-wA-ae5scHg7aaSLuQxW5a5pbK6F9MJI1dqWmpO_X1TnV_Lbtbrum8IWw2v3oSSZTuqx2Y2kkXlO8qvoRXT3eQxPFN3dqUQ7cY6XmtSYptogSSrLDYYaSXwuYiIxU0RapiduTFVKzOl9kl2DaE3lq6RSVxR5pXnVd988vKytDJeEAB5Cr38_wvyjEpsS3OkuPO-RKTtcu9ILeBS6l_Bsg6_wFZxdzi7O8qN5agxhP36h27Ekk75g9D-XzVIjITtcLVOrBHNdy05ub0iXhH3d4P58DVens8vj87xXYsgbxFfLPEYqVwrfqFa4aCy3wpVR69YIo6rAZTBaR0QXvuBOO2-CiiL4FsGdJA408QZ2unkX3gGLtoi2RZQncSyKaJTlDR08EbFdKHUGnwfr1b_XhBv1SK2cbF2jretk67rI4IgMPM4ksuz0YX53U_exVzupeOURarkKc7GrvPNR-ti0JgY8hNoMDobtqfsIXtSipBqlwft7Bh_HYYw9Kqi4LsxXaQ6iR23LKoO3690cVyI5Ij10pgzM1j5vLXV7pLv9mfi9qZ1ZIXDN4MvgEtO6_m2Lvf-bvg9PS_La9DTnAHaWd6vwHgHW0n9I8XQPXuQRuA
  priority: 102
  providerName: Springer Nature
Title TENG-Boosted Smart Sports with Energy Autonomy and Digital Intelligence
URI https://link.springer.com/article/10.1007/s40820-025-01778-1
https://www.ncbi.nlm.nih.gov/pubmed/40397052
https://www.proquest.com/docview/3207688837
https://www.proquest.com/docview/3206237926
https://pubmed.ncbi.nlm.nih.gov/PMC12095839
https://doaj.org/article/a4506b658a6847a6babf4bfcd8fe005d
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BcoED4pssS2UkbhCRxnZsH5tu2wWJCsGutLfITmzYAynabf8_M07apnyIC5dEin2wnsee54znDcBrlVnjLZ5OamFDKryRqa1rkyouHNdCNqah5OSPy-LsQny4lJeDUl90J6yTB-6Ae2eFzAqHftIWuJHawlkXhAt1o4NHC2po90WfNzhMoSXliioy7eODVFZZDFRqBGm68L2QmSThMrXXx5S5QL_eO9qOSCsKYcVKdeNxWqis6DNwYh4eVW3OUqoMiwZOx7IDLxeLAfyJwf5-EfOXaGx0cvMHcL9np2zSofIQbvn2EdwbaBY-hsX5bLlIy1VMDmFfviOCLJZKv2H0T5fNYjIhm2zWMV2C2bZhp1dfqTYJez_Q_3wCF_PZ-fQs7asxpDVyrHUaAoUsuatlw23QJjPc5kGpRnMtC58Jr5UKyDDcOLPKOu1l4N41SPAE6aDxp3DUrlr_HFgw42AaZHoC2wIPWpqsps0nIL_zuUrgzRa96kcnulHt5JUj1hViXUWsq3ECJQG860mC2fEDmlHVm1H1LzNK4GQ7PVW_im8qnlOcUuMZPoFXu2ZcfxRUsa1fbWIfZJDK5EUCz7rZ3I1EZMj20JgS0AfzfDDUw5b26lvU-KaUZonkNYG3W5PYj-vvWBz_DyxewN2cbDle2jmBo_X1xr9E6rV2I7it54sR3JmUp-Uc3-Vs-ekzfp3mgp7FdBTX4U8jxyRZ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaCE0QksR0nB4Raui_a7oWt1FvqJHbpgaR0d4X4U_xGZpxks8vr1us6irzj8cznjOf7AF6pQKdG4-mkENr6wqTS10WR-oqLnCdClmlJzclH03h8LD6dyJMt-Nn1wtC1yi4mukBd1gV9I3_HI6oZJXie-nDxzSfVKKqudhIajVscmB_f8cg2fz_Zx_V9HUXDwezj2G9VBfwCscLCt5ZKbzwvZMm1TVI80uvIKlUmPJGxCYRJlLKYKfMw0ErniZGWm7xEoCKIz4vje6_BdcExk1Nn-nDU-W-kSAeqr0qSmLNY48YRxCTDe_o0SXRpqmfllJFANNGm9wa-KyqcOX28MPRjFcRt34_r_iOt6MAnPVrcVnQY3MitToLgb7j5z-ufv9WAXWod3oHbLSZmu40T34UtU92DW2tMifdhNBtMR_5e7VpS2Oev6PDMCbTPGX1JZgPXwsh2lwvXpMF0VbL98zNSRGGTNdbRB3B8Jav1ELarujKPgdk0tGmJ-FLgmOU2kWlQUMiziCpNpDx401kvu2ioPrIVqbOzdYa2zpyts9CDPTLw6kmi6XY_1JdnWbvrMy1kEOcI8nSMKEDHuc6tyG1RJtZg-Cs92OmWJ2tjxzzrPd2Dl6th3PVUytGVqZfuGcStKo1iDx41q7maiQjQM9GZPEg21nljqpsj1fkXxyxOjdQSIbMHbzuX6Of1b1s8-f_feAE3xrOjw-xwMj14Cjcj8lh3IWgHtheXS_MMYd0if-72EoPTq968vwDyvVEc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8anYTggPgmMMBIcIJoSWzHzoFDR9utHVRI26TdMiexxw6k09oK8V_xJ_Kem_QDxoHDrrUVWe_D_rnP7_cDeKsik1mDt5NSGBcKm8nQlGUWKi4KroWssoqak7-M04MTMTqVp1vwq-2F8a_d25LkoqeBWJrq2e5l5XaXjW8kkxyFJMWKEUX3oOZZ5aH9-QMvbdOPwx56-F2SDPrHnw7CRlcgLBEtzELnqPjGi1JW3Did4aXeJE6pSnMtUxsJq5VyeFYWcWSUKbSVjtuiQqgiiNGL43dvwbZOMUM7sN3tjo5GbQwnirSgVpVJEnQWa_w4gthk-IpCTRJlmloxc8pEIKJojvgFhFdUPPMaeXEcpipKm96f6w2xcb56GYLrsPPfT0D_qAP743VwH-41uJh1F4H8ALZs_RDurrElPoL94_54P9yb-LYUdvQdg555kfYpo3-TWd-3MbLufOYbNZipK9a7OCdVFDZcYx59DCc34q8n0KkntX0GzGWxyyrEmALHHHdaZlFJ255DZGkTFcD71nr55YLuI18SO3tb52jr3Ns6jwPYIwMvZxJVt_9hcnWeN5mfGyGjtECgZ1JEAiYtTOFE4cpKO4tbYBXATuuevNk_pjlPqEKqNccVvVkOY-ZTOcfUdjL3cxC7qixJA3i68OZyJSJCnInBFIDe8PPGUjdH6otvnl2cmqklwuYAPrQhsVrXv23x_P-mv4bbX3uD_PNwfPgC7iQUwP6N0A50Zldz-xKR3qx41SQXg7Obzuff1ppTnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TENG-Boosted+Smart+Sports+with+Energy+Autonomy+and+Digital+Intelligence&rft.jtitle=Nano-micro+letters&rft.au=Wang%2C+Yunlu&rft.au=Gao%2C+Zihao&rft.au=Wu%2C+Wei&rft.au=Xiong%2C+Yao&rft.date=2025-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=17&rft.issue=1&rft.spage=265&rft_id=info:doi/10.1007%2Fs40820-025-01778-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon