Replication of single viruses across the kingdoms, Fungi, Plantae, and Animalia
It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members charac...
Saved in:
Published in | Proceedings of the National Academy of Sciences Vol. 121; no. 25; p. e2318150121 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Proceedings of the National Academy of Sciences
18.06.2024
National Academy of Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family
Partitiviridae
could cross multiple kingdoms.
Partitiviridae
accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungus
Rosellinia necatrix
could replicate in protoplasts of the carrot (
Daucus carota
),
Nicotiana benthamiana
and
Nicotiana tabacum
, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm
Spodoptera frugiperda
and the fruit fly
Drosophila melanogaster
. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution. |
---|---|
AbstractList | Viruses generally have narrow host ranges due to constraints imposed at various steps of infection, and they rarely cross kingdom barriers. We have found that single fungal partitiviruses with a bipartite double-stranded RNA (dsRNA) genome can replicate in tobacco cells transfected with purified particles and systemically infect whole carrot plants regenerated from transfected protoplasts. There are five partitivirus genera based on phylogeny and hosts. Members of
Betapartitivirus
showed greater replication in plant cells than members of
Alphapartitivirus
. Both alpha- and beta-partitiviruses were capable of entering spontaneously without any transfection reagent and replicating in two insect cell lines from
Spodoptera frugiperda
and
Drosophila melanogaster
. Our results indicate the replicability of single dsRNA viruses in members of three terrestrial kingdoms: Fungi, Plantae, and Animalia.
It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family
Partitiviridae
could cross multiple kingdoms.
Partitiviridae
accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungus
Rosellinia necatrix
could replicate in protoplasts of the carrot (
Daucus carota
),
Nicotiana benthamiana
and
Nicotiana tabacum
, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm
Spodoptera frugiperda
and the fruit fly
Drosophila melanogaster
. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution. It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution.It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution. It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution. It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungus Rosellinia necatrix could replicate in protoplasts of the carrot ( Daucus carota ), Nicotiana benthamiana and Nicotiana tabacum , in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster . Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution. It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family could cross multiple kingdoms. accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungus could replicate in protoplasts of the carrot ( ), and , in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm and the fruit fly . Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution. |
Author | Ryusei Kuwata Hideki Kondo Kiwamu Hyodo Nobuhiro Suzuki Paul Telengech Hiroaki Ichikawa |
Author_xml | – sequence: 1 givenname: Paul orcidid: 0000-0001-8890-620X surname: Telengech fullname: Telengech, Paul organization: Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan – sequence: 2 givenname: Kiwamu orcidid: 0000-0003-3849-7975 surname: Hyodo fullname: Hyodo, Kiwamu organization: Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan – sequence: 3 givenname: Hiroaki orcidid: 0000-0002-1898-8235 surname: Ichikawa fullname: Ichikawa, Hiroaki organization: Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8634, Japan – sequence: 4 givenname: Ryusei orcidid: 0009-0003-0116-8366 surname: Kuwata fullname: Kuwata, Ryusei organization: Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan – sequence: 5 givenname: Hideki orcidid: 0000-0001-9220-5350 surname: Kondo fullname: Kondo, Hideki organization: Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan – sequence: 6 givenname: Nobuhiro orcidid: 0000-0003-0097-9856 surname: Suzuki fullname: Suzuki, Nobuhiro organization: Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan |
BackLink | https://cir.nii.ac.jp/crid/1873962441311655680$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/38865269$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1v1DAUtFArupSeuSFLcOCwaf38FedUVRWFSpWKEJwtx3nZGrL2EieV-Pd4uy3QSr3Ykt_MeN7MK7IXU0RC3gA7BlaLk010-ZgLMKAYcHhBFsAaqLRs2B5ZMMbrykguD8hRzqFl5YHJgnhJDoQxWnHdLMj1V9wMwbsppEhTT3OIqwHpbRjnjJk6P6ac6XSD9GeZdGmdl_RijquwpF8GFyeHS-piR89iWLshuNdkv3dDxqP7-5B8v_j47fxzdXX96fL87KrySsNU9a1G71Qx7rAzqje-l9zrGlXnNLYCfMu8YhoapZrOGF6b2iuhOPpOQo_ikJzudDdzu8bOY5xGN9jNWGyMv21ywT6exHBjV-nWAkAjFeNF4cO9wph-zZgnuw7Z41C2wjRnK5ium2KwZgX67gn0R5rHWPYrqJqX8LXRBfX2f0t_vTyEXQBqB7gLdcTe-jDdJV8chsECs9te7bZX-6_Xwjt5wnuQfp7xfseIIZRPtieYWjSaSwkCQCulDRN_APvprvw |
CitedBy_id | crossref_primary_10_3390_v16091483 crossref_primary_10_1146_annurev_micro_041522_105358 |
Cites_doi | 10.1094/PHYTO-97-3-0278 10.1128/jvi.70.11.8155-8159.1996 10.1016/j.virol.2018.02.005 10.1128/JVI.01070-20 10.1038/s41598-017-02017-3 10.1016/0014-4827(68)90403-5 10.1016/j.virusres.2020.197942 10.1128/JVI.02835-12 10.1146/annurev-ento-033020-090410 10.1073/pnas.0304346101 10.1371/journal.ppat.1011726 10.1073/pnas.93.18.9465 10.1016/j.virusres.2014.04.007 10.1073/pnas.1608013113 10.1016/j.pbi.2015.06.013 10.1128/JVI.76.15.7747-7759.2002 10.1073/pnas.64.3.843 10.1016/j.virusres.2015.10.017 10.1038/nature20167 10.1038/s41579-021-00665-x 10.1073/pnas.081288198 10.1016/bs.aivir.2020.08.001 10.1073/pnas.2319582121 10.1016/B978-0-12-814515-9.00101-6 10.1007/s00705-018-3880-0 10.1007/BF00390305 10.1094/MPMI-21-8-1015 10.1016/B978-0-12-809633-8.21517-3 10.1016/j.virusres.2017.10.020 10.1016/B978-0-12-809633-8.21320-4 10.1128/JVI.00264-21 10.3390/v5102512 10.1016/0042-6822(88)90282-6 10.1146/annurev.phyto.121407.093958 10.1093/nar/gkv239 10.1098/rstb.2010.0057 10.1007/s11240-011-0078-5 10.1073/pnas.1714916114 10.1016/j.jviromet.2016.03.005 10.1073/pnas.0502604102 10.1099/jgv.0.000985 10.1038/s41579-020-0408-x 10.1016/j.crviro.2020.100001 10.1038/s41438-019-0150-6 10.1016/B978-0-12-394315-6.00003-9 10.1128/JVI.01830-09 10.1016/j.cell.2022.08.023 10.1073/pnas.1915996117 10.1038/nri2824 10.1371/journal.ppat.1008467 10.1016/0014-5793(87)81191-2 10.1094/MPMI-10-19-0281-FI 10.1038/s41598-022-11403-5 10.1111/j.1600-065X.2008.00722.x 10.1111/nph.15364 10.1094/MPMI-18-1069 10.3390/biology11010095 10.1126/science.1128214 10.1146/annurev-virology-111821-122539 10.3389/fmicb.2020.01064 10.1094/MPMI-05-11-0110 10.1073/pnas.2536857100 10.1016/j.virol.2017.09.008 10.1016/j.virol.2011.02.017 10.1038/s41564-023-01579-5 10.1128/JVI.00955-10 10.1016/B978-0-12-385987-7.00002-6 10.3390/v11050448 10.1073/pnas.87.1.434 10.1371/journal.ppat.1002146 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Jun 18, 2024 Copyright © 2024 the Author(s). Published by PNAS. 2024 |
Copyright_xml | – notice: Copyright National Academy of Sciences Jun 18, 2024 – notice: Copyright © 2024 the Author(s). Published by PNAS. 2024 |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2318150121 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | PMC11194502 38865269 10_1073_pnas_2318150121 |
Genre | Journal Article |
GrantInformation_xml | – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 22F22095 21H05035 21K18222 16H06436 16H06429 and 16K21723 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 23H02214 and 23K18029 – fundername: ; grantid: 23H02214 and 23K18029 – fundername: ; grantid: 22F22095 21H05035 21K18222 16H06436 16H06429 and 16K21723 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW RYH SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c561t-fb6eca5150aed85f8cf42c67e5da6eb31cb0c50619559d882787c5352ecd41fe3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:29:32 EDT 2025 Fri Jul 11 01:38:24 EDT 2025 Mon Jun 30 09:59:17 EDT 2025 Wed Feb 19 02:17:52 EST 2025 Thu Apr 24 23:08:35 EDT 2025 Tue Jul 01 02:37:11 EDT 2025 Thu Jun 26 21:52:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | Animalia partitivirus fungal virus cross-kingdom infection Plantae |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c561t-fb6eca5150aed85f8cf42c67e5da6eb31cb0c50619559d882787c5352ecd41fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Reed Wickner, NIH, Bethesda, MD; received October 24, 2023; accepted May 10, 2024 |
ORCID | 0000-0003-0097-9856 0000-0001-9220-5350 0000-0002-1898-8235 0000-0003-3849-7975 0000-0001-8890-620X 0009-0003-0116-8366 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11194502 |
PMID | 38865269 |
PQID | 3072012686 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11194502 proquest_miscellaneous_3067915070 proquest_journals_3072012686 pubmed_primary_38865269 crossref_citationtrail_10_1073_pnas_2318150121 crossref_primary_10_1073_pnas_2318150121 nii_cinii_1873962441311655680 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-18 |
PublicationDateYYYYMMDD | 2024-06-18 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2024 |
Publisher | Proceedings of the National Academy of Sciences National Academy of Sciences |
Publisher_xml | – name: Proceedings of the National Academy of Sciences – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_63_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 Iwasaki A. (e_1_3_4_7_2) 2023 e_1_3_4_71_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 Fukushi T. (e_1_3_4_9_2) 1969 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_34_2 doi: 10.1094/PHYTO-97-3-0278 – ident: e_1_3_4_67_2 doi: 10.1128/jvi.70.11.8155-8159.1996 – ident: e_1_3_4_48_2 doi: 10.1016/j.virol.2018.02.005 – ident: e_1_3_4_25_2 doi: 10.1128/JVI.01070-20 – ident: e_1_3_4_19_2 doi: 10.1038/s41598-017-02017-3 – ident: e_1_3_4_68_2 doi: 10.1016/0014-4827(68)90403-5 – ident: e_1_3_4_11_2 doi: 10.1016/j.virusres.2020.197942 – ident: e_1_3_4_59_2 doi: 10.1128/JVI.02835-12 – ident: e_1_3_4_3_2 doi: 10.1146/annurev-ento-033020-090410 – ident: e_1_3_4_45_2 doi: 10.1073/pnas.0304346101 – ident: e_1_3_4_18_2 doi: 10.1371/journal.ppat.1011726 – ident: e_1_3_4_20_2 doi: 10.1073/pnas.93.18.9465 – ident: e_1_3_4_30_2 doi: 10.1016/j.virusres.2014.04.007 – ident: e_1_3_4_14_2 doi: 10.1073/pnas.1608013113 – ident: e_1_3_4_58_2 doi: 10.1016/j.pbi.2015.06.013 – ident: e_1_3_4_69_2 doi: 10.1128/JVI.76.15.7747-7759.2002 – ident: e_1_3_4_62_2 doi: 10.1073/pnas.64.3.843 – ident: e_1_3_4_35_2 doi: 10.1016/j.virusres.2015.10.017 – ident: e_1_3_4_24_2 doi: 10.1038/nature20167 – ident: e_1_3_4_1_2 doi: 10.1038/s41579-021-00665-x – ident: e_1_3_4_22_2 doi: 10.1073/pnas.081288198 – ident: e_1_3_4_33_2 doi: 10.1016/bs.aivir.2020.08.001 – ident: e_1_3_4_17_2 doi: 10.1073/pnas.2319582121 – ident: e_1_3_4_61_2 doi: 10.1016/B978-0-12-814515-9.00101-6 – ident: e_1_3_4_27_2 doi: 10.1007/s00705-018-3880-0 – ident: e_1_3_4_40_2 doi: 10.1007/BF00390305 – ident: e_1_3_4_44_2 doi: 10.1094/MPMI-21-8-1015 – ident: e_1_3_4_36_2 doi: 10.1016/B978-0-12-809633-8.21517-3 – ident: e_1_3_4_2_2 doi: 10.1016/j.virusres.2017.10.020 – ident: e_1_3_4_8_2 doi: 10.1016/B978-0-12-809633-8.21320-4 – ident: e_1_3_4_15_2 doi: 10.1128/JVI.00264-21 – ident: e_1_3_4_55_2 doi: 10.3390/v5102512 – ident: e_1_3_4_51_2 doi: 10.1016/0042-6822(88)90282-6 – ident: e_1_3_4_52_2 doi: 10.1146/annurev.phyto.121407.093958 – ident: e_1_3_4_70_2 doi: 10.1093/nar/gkv239 – volume-title: Fields Virology year: 2023 ident: e_1_3_4_7_2 – ident: e_1_3_4_23_2 doi: 10.1098/rstb.2010.0057 – ident: e_1_3_4_42_2 doi: 10.1007/s11240-011-0078-5 – ident: e_1_3_4_13_2 doi: 10.1073/pnas.1714916114 – ident: e_1_3_4_72_2 doi: 10.1016/j.jviromet.2016.03.005 – ident: e_1_3_4_54_2 doi: 10.1073/pnas.0502604102 – ident: e_1_3_4_31_2 doi: 10.1099/jgv.0.000985 – ident: e_1_3_4_47_2 doi: 10.1038/s41579-020-0408-x – ident: e_1_3_4_46_2 doi: 10.1016/j.crviro.2020.100001 – ident: e_1_3_4_43_2 doi: 10.1038/s41438-019-0150-6 – ident: e_1_3_4_32_2 doi: 10.1016/B978-0-12-394315-6.00003-9 – ident: e_1_3_4_71_2 doi: 10.1128/JVI.01830-09 – ident: e_1_3_4_28_2 doi: 10.1016/j.cell.2022.08.023 – ident: e_1_3_4_12_2 doi: 10.1073/pnas.1915996117 – ident: e_1_3_4_5_2 doi: 10.1038/nri2824 – ident: e_1_3_4_26_2 doi: 10.1371/journal.ppat.1008467 – ident: e_1_3_4_63_2 doi: 10.1016/0014-5793(87)81191-2 – ident: e_1_3_4_10_2 doi: 10.1094/MPMI-10-19-0281-FI – ident: e_1_3_4_60_2 doi: 10.1038/s41598-022-11403-5 – ident: e_1_3_4_4_2 doi: 10.1111/j.1600-065X.2008.00722.x – ident: e_1_3_4_37_2 doi: 10.1111/nph.15364 – ident: e_1_3_4_50_2 doi: 10.1094/MPMI-18-1069 – ident: e_1_3_4_49_2 doi: 10.3390/biology11010095 – ident: e_1_3_4_57_2 doi: 10.1126/science.1128214 – start-page: 279 volume-title: Viruses, Vectors, and Vegetation year: 1969 ident: e_1_3_4_9_2 – ident: e_1_3_4_16_2 doi: 10.1146/annurev-virology-111821-122539 – ident: e_1_3_4_41_2 doi: 10.3389/fmicb.2020.01064 – ident: e_1_3_4_64_2 doi: 10.1094/MPMI-05-11-0110 – ident: e_1_3_4_53_2 doi: 10.1073/pnas.2536857100 – ident: e_1_3_4_65_2 doi: 10.1016/j.virol.2017.09.008 – ident: e_1_3_4_66_2 doi: 10.1016/j.virol.2011.02.017 – ident: e_1_3_4_29_2 doi: 10.1038/s41564-023-01579-5 – ident: e_1_3_4_39_2 doi: 10.1128/JVI.00955-10 – ident: e_1_3_4_6_2 doi: 10.1016/B978-0-12-385987-7.00002-6 – ident: e_1_3_4_56_2 doi: 10.3390/v11050448 – ident: e_1_3_4_21_2 doi: 10.1073/pnas.87.1.434 – ident: e_1_3_4_38_2 doi: 10.1371/journal.ppat.1002146 |
SSID | ssib000204109 ssib000312835 ssib000160087 ssib000721119 ssib000109771 ssib057178532 ssib000314874 ssib008499388 ssib006676991 ssib006542606 ssib025858510 ssib006542605 ssib002800413 ssib045322742 ssib041190490 ssib000403917 ssib000829783 ssib000458131 ssib001135241 ssib012600728 ssib017386936 ssib000412910 ssib000615338 ssib002043135 ssib000637867 ssib000709541 ssib005580803 ssib008799155 ssib004374515 ssib000070785 ssj0009580 ssib001535634 ssib026260865 ssib047635635 ssib014647963 ssib000709528 ssib001429202 ssib000750030 ssib058494116 ssib007438979 ssib006727229 ssib001535633 ssib053845206 |
Score | 2.4844644 |
Snippet | It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously... Viruses generally have narrow host ranges due to constraints imposed at various steps of infection, and they rarely cross kingdom barriers. We have found that... |
SourceID | pubmedcentral proquest pubmed crossref nii |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2318150121 |
SubjectTerms | Animalia Animals Biological Sciences Cell lines Daucus carota Daucus carota - microbiology Daucus carota - virology Double-stranded RNA Drosophila melanogaster Electrophoresis Flowers & plants Fungal Viruses - classification Fungal Viruses - genetics Fungal Viruses - physiology Fungi Host plants Host preferences Host range Insects Nicotiana - microbiology Nicotiana - virology Nicotiana benthamiana Nicotiana tabacum Partitiviridae Phylogeny Plant Diseases - microbiology Plant Diseases - virology Plant viruses Plantae Protoplasts Protoplasts - virology Replication RNA Viruses - genetics RNA Viruses - physiology Rosellinia necatrix Spodoptera - microbiology Spodoptera - virology Spodoptera frugiperda Virions Virus Replication |
Title | Replication of single viruses across the kingdoms, Fungi, Plantae, and Animalia |
URI | https://cir.nii.ac.jp/crid/1873962441311655680 https://www.ncbi.nlm.nih.gov/pubmed/38865269 https://www.proquest.com/docview/3072012686 https://www.proquest.com/docview/3067915070 https://pubmed.ncbi.nlm.nih.gov/PMC11194502 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7cFEoupenTbVK20EOKLdfWYyUdTWgwhbo-OJCbWK1WRDSWg2XXpH-pf7Iz-5DkxIU2F2H09s6nmW9250HIx9BNwerFwgFrgsuMQ-6kUS6dUAaxiHnGM6mqfU7Z5ML_ehlcdjq_W1FLm3U6EL_25pU8RKqwD-SKWbL_Idn6prADfoN8YQsShu0_yRjYs51zQ9KHbv-17P0sVptKVj2uLKBiljgfni31rMo5fN5qCR_7Fa25tPGb47JY4KRHm67OavNW2WCCqZ09HDe5KEZBVD2nN5s2nY3nUrVpEfdCECe34AwrFVNs-WJTw1NcFT_4VtHZSbFaArltVpq23PDcW_hzRXuywvUxqMro11at772v2NbSLlhOX-dWD6RWzMBrHObr1qK15tbJ1QaiOoH6nkkAHYZ9jEteDYDLRkCAzWUtgNwsFEK8KGLYcb2xjXXE4uzbGViF2A-wcOljF3wSFUU6aVd4jnS-k3l5W0cq9D7fefgheWKftMOGHpVFsc_RuRuv2yJA82fkqfFc6FjD8Ih0ZPmcHNlxpaemgPmnF-R7C5d0mVONS2pwSTUuKYCJWlz2qUJlnxpM9ikgklpEviQX51_mZxPHNO5wBNDxtZOnTAoOTHnIZRYFeSRy3xUMvv-MM5l6I5EORQBMEssfZuDjgdUQWGdIiswf5dJ7RQ7KZSnfEJoJPoLRjjOhQg9yHuS-yGMg9ZLJkcy7ZGAHMBGmqj02V7lOVHRF6CU4-Ekz-F1yWl9wowu6_P3UE5AI3Ba3oyj0YgZkGOtTMazbN-ySYyurxGiFKgGbCZzaZRHrkg_1YdDZuBDHS7nc4DksjNETg1u81qKt38Uio0uiHaHXJ2A9-N0jZXGl6sJbgL59-KXvyGHz2R6Tg_VqI0-Ada_T9wrtfwAgP9ZD |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication+of+single+viruses+across+the+kingdoms%2C+Fungi%2C+Plantae%2C+and+Animalia&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Telengech%2C+Paul&rft.au=Hyodo%2C+Kiwamu&rft.au=Ichikawa%2C+Hiroaki&rft.au=Kuwata%2C+Ryusei&rft.date=2024-06-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=121&rft.issue=25&rft_id=info:doi/10.1073%2Fpnas.2318150121&rft_id=info%3Apmid%2F38865269&rft.externalDocID=PMC11194502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |