p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs

The epithelial to mesenchymal transition (EMT) has been recently associated with a stem cell phenotype. In breast cancer cell lines and tumours, p53 directly targets the expression of microRNAs that have been shown to inhibit EMT and stem cells regulators. The epithelial–mesenchymal transition (EMT)...

Full description

Saved in:
Bibliographic Details
Published inNature cell biology Vol. 13; no. 3; pp. 317 - 323
Main Authors Chang, Chun-Ju, Chao, Chi-Hong, Xia, Weiya, Yang, Jer-Yen, Xiong, Yan, Li, Chia-Wei, Yu, Wen-Hsuan, Rehman, Sumaiyah K., Hsu, Jennifer L., Lee, Heng-Huan, Liu, Mo, Chen, Chun-Te, Yu, Dihua, Hung, Mien-Chie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The epithelial to mesenchymal transition (EMT) has been recently associated with a stem cell phenotype. In breast cancer cell lines and tumours, p53 directly targets the expression of microRNAs that have been shown to inhibit EMT and stem cells regulators. The epithelial–mesenchymal transition (EMT) has recently been linked to stem cell phenotype 1 , 2 . However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties 3 , 4 and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT–MET (mesenchymal–epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53–miR-200c pathway.
AbstractList The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT-MET (mesenchymal-epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53-miR-200c pathway.The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT-MET (mesenchymal-epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53-miR-200c pathway.
The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT-MET (mesenchymal-epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53-miR-200c pathway.
Epithelial mechenchymal transition (EMT) has recently been linked to stem cell phenotype 1 , 2 . However, the molecular mechanism involving regulation of EMT and stemness remains elusive. Here, using genomic approaches, we discovered that tumor suppressor p53 plays a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates EMT program, accompanied by increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties 3 , 4 and thereby reverts mesenchymal and stem cell-like phenotype caused by loss of p53 to differentiated epithelial cell phenotype. Furthermore, loss of p53 negatively correlates with miR-200c level but positively with increased expression of EMT and stemness markers as well as high tumor grade in a cohort of breast tumors. Together, this study elucidates a role of p53 in regulating EMT-MET (mechenchymal epithelial transition) and stemness or differentiation plasticity and reveals a potential therapeutic implication to suppress EMT associated-cancer stem cells through activation of p53-miR-200c pathway.
The epithelial to mesenchymal transition (EMT) has been recently associated with a stem cell phenotype. In breast cancer cell lines and tumours, p53 directly targets the expression of microRNAs that have been shown to inhibit EMT and stem cells regulators. The epithelial–mesenchymal transition (EMT) has recently been linked to stem cell phenotype 1 , 2 . However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties 3 , 4 and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT–MET (mesenchymal–epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53–miR-200c pathway.
The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype (1,2). However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties (3,4) and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT-MET (mesenchymal-epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53-miR-200c pathway.
Audience Academic
Author Xiong, Yan
Hung, Mien-Chie
Liu, Mo
Yu, Wen-Hsuan
Yang, Jer-Yen
Lee, Heng-Huan
Yu, Dihua
Hsu, Jennifer L.
Li, Chia-Wei
Xia, Weiya
Rehman, Sumaiyah K.
Chen, Chun-Te
Chang, Chun-Ju
Chao, Chi-Hong
AuthorAffiliation 1 Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
2 Center for Molecular Medicine, China Medical University Hospital; Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
3 Asian University, Taichung 413, Taiwan
AuthorAffiliation_xml – name: 2 Center for Molecular Medicine, China Medical University Hospital; Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
– name: 3 Asian University, Taichung 413, Taiwan
– name: 1 Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
Author_xml – sequence: 1
  givenname: Chun-Ju
  surname: Chang
  fullname: Chang, Chun-Ju
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 2
  givenname: Chi-Hong
  surname: Chao
  fullname: Chao, Chi-Hong
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 3
  givenname: Weiya
  surname: Xia
  fullname: Xia, Weiya
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 4
  givenname: Jer-Yen
  surname: Yang
  fullname: Yang, Jer-Yen
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Present address: Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
– sequence: 5
  givenname: Yan
  surname: Xiong
  fullname: Xiong, Yan
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 6
  givenname: Chia-Wei
  surname: Li
  fullname: Li, Chia-Wei
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 7
  givenname: Wen-Hsuan
  surname: Yu
  fullname: Yu, Wen-Hsuan
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 8
  givenname: Sumaiyah K.
  surname: Rehman
  fullname: Rehman, Sumaiyah K.
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 9
  givenname: Jennifer L.
  surname: Hsu
  fullname: Hsu, Jennifer L.
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 10
  givenname: Heng-Huan
  surname: Lee
  fullname: Lee, Heng-Huan
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 11
  givenname: Mo
  surname: Liu
  fullname: Liu, Mo
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 12
  givenname: Chun-Te
  surname: Chen
  fullname: Chen, Chun-Te
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 13
  givenname: Dihua
  surname: Yu
  fullname: Yu, Dihua
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center
– sequence: 14
  givenname: Mien-Chie
  surname: Hung
  fullname: Hung, Mien-Chie
  email: mhung@mdanderson.org
  organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Center for Molecular Medicine, China Medical University Hospital; Graduate Institute of Cancer Biology, China Medical University, Graduate Institute of Cancer Biology, China Medical University, Asian University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21336307$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9r1TAYxotM3B_FbyBFL6YXnUmTtM2NcBj-GQyFqdchS9-0GW3SJam4u30Hv6GfxJRz3DyHgeQiIfm9D08ensNszzoLWfYcoxOMSPPWqssS1-RRdoBpXRW0qvnecq5YURNe7meHIVwhhClF9ZNsv8SEVATVB1k7MZJ76OZBRgg5TCb2MBg5_L79NUIAq_qbUQ559NIGE42zubRtHiKMuYJhyCfvJvDRpOHYezd3fT66dpEztstHc_F5FZ5mj7UcAjzb7EfZ9w_vv51-Ks6_fDw7XZ0XilU4FlBqwCA5aSvSAJYtV1RTRWlNVYk0ayiSHJW40RXHJbQaCEMKMG9bjTTm5Ch7t9ad5ssRWgU22R7E5M0o_Y1w0ojtF2t60bkfIkWR1FkSON4IeHc9Q4hiNGH5prTg5iA4qjFrGkT_SzaMYd6UbCFf7pBXbvY25ZAgSnGDqipBr9ZQJwcQxmqX_KlFUqxKhsu6wnyxd_IAlVYLo1GpEdqk-62BN1sDiYnwM3ZyDkGcfb3YZl_8G95dan-7cv9l5V0IHvQdgpFYWig2LUxksUMqE-VSnuTXDA_wr9d8SIq2A38f0S76B5J769g
CitedBy_id crossref_primary_10_1016_j_molmed_2012_06_005
crossref_primary_10_1038_s41598_018_20043_7
crossref_primary_10_1007_s00018_022_04199_0
crossref_primary_10_1186_s12964_015_0106_x
crossref_primary_10_3904_kjim_2016_302
crossref_primary_10_3892_ol_2015_2988
crossref_primary_10_1371_journal_pone_0091938
crossref_primary_10_3892_ijmm_2017_3320
crossref_primary_10_1007_s43188_020_00067_w
crossref_primary_10_1158_0008_5472_CAN_17_1803
crossref_primary_10_1093_nar_gkr731
crossref_primary_10_1016_j_phymed_2018_08_003
crossref_primary_10_4236_ym_2021_53020
crossref_primary_10_1016_j_clgc_2015_01_003
crossref_primary_10_2174_0118761429263841230926014118
crossref_primary_10_3892_or_2015_4515
crossref_primary_10_1126_scisignal_2005189
crossref_primary_10_3390_jcm5120109
crossref_primary_10_1002_1878_0261_12316
crossref_primary_10_1371_journal_pone_0073268
crossref_primary_10_3389_fonc_2022_895112
crossref_primary_10_1073_pnas_1116107109
crossref_primary_10_3390_cimb46020094
crossref_primary_10_1186_s41236_017_0005_8
crossref_primary_10_3724_abbs_2023270
crossref_primary_10_3390_diagnostics12123052
crossref_primary_10_1016_j_tig_2012_05_005
crossref_primary_10_1016_j_bbagen_2014_02_004
crossref_primary_10_1038_onc_2013_55
crossref_primary_10_1128_MCB_01043_13
crossref_primary_10_1038_cdd_2017_171
crossref_primary_10_1007_s00018_020_03524_9
crossref_primary_10_3389_fcell_2021_718974
crossref_primary_10_1038_onc_2014_30
crossref_primary_10_1158_1541_7786_MCR_12_0274
crossref_primary_10_1002_stem_1219
crossref_primary_10_3390_cancers10060162
crossref_primary_10_1038_cddis_2017_525
crossref_primary_10_1074_jbc_M113_480285
crossref_primary_10_3390_cancers12103053
crossref_primary_10_3390_ijms23063092
crossref_primary_10_1016_j_ceb_2017_11_005
crossref_primary_10_1007_s10911_012_9244_6
crossref_primary_10_1021_acsami_6b05302
crossref_primary_10_1016_j_neo_2021_05_015
crossref_primary_10_1016_j_semcdb_2020_09_014
crossref_primary_10_3390_cancers14215176
crossref_primary_10_3389_fcell_2023_1083401
crossref_primary_10_1038_onc_2015_25
crossref_primary_10_1038_s41467_018_07538_7
crossref_primary_10_1038_ncomms9959
crossref_primary_10_1002_jcb_25974
crossref_primary_10_1172_JCI157279
crossref_primary_10_1038_s41368_021_00145_1
crossref_primary_10_18632_oncotarget_11062
crossref_primary_10_1007_s13277_013_1481_9
crossref_primary_10_3892_mmr_2014_3098
crossref_primary_10_1016_S1995_7645_14_60335_7
crossref_primary_10_3892_mmr_2020_11025
crossref_primary_10_3390_cancers10050148
crossref_primary_10_1242_dev_091751
crossref_primary_10_1007_s13238_014_0064_x
crossref_primary_10_3390_jpm11040264
crossref_primary_10_1158_0008_5472_CAN_14_2824
crossref_primary_10_1016_j_ajpath_2022_03_007
crossref_primary_10_1016_j_yexcr_2012_02_034
crossref_primary_10_1155_2015_865816
crossref_primary_10_1038_emm_2017_9
crossref_primary_10_1073_pnas_1212769110
crossref_primary_10_1016_j_freeradbiomed_2013_05_022
crossref_primary_10_1016_j_bios_2014_02_082
crossref_primary_10_3892_ijo_2015_3076
crossref_primary_10_1007_s11033_023_08720_x
crossref_primary_10_1038_s41419_018_1188_3
crossref_primary_10_18632_oncotarget_15530
crossref_primary_10_1038_s41598_018_27409_x
crossref_primary_10_1111_jcmm_12209
crossref_primary_10_1126_scisignal_2001744
crossref_primary_10_4161_19336918_2014_969998
crossref_primary_10_1002_jcb_26880
crossref_primary_10_1002_stem_1429
crossref_primary_10_1007_s11912_021_01019_9
crossref_primary_10_1038_nrendo_2017_76
crossref_primary_10_1016_j_aquatox_2017_10_021
crossref_primary_10_1007_s12272_019_01181_6
crossref_primary_10_1038_ncb3013
crossref_primary_10_1002_stem_1547
crossref_primary_10_1158_1541_7786_MCR_21_0098
crossref_primary_10_1242_jcs_258316
crossref_primary_10_1016_j_abb_2018_04_009
crossref_primary_10_6000_1927_7229_2015_04_04_4
crossref_primary_10_1155_2019_7407190
crossref_primary_10_1007_s10555_023_10132_z
crossref_primary_10_6000_1927_7229_2015_04_04_8
crossref_primary_10_3390_biom14040396
crossref_primary_10_1039_C8CC08107G
crossref_primary_10_1038_s41417_023_00724_w
crossref_primary_10_1002_cso2_1044
crossref_primary_10_3892_or_2015_4329
crossref_primary_10_1158_1078_0432_CCR_13_1687
crossref_primary_10_3389_fonc_2021_628814
crossref_primary_10_1186_s12935_022_02831_4
crossref_primary_10_1038_nrc3265
crossref_primary_10_1089_thy_2012_0319
crossref_primary_10_3390_cancers14040997
crossref_primary_10_1186_s43042_020_00125_w
crossref_primary_10_1007_s11307_017_1073_y
crossref_primary_10_1038_ncomms4472
crossref_primary_10_1038_s41420_017_0016_3
crossref_primary_10_1038_s41467_023_36439_7
crossref_primary_10_3892_ijo_2017_3846
crossref_primary_10_12998_wjcc_v3_i5_393
crossref_primary_10_1007_s12013_013_9801_7
crossref_primary_10_1039_D3NP00002H
crossref_primary_10_1111_cas_16122
crossref_primary_10_1016_j_bbrc_2019_01_101
crossref_primary_10_18632_oncotarget_4847
crossref_primary_10_1002_anie_201712920
crossref_primary_10_3390_cancers11020265
crossref_primary_10_3389_fonc_2015_00013
crossref_primary_10_4161_cc_20207
crossref_primary_10_1016_j_canlet_2015_01_010
crossref_primary_10_1093_nar_gkr646
crossref_primary_10_1111_j_1365_2443_2012_01623_x
crossref_primary_10_1155_2013_635203
crossref_primary_10_1155_2013_590393
crossref_primary_10_3892_ijo_2014_2487
crossref_primary_10_1186_s12943_019_1030_2
crossref_primary_10_1007_s13277_013_0831_y
crossref_primary_10_1002_ange_201712920
crossref_primary_10_1038_s41467_017_01500_9
crossref_primary_10_1016_j_molonc_2012_09_006
crossref_primary_10_1080_19336918_2020_1826216
crossref_primary_10_1186_s13062_024_00484_z
crossref_primary_10_1002_jbt_22567
crossref_primary_10_1038_cdd_2011_42
crossref_primary_10_1016_j_canlet_2012_12_010
crossref_primary_10_1111_cas_12699
crossref_primary_10_1016_j_lfs_2012_06_025
crossref_primary_10_1016_j_semcancer_2023_05_001
crossref_primary_10_1155_2012_254085
crossref_primary_10_1016_j_breast_2013_07_005
crossref_primary_10_1038_onc_2017_356
crossref_primary_10_1038_s41540_024_00378_w
crossref_primary_10_3892_ijo_2016_3415
crossref_primary_10_1021_acs_jnatprod_9b00102
crossref_primary_10_3390_cancers13071742
crossref_primary_10_1038_ncb2401
crossref_primary_10_1038_cddis_2014_395
crossref_primary_10_1172_JCI73351
crossref_primary_10_4161_cam_5_4_17524
crossref_primary_10_1073_pnas_1525735113
crossref_primary_10_1111_bpa_12240
crossref_primary_10_1517_14728222_2012_726985
crossref_primary_10_14701_ahbps_2021_25_3_315
crossref_primary_10_1038_s41419_022_04646_7
crossref_primary_10_1038_s41419_023_05618_1
crossref_primary_10_1093_nar_gkv703
crossref_primary_10_1158_0008_5472_CAN_16_0029
crossref_primary_10_1038_s41419_020_2340_4
crossref_primary_10_1007_s13402_017_0341_9
crossref_primary_10_1002_mc_21966
crossref_primary_10_1146_annurev_cellbio_092910_154036
crossref_primary_10_1186_s12967_014_0305_z
crossref_primary_10_1016_j_tice_2022_101802
crossref_primary_10_1038_cr_2011_62
crossref_primary_10_1002_advs_202105539
crossref_primary_10_1186_s13046_018_0988_8
crossref_primary_10_1093_carcin_bgs189
crossref_primary_10_3892_ijmm_2017_2894
crossref_primary_10_1038_nm_3336
crossref_primary_10_1038_s41598_018_32737_z
crossref_primary_10_1002_gcc_22729
crossref_primary_10_1093_carcin_bgu009
crossref_primary_10_3892_ijo_2017_3922
crossref_primary_10_1186_s12885_024_12736_2
crossref_primary_10_1186_s12964_014_0045_y
crossref_primary_10_1016_j_canlet_2012_08_004
crossref_primary_10_1016_j_lfs_2021_119405
crossref_primary_10_1002_jez_b_23139
crossref_primary_10_1074_jbc_M111_280768
crossref_primary_10_1158_0008_5472_CAN_14_3076
crossref_primary_10_1016_j_biopha_2018_05_157
crossref_primary_10_1038_onc_2017_241
crossref_primary_10_1152_ajpheart_00651_2014
crossref_primary_10_3390_cells11071185
crossref_primary_10_1002_bit_26791
crossref_primary_10_5966_sctm_2014_0020
crossref_primary_10_15252_embr_201949269
crossref_primary_10_3389_fgene_2015_00072
crossref_primary_10_4236_jct_2013_42A042
crossref_primary_10_1002_cbin_10087
crossref_primary_10_3390_ijms21093046
crossref_primary_10_1186_s12879_024_09375_0
crossref_primary_10_1016_j_cell_2015_07_001
crossref_primary_10_1016_j_cancergen_2020_08_005
crossref_primary_10_1186_s12935_023_02865_2
crossref_primary_10_4161_cc_10_16_16543
crossref_primary_10_15252_emmm_201404402
crossref_primary_10_2174_1566523221999210120210017
crossref_primary_10_15252_embj_201489574
crossref_primary_10_1186_2251_6581_12_31
crossref_primary_10_1038_onc_2012_58
crossref_primary_10_1016_j_bbrc_2019_03_207
crossref_primary_10_1155_2014_749724
crossref_primary_10_3390_ijms21249648
crossref_primary_10_1038_onc_2013_25
crossref_primary_10_1016_j_oraloncology_2015_07_006
crossref_primary_10_15406_ghoa_2017_07_00232
crossref_primary_10_1016_j_bbcan_2023_189060
crossref_primary_10_1007_s11596_014_1259_3
crossref_primary_10_1093_carcin_bgu073
crossref_primary_10_1007_s11684_018_0656_6
crossref_primary_10_1038_nature10888
crossref_primary_10_1007_s00018_015_1989_9
crossref_primary_10_3390_ijms17121982
crossref_primary_10_3892_or_2015_3750
crossref_primary_10_1038_nm_2577
crossref_primary_10_1074_jbc_M113_529172
crossref_primary_10_1074_jbc_M112_408104
crossref_primary_10_1016_j_molonc_2016_04_003
crossref_primary_10_1007_s10238_012_0186_5
crossref_primary_10_1016_j_gene_2017_10_018
crossref_primary_10_1038_s41467_019_11278_7
crossref_primary_10_1515_HMBCI_2011_122
crossref_primary_10_1007_s13277_016_5246_0
crossref_primary_10_2147_CMAR_S336265
crossref_primary_10_1038_srep23208
crossref_primary_10_1038_ncb3425
crossref_primary_10_1038_s41388_018_0352_7
crossref_primary_10_1007_s11010_014_2022_6
crossref_primary_10_1186_1423_0127_19_90
crossref_primary_10_1038_cddis_2013_427
crossref_primary_10_1165_rcmb_2015_0377OC
crossref_primary_10_1074_jbc_M110_214585
crossref_primary_10_1158_0008_5472_CAN_15_2704
crossref_primary_10_1128_MCB_00328_17
crossref_primary_10_4161_cc_10_11_15592
crossref_primary_10_1016_j_tox_2012_09_017
crossref_primary_10_1080_19336918_2019_1633851
crossref_primary_10_1016_j_envres_2025_121102
crossref_primary_10_1007_s12032_015_0619_6
crossref_primary_10_1016_j_bbrc_2014_11_018
crossref_primary_10_1038_s41416_020_01149_0
crossref_primary_10_1016_j_tcb_2011_06_005
crossref_primary_10_1186_bcr3037
crossref_primary_10_1155_2016_9604257
crossref_primary_10_1016_j_suronc_2014_03_001
crossref_primary_10_1038_srep00434
crossref_primary_10_1084_jem_20110235
crossref_primary_10_1155_2019_2531493
crossref_primary_10_1016_j_molmed_2011_08_002
crossref_primary_10_3389_fphys_2018_00941
crossref_primary_10_1186_s12964_018_0302_6
crossref_primary_10_3390_cancers13235874
crossref_primary_10_1155_2015_420891
crossref_primary_10_1074_jbc_RA119_007965
crossref_primary_10_4331_wjbc_v2_i9_202
crossref_primary_10_1155_2014_743050
crossref_primary_10_1136_gutjnl_2015_310838
crossref_primary_10_1093_carcin_bgv034
crossref_primary_10_1016_j_bbrc_2013_03_124
crossref_primary_10_1038_nature13839
crossref_primary_10_1074_jbc_M114_598383
crossref_primary_10_18632_oncotarget_4353
crossref_primary_10_3748_wjg_v22_i26_5971
crossref_primary_10_1038_cddis_2013_48
crossref_primary_10_1158_0008_5472_CAN_12_1739
crossref_primary_10_7554_eLife_01977
crossref_primary_10_1007_s10555_011_9344_6
crossref_primary_10_1007_s00428_017_2068_4
crossref_primary_10_1038_s41419_020_2393_4
crossref_primary_10_1155_2016_9231057
crossref_primary_10_1073_pnas_1902308116
crossref_primary_10_3390_cancers11121983
crossref_primary_10_1111_j_1442_2050_2012_01389_x
crossref_primary_10_1038_nrc3711
crossref_primary_10_1016_j_isci_2023_106321
crossref_primary_10_1088_2057_1976_ac7896
crossref_primary_10_4155_fmc_2023_0061
crossref_primary_10_1038_nm_3862
crossref_primary_10_1016_j_bbamcr_2020_118782
crossref_primary_10_1016_j_canlet_2017_01_039
crossref_primary_10_1016_j_jbior_2016_10_001
crossref_primary_10_3390_cells12020207
crossref_primary_10_1038_bjc_2014_153
crossref_primary_10_1038_cgt_2012_58
crossref_primary_10_1016_j_beem_2016_10_001
crossref_primary_10_1038_s41392_023_01347_1
crossref_primary_10_1016_j_stemcr_2020_08_003
crossref_primary_10_3389_fmolb_2017_00046
crossref_primary_10_1371_journal_pone_0072846
crossref_primary_10_3389_fmolb_2024_1404319
crossref_primary_10_1016_j_gene_2019_144126
crossref_primary_10_3390_genes10110852
crossref_primary_10_1007_s13237_017_0193_8
crossref_primary_10_3389_fnmol_2021_809878
crossref_primary_10_1371_journal_pone_0139307
crossref_primary_10_3389_fendo_2019_00152
crossref_primary_10_1021_acs_jmedchem_2c00472
crossref_primary_10_1155_2018_6979073
crossref_primary_10_1007_s10147_020_01649_2
crossref_primary_10_1021_acsptsci_4c00644
crossref_primary_10_1016_j_semcancer_2020_05_015
crossref_primary_10_1016_j_semcancer_2020_05_017
crossref_primary_10_1007_s00408_018_0150_6
crossref_primary_10_1007_s00441_011_1199_1
crossref_primary_10_1002_mc_22424
crossref_primary_10_1038_onc_2016_174
crossref_primary_10_3389_fmicb_2021_631183
crossref_primary_10_1038_sigtrans_2015_4
crossref_primary_10_1038_nm_2512
crossref_primary_10_1186_s40824_023_00467_7
crossref_primary_10_1002_ijc_31282
crossref_primary_10_1038_s41418_018_0103_x
crossref_primary_10_1093_nar_gkw739
crossref_primary_10_18632_oncotarget_5478
crossref_primary_10_1016_j_semcancer_2023_11_009
crossref_primary_10_1371_journal_pone_0049636
crossref_primary_10_1038_s41580_021_00448_5
crossref_primary_10_1038_cddis_2014_207
crossref_primary_10_1016_j_taap_2019_02_001
crossref_primary_10_18632_oncotarget_3052
crossref_primary_10_3892_ijmm_2015_2215
crossref_primary_10_1016_j_molmet_2019_01_014
crossref_primary_10_1038_modpathol_2013_93
crossref_primary_10_3390_genes7060026
crossref_primary_10_1038_cddis_2014_442
crossref_primary_10_1146_annurev_pathol_012615_044438
crossref_primary_10_1016_j_gene_2018_05_025
crossref_primary_10_4161_rna_20146
crossref_primary_10_1002_bies_201200089
crossref_primary_10_3390_jcm5020013
crossref_primary_10_3390_ijms140918319
crossref_primary_10_1016_j_canlet_2013_02_048
crossref_primary_10_1016_j_yexcr_2020_111817
crossref_primary_10_1016_j_cell_2016_06_028
crossref_primary_10_1186_s13046_015_0235_5
crossref_primary_10_1007_s00018_012_1122_2
crossref_primary_10_1007_s00438_014_0960_z
crossref_primary_10_1016_j_ceb_2016_06_002
crossref_primary_10_1002_1878_0261_12082
crossref_primary_10_1158_0008_5472_CAN_24_0821
crossref_primary_10_1186_s13045_016_0323_9
crossref_primary_10_1016_j_bcp_2012_06_007
crossref_primary_10_1002_mc_22564
crossref_primary_10_1007_s00109_015_1290_2
crossref_primary_10_1016_j_ejphar_2018_02_025
crossref_primary_10_1089_ars_2011_4280
crossref_primary_10_18632_oncotarget_5137
crossref_primary_10_1038_bjc_2013_308
crossref_primary_10_1038_ncomms9271
crossref_primary_10_1038_s41392_020_0200_4
crossref_primary_10_1038_srep02474
crossref_primary_10_1007_s12307_011_0089_0
crossref_primary_10_2144_000114019
crossref_primary_10_1016_j_canlet_2016_07_018
crossref_primary_10_1038_s41389_022_00397_4
crossref_primary_10_1038_s41419_023_06031_4
crossref_primary_10_1007_s11033_021_06706_1
crossref_primary_10_1016_j_bbrc_2011_07_069
crossref_primary_10_1038_onc_2016_467
crossref_primary_10_3390_cells8101143
crossref_primary_10_1038_ncb2976
crossref_primary_10_4137_CIN_S34141
crossref_primary_10_1016_j_semcancer_2024_06_001
crossref_primary_10_1002_jcp_24229
crossref_primary_10_1016_j_neo_2017_08_006
crossref_primary_10_1111_jop_12017
crossref_primary_10_1016_j_toxlet_2018_01_010
crossref_primary_10_3390_toxins15060360
crossref_primary_10_1371_journal_pgen_1002723
crossref_primary_10_4161_cbt_23296
crossref_primary_10_1158_1541_7786_MCR_18_1292
crossref_primary_10_1038_s41598_017_15360_2
crossref_primary_10_1097_CEJ_0000000000000793
crossref_primary_10_1186_s13046_020_1530_3
crossref_primary_10_2174_2211536612666230810094531
crossref_primary_10_1016_j_pbiomolbio_2023_06_003
crossref_primary_10_3390_jcm8050642
crossref_primary_10_1016_j_tcb_2020_12_011
crossref_primary_10_3892_ijo_2017_4025
crossref_primary_10_1007_s12020_019_02030_8
crossref_primary_10_21303_2504_5679_2016_00231
crossref_primary_10_1007_s40619_022_01048_x
crossref_primary_10_1016_j_omto_2020_01_010
crossref_primary_10_1002_ijc_27708
crossref_primary_10_1371_journal_pone_0091034
crossref_primary_10_3390_ijms21041334
crossref_primary_10_1371_journal_pone_0040849
crossref_primary_10_1097_MCD_0000000000000174
crossref_primary_10_1016_j_critrevonc_2020_102961
crossref_primary_10_1007_s00428_013_1508_z
crossref_primary_10_1371_journal_pone_0083545
crossref_primary_10_1097_SLA_0000000000000223
crossref_primary_10_1002_jcb_26196
crossref_primary_10_1111_cas_12426
crossref_primary_10_1371_journal_pone_0219317
crossref_primary_10_3390_v17030324
crossref_primary_10_3892_or_2014_3163
crossref_primary_10_18632_oncotarget_12863
crossref_primary_10_1002_ijc_33398
crossref_primary_10_1016_j_canlet_2012_05_014
crossref_primary_10_1074_jbc_M112_419168
crossref_primary_10_1155_2014_743450
crossref_primary_10_3892_or_2016_5098
crossref_primary_10_1007_s10555_013_9483_z
crossref_primary_10_1016_j_molcel_2019_09_030
crossref_primary_10_1002_stem_1183
crossref_primary_10_3892_or_2015_4113
crossref_primary_10_1038_nrc3447
crossref_primary_10_1016_j_celrep_2014_07_058
crossref_primary_10_1371_journal_pone_0068089
crossref_primary_10_1002_path_4478
crossref_primary_10_1007_s13273_018_0006_4
crossref_primary_10_1158_0008_5472_CAN_13_3367
crossref_primary_10_1038_onc_2013_332
crossref_primary_10_1038_s41598_022_24604_9
crossref_primary_10_1016_j_semcancer_2012_02_013
crossref_primary_10_3389_fonc_2018_00386
crossref_primary_10_1186_s12943_015_0370_9
crossref_primary_10_1016_j_urolonc_2015_03_016
crossref_primary_10_1038_s41388_018_0445_3
crossref_primary_10_3390_ijms22179589
crossref_primary_10_1038_nrc3318
crossref_primary_10_3390_ijms22052369
crossref_primary_10_3892_ijo_2015_3142
crossref_primary_10_1016_j_semnephrol_2012_04_004
crossref_primary_10_1158_1541_7786_MCR_20_0623
crossref_primary_10_1158_0008_5472_CAN_12_1223
crossref_primary_10_1016_j_molonc_2014_05_006
crossref_primary_10_1158_0008_5472_CAN_14_1119
crossref_primary_10_1016_j_isci_2023_106964
crossref_primary_10_1038_s41419_020_03327_7
crossref_primary_10_1158_0008_5472_CAN_22_1559
crossref_primary_10_1515_ejnm_2012_0006
crossref_primary_10_1016_j_molonc_2012_10_006
crossref_primary_10_1038_oncsis_2016_60
crossref_primary_10_1158_1541_7786_MCR_18_0238
crossref_primary_10_1002_pros_22968
crossref_primary_10_1186_s13058_017_0858_x
crossref_primary_10_1038_onc_2014_399
crossref_primary_10_3390_jcm5030037
crossref_primary_10_3389_fonc_2020_604124
crossref_primary_10_1177_1535370220909309
crossref_primary_10_1016_j_prp_2015_05_010
crossref_primary_10_1038_mt_2012_2
crossref_primary_10_1038_ncomms12632
crossref_primary_10_2174_1389201020666190617162042
crossref_primary_10_3390_cancers9080098
crossref_primary_10_3892_ijo_2013_1963
crossref_primary_10_1016_j_bbcan_2021_188565
crossref_primary_10_1016_j_lfs_2019_05_076
crossref_primary_10_7314_APJCP_2014_15_18_7489
crossref_primary_10_1002_wsbm_1252
crossref_primary_10_1038_s41388_021_01706_8
crossref_primary_10_1093_carcin_bgac062
crossref_primary_10_1111_boc_201100115
crossref_primary_10_3390_cancers9040038
crossref_primary_10_1016_j_ejmech_2018_09_008
crossref_primary_10_1186_s12943_017_0596_9
crossref_primary_10_1016_j_jtho_2024_04_019
crossref_primary_10_1186_s13069_015_0024_y
crossref_primary_10_1038_s41467_021_25403_y
crossref_primary_10_3390_cancers13030531
crossref_primary_10_1002_jcp_26379
crossref_primary_10_1007_s00109_016_1420_5
crossref_primary_10_1016_j_acra_2022_02_021
crossref_primary_10_1158_0008_5472_CAN_15_0079
crossref_primary_10_1016_j_mce_2016_12_026
crossref_primary_10_1038_onc_2013_427
crossref_primary_10_1080_19768354_2016_1150344
crossref_primary_10_1007_s00428_019_02532_w
crossref_primary_10_1016_j_prp_2023_154472
crossref_primary_10_4161_cc_22265
crossref_primary_10_1007_s00432_014_1840_y
crossref_primary_10_1016_j_omto_2020_04_007
crossref_primary_10_1586_14737140_2014_953935
crossref_primary_10_1111_jcmm_14090
crossref_primary_10_1016_j_ebiom_2019_05_002
crossref_primary_10_3892_ijo_2013_1825
crossref_primary_10_1002_jcp_28447
crossref_primary_10_1186_s13287_023_03239_1
crossref_primary_10_1002_stem_2472
crossref_primary_10_1093_carcin_bgt411
crossref_primary_10_1038_onc_2012_334
crossref_primary_10_1002_emmm_201302909
crossref_primary_10_1158_0008_5472_CAN_14_0584
crossref_primary_10_3390_cancers12113454
crossref_primary_10_1007_s13277_012_0355_x
crossref_primary_10_1016_j_celrep_2022_111819
crossref_primary_10_3389_fmolb_2020_00036
crossref_primary_10_1002_1873_3468_14258
crossref_primary_10_1073_pnas_1210353110
crossref_primary_10_1186_1756_8722_7_19
crossref_primary_10_1002_fft2_336
crossref_primary_10_1038_s41598_018_23240_6
crossref_primary_10_18632_oncotarget_4683
crossref_primary_10_1371_journal_pone_0129190
crossref_primary_10_4161_19336918_2014_983794
crossref_primary_10_18632_oncotarget_15829
crossref_primary_10_1038_cddis_2016_419
crossref_primary_10_1016_j_ab_2021_114243
crossref_primary_10_1371_journal_pone_0202065
crossref_primary_10_1083_jcb_201103097
crossref_primary_10_1002_jcb_24754
crossref_primary_10_3390_ijms22158334
crossref_primary_10_1126_science_abn7411
crossref_primary_10_3389_fonc_2021_641851
crossref_primary_10_1007_s12041_018_0881_4
crossref_primary_10_1016_j_febslet_2014_02_011
crossref_primary_10_1080_00365521_2021_1930144
crossref_primary_10_3892_or_2012_2173
crossref_primary_10_1002_med_21254
crossref_primary_10_18632_oncotarget_6879
crossref_primary_10_1007_s12094_012_0792_4
crossref_primary_10_1016_j_semcancer_2011_09_014
crossref_primary_10_1186_s12967_020_02242_x
crossref_primary_10_3390_biomedicines8100402
crossref_primary_10_1089_dna_2024_0181
crossref_primary_10_1128_MCB_00787_13
crossref_primary_10_1038_s41419_021_03392_6
crossref_primary_10_18632_oncotarget_2393
crossref_primary_10_1002_path_4298
crossref_primary_10_1111_cas_12713
crossref_primary_10_1158_0008_5472_CAN_16_1740
crossref_primary_10_1371_journal_pone_0083135
crossref_primary_10_1016_j_humpath_2016_04_011
crossref_primary_10_1016_j_gene_2014_11_047
crossref_primary_10_1080_15384101_2019_1616998
crossref_primary_10_1136_gutjnl_2011_301846
crossref_primary_10_1186_s12935_021_02414_9
crossref_primary_10_3390_cancers11101595
crossref_primary_10_1186_s12864_015_1707_x
crossref_primary_10_1007_s12022_016_9417_8
crossref_primary_10_1016_j_lfs_2022_121361
crossref_primary_10_1038_onc_2014_130
crossref_primary_10_3390_genes12020231
crossref_primary_10_1002_ijc_28761
crossref_primary_10_3892_ijo_2015_3148
crossref_primary_10_1038_cddis_2013_37
crossref_primary_10_3390_cells8111361
crossref_primary_10_1016_j_oraloncology_2012_07_012
crossref_primary_10_1007_s10555_011_9329_5
crossref_primary_10_1038_onc_2013_461
crossref_primary_10_1038_s41598_018_20572_1
crossref_primary_10_2217_fon_15_253
crossref_primary_10_3892_etm_2017_4488
crossref_primary_10_1002_jcb_25944
crossref_primary_10_3389_fonc_2022_940402
crossref_primary_10_1016_j_pharmthera_2018_09_007
crossref_primary_10_1007_s10911_012_9247_3
crossref_primary_10_1038_onc_2014_374
Cites_doi 10.1093/annonc/mdm559
10.1158/1078-0432.CCR-03-0527
10.1128/MCB.00537-06
10.1016/j.cell.2009.07.011
10.1128/MCB.11.1.12
10.1038/ncb1998
10.1038/nrc2620
10.1016/S0378-1119(01)00696-5
10.1172/JCI39194
10.1158/0008-5472.CAN-04-4537
10.1038/nrm1835
10.1016/S0960-9822(00)00002-6
10.1074/jbc.274.39.28042
10.1038/sj.onc.1207396
10.1038/sj.onc.1207947
10.1038/embor.2008.74
10.1016/j.cell.2008.03.027
10.1593/neo.08120
10.1128/JVI.72.11.8463-8471.1998
ContentType Journal Article
Copyright Springer Nature Limited 2011
2011 Macmillan Publishers Limited. All rights reserved.
COPYRIGHT 2011 Nature Publishing Group
Copyright Nature Publishing Group Mar 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: 2011 Macmillan Publishers Limited. All rights reserved.
– notice: COPYRIGHT 2011 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
5PM
DOI 10.1038/ncb2173
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Oncogenes and Growth Factors Abstracts

ProQuest Central Student

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-4679
EndPage 323
ExternalDocumentID PMC3075845
2280161021
A251276195
21336307
10_1038_ncb2173
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
Taiwan
United States--US
China
GeographicLocations_xml – name: Taiwan
– name: United States
– name: China
– name: United States--US
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA109311
– fundername: NCI NIH HHS
  grantid: CA16672
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: P50 CA116199
– fundername: NCI NIH HHS
  grantid: P01 CA099031
GroupedDBID ---
.55
.GJ
0R~
123
29M
36B
39C
3V.
4.4
53G
5BI
5RE
70F
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABEFU
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACNCT
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
ADQMX
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AGGDT
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D0L
DB5
DU5
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
J5H
L-9
L7B
LK8
M0L
M1P
M7P
N9A
NNMJJ
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
SHXYY
SIXXV
SKT
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
X7M
Y6R
ZGI
~02
~8M
AAYXX
ABFSG
ACSTC
AFANA
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ID FETCH-LOGICAL-c561t-e2fe1ea93d638e1ad9c4f4c4474c20f5840a90218f6912edfe350ce19ddf0f193
IEDL.DBID 7X7
ISSN 1465-7392
1476-4679
IngestDate Thu Aug 21 14:07:01 EDT 2025
Thu Jul 10 22:34:29 EDT 2025
Fri Jul 11 10:13:30 EDT 2025
Fri Jul 25 09:03:20 EDT 2025
Tue Jun 17 21:08:40 EDT 2025
Tue Jun 10 20:13:02 EDT 2025
Fri Jun 27 04:41:29 EDT 2025
Mon Jul 21 05:56:34 EDT 2025
Thu Apr 24 22:58:52 EDT 2025
Tue Jul 01 00:31:06 EDT 2025
Fri Feb 21 02:40:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2011 Macmillan Publishers Limited. All rights reserved.
Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-e2fe1ea93d638e1ad9c4f4c4474c20f5840a90218f6912edfe350ce19ddf0f193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
C.-J. Chang and C.-H. Chao contributed equally to this work.
Present address: Department of Developmental Biology, Stanford University, Stanford, CA 94305
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3075845
PMID 21336307
PQID 854418066
PQPubID 45779
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3075845
proquest_miscellaneous_907158804
proquest_miscellaneous_855198254
proquest_journals_854418066
gale_infotracmisc_A251276195
gale_infotracacademiconefile_A251276195
gale_incontextgauss_ISR_A251276195
pubmed_primary_21336307
crossref_primary_10_1038_ncb2173
crossref_citationtrail_10_1038_ncb2173
springer_journals_10_1038_ncb2173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature cell biology
PublicationTitleAbbrev Nat Cell Biol
PublicationTitleAlternate Nat Cell Biol
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Xirodimas, Lane (CR20) 1999; 274
Araki (CR11) 2009; 120
Burk (CR15) 2008; 9
Muret (CR19) 2008; 19
Kim, Lee, Bonifant, Ressom, Waldman (CR13) 2007; 27
Wellner (CR4) 2009; 11
Mani (CR1) 2008; 133
Polyak, Weinberg (CR2) 2009; 9
Al-Hajj, Clarke (CR12) 2004; 23
Junk (CR6) 2008; 10
Xia (CR17) 2004; 10
Thiery, Sleeman (CR5) 2006; 7
Nielsen (CR10) 1997; 4
Milner, Medcalf, Cook (CR9) 1991; 11
Cadwell, Zambetti (CR8) 2001; 277
Dull (CR14) 1998; 72
Kramata (CR18) 2005; 65
Jacks (CR16) 1994; 4
Shimono (CR3) 2009; 138
Willis, Jung, Wakefield, Chen (CR7) 2004; 23
K Polyak (BFncb2173_CR2) 2009; 9
SA Mani (BFncb2173_CR1) 2008; 133
DJ Junk (BFncb2173_CR6) 2008; 10
J Muret (BFncb2173_CR19) 2008; 19
S Araki (BFncb2173_CR11) 2009; 120
M Al-Hajj (BFncb2173_CR12) 2004; 23
T Dull (BFncb2173_CR14) 1998; 72
T Jacks (BFncb2173_CR16) 1994; 4
J Milner (BFncb2173_CR9) 1991; 11
P Kramata (BFncb2173_CR18) 2005; 65
U Wellner (BFncb2173_CR4) 2009; 11
LL Nielsen (BFncb2173_CR10) 1997; 4
Y Shimono (BFncb2173_CR3) 2009; 138
JP Thiery (BFncb2173_CR5) 2006; 7
U Burk (BFncb2173_CR15) 2008; 9
DP Xirodimas (BFncb2173_CR20) 1999; 274
JS Kim (BFncb2173_CR13) 2007; 27
W Xia (BFncb2173_CR17) 2004; 10
C Cadwell (BFncb2173_CR8) 2001; 277
A Willis (BFncb2173_CR7) 2004; 23
Nat Cell Biol. 2011 Dec;13(12):1466
Nat Cell Biol. 2011 Dec;13(12):1467
References_xml – volume: 19
  start-page: 793
  year: 2008
  end-page: 800
  ident: CR19
  article-title: p53 status correlates with histopathological response in patients with soft tissue sarcomas treated using isolated limb perfusion with TNF-α and melphalan
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdm559
– volume: 10
  start-page: 3815
  year: 2004
  end-page: 3824
  ident: CR17
  article-title: Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-03-0527
– volume: 27
  start-page: 662
  year: 2007
  end-page: 677
  ident: CR13
  article-title: Activation of p53-dependent growth suppression in human cells by mutations in or
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00537-06
– volume: 138
  start-page: 592
  year: 2009
  end-page: 603
  ident: CR3
  article-title: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.011
– volume: 11
  start-page: 12
  year: 1991
  end-page: 19
  ident: CR9
  article-title: Tumor suppressor p53: analysis of wild-type and mutant p53 complexes
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.11.1.12
– volume: 11
  start-page: 1487
  year: 2009
  end-page: 1495
  ident: CR4
  article-title: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1998
– volume: 9
  start-page: 265
  year: 2009
  end-page: 273
  ident: CR2
  article-title: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2620
– volume: 277
  start-page: 15
  year: 2001
  end-page: 30
  ident: CR8
  article-title: The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth
  publication-title: Gene
  doi: 10.1016/S0378-1119(01)00696-5
– volume: 120
  start-page: 290
  year: 2009
  end-page: 302
  ident: CR11
  article-title: TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI39194
– volume: 65
  start-page: 3577
  year: 2005
  end-page: 3585
  ident: CR18
  article-title: Patches of mutant p53-immunoreactive epidermal cells induced by chronic UVB irradiation harbor the same p53 mutations as squamous cell carcinomas in the skin of hairless SKH-1 mice
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-4537
– volume: 7
  start-page: 131
  year: 2006
  end-page: 142
  ident: CR5
  article-title: Complex networks orchestrate epithelial–mesenchymal transitions
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1835
– volume: 4
  start-page: 1
  year: 1994
  end-page: 7
  ident: CR16
  article-title: Tumor spectrum analysis in p53-mutant mice
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00002-6
– volume: 274
  start-page: 28042
  year: 1999
  end-page: 28049
  ident: CR20
  article-title: Molecular evolution of the thermosensitive PAb1620 epitope of human p53 by DNA shuffling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.39.28042
– volume: 23
  start-page: 2330
  year: 2004
  end-page: 2338
  ident: CR7
  article-title: Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207396
– volume: 4
  start-page: 129
  year: 1997
  end-page: 138
  ident: CR10
  article-title: Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts
  publication-title: Cancer Gene Ther.
– volume: 23
  start-page: 7274
  year: 2004
  end-page: 7282
  ident: CR12
  article-title: Self-renewal and solid tumor stem cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207947
– volume: 72
  start-page: 8463
  year: 1998
  end-page: 8471
  ident: CR14
  article-title: A third-generation lentivirus vector with a conditional packaging system
  publication-title: J. Virol.
– volume: 9
  start-page: 582
  year: 2008
  end-page: 589
  ident: CR15
  article-title: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2008.74
– volume: 133
  start-page: 704
  year: 2008
  end-page: 715
  ident: CR1
  article-title: The epithelial–mesenchymal transition generates cells with properties of stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.027
– volume: 10
  start-page: 450
  year: 2008
  end-page: 461
  ident: CR6
  article-title: Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells
  publication-title: Neoplasia
  doi: 10.1593/neo.08120
– volume: 65
  start-page: 3577
  year: 2005
  ident: BFncb2173_CR18
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-4537
– volume: 4
  start-page: 1
  year: 1994
  ident: BFncb2173_CR16
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00002-6
– volume: 27
  start-page: 662
  year: 2007
  ident: BFncb2173_CR13
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00537-06
– volume: 9
  start-page: 582
  year: 2008
  ident: BFncb2173_CR15
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2008.74
– volume: 120
  start-page: 290
  year: 2009
  ident: BFncb2173_CR11
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI39194
– volume: 133
  start-page: 704
  year: 2008
  ident: BFncb2173_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.027
– volume: 10
  start-page: 3815
  year: 2004
  ident: BFncb2173_CR17
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-03-0527
– volume: 9
  start-page: 265
  year: 2009
  ident: BFncb2173_CR2
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2620
– volume: 11
  start-page: 1487
  year: 2009
  ident: BFncb2173_CR4
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1998
– volume: 23
  start-page: 7274
  year: 2004
  ident: BFncb2173_CR12
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207947
– volume: 11
  start-page: 12
  year: 1991
  ident: BFncb2173_CR9
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.11.1.12
– volume: 23
  start-page: 2330
  year: 2004
  ident: BFncb2173_CR7
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207396
– volume: 19
  start-page: 793
  year: 2008
  ident: BFncb2173_CR19
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdm559
– volume: 274
  start-page: 28042
  year: 1999
  ident: BFncb2173_CR20
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.39.28042
– volume: 138
  start-page: 592
  year: 2009
  ident: BFncb2173_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.011
– volume: 277
  start-page: 15
  year: 2001
  ident: BFncb2173_CR8
  publication-title: Gene
  doi: 10.1016/S0378-1119(01)00696-5
– volume: 4
  start-page: 129
  year: 1997
  ident: BFncb2173_CR10
  publication-title: Cancer Gene Ther.
– volume: 72
  start-page: 8463
  year: 1998
  ident: BFncb2173_CR14
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.11.8463-8471.1998
– volume: 10
  start-page: 450
  year: 2008
  ident: BFncb2173_CR6
  publication-title: Neoplasia
  doi: 10.1593/neo.08120
– volume: 7
  start-page: 131
  year: 2006
  ident: BFncb2173_CR5
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1835
– reference: - Nat Cell Biol. 2011 Dec;13(12):1467
– reference: - Nat Cell Biol. 2011 Dec;13(12):1466
SSID ssj0014407
Score 2.558148
Snippet The epithelial to mesenchymal transition (EMT) has been recently associated with a stem cell phenotype. In breast cancer cell lines and tumours, p53 directly...
The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of...
The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype (1,2). However, the molecular mechanism underlying EMT and...
Epithelial mechenchymal transition (EMT) has recently been linked to stem cell phenotype 1 , 2 . However, the molecular mechanism involving regulation of EMT...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 317
SubjectTerms 631/136/532
631/208/200
631/80/84/2176
Aneuploidy
Biology
Biomedical and Life Sciences
Breast Neoplasms - metabolism
Cancer
Cancer Research
Cell Biology
Cell Line, Tumor
Cell Lineage
Cytokinesis
Developmental Biology
Entosis
Epithelial-Mesenchymal Transition
Gene Expression Regulation, Neoplastic
Genes, p53
Genotype & phenotype
Humans
letter
Life Sciences
MicroRNA
MicroRNAs
MicroRNAs - genetics
Microscopy, Fluorescence - methods
Mitosis
Physiological aspects
Plasticity
Stem Cells
Stem Cells - cytology
Tumor suppressor genes
Tumor Suppressor Protein p53 - metabolism
Tumors
Title p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs
URI https://link.springer.com/article/10.1038/ncb2173
https://www.ncbi.nlm.nih.gov/pubmed/21336307
https://www.proquest.com/docview/854418066
https://www.proquest.com/docview/855198254
https://www.proquest.com/docview/907158804
https://pubmed.ncbi.nlm.nih.gov/PMC3075845
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoqFIvFaWvBYrcqmpPFvE6j80JLRUIkLqqtkXaW-QnILFO2Owe-PfMJN602ao9e6z4MZ75Ys_MR8hnoVIdGSGYkUqxWCrOVJoo5pQSFjw65w192_dJenEdX82SWYjNqUNY5domNobalBrvyI9HSJY1Agd5Uj0wJI3Cx9XAoPGM7GDlMlTqbNb9b-GzZdYmFyUsAxzQ5sxiRfBjrxVgcdFzRpsm-Q-ftBkvufFo2vii813yMoBIOm53_RXZsn6PPG9pJR9fE1Ulgi5aknlbU1th3sU9KBqbY66Rvn2cQ-8leqkmYItKbygWdKZ4jU8rvJ9fYKFVGlh86Lw0Dc2Xv6Hzu-lkXL8h1-dnv75dsMClwDQgpCWzQ2e5lbkwcOAslybXsYt1HGexHkYOYEgkc_T3Ls350BpnRRJpy3NjXOQA5b0l27709j2hVsocYKSOUujulJUAApCyOIsVWAzFB-TLelELHQqNI9_FfdE8eItREVZ_QGgnWLW1Nf4W-YS7UmClCo-hMDdyVdfF5c9pMUZkhpcwyYB8DUKuhA9pGTILYLhY3KonediThKOke80H680vwlGui07xYLhdK3bE6DRvyxWKAA7GX-1_i-QA5RKwlSDyrlWmbspDLkQKpnZAsp6adQJYAbzf4u9um0rg0At2Dsb9ca2Qv8e9sZL7_53bAXnRXpZjcN0h2V4uVvYDoK2lOmrO1BHZOT2b_Jg-AcMSLTc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrRBcUHmHFlgQj9OqXq8f8QGhCKgS2uZQWik3s8-2UmObOBHKj-I_MuMXOAhuPe-svN6ZnZndeXyEvBYq0p4RghmpFAuk4kxFoWJOKWHBonNewbedTKPxefBlFs62yM-2FgbTKludWClqk2t8Iz8YIljWEAzkh-I7Q9AoDK62CBq1VBzZ9Q-4sZXvJ5-AvW98__Dz2ccxa0AFmAZXYcms7yy3MhEGJM9yaRIduEAHQRxo33Ngjz2ZoOFzUcJ9a5wVoactT4xxnuPYewk0_g7YXQ_vevGsu99hmDSui5lCFoPfUdfoYgfyg0wr8P1Fz_htmoA_bOBmfuZGkLayfYe75G7jtNJRLWX3yJbN7pNbNYzl-gFRRSjooga1tyW1BdZ5XINgsznWNunL9RxmL9EqVgliVGaGYgNpimEDWmA8YIGNXWmDGkTnualgxbILOr86nY7Kh-T8Rrb5EdnO8sw-IdRKmYDbqr0IpjtlJTgdCJEcBwo0lOID8rbd1FQ3jc0RX-M6rQLsYpg2uz8gtCMs6l4ef5O8Qq6k2Bkjw9SbC7kqy3Ty9TQdoSeIjz7hgLxriFwOH9KyqWSA5WIzrR7lfo8Sjq7uDe-1zE8b1VGmnaDDcrtRnIjZcJnNV0gCfjde7f9NkoDrGIJuBpLHtTB1v-xzISJQ7QMS98SsI8CO4_2R7Oqy6jwOs4BzsO6XrUD-XvfGTj7977-9ILfHZyfH6fFkerRH7tQP9ZjYt0-2l4uVfQae3lI9r84XJd9u-kD_AuruaQY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTiBeEN-UDTCIj6eocZyP5gGhwlatDKqpMGlvme3Y26Q1yZpWU_80_jvuEieQInjbs8-K4zvfnX0fP0LecBkqN-XcSYWUji8kc2QYSMdIyTVYdMYq-LZv0_Dg2P9yEpxskZ9NLQymVTY6sVLUaa7wjXwwRLCsIRjIgbFZEUd744_FlYMAUhhobdA0agk51OtruL2VHyZ7wOq3njfe__H5wLEAA44Ct2HpaM9opkXMU5BCzUQaK9_4yvcjX3muAdvsihiNoAlj5unUaB64SrM4TY1rGPZhAu2_HeGlqEe2P-1Pj2ZtCMP3q1pt0ESBE4EXUlfsYj_yQaYk3AR4xxRuGoQ_LOJmtuZGyLayhON75K51Yemolrn7ZEtnD8itGtRy_ZDIIuB0UUPc65LqAqs-LkHMnTlWOqnz9RxmL9FGVuliVGQpxXbSFIMItMDowALbvFKLIUTneVqBjGVndH4xm47KR-T4Rjb6MelleaafEqqFiMGJVW4I043UAlwQBEyOfAn6SrI-eddsaqJsm3NE27hMqnA7HyZ29_uEtoRF3dnjb5LXyJUE-2RkKHJnYlWWyeT7LBmhX4hPQEGfvLdEJocPKWHrGmC52FqrQ7nboYSDrDrDOw3zE6tIyqQVe1huO4oTMTcu0_kKScALx4v-v0liENAANDWQPKmFqf1lj3EegqLvk6gjZi0B9h_vjmQX51UfcpgFnIN1v2oE8ve6N3by2X__7SW5DYc5-TqZHu6QO_WrPWb57ZLecrHSz8HtW8oX9oBRcnrTZ_oXxgpuoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p53+regulates+epithelial%E2%80%93mesenchymal+transition+and+stem+cell+properties+through+modulating+miRNAs&rft.jtitle=Nature+cell+biology&rft.au=Chang%2C+Chun-Ju&rft.au=Chao%2C+Chi-Hong&rft.au=Xia%2C+Weiya&rft.au=Yang%2C+Jer-Yen&rft.date=2011-03-01&rft.issn=1465-7392&rft.eissn=1476-4679&rft.volume=13&rft.issue=3&rft.spage=317&rft.epage=323&rft_id=info:doi/10.1038%2Fncb2173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_ncb2173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon