p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs
The epithelial to mesenchymal transition (EMT) has been recently associated with a stem cell phenotype. In breast cancer cell lines and tumours, p53 directly targets the expression of microRNAs that have been shown to inhibit EMT and stem cells regulators. The epithelial–mesenchymal transition (EMT)...
Saved in:
Published in | Nature cell biology Vol. 13; no. 3; pp. 317 - 323 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The epithelial to mesenchymal transition (EMT) has been recently associated with a stem cell phenotype. In breast cancer cell lines and tumours, p53 directly targets the expression of microRNAs that have been shown to inhibit EMT and stem cells regulators.
The epithelial–mesenchymal transition (EMT) has recently been linked to stem cell phenotype
1
,
2
. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates
miR-200c
through direct binding to the
miR-200c
promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties
3
,
4
and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT–MET (mesenchymal–epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53–miR-200c pathway. |
---|---|
AbstractList | The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT-MET (mesenchymal-epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53-miR-200c pathway.The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT-MET (mesenchymal-epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53-miR-200c pathway. The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT-MET (mesenchymal-epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53-miR-200c pathway. Epithelial mechenchymal transition (EMT) has recently been linked to stem cell phenotype 1 , 2 . However, the molecular mechanism involving regulation of EMT and stemness remains elusive. Here, using genomic approaches, we discovered that tumor suppressor p53 plays a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates EMT program, accompanied by increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties 3 , 4 and thereby reverts mesenchymal and stem cell-like phenotype caused by loss of p53 to differentiated epithelial cell phenotype. Furthermore, loss of p53 negatively correlates with miR-200c level but positively with increased expression of EMT and stemness markers as well as high tumor grade in a cohort of breast tumors. Together, this study elucidates a role of p53 in regulating EMT-MET (mechenchymal epithelial transition) and stemness or differentiation plasticity and reveals a potential therapeutic implication to suppress EMT associated-cancer stem cells through activation of p53-miR-200c pathway. The epithelial to mesenchymal transition (EMT) has been recently associated with a stem cell phenotype. In breast cancer cell lines and tumours, p53 directly targets the expression of microRNAs that have been shown to inhibit EMT and stem cells regulators. The epithelial–mesenchymal transition (EMT) has recently been linked to stem cell phenotype 1 , 2 . However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties 3 , 4 and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT–MET (mesenchymal–epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53–miR-200c pathway. The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype (1,2). However, the molecular mechanism underlying EMT and regulation of stemness remains elusive. Here, using genomic approaches, we show that tumour suppressor p53 has a role in regulating both EMT and EMT-associated stem cell properties through transcriptional activation of the microRNA miR-200c. p53 transactivates miR-200c through direct binding to the miR-200c promoter. Loss of p53 in mammary epithelial cells leads to decreased expression of miR-200c and activates the EMT programme, accompanied by an increased mammary stem cell population. Re-expressing miR-200c suppresses genes that mediate EMT and stemness properties (3,4) and thereby reverts the mesenchymal and stem-cell-like phenotype caused by loss of p53 to a differentiated epithelial cell phenotype. Furthermore, loss of p53 correlates with a decrease in the level of miR-200c, but an increase in the expression of EMT and stemness markers, and development of a high tumour grade in a cohort of breast tumours. This study elucidates a role for p53 in regulating EMT-MET (mesenchymal-epithelial transition) and stemness or differentiation plasticity, and reveals a potential therapeutic implication to suppress EMT-associated cancer stem cells through activation of the p53-miR-200c pathway. |
Audience | Academic |
Author | Xiong, Yan Hung, Mien-Chie Liu, Mo Yu, Wen-Hsuan Yang, Jer-Yen Lee, Heng-Huan Yu, Dihua Hsu, Jennifer L. Li, Chia-Wei Xia, Weiya Rehman, Sumaiyah K. Chen, Chun-Te Chang, Chun-Ju Chao, Chi-Hong |
AuthorAffiliation | 1 Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 2 Center for Molecular Medicine, China Medical University Hospital; Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan 3 Asian University, Taichung 413, Taiwan |
AuthorAffiliation_xml | – name: 2 Center for Molecular Medicine, China Medical University Hospital; Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan – name: 3 Asian University, Taichung 413, Taiwan – name: 1 Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA |
Author_xml | – sequence: 1 givenname: Chun-Ju surname: Chang fullname: Chang, Chun-Ju organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 2 givenname: Chi-Hong surname: Chao fullname: Chao, Chi-Hong organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 3 givenname: Weiya surname: Xia fullname: Xia, Weiya organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 4 givenname: Jer-Yen surname: Yang fullname: Yang, Jer-Yen organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Present address: Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA – sequence: 5 givenname: Yan surname: Xiong fullname: Xiong, Yan organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 6 givenname: Chia-Wei surname: Li fullname: Li, Chia-Wei organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 7 givenname: Wen-Hsuan surname: Yu fullname: Yu, Wen-Hsuan organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 8 givenname: Sumaiyah K. surname: Rehman fullname: Rehman, Sumaiyah K. organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 9 givenname: Jennifer L. surname: Hsu fullname: Hsu, Jennifer L. organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 10 givenname: Heng-Huan surname: Lee fullname: Lee, Heng-Huan organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 11 givenname: Mo surname: Liu fullname: Liu, Mo organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 12 givenname: Chun-Te surname: Chen fullname: Chen, Chun-Te organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 13 givenname: Dihua surname: Yu fullname: Yu, Dihua organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center – sequence: 14 givenname: Mien-Chie surname: Hung fullname: Hung, Mien-Chie email: mhung@mdanderson.org organization: Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Center for Molecular Medicine, China Medical University Hospital; Graduate Institute of Cancer Biology, China Medical University, Graduate Institute of Cancer Biology, China Medical University, Asian University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21336307$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl9r1TAYxotM3B_FbyBFL6YXnUmTtM2NcBj-GQyFqdchS9-0GW3SJam4u30Hv6GfxJRz3DyHgeQiIfm9D08ensNszzoLWfYcoxOMSPPWqssS1-RRdoBpXRW0qvnecq5YURNe7meHIVwhhClF9ZNsv8SEVATVB1k7MZJ76OZBRgg5TCb2MBg5_L79NUIAq_qbUQ559NIGE42zubRtHiKMuYJhyCfvJvDRpOHYezd3fT66dpEztstHc_F5FZ5mj7UcAjzb7EfZ9w_vv51-Ks6_fDw7XZ0XilU4FlBqwCA5aSvSAJYtV1RTRWlNVYk0ayiSHJW40RXHJbQaCEMKMG9bjTTm5Ch7t9ad5ssRWgU22R7E5M0o_Y1w0ojtF2t60bkfIkWR1FkSON4IeHc9Q4hiNGH5prTg5iA4qjFrGkT_SzaMYd6UbCFf7pBXbvY25ZAgSnGDqipBr9ZQJwcQxmqX_KlFUqxKhsu6wnyxd_IAlVYLo1GpEdqk-62BN1sDiYnwM3ZyDkGcfb3YZl_8G95dan-7cv9l5V0IHvQdgpFYWig2LUxksUMqE-VSnuTXDA_wr9d8SIq2A38f0S76B5J769g |
CitedBy_id | crossref_primary_10_1016_j_molmed_2012_06_005 crossref_primary_10_1038_s41598_018_20043_7 crossref_primary_10_1007_s00018_022_04199_0 crossref_primary_10_1186_s12964_015_0106_x crossref_primary_10_3904_kjim_2016_302 crossref_primary_10_3892_ol_2015_2988 crossref_primary_10_1371_journal_pone_0091938 crossref_primary_10_3892_ijmm_2017_3320 crossref_primary_10_1007_s43188_020_00067_w crossref_primary_10_1158_0008_5472_CAN_17_1803 crossref_primary_10_1093_nar_gkr731 crossref_primary_10_1016_j_phymed_2018_08_003 crossref_primary_10_4236_ym_2021_53020 crossref_primary_10_1016_j_clgc_2015_01_003 crossref_primary_10_2174_0118761429263841230926014118 crossref_primary_10_3892_or_2015_4515 crossref_primary_10_1126_scisignal_2005189 crossref_primary_10_3390_jcm5120109 crossref_primary_10_1002_1878_0261_12316 crossref_primary_10_1371_journal_pone_0073268 crossref_primary_10_3389_fonc_2022_895112 crossref_primary_10_1073_pnas_1116107109 crossref_primary_10_3390_cimb46020094 crossref_primary_10_1186_s41236_017_0005_8 crossref_primary_10_3724_abbs_2023270 crossref_primary_10_3390_diagnostics12123052 crossref_primary_10_1016_j_tig_2012_05_005 crossref_primary_10_1016_j_bbagen_2014_02_004 crossref_primary_10_1038_onc_2013_55 crossref_primary_10_1128_MCB_01043_13 crossref_primary_10_1038_cdd_2017_171 crossref_primary_10_1007_s00018_020_03524_9 crossref_primary_10_3389_fcell_2021_718974 crossref_primary_10_1038_onc_2014_30 crossref_primary_10_1158_1541_7786_MCR_12_0274 crossref_primary_10_1002_stem_1219 crossref_primary_10_3390_cancers10060162 crossref_primary_10_1038_cddis_2017_525 crossref_primary_10_1074_jbc_M113_480285 crossref_primary_10_3390_cancers12103053 crossref_primary_10_3390_ijms23063092 crossref_primary_10_1016_j_ceb_2017_11_005 crossref_primary_10_1007_s10911_012_9244_6 crossref_primary_10_1021_acsami_6b05302 crossref_primary_10_1016_j_neo_2021_05_015 crossref_primary_10_1016_j_semcdb_2020_09_014 crossref_primary_10_3390_cancers14215176 crossref_primary_10_3389_fcell_2023_1083401 crossref_primary_10_1038_onc_2015_25 crossref_primary_10_1038_s41467_018_07538_7 crossref_primary_10_1038_ncomms9959 crossref_primary_10_1002_jcb_25974 crossref_primary_10_1172_JCI157279 crossref_primary_10_1038_s41368_021_00145_1 crossref_primary_10_18632_oncotarget_11062 crossref_primary_10_1007_s13277_013_1481_9 crossref_primary_10_3892_mmr_2014_3098 crossref_primary_10_1016_S1995_7645_14_60335_7 crossref_primary_10_3892_mmr_2020_11025 crossref_primary_10_3390_cancers10050148 crossref_primary_10_1242_dev_091751 crossref_primary_10_1007_s13238_014_0064_x crossref_primary_10_3390_jpm11040264 crossref_primary_10_1158_0008_5472_CAN_14_2824 crossref_primary_10_1016_j_ajpath_2022_03_007 crossref_primary_10_1016_j_yexcr_2012_02_034 crossref_primary_10_1155_2015_865816 crossref_primary_10_1038_emm_2017_9 crossref_primary_10_1073_pnas_1212769110 crossref_primary_10_1016_j_freeradbiomed_2013_05_022 crossref_primary_10_1016_j_bios_2014_02_082 crossref_primary_10_3892_ijo_2015_3076 crossref_primary_10_1007_s11033_023_08720_x crossref_primary_10_1038_s41419_018_1188_3 crossref_primary_10_18632_oncotarget_15530 crossref_primary_10_1038_s41598_018_27409_x crossref_primary_10_1111_jcmm_12209 crossref_primary_10_1126_scisignal_2001744 crossref_primary_10_4161_19336918_2014_969998 crossref_primary_10_1002_jcb_26880 crossref_primary_10_1002_stem_1429 crossref_primary_10_1007_s11912_021_01019_9 crossref_primary_10_1038_nrendo_2017_76 crossref_primary_10_1016_j_aquatox_2017_10_021 crossref_primary_10_1007_s12272_019_01181_6 crossref_primary_10_1038_ncb3013 crossref_primary_10_1002_stem_1547 crossref_primary_10_1158_1541_7786_MCR_21_0098 crossref_primary_10_1242_jcs_258316 crossref_primary_10_1016_j_abb_2018_04_009 crossref_primary_10_6000_1927_7229_2015_04_04_4 crossref_primary_10_1155_2019_7407190 crossref_primary_10_1007_s10555_023_10132_z crossref_primary_10_6000_1927_7229_2015_04_04_8 crossref_primary_10_3390_biom14040396 crossref_primary_10_1039_C8CC08107G crossref_primary_10_1038_s41417_023_00724_w crossref_primary_10_1002_cso2_1044 crossref_primary_10_3892_or_2015_4329 crossref_primary_10_1158_1078_0432_CCR_13_1687 crossref_primary_10_3389_fonc_2021_628814 crossref_primary_10_1186_s12935_022_02831_4 crossref_primary_10_1038_nrc3265 crossref_primary_10_1089_thy_2012_0319 crossref_primary_10_3390_cancers14040997 crossref_primary_10_1186_s43042_020_00125_w crossref_primary_10_1007_s11307_017_1073_y crossref_primary_10_1038_ncomms4472 crossref_primary_10_1038_s41420_017_0016_3 crossref_primary_10_1038_s41467_023_36439_7 crossref_primary_10_3892_ijo_2017_3846 crossref_primary_10_12998_wjcc_v3_i5_393 crossref_primary_10_1007_s12013_013_9801_7 crossref_primary_10_1039_D3NP00002H crossref_primary_10_1111_cas_16122 crossref_primary_10_1016_j_bbrc_2019_01_101 crossref_primary_10_18632_oncotarget_4847 crossref_primary_10_1002_anie_201712920 crossref_primary_10_3390_cancers11020265 crossref_primary_10_3389_fonc_2015_00013 crossref_primary_10_4161_cc_20207 crossref_primary_10_1016_j_canlet_2015_01_010 crossref_primary_10_1093_nar_gkr646 crossref_primary_10_1111_j_1365_2443_2012_01623_x crossref_primary_10_1155_2013_635203 crossref_primary_10_1155_2013_590393 crossref_primary_10_3892_ijo_2014_2487 crossref_primary_10_1186_s12943_019_1030_2 crossref_primary_10_1007_s13277_013_0831_y crossref_primary_10_1002_ange_201712920 crossref_primary_10_1038_s41467_017_01500_9 crossref_primary_10_1016_j_molonc_2012_09_006 crossref_primary_10_1080_19336918_2020_1826216 crossref_primary_10_1186_s13062_024_00484_z crossref_primary_10_1002_jbt_22567 crossref_primary_10_1038_cdd_2011_42 crossref_primary_10_1016_j_canlet_2012_12_010 crossref_primary_10_1111_cas_12699 crossref_primary_10_1016_j_lfs_2012_06_025 crossref_primary_10_1016_j_semcancer_2023_05_001 crossref_primary_10_1155_2012_254085 crossref_primary_10_1016_j_breast_2013_07_005 crossref_primary_10_1038_onc_2017_356 crossref_primary_10_1038_s41540_024_00378_w crossref_primary_10_3892_ijo_2016_3415 crossref_primary_10_1021_acs_jnatprod_9b00102 crossref_primary_10_3390_cancers13071742 crossref_primary_10_1038_ncb2401 crossref_primary_10_1038_cddis_2014_395 crossref_primary_10_1172_JCI73351 crossref_primary_10_4161_cam_5_4_17524 crossref_primary_10_1073_pnas_1525735113 crossref_primary_10_1111_bpa_12240 crossref_primary_10_1517_14728222_2012_726985 crossref_primary_10_14701_ahbps_2021_25_3_315 crossref_primary_10_1038_s41419_022_04646_7 crossref_primary_10_1038_s41419_023_05618_1 crossref_primary_10_1093_nar_gkv703 crossref_primary_10_1158_0008_5472_CAN_16_0029 crossref_primary_10_1038_s41419_020_2340_4 crossref_primary_10_1007_s13402_017_0341_9 crossref_primary_10_1002_mc_21966 crossref_primary_10_1146_annurev_cellbio_092910_154036 crossref_primary_10_1186_s12967_014_0305_z crossref_primary_10_1016_j_tice_2022_101802 crossref_primary_10_1038_cr_2011_62 crossref_primary_10_1002_advs_202105539 crossref_primary_10_1186_s13046_018_0988_8 crossref_primary_10_1093_carcin_bgs189 crossref_primary_10_3892_ijmm_2017_2894 crossref_primary_10_1038_nm_3336 crossref_primary_10_1038_s41598_018_32737_z crossref_primary_10_1002_gcc_22729 crossref_primary_10_1093_carcin_bgu009 crossref_primary_10_3892_ijo_2017_3922 crossref_primary_10_1186_s12885_024_12736_2 crossref_primary_10_1186_s12964_014_0045_y crossref_primary_10_1016_j_canlet_2012_08_004 crossref_primary_10_1016_j_lfs_2021_119405 crossref_primary_10_1002_jez_b_23139 crossref_primary_10_1074_jbc_M111_280768 crossref_primary_10_1158_0008_5472_CAN_14_3076 crossref_primary_10_1016_j_biopha_2018_05_157 crossref_primary_10_1038_onc_2017_241 crossref_primary_10_1152_ajpheart_00651_2014 crossref_primary_10_3390_cells11071185 crossref_primary_10_1002_bit_26791 crossref_primary_10_5966_sctm_2014_0020 crossref_primary_10_15252_embr_201949269 crossref_primary_10_3389_fgene_2015_00072 crossref_primary_10_4236_jct_2013_42A042 crossref_primary_10_1002_cbin_10087 crossref_primary_10_3390_ijms21093046 crossref_primary_10_1186_s12879_024_09375_0 crossref_primary_10_1016_j_cell_2015_07_001 crossref_primary_10_1016_j_cancergen_2020_08_005 crossref_primary_10_1186_s12935_023_02865_2 crossref_primary_10_4161_cc_10_16_16543 crossref_primary_10_15252_emmm_201404402 crossref_primary_10_2174_1566523221999210120210017 crossref_primary_10_15252_embj_201489574 crossref_primary_10_1186_2251_6581_12_31 crossref_primary_10_1038_onc_2012_58 crossref_primary_10_1016_j_bbrc_2019_03_207 crossref_primary_10_1155_2014_749724 crossref_primary_10_3390_ijms21249648 crossref_primary_10_1038_onc_2013_25 crossref_primary_10_1016_j_oraloncology_2015_07_006 crossref_primary_10_15406_ghoa_2017_07_00232 crossref_primary_10_1016_j_bbcan_2023_189060 crossref_primary_10_1007_s11596_014_1259_3 crossref_primary_10_1093_carcin_bgu073 crossref_primary_10_1007_s11684_018_0656_6 crossref_primary_10_1038_nature10888 crossref_primary_10_1007_s00018_015_1989_9 crossref_primary_10_3390_ijms17121982 crossref_primary_10_3892_or_2015_3750 crossref_primary_10_1038_nm_2577 crossref_primary_10_1074_jbc_M113_529172 crossref_primary_10_1074_jbc_M112_408104 crossref_primary_10_1016_j_molonc_2016_04_003 crossref_primary_10_1007_s10238_012_0186_5 crossref_primary_10_1016_j_gene_2017_10_018 crossref_primary_10_1038_s41467_019_11278_7 crossref_primary_10_1515_HMBCI_2011_122 crossref_primary_10_1007_s13277_016_5246_0 crossref_primary_10_2147_CMAR_S336265 crossref_primary_10_1038_srep23208 crossref_primary_10_1038_ncb3425 crossref_primary_10_1038_s41388_018_0352_7 crossref_primary_10_1007_s11010_014_2022_6 crossref_primary_10_1186_1423_0127_19_90 crossref_primary_10_1038_cddis_2013_427 crossref_primary_10_1165_rcmb_2015_0377OC crossref_primary_10_1074_jbc_M110_214585 crossref_primary_10_1158_0008_5472_CAN_15_2704 crossref_primary_10_1128_MCB_00328_17 crossref_primary_10_4161_cc_10_11_15592 crossref_primary_10_1016_j_tox_2012_09_017 crossref_primary_10_1080_19336918_2019_1633851 crossref_primary_10_1016_j_envres_2025_121102 crossref_primary_10_1007_s12032_015_0619_6 crossref_primary_10_1016_j_bbrc_2014_11_018 crossref_primary_10_1038_s41416_020_01149_0 crossref_primary_10_1016_j_tcb_2011_06_005 crossref_primary_10_1186_bcr3037 crossref_primary_10_1155_2016_9604257 crossref_primary_10_1016_j_suronc_2014_03_001 crossref_primary_10_1038_srep00434 crossref_primary_10_1084_jem_20110235 crossref_primary_10_1155_2019_2531493 crossref_primary_10_1016_j_molmed_2011_08_002 crossref_primary_10_3389_fphys_2018_00941 crossref_primary_10_1186_s12964_018_0302_6 crossref_primary_10_3390_cancers13235874 crossref_primary_10_1155_2015_420891 crossref_primary_10_1074_jbc_RA119_007965 crossref_primary_10_4331_wjbc_v2_i9_202 crossref_primary_10_1155_2014_743050 crossref_primary_10_1136_gutjnl_2015_310838 crossref_primary_10_1093_carcin_bgv034 crossref_primary_10_1016_j_bbrc_2013_03_124 crossref_primary_10_1038_nature13839 crossref_primary_10_1074_jbc_M114_598383 crossref_primary_10_18632_oncotarget_4353 crossref_primary_10_3748_wjg_v22_i26_5971 crossref_primary_10_1038_cddis_2013_48 crossref_primary_10_1158_0008_5472_CAN_12_1739 crossref_primary_10_7554_eLife_01977 crossref_primary_10_1007_s10555_011_9344_6 crossref_primary_10_1007_s00428_017_2068_4 crossref_primary_10_1038_s41419_020_2393_4 crossref_primary_10_1155_2016_9231057 crossref_primary_10_1073_pnas_1902308116 crossref_primary_10_3390_cancers11121983 crossref_primary_10_1111_j_1442_2050_2012_01389_x crossref_primary_10_1038_nrc3711 crossref_primary_10_1016_j_isci_2023_106321 crossref_primary_10_1088_2057_1976_ac7896 crossref_primary_10_4155_fmc_2023_0061 crossref_primary_10_1038_nm_3862 crossref_primary_10_1016_j_bbamcr_2020_118782 crossref_primary_10_1016_j_canlet_2017_01_039 crossref_primary_10_1016_j_jbior_2016_10_001 crossref_primary_10_3390_cells12020207 crossref_primary_10_1038_bjc_2014_153 crossref_primary_10_1038_cgt_2012_58 crossref_primary_10_1016_j_beem_2016_10_001 crossref_primary_10_1038_s41392_023_01347_1 crossref_primary_10_1016_j_stemcr_2020_08_003 crossref_primary_10_3389_fmolb_2017_00046 crossref_primary_10_1371_journal_pone_0072846 crossref_primary_10_3389_fmolb_2024_1404319 crossref_primary_10_1016_j_gene_2019_144126 crossref_primary_10_3390_genes10110852 crossref_primary_10_1007_s13237_017_0193_8 crossref_primary_10_3389_fnmol_2021_809878 crossref_primary_10_1371_journal_pone_0139307 crossref_primary_10_3389_fendo_2019_00152 crossref_primary_10_1021_acs_jmedchem_2c00472 crossref_primary_10_1155_2018_6979073 crossref_primary_10_1007_s10147_020_01649_2 crossref_primary_10_1021_acsptsci_4c00644 crossref_primary_10_1016_j_semcancer_2020_05_015 crossref_primary_10_1016_j_semcancer_2020_05_017 crossref_primary_10_1007_s00408_018_0150_6 crossref_primary_10_1007_s00441_011_1199_1 crossref_primary_10_1002_mc_22424 crossref_primary_10_1038_onc_2016_174 crossref_primary_10_3389_fmicb_2021_631183 crossref_primary_10_1038_sigtrans_2015_4 crossref_primary_10_1038_nm_2512 crossref_primary_10_1186_s40824_023_00467_7 crossref_primary_10_1002_ijc_31282 crossref_primary_10_1038_s41418_018_0103_x crossref_primary_10_1093_nar_gkw739 crossref_primary_10_18632_oncotarget_5478 crossref_primary_10_1016_j_semcancer_2023_11_009 crossref_primary_10_1371_journal_pone_0049636 crossref_primary_10_1038_s41580_021_00448_5 crossref_primary_10_1038_cddis_2014_207 crossref_primary_10_1016_j_taap_2019_02_001 crossref_primary_10_18632_oncotarget_3052 crossref_primary_10_3892_ijmm_2015_2215 crossref_primary_10_1016_j_molmet_2019_01_014 crossref_primary_10_1038_modpathol_2013_93 crossref_primary_10_3390_genes7060026 crossref_primary_10_1038_cddis_2014_442 crossref_primary_10_1146_annurev_pathol_012615_044438 crossref_primary_10_1016_j_gene_2018_05_025 crossref_primary_10_4161_rna_20146 crossref_primary_10_1002_bies_201200089 crossref_primary_10_3390_jcm5020013 crossref_primary_10_3390_ijms140918319 crossref_primary_10_1016_j_canlet_2013_02_048 crossref_primary_10_1016_j_yexcr_2020_111817 crossref_primary_10_1016_j_cell_2016_06_028 crossref_primary_10_1186_s13046_015_0235_5 crossref_primary_10_1007_s00018_012_1122_2 crossref_primary_10_1007_s00438_014_0960_z crossref_primary_10_1016_j_ceb_2016_06_002 crossref_primary_10_1002_1878_0261_12082 crossref_primary_10_1158_0008_5472_CAN_24_0821 crossref_primary_10_1186_s13045_016_0323_9 crossref_primary_10_1016_j_bcp_2012_06_007 crossref_primary_10_1002_mc_22564 crossref_primary_10_1007_s00109_015_1290_2 crossref_primary_10_1016_j_ejphar_2018_02_025 crossref_primary_10_1089_ars_2011_4280 crossref_primary_10_18632_oncotarget_5137 crossref_primary_10_1038_bjc_2013_308 crossref_primary_10_1038_ncomms9271 crossref_primary_10_1038_s41392_020_0200_4 crossref_primary_10_1038_srep02474 crossref_primary_10_1007_s12307_011_0089_0 crossref_primary_10_2144_000114019 crossref_primary_10_1016_j_canlet_2016_07_018 crossref_primary_10_1038_s41389_022_00397_4 crossref_primary_10_1038_s41419_023_06031_4 crossref_primary_10_1007_s11033_021_06706_1 crossref_primary_10_1016_j_bbrc_2011_07_069 crossref_primary_10_1038_onc_2016_467 crossref_primary_10_3390_cells8101143 crossref_primary_10_1038_ncb2976 crossref_primary_10_4137_CIN_S34141 crossref_primary_10_1016_j_semcancer_2024_06_001 crossref_primary_10_1002_jcp_24229 crossref_primary_10_1016_j_neo_2017_08_006 crossref_primary_10_1111_jop_12017 crossref_primary_10_1016_j_toxlet_2018_01_010 crossref_primary_10_3390_toxins15060360 crossref_primary_10_1371_journal_pgen_1002723 crossref_primary_10_4161_cbt_23296 crossref_primary_10_1158_1541_7786_MCR_18_1292 crossref_primary_10_1038_s41598_017_15360_2 crossref_primary_10_1097_CEJ_0000000000000793 crossref_primary_10_1186_s13046_020_1530_3 crossref_primary_10_2174_2211536612666230810094531 crossref_primary_10_1016_j_pbiomolbio_2023_06_003 crossref_primary_10_3390_jcm8050642 crossref_primary_10_1016_j_tcb_2020_12_011 crossref_primary_10_3892_ijo_2017_4025 crossref_primary_10_1007_s12020_019_02030_8 crossref_primary_10_21303_2504_5679_2016_00231 crossref_primary_10_1007_s40619_022_01048_x crossref_primary_10_1016_j_omto_2020_01_010 crossref_primary_10_1002_ijc_27708 crossref_primary_10_1371_journal_pone_0091034 crossref_primary_10_3390_ijms21041334 crossref_primary_10_1371_journal_pone_0040849 crossref_primary_10_1097_MCD_0000000000000174 crossref_primary_10_1016_j_critrevonc_2020_102961 crossref_primary_10_1007_s00428_013_1508_z crossref_primary_10_1371_journal_pone_0083545 crossref_primary_10_1097_SLA_0000000000000223 crossref_primary_10_1002_jcb_26196 crossref_primary_10_1111_cas_12426 crossref_primary_10_1371_journal_pone_0219317 crossref_primary_10_3390_v17030324 crossref_primary_10_3892_or_2014_3163 crossref_primary_10_18632_oncotarget_12863 crossref_primary_10_1002_ijc_33398 crossref_primary_10_1016_j_canlet_2012_05_014 crossref_primary_10_1074_jbc_M112_419168 crossref_primary_10_1155_2014_743450 crossref_primary_10_3892_or_2016_5098 crossref_primary_10_1007_s10555_013_9483_z crossref_primary_10_1016_j_molcel_2019_09_030 crossref_primary_10_1002_stem_1183 crossref_primary_10_3892_or_2015_4113 crossref_primary_10_1038_nrc3447 crossref_primary_10_1016_j_celrep_2014_07_058 crossref_primary_10_1371_journal_pone_0068089 crossref_primary_10_1002_path_4478 crossref_primary_10_1007_s13273_018_0006_4 crossref_primary_10_1158_0008_5472_CAN_13_3367 crossref_primary_10_1038_onc_2013_332 crossref_primary_10_1038_s41598_022_24604_9 crossref_primary_10_1016_j_semcancer_2012_02_013 crossref_primary_10_3389_fonc_2018_00386 crossref_primary_10_1186_s12943_015_0370_9 crossref_primary_10_1016_j_urolonc_2015_03_016 crossref_primary_10_1038_s41388_018_0445_3 crossref_primary_10_3390_ijms22179589 crossref_primary_10_1038_nrc3318 crossref_primary_10_3390_ijms22052369 crossref_primary_10_3892_ijo_2015_3142 crossref_primary_10_1016_j_semnephrol_2012_04_004 crossref_primary_10_1158_1541_7786_MCR_20_0623 crossref_primary_10_1158_0008_5472_CAN_12_1223 crossref_primary_10_1016_j_molonc_2014_05_006 crossref_primary_10_1158_0008_5472_CAN_14_1119 crossref_primary_10_1016_j_isci_2023_106964 crossref_primary_10_1038_s41419_020_03327_7 crossref_primary_10_1158_0008_5472_CAN_22_1559 crossref_primary_10_1515_ejnm_2012_0006 crossref_primary_10_1016_j_molonc_2012_10_006 crossref_primary_10_1038_oncsis_2016_60 crossref_primary_10_1158_1541_7786_MCR_18_0238 crossref_primary_10_1002_pros_22968 crossref_primary_10_1186_s13058_017_0858_x crossref_primary_10_1038_onc_2014_399 crossref_primary_10_3390_jcm5030037 crossref_primary_10_3389_fonc_2020_604124 crossref_primary_10_1177_1535370220909309 crossref_primary_10_1016_j_prp_2015_05_010 crossref_primary_10_1038_mt_2012_2 crossref_primary_10_1038_ncomms12632 crossref_primary_10_2174_1389201020666190617162042 crossref_primary_10_3390_cancers9080098 crossref_primary_10_3892_ijo_2013_1963 crossref_primary_10_1016_j_bbcan_2021_188565 crossref_primary_10_1016_j_lfs_2019_05_076 crossref_primary_10_7314_APJCP_2014_15_18_7489 crossref_primary_10_1002_wsbm_1252 crossref_primary_10_1038_s41388_021_01706_8 crossref_primary_10_1093_carcin_bgac062 crossref_primary_10_1111_boc_201100115 crossref_primary_10_3390_cancers9040038 crossref_primary_10_1016_j_ejmech_2018_09_008 crossref_primary_10_1186_s12943_017_0596_9 crossref_primary_10_1016_j_jtho_2024_04_019 crossref_primary_10_1186_s13069_015_0024_y crossref_primary_10_1038_s41467_021_25403_y crossref_primary_10_3390_cancers13030531 crossref_primary_10_1002_jcp_26379 crossref_primary_10_1007_s00109_016_1420_5 crossref_primary_10_1016_j_acra_2022_02_021 crossref_primary_10_1158_0008_5472_CAN_15_0079 crossref_primary_10_1016_j_mce_2016_12_026 crossref_primary_10_1038_onc_2013_427 crossref_primary_10_1080_19768354_2016_1150344 crossref_primary_10_1007_s00428_019_02532_w crossref_primary_10_1016_j_prp_2023_154472 crossref_primary_10_4161_cc_22265 crossref_primary_10_1007_s00432_014_1840_y crossref_primary_10_1016_j_omto_2020_04_007 crossref_primary_10_1586_14737140_2014_953935 crossref_primary_10_1111_jcmm_14090 crossref_primary_10_1016_j_ebiom_2019_05_002 crossref_primary_10_3892_ijo_2013_1825 crossref_primary_10_1002_jcp_28447 crossref_primary_10_1186_s13287_023_03239_1 crossref_primary_10_1002_stem_2472 crossref_primary_10_1093_carcin_bgt411 crossref_primary_10_1038_onc_2012_334 crossref_primary_10_1002_emmm_201302909 crossref_primary_10_1158_0008_5472_CAN_14_0584 crossref_primary_10_3390_cancers12113454 crossref_primary_10_1007_s13277_012_0355_x crossref_primary_10_1016_j_celrep_2022_111819 crossref_primary_10_3389_fmolb_2020_00036 crossref_primary_10_1002_1873_3468_14258 crossref_primary_10_1073_pnas_1210353110 crossref_primary_10_1186_1756_8722_7_19 crossref_primary_10_1002_fft2_336 crossref_primary_10_1038_s41598_018_23240_6 crossref_primary_10_18632_oncotarget_4683 crossref_primary_10_1371_journal_pone_0129190 crossref_primary_10_4161_19336918_2014_983794 crossref_primary_10_18632_oncotarget_15829 crossref_primary_10_1038_cddis_2016_419 crossref_primary_10_1016_j_ab_2021_114243 crossref_primary_10_1371_journal_pone_0202065 crossref_primary_10_1083_jcb_201103097 crossref_primary_10_1002_jcb_24754 crossref_primary_10_3390_ijms22158334 crossref_primary_10_1126_science_abn7411 crossref_primary_10_3389_fonc_2021_641851 crossref_primary_10_1007_s12041_018_0881_4 crossref_primary_10_1016_j_febslet_2014_02_011 crossref_primary_10_1080_00365521_2021_1930144 crossref_primary_10_3892_or_2012_2173 crossref_primary_10_1002_med_21254 crossref_primary_10_18632_oncotarget_6879 crossref_primary_10_1007_s12094_012_0792_4 crossref_primary_10_1016_j_semcancer_2011_09_014 crossref_primary_10_1186_s12967_020_02242_x crossref_primary_10_3390_biomedicines8100402 crossref_primary_10_1089_dna_2024_0181 crossref_primary_10_1128_MCB_00787_13 crossref_primary_10_1038_s41419_021_03392_6 crossref_primary_10_18632_oncotarget_2393 crossref_primary_10_1002_path_4298 crossref_primary_10_1111_cas_12713 crossref_primary_10_1158_0008_5472_CAN_16_1740 crossref_primary_10_1371_journal_pone_0083135 crossref_primary_10_1016_j_humpath_2016_04_011 crossref_primary_10_1016_j_gene_2014_11_047 crossref_primary_10_1080_15384101_2019_1616998 crossref_primary_10_1136_gutjnl_2011_301846 crossref_primary_10_1186_s12935_021_02414_9 crossref_primary_10_3390_cancers11101595 crossref_primary_10_1186_s12864_015_1707_x crossref_primary_10_1007_s12022_016_9417_8 crossref_primary_10_1016_j_lfs_2022_121361 crossref_primary_10_1038_onc_2014_130 crossref_primary_10_3390_genes12020231 crossref_primary_10_1002_ijc_28761 crossref_primary_10_3892_ijo_2015_3148 crossref_primary_10_1038_cddis_2013_37 crossref_primary_10_3390_cells8111361 crossref_primary_10_1016_j_oraloncology_2012_07_012 crossref_primary_10_1007_s10555_011_9329_5 crossref_primary_10_1038_onc_2013_461 crossref_primary_10_1038_s41598_018_20572_1 crossref_primary_10_2217_fon_15_253 crossref_primary_10_3892_etm_2017_4488 crossref_primary_10_1002_jcb_25944 crossref_primary_10_3389_fonc_2022_940402 crossref_primary_10_1016_j_pharmthera_2018_09_007 crossref_primary_10_1007_s10911_012_9247_3 crossref_primary_10_1038_onc_2014_374 |
Cites_doi | 10.1093/annonc/mdm559 10.1158/1078-0432.CCR-03-0527 10.1128/MCB.00537-06 10.1016/j.cell.2009.07.011 10.1128/MCB.11.1.12 10.1038/ncb1998 10.1038/nrc2620 10.1016/S0378-1119(01)00696-5 10.1172/JCI39194 10.1158/0008-5472.CAN-04-4537 10.1038/nrm1835 10.1016/S0960-9822(00)00002-6 10.1074/jbc.274.39.28042 10.1038/sj.onc.1207396 10.1038/sj.onc.1207947 10.1038/embor.2008.74 10.1016/j.cell.2008.03.027 10.1593/neo.08120 10.1128/JVI.72.11.8463-8471.1998 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2011 2011 Macmillan Publishers Limited. All rights reserved. COPYRIGHT 2011 Nature Publishing Group Copyright Nature Publishing Group Mar 2011 |
Copyright_xml | – notice: Springer Nature Limited 2011 – notice: 2011 Macmillan Publishers Limited. All rights reserved. – notice: COPYRIGHT 2011 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM |
DOI | 10.1038/ncb2173 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Oncogenes and Growth Factors Abstracts ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-4679 |
EndPage | 323 |
ExternalDocumentID | PMC3075845 2280161021 A251276195 21336307 10_1038_ncb2173 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States Taiwan United States--US China |
GeographicLocations_xml | – name: Taiwan – name: United States – name: China – name: United States--US |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA109311 – fundername: NCI NIH HHS grantid: CA16672 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NCI NIH HHS grantid: P50 CA116199 – fundername: NCI NIH HHS grantid: P01 CA099031 |
GroupedDBID | --- .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABCQX ABDBF ABEFU ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADNMO ADQMX AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AFWHJ AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC J5H L-9 L7B LK8 M0L M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SKT SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M Y6R ZGI ~02 ~8M AAYXX ABFSG ACSTC AFANA AGQPQ ALPWD ATHPR CITATION PHGZM PHGZT AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM |
ID | FETCH-LOGICAL-c561t-e2fe1ea93d638e1ad9c4f4c4474c20f5840a90218f6912edfe350ce19ddf0f193 |
IEDL.DBID | 7X7 |
ISSN | 1465-7392 1476-4679 |
IngestDate | Thu Aug 21 14:07:01 EDT 2025 Thu Jul 10 22:34:29 EDT 2025 Fri Jul 11 10:13:30 EDT 2025 Fri Jul 25 09:03:20 EDT 2025 Tue Jun 17 21:08:40 EDT 2025 Tue Jun 10 20:13:02 EDT 2025 Fri Jun 27 04:41:29 EDT 2025 Mon Jul 21 05:56:34 EDT 2025 Thu Apr 24 22:58:52 EDT 2025 Tue Jul 01 00:31:06 EDT 2025 Fri Feb 21 02:40:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2011 Macmillan Publishers Limited. All rights reserved. Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-e2fe1ea93d638e1ad9c4f4c4474c20f5840a90218f6912edfe350ce19ddf0f193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 C.-J. Chang and C.-H. Chao contributed equally to this work. Present address: Department of Developmental Biology, Stanford University, Stanford, CA 94305 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3075845 |
PMID | 21336307 |
PQID | 854418066 |
PQPubID | 45779 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3075845 proquest_miscellaneous_907158804 proquest_miscellaneous_855198254 proquest_journals_854418066 gale_infotracmisc_A251276195 gale_infotracacademiconefile_A251276195 gale_incontextgauss_ISR_A251276195 pubmed_primary_21336307 crossref_primary_10_1038_ncb2173 crossref_citationtrail_10_1038_ncb2173 springer_journals_10_1038_ncb2173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature cell biology |
PublicationTitleAbbrev | Nat Cell Biol |
PublicationTitleAlternate | Nat Cell Biol |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Xirodimas, Lane (CR20) 1999; 274 Araki (CR11) 2009; 120 Burk (CR15) 2008; 9 Muret (CR19) 2008; 19 Kim, Lee, Bonifant, Ressom, Waldman (CR13) 2007; 27 Wellner (CR4) 2009; 11 Mani (CR1) 2008; 133 Polyak, Weinberg (CR2) 2009; 9 Al-Hajj, Clarke (CR12) 2004; 23 Junk (CR6) 2008; 10 Xia (CR17) 2004; 10 Thiery, Sleeman (CR5) 2006; 7 Nielsen (CR10) 1997; 4 Milner, Medcalf, Cook (CR9) 1991; 11 Cadwell, Zambetti (CR8) 2001; 277 Dull (CR14) 1998; 72 Kramata (CR18) 2005; 65 Jacks (CR16) 1994; 4 Shimono (CR3) 2009; 138 Willis, Jung, Wakefield, Chen (CR7) 2004; 23 K Polyak (BFncb2173_CR2) 2009; 9 SA Mani (BFncb2173_CR1) 2008; 133 DJ Junk (BFncb2173_CR6) 2008; 10 J Muret (BFncb2173_CR19) 2008; 19 S Araki (BFncb2173_CR11) 2009; 120 M Al-Hajj (BFncb2173_CR12) 2004; 23 T Dull (BFncb2173_CR14) 1998; 72 T Jacks (BFncb2173_CR16) 1994; 4 J Milner (BFncb2173_CR9) 1991; 11 P Kramata (BFncb2173_CR18) 2005; 65 U Wellner (BFncb2173_CR4) 2009; 11 LL Nielsen (BFncb2173_CR10) 1997; 4 Y Shimono (BFncb2173_CR3) 2009; 138 JP Thiery (BFncb2173_CR5) 2006; 7 U Burk (BFncb2173_CR15) 2008; 9 DP Xirodimas (BFncb2173_CR20) 1999; 274 JS Kim (BFncb2173_CR13) 2007; 27 W Xia (BFncb2173_CR17) 2004; 10 C Cadwell (BFncb2173_CR8) 2001; 277 A Willis (BFncb2173_CR7) 2004; 23 Nat Cell Biol. 2011 Dec;13(12):1466 Nat Cell Biol. 2011 Dec;13(12):1467 |
References_xml | – volume: 19 start-page: 793 year: 2008 end-page: 800 ident: CR19 article-title: p53 status correlates with histopathological response in patients with soft tissue sarcomas treated using isolated limb perfusion with TNF-α and melphalan publication-title: Ann. Oncol. doi: 10.1093/annonc/mdm559 – volume: 10 start-page: 3815 year: 2004 end-page: 3824 ident: CR17 article-title: Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-03-0527 – volume: 27 start-page: 662 year: 2007 end-page: 677 ident: CR13 article-title: Activation of p53-dependent growth suppression in human cells by mutations in or publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00537-06 – volume: 138 start-page: 592 year: 2009 end-page: 603 ident: CR3 article-title: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells publication-title: Cell doi: 10.1016/j.cell.2009.07.011 – volume: 11 start-page: 12 year: 1991 end-page: 19 ident: CR9 article-title: Tumor suppressor p53: analysis of wild-type and mutant p53 complexes publication-title: Mol. Cell Biol. doi: 10.1128/MCB.11.1.12 – volume: 11 start-page: 1487 year: 2009 end-page: 1495 ident: CR4 article-title: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs publication-title: Nat. Cell Biol. doi: 10.1038/ncb1998 – volume: 9 start-page: 265 year: 2009 end-page: 273 ident: CR2 article-title: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2620 – volume: 277 start-page: 15 year: 2001 end-page: 30 ident: CR8 article-title: The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth publication-title: Gene doi: 10.1016/S0378-1119(01)00696-5 – volume: 120 start-page: 290 year: 2009 end-page: 302 ident: CR11 article-title: TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI39194 – volume: 65 start-page: 3577 year: 2005 end-page: 3585 ident: CR18 article-title: Patches of mutant p53-immunoreactive epidermal cells induced by chronic UVB irradiation harbor the same p53 mutations as squamous cell carcinomas in the skin of hairless SKH-1 mice publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-4537 – volume: 7 start-page: 131 year: 2006 end-page: 142 ident: CR5 article-title: Complex networks orchestrate epithelial–mesenchymal transitions publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1835 – volume: 4 start-page: 1 year: 1994 end-page: 7 ident: CR16 article-title: Tumor spectrum analysis in p53-mutant mice publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00002-6 – volume: 274 start-page: 28042 year: 1999 end-page: 28049 ident: CR20 article-title: Molecular evolution of the thermosensitive PAb1620 epitope of human p53 by DNA shuffling publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.39.28042 – volume: 23 start-page: 2330 year: 2004 end-page: 2338 ident: CR7 article-title: Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes publication-title: Oncogene doi: 10.1038/sj.onc.1207396 – volume: 4 start-page: 129 year: 1997 end-page: 138 ident: CR10 article-title: Efficacy of p53 adenovirus-mediated gene therapy against human breast cancer xenografts publication-title: Cancer Gene Ther. – volume: 23 start-page: 7274 year: 2004 end-page: 7282 ident: CR12 article-title: Self-renewal and solid tumor stem cells publication-title: Oncogene doi: 10.1038/sj.onc.1207947 – volume: 72 start-page: 8463 year: 1998 end-page: 8471 ident: CR14 article-title: A third-generation lentivirus vector with a conditional packaging system publication-title: J. Virol. – volume: 9 start-page: 582 year: 2008 end-page: 589 ident: CR15 article-title: A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells publication-title: EMBO Rep. doi: 10.1038/embor.2008.74 – volume: 133 start-page: 704 year: 2008 end-page: 715 ident: CR1 article-title: The epithelial–mesenchymal transition generates cells with properties of stem cells publication-title: Cell doi: 10.1016/j.cell.2008.03.027 – volume: 10 start-page: 450 year: 2008 end-page: 461 ident: CR6 article-title: Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells publication-title: Neoplasia doi: 10.1593/neo.08120 – volume: 65 start-page: 3577 year: 2005 ident: BFncb2173_CR18 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-4537 – volume: 4 start-page: 1 year: 1994 ident: BFncb2173_CR16 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00002-6 – volume: 27 start-page: 662 year: 2007 ident: BFncb2173_CR13 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00537-06 – volume: 9 start-page: 582 year: 2008 ident: BFncb2173_CR15 publication-title: EMBO Rep. doi: 10.1038/embor.2008.74 – volume: 120 start-page: 290 year: 2009 ident: BFncb2173_CR11 publication-title: J. Clin. Invest. doi: 10.1172/JCI39194 – volume: 133 start-page: 704 year: 2008 ident: BFncb2173_CR1 publication-title: Cell doi: 10.1016/j.cell.2008.03.027 – volume: 10 start-page: 3815 year: 2004 ident: BFncb2173_CR17 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-03-0527 – volume: 9 start-page: 265 year: 2009 ident: BFncb2173_CR2 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2620 – volume: 11 start-page: 1487 year: 2009 ident: BFncb2173_CR4 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1998 – volume: 23 start-page: 7274 year: 2004 ident: BFncb2173_CR12 publication-title: Oncogene doi: 10.1038/sj.onc.1207947 – volume: 11 start-page: 12 year: 1991 ident: BFncb2173_CR9 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.11.1.12 – volume: 23 start-page: 2330 year: 2004 ident: BFncb2173_CR7 publication-title: Oncogene doi: 10.1038/sj.onc.1207396 – volume: 19 start-page: 793 year: 2008 ident: BFncb2173_CR19 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdm559 – volume: 274 start-page: 28042 year: 1999 ident: BFncb2173_CR20 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.39.28042 – volume: 138 start-page: 592 year: 2009 ident: BFncb2173_CR3 publication-title: Cell doi: 10.1016/j.cell.2009.07.011 – volume: 277 start-page: 15 year: 2001 ident: BFncb2173_CR8 publication-title: Gene doi: 10.1016/S0378-1119(01)00696-5 – volume: 4 start-page: 129 year: 1997 ident: BFncb2173_CR10 publication-title: Cancer Gene Ther. – volume: 72 start-page: 8463 year: 1998 ident: BFncb2173_CR14 publication-title: J. Virol. doi: 10.1128/JVI.72.11.8463-8471.1998 – volume: 10 start-page: 450 year: 2008 ident: BFncb2173_CR6 publication-title: Neoplasia doi: 10.1593/neo.08120 – volume: 7 start-page: 131 year: 2006 ident: BFncb2173_CR5 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1835 – reference: - Nat Cell Biol. 2011 Dec;13(12):1467 – reference: - Nat Cell Biol. 2011 Dec;13(12):1466 |
SSID | ssj0014407 |
Score | 2.558148 |
Snippet | The epithelial to mesenchymal transition (EMT) has been recently associated with a stem cell phenotype. In breast cancer cell lines and tumours, p53 directly... The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype. However, the molecular mechanism underlying EMT and regulation of... The epithelial-mesenchymal transition (EMT) has recently been linked to stem cell phenotype (1,2). However, the molecular mechanism underlying EMT and... Epithelial mechenchymal transition (EMT) has recently been linked to stem cell phenotype 1 , 2 . However, the molecular mechanism involving regulation of EMT... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 317 |
SubjectTerms | 631/136/532 631/208/200 631/80/84/2176 Aneuploidy Biology Biomedical and Life Sciences Breast Neoplasms - metabolism Cancer Cancer Research Cell Biology Cell Line, Tumor Cell Lineage Cytokinesis Developmental Biology Entosis Epithelial-Mesenchymal Transition Gene Expression Regulation, Neoplastic Genes, p53 Genotype & phenotype Humans letter Life Sciences MicroRNA MicroRNAs MicroRNAs - genetics Microscopy, Fluorescence - methods Mitosis Physiological aspects Plasticity Stem Cells Stem Cells - cytology Tumor suppressor genes Tumor Suppressor Protein p53 - metabolism Tumors |
Title | p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs |
URI | https://link.springer.com/article/10.1038/ncb2173 https://www.ncbi.nlm.nih.gov/pubmed/21336307 https://www.proquest.com/docview/854418066 https://www.proquest.com/docview/855198254 https://www.proquest.com/docview/907158804 https://pubmed.ncbi.nlm.nih.gov/PMC3075845 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoqFIvFaWvBYrcqmpPFvE6j80JLRUIkLqqtkXaW-QnILFO2Owe-PfMJN602ao9e6z4MZ75Ys_MR8hnoVIdGSGYkUqxWCrOVJoo5pQSFjw65w192_dJenEdX82SWYjNqUNY5domNobalBrvyI9HSJY1Agd5Uj0wJI3Cx9XAoPGM7GDlMlTqbNb9b-GzZdYmFyUsAxzQ5sxiRfBjrxVgcdFzRpsm-Q-ftBkvufFo2vii813yMoBIOm53_RXZsn6PPG9pJR9fE1Ulgi5aknlbU1th3sU9KBqbY66Rvn2cQ-8leqkmYItKbygWdKZ4jU8rvJ9fYKFVGlh86Lw0Dc2Xv6Hzu-lkXL8h1-dnv75dsMClwDQgpCWzQ2e5lbkwcOAslybXsYt1HGexHkYOYEgkc_T3Ls350BpnRRJpy3NjXOQA5b0l27709j2hVsocYKSOUujulJUAApCyOIsVWAzFB-TLelELHQqNI9_FfdE8eItREVZ_QGgnWLW1Nf4W-YS7UmClCo-hMDdyVdfF5c9pMUZkhpcwyYB8DUKuhA9pGTILYLhY3KonediThKOke80H680vwlGui07xYLhdK3bE6DRvyxWKAA7GX-1_i-QA5RKwlSDyrlWmbspDLkQKpnZAsp6adQJYAbzf4u9um0rg0At2Dsb9ca2Qv8e9sZL7_53bAXnRXpZjcN0h2V4uVvYDoK2lOmrO1BHZOT2b_Jg-AcMSLTc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrRBcUHmHFlgQj9OqXq8f8QGhCKgS2uZQWik3s8-2UmObOBHKj-I_MuMXOAhuPe-svN6ZnZndeXyEvBYq0p4RghmpFAuk4kxFoWJOKWHBonNewbedTKPxefBlFs62yM-2FgbTKludWClqk2t8Iz8YIljWEAzkh-I7Q9AoDK62CBq1VBzZ9Q-4sZXvJ5-AvW98__Dz2ccxa0AFmAZXYcms7yy3MhEGJM9yaRIduEAHQRxo33Ngjz2ZoOFzUcJ9a5wVoactT4xxnuPYewk0_g7YXQ_vevGsu99hmDSui5lCFoPfUdfoYgfyg0wr8P1Fz_htmoA_bOBmfuZGkLayfYe75G7jtNJRLWX3yJbN7pNbNYzl-gFRRSjooga1tyW1BdZ5XINgsznWNunL9RxmL9EqVgliVGaGYgNpimEDWmA8YIGNXWmDGkTnualgxbILOr86nY7Kh-T8Rrb5EdnO8sw-IdRKmYDbqr0IpjtlJTgdCJEcBwo0lOID8rbd1FQ3jc0RX-M6rQLsYpg2uz8gtCMs6l4ef5O8Qq6k2Bkjw9SbC7kqy3Ty9TQdoSeIjz7hgLxriFwOH9KyqWSA5WIzrR7lfo8Sjq7uDe-1zE8b1VGmnaDDcrtRnIjZcJnNV0gCfjde7f9NkoDrGIJuBpLHtTB1v-xzISJQ7QMS98SsI8CO4_2R7Oqy6jwOs4BzsO6XrUD-XvfGTj7977-9ILfHZyfH6fFkerRH7tQP9ZjYt0-2l4uVfQae3lI9r84XJd9u-kD_AuruaQY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTiBeEN-UDTCIj6eocZyP5gGhwlatDKqpMGlvme3Y26Q1yZpWU_80_jvuEieQInjbs8-K4zvfnX0fP0LecBkqN-XcSYWUji8kc2QYSMdIyTVYdMYq-LZv0_Dg2P9yEpxskZ9NLQymVTY6sVLUaa7wjXwwRLCsIRjIgbFZEUd744_FlYMAUhhobdA0agk51OtruL2VHyZ7wOq3njfe__H5wLEAA44Ct2HpaM9opkXMU5BCzUQaK9_4yvcjX3muAdvsihiNoAlj5unUaB64SrM4TY1rGPZhAu2_HeGlqEe2P-1Pj2ZtCMP3q1pt0ESBE4EXUlfsYj_yQaYk3AR4xxRuGoQ_LOJmtuZGyLayhON75K51Yemolrn7ZEtnD8itGtRy_ZDIIuB0UUPc65LqAqs-LkHMnTlWOqnz9RxmL9FGVuliVGQpxXbSFIMItMDowALbvFKLIUTneVqBjGVndH4xm47KR-T4Rjb6MelleaafEqqFiMGJVW4I043UAlwQBEyOfAn6SrI-eddsaqJsm3NE27hMqnA7HyZ29_uEtoRF3dnjb5LXyJUE-2RkKHJnYlWWyeT7LBmhX4hPQEGfvLdEJocPKWHrGmC52FqrQ7nboYSDrDrDOw3zE6tIyqQVe1huO4oTMTcu0_kKScALx4v-v0liENAANDWQPKmFqf1lj3EegqLvk6gjZi0B9h_vjmQX51UfcpgFnIN1v2oE8ve6N3by2X__7SW5DYc5-TqZHu6QO_WrPWb57ZLecrHSz8HtW8oX9oBRcnrTZ_oXxgpuoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=p53+regulates+epithelial%E2%80%93mesenchymal+transition+and+stem+cell+properties+through+modulating+miRNAs&rft.jtitle=Nature+cell+biology&rft.au=Chang%2C+Chun-Ju&rft.au=Chao%2C+Chi-Hong&rft.au=Xia%2C+Weiya&rft.au=Yang%2C+Jer-Yen&rft.date=2011-03-01&rft.issn=1465-7392&rft.eissn=1476-4679&rft.volume=13&rft.issue=3&rft.spage=317&rft.epage=323&rft_id=info:doi/10.1038%2Fncb2173&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_ncb2173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |