Left ventricular flow dynamics by cardiac imaging techniques in heart failure patients: state of the art
Background The evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This approach has been applied to patients with heart failure (HF), providing valuable insights that are discussed in this review, with the aim of enhan...
Saved in:
Published in | Cardiovascular ultrasound Vol. 23; no. 1; pp. 13 - 22 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
19.05.2025
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1476-7120 1476-7120 |
DOI | 10.1186/s12947-025-00347-1 |
Cover
Loading…
Abstract | Background
The evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This approach has been applied to patients with heart failure (HF), providing valuable insights that are discussed in this review, with the aim of enhancing our understanding of LV function in the context of the HF syndrome.
Methods
The analysis of LV flow dynamics is typically conducted using ultrasound and magnetic resonance imaging (MRI) techniques, primarily including particle image velocimetry echocardiography, Vector Flow Imaging, HyperDoppler, and four-dimensional flow MRI. A variety of parameters can be obtained that describe the geometry of the LV vortex, vorticity, kinetic energy, energy dispersion, as well as the amplitude and direction of the hemodynamic forces within the LV cavity.
Results
In normal subjects, vortex formation plays a crucial role in optimizing LV filling, diastolic-systolic coupling, and energy transfer during systolic ejection. In patients with HF, alterations in vortex structure and dynamics have been associated with both systolic and diastolic LV dysfunction, demonstrating the potential to diagnose early LV dysfunction. Furthermore, these alterations have been linked to LV remodeling and thrombus formation. Several studies have also explored intracardiac flow metrics as biomarkers for guiding HF treatments, including pharmacological interventions, cardiac resynchronization therapy, and LV assist devices.
Conclusions
Currently available data suggest that the evaluation of LV flow dynamics can have diagnostic and prognostic utility in HF. However, large-scale, multicenter, and prospective studies are needed, particularly to validate therapeutic implications.
Graphical abstract
HDFs: hemodynamic forces. KE: kinetic energy. LA: left atrium. LV: left ventricle. LV-EF: left ventricular ejection fraction. LVOT: left ventricular outflow tract. |
---|---|
AbstractList | Abstract Background The evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This approach has been applied to patients with heart failure (HF), providing valuable insights that are discussed in this review, with the aim of enhancing our understanding of LV function in the context of the HF syndrome. Methods The analysis of LV flow dynamics is typically conducted using ultrasound and magnetic resonance imaging (MRI) techniques, primarily including particle image velocimetry echocardiography, Vector Flow Imaging, HyperDoppler, and four-dimensional flow MRI. A variety of parameters can be obtained that describe the geometry of the LV vortex, vorticity, kinetic energy, energy dispersion, as well as the amplitude and direction of the hemodynamic forces within the LV cavity. Results In normal subjects, vortex formation plays a crucial role in optimizing LV filling, diastolic-systolic coupling, and energy transfer during systolic ejection. In patients with HF, alterations in vortex structure and dynamics have been associated with both systolic and diastolic LV dysfunction, demonstrating the potential to diagnose early LV dysfunction. Furthermore, these alterations have been linked to LV remodeling and thrombus formation. Several studies have also explored intracardiac flow metrics as biomarkers for guiding HF treatments, including pharmacological interventions, cardiac resynchronization therapy, and LV assist devices. Conclusions Currently available data suggest that the evaluation of LV flow dynamics can have diagnostic and prognostic utility in HF. However, large-scale, multicenter, and prospective studies are needed, particularly to validate therapeutic implications. Graphical abstract HDFs: hemodynamic forces. KE: kinetic energy. LA: left atrium. LV: left ventricle. LV-EF: left ventricular ejection fraction. LVOT: left ventricular outflow tract. The evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This approach has been applied to patients with heart failure (HF), providing valuable insights that are discussed in this review, with the aim of enhancing our understanding of LV function in the context of the HF syndrome. The analysis of LV flow dynamics is typically conducted using ultrasound and magnetic resonance imaging (MRI) techniques, primarily including particle image velocimetry echocardiography, Vector Flow Imaging, HyperDoppler, and four-dimensional flow MRI. A variety of parameters can be obtained that describe the geometry of the LV vortex, vorticity, kinetic energy, energy dispersion, as well as the amplitude and direction of the hemodynamic forces within the LV cavity. In normal subjects, vortex formation plays a crucial role in optimizing LV filling, diastolic-systolic coupling, and energy transfer during systolic ejection. In patients with HF, alterations in vortex structure and dynamics have been associated with both systolic and diastolic LV dysfunction, demonstrating the potential to diagnose early LV dysfunction. Furthermore, these alterations have been linked to LV remodeling and thrombus formation. Several studies have also explored intracardiac flow metrics as biomarkers for guiding HF treatments, including pharmacological interventions, cardiac resynchronization therapy, and LV assist devices. Currently available data suggest that the evaluation of LV flow dynamics can have diagnostic and prognostic utility in HF. However, large-scale, multicenter, and prospective studies are needed, particularly to validate therapeutic implications. BackgroundThe evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This approach has been applied to patients with heart failure (HF), providing valuable insights that are discussed in this review, with the aim of enhancing our understanding of LV function in the context of the HF syndrome.MethodsThe analysis of LV flow dynamics is typically conducted using ultrasound and magnetic resonance imaging (MRI) techniques, primarily including particle image velocimetry echocardiography, Vector Flow Imaging, HyperDoppler, and four-dimensional flow MRI. A variety of parameters can be obtained that describe the geometry of the LV vortex, vorticity, kinetic energy, energy dispersion, as well as the amplitude and direction of the hemodynamic forces within the LV cavity.ResultsIn normal subjects, vortex formation plays a crucial role in optimizing LV filling, diastolic-systolic coupling, and energy transfer during systolic ejection. In patients with HF, alterations in vortex structure and dynamics have been associated with both systolic and diastolic LV dysfunction, demonstrating the potential to diagnose early LV dysfunction. Furthermore, these alterations have been linked to LV remodeling and thrombus formation. Several studies have also explored intracardiac flow metrics as biomarkers for guiding HF treatments, including pharmacological interventions, cardiac resynchronization therapy, and LV assist devices.ConclusionsCurrently available data suggest that the evaluation of LV flow dynamics can have diagnostic and prognostic utility in HF. However, large-scale, multicenter, and prospective studies are needed, particularly to validate therapeutic implications. Background The evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This approach has been applied to patients with heart failure (HF), providing valuable insights that are discussed in this review, with the aim of enhancing our understanding of LV function in the context of the HF syndrome. Methods The analysis of LV flow dynamics is typically conducted using ultrasound and magnetic resonance imaging (MRI) techniques, primarily including particle image velocimetry echocardiography, Vector Flow Imaging, HyperDoppler, and four-dimensional flow MRI. A variety of parameters can be obtained that describe the geometry of the LV vortex, vorticity, kinetic energy, energy dispersion, as well as the amplitude and direction of the hemodynamic forces within the LV cavity. Results In normal subjects, vortex formation plays a crucial role in optimizing LV filling, diastolic-systolic coupling, and energy transfer during systolic ejection. In patients with HF, alterations in vortex structure and dynamics have been associated with both systolic and diastolic LV dysfunction, demonstrating the potential to diagnose early LV dysfunction. Furthermore, these alterations have been linked to LV remodeling and thrombus formation. Several studies have also explored intracardiac flow metrics as biomarkers for guiding HF treatments, including pharmacological interventions, cardiac resynchronization therapy, and LV assist devices. Conclusions Currently available data suggest that the evaluation of LV flow dynamics can have diagnostic and prognostic utility in HF. However, large-scale, multicenter, and prospective studies are needed, particularly to validate therapeutic implications. Graphical abstract HDFs: hemodynamic forces. KE: kinetic energy. LA: left atrium. LV: left ventricle. LV-EF: left ventricular ejection fraction. LVOT: left ventricular outflow tract. The evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This approach has been applied to patients with heart failure (HF), providing valuable insights that are discussed in this review, with the aim of enhancing our understanding of LV function in the context of the HF syndrome.BACKGROUNDThe evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This approach has been applied to patients with heart failure (HF), providing valuable insights that are discussed in this review, with the aim of enhancing our understanding of LV function in the context of the HF syndrome.The analysis of LV flow dynamics is typically conducted using ultrasound and magnetic resonance imaging (MRI) techniques, primarily including particle image velocimetry echocardiography, Vector Flow Imaging, HyperDoppler, and four-dimensional flow MRI. A variety of parameters can be obtained that describe the geometry of the LV vortex, vorticity, kinetic energy, energy dispersion, as well as the amplitude and direction of the hemodynamic forces within the LV cavity.METHODSThe analysis of LV flow dynamics is typically conducted using ultrasound and magnetic resonance imaging (MRI) techniques, primarily including particle image velocimetry echocardiography, Vector Flow Imaging, HyperDoppler, and four-dimensional flow MRI. A variety of parameters can be obtained that describe the geometry of the LV vortex, vorticity, kinetic energy, energy dispersion, as well as the amplitude and direction of the hemodynamic forces within the LV cavity.In normal subjects, vortex formation plays a crucial role in optimizing LV filling, diastolic-systolic coupling, and energy transfer during systolic ejection. In patients with HF, alterations in vortex structure and dynamics have been associated with both systolic and diastolic LV dysfunction, demonstrating the potential to diagnose early LV dysfunction. Furthermore, these alterations have been linked to LV remodeling and thrombus formation. Several studies have also explored intracardiac flow metrics as biomarkers for guiding HF treatments, including pharmacological interventions, cardiac resynchronization therapy, and LV assist devices.RESULTSIn normal subjects, vortex formation plays a crucial role in optimizing LV filling, diastolic-systolic coupling, and energy transfer during systolic ejection. In patients with HF, alterations in vortex structure and dynamics have been associated with both systolic and diastolic LV dysfunction, demonstrating the potential to diagnose early LV dysfunction. Furthermore, these alterations have been linked to LV remodeling and thrombus formation. Several studies have also explored intracardiac flow metrics as biomarkers for guiding HF treatments, including pharmacological interventions, cardiac resynchronization therapy, and LV assist devices.Currently available data suggest that the evaluation of LV flow dynamics can have diagnostic and prognostic utility in HF. However, large-scale, multicenter, and prospective studies are needed, particularly to validate therapeutic implications.CONCLUSIONSCurrently available data suggest that the evaluation of LV flow dynamics can have diagnostic and prognostic utility in HF. However, large-scale, multicenter, and prospective studies are needed, particularly to validate therapeutic implications. |
ArticleNumber | 13 |
Author | Cecchetto, Antonella Nistri, Stefano Beccari, Riccardo Serio, Lorenzo Pedrizzetti, Gianni Mele, Donato |
Author_xml | – sequence: 1 givenname: Donato surname: Mele fullname: Mele, Donato email: donato.mele@unipd.it organization: Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Cardiac Unit, Ravenna33 Clinic – sequence: 2 givenname: Lorenzo surname: Serio fullname: Serio, Lorenzo organization: Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova – sequence: 3 givenname: Riccardo surname: Beccari fullname: Beccari, Riccardo organization: Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova – sequence: 4 givenname: Antonella surname: Cecchetto fullname: Cecchetto, Antonella organization: Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova – sequence: 5 givenname: Stefano surname: Nistri fullname: Nistri, Stefano organization: Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Cardiology Service, CMSR Veneto Medica – sequence: 6 givenname: Gianni surname: Pedrizzetti fullname: Pedrizzetti, Gianni organization: Department of Engineering and Architecture, University of Trieste |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40383777$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v1DAQxSNURP_AF-CALHHhEvDYiZ1wQaiCttJKXHq3Js5k16usvdhJ0X57nG4pLQdOHtlvfn5-nvPixAdPRfEW-EeARn1KINpKl1zUJecyV_CiOINKq1KD4CdP6tPiPKUt50KAbF4VpxWXjdRanxWbFQ0TuyM_RWfnESMbxvCL9QePO2cT6w7MYuwdWuZ2uHZ-zSayG-9-zpSY82xDGCc2oBvnSGyPk8us9JmlCSdiYWDThliWvC5eDjgmevOwXhS337_dXl6Xqx9XN5dfV6WtFUxliy23AFyhVdhjB0jEW02KQyU4khJWCtIoEamu-w5Uh1iLtlV6oBrkRXFzxPYBt2Yfs-l4MAGdud8IcW2yGWdHMoAZ0IAarIJKNi3KHmjQQIRKdUJk1pcjaz93O-rtEhKOz6DPT7zbmHW4MznxRkO9ED48EGJYApvMziVL44iewpyMFLxWSipdZen7f6TbMEefo8oqULWSLV-e9-6ppUcvfz40C8RRYGNIKdLwKAFulqkxx6kxeWrM_dSYhSqPTSmL_Zri37v_0_UbN8HFWw |
Cites_doi | 10.3390/jcdd10070308 10.1016/j.ebiom.2022.104334 10.1093/ehjci/jet049 10.1097/MCA.0000000000000596 10.1007/s12265-015-9630-8 10.1007/s10554-017-1261-5 10.1093/eurheartj/ehu394 10.1016/j.bbadis.2013.07.023 10.3389/fcvm.2022.866131 10.1038/nature01282 10.1093/ejechocard/jer288 10.1007/s10554-017-1100-8 10.1038/s41598-019-52680-x 10.1007/s10439-019-02406-x 10.1016/j.amjcard.2023.09.098 10.1016/j.euromechflu.2012.03.014 10.1007/s11517-024-03154-4 10.1093/ehjci/jey121 10.1080/10976640701544530 10.1186/s12968-015-0211-4 10.1152/ajpheart.00993.2010 10.1007/s11897-020-00484-w 10.1161/CIRCIMAGING.118.008130 10.1007/s40477-020-00533-z 10.1111/echo.13518 10.1186/s12968-023-00955-8 10.1111/echo.14264 10.1097/MAT.0000000000001158 10.3389/fcvm.2019.00059 10.1093/ehjci/jead083 10.1016/j.jcp.2019.108895 10.1007/s10396-014-0530-3 10.1093/ehjci/jes159 10.1016/j.jcmg.2018.08.012 10.1093/ehjimp/qyaf022 10.1038/s41598-022-08023-4 10.1016/j.jbiomech.2013.04.012 10.1016/j.jbiomech.2015.11.049 10.7863/ultra.15.06009 10.1016/j.ultrasmedbio.2022.12.001 10.1038/s41467-021-21178-4 10.1111/j.1540-8175.2012.01806.x 10.1371/journal.pone.0161391 10.1016/j.ultrasmedbio.2016.03.008 10.1016/j.jcmg.2013.04.004 10.1016/j.echo.2019.01.018 10.1093/eurheartj/ehab368 10.4103/singaporemedj.SMJ-2022-132 10.1253/circj.CJ-12-0360 10.3389/fcvm.2021.704909 10.1016/j.echo.2011.10.003 10.1007/s10439-024-03597-8 10.1186/s12947-021-00269-8 10.1016/j.ultrasmedbio.2018.05.015 10.1007/s10741-019-09826-w 10.1016/j.jbiomech.2014.11.049 10.1016/S0735-1097(15)61310-9 10.1093/ehjci/jeu106 10.1161/CIRCHEARTFAILURE.109.911867 10.1093/ehjci/jeae181 10.1002/ehf2.14346 10.1016/j.ejrad.2022.110233 10.1038/s41598-017-03089-x 10.1073/pnas.0600520103 10.1016/j.jbiomech.2017.06.046 10.1186/s12880-024-01310-8 10.1172/JCI27702 10.1016/j.jcmg.2008.06.008 10.1152/ajpheart.00112.2018 10.1093/ehjimp/qyae077 10.3389/fphys.2014.00318 10.1016/j.ultrasmedbio.2022.05.007 10.1007/s12265-015-9611-y 10.1186/s12968-021-00729-0 10.1016/S0735-1097(14)60992-X 10.1093/europace/euw331 10.3389/fcvm.2022.883769 10.1016/j.cardiores.2005.12.015 10.1097/MAT.0b013e318299fced 10.1152/ajpheart.00697.2013 10.1536/ihj.20-792 10.1002/jmri.25111 10.1016/j.echo.2018.10.018 10.1007/s10554-019-01612-x 10.1115/1.4063147 10.1038/s41598-024-74155-4 10.1161/JAHA.121.023417 10.1111/echo.14477 10.1038/nrcardio.2014.75 10.1148/radiol.2018173017 10.1016/j.cardiores.2007.03.029 10.1161/CIRCEP.116.004927 10.1111/echo.13732 10.1093/ehjci/jev137 10.1186/s12872-020-01640-9 10.3390/jcm11082216 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P M7Z P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12947-025-00347-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biochemistry Abstracts 1 Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Biochemistry Abstracts 1 Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1476-7120 |
EndPage | 22 |
ExternalDocumentID | oai_doaj_org_article_1a55d816fc614389a3d1ef71eea66b22 PMC12087152 40383777 10_1186_s12947_025_00347_1 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 29B 2WC 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC KQ8 LK8 M1P M7P M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. M48 M7Z P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c561t-9a90c1106ac6adab1aee097e601420ae62c32e7a3aae55db16baa529967fe513 |
IEDL.DBID | C6C |
ISSN | 1476-7120 |
IngestDate | Wed Aug 27 01:31:55 EDT 2025 Thu Aug 21 18:31:00 EDT 2025 Fri Sep 05 16:16:53 EDT 2025 Fri Jul 25 09:51:34 EDT 2025 Thu May 22 05:05:19 EDT 2025 Tue Jul 01 04:55:01 EDT 2025 Sat Sep 06 07:26:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Heart failure Intracardiac flow dynamics Hemodynamic forces Cardiac vortex |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-9a90c1106ac6adab1aee097e601420ae62c32e7a3aae55db16baa529967fe513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doi.org/10.1186/s12947-025-00347-1 |
PMID | 40383777 |
PQID | 3216563901 |
PQPubID | 42687 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a55d816fc614389a3d1ef71eea66b22 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12087152 proquest_miscellaneous_3205663674 proquest_journals_3216563901 pubmed_primary_40383777 crossref_primary_10_1186_s12947_025_00347_1 springer_journals_10_1186_s12947_025_00347_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-19 |
PublicationDateYYYYMMDD | 2025-05-19 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cardiovascular ultrasound |
PublicationTitleAbbrev | Cardiovasc Ultrasound |
PublicationTitleAlternate | Cardiovasc Ultrasound |
PublicationYear | 2025 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | M Amaki (347_CR52) 2014; 63 J-W Son (347_CR66) 2012; 76 347_CR85 L Airale (347_CR65) 2021; 8 G Pedrizzetti (347_CR78) 2016; 17 A Postigo (347_CR19) 2022; 48 E Svalbring (347_CR43) 2016; 11 B Berlot (347_CR54) 2019; 35 SJ Backhaus (347_CR64) 2022; 86 PM Arvidsson (347_CR57) 2018; 315 G Goliasch (347_CR76) 2013; 6 P Aigner (347_CR88) 2020; 48 A Bolger (347_CR16) 2007; 9 Y Wang (347_CR48) 2016; 42 J Eriksson (347_CR56) 2017; 7 JR Hove (347_CR29) 2003; 421 D Collia (347_CR8) 2019; 398 AFL Schinkel (347_CR91) 2021; 24 A Kheradvar (347_CR55) 2012; 25 N Fukuda (347_CR34) 2014; 41 347_CR4 G Pedrizzetti (347_CR77) 2015; 48 S Cimino (347_CR79) 2017; 34 Y Zhong (347_CR50) 2016; 35 F Vallelonga (347_CR13) 2021; 10 BT Chan (347_CR33) 2018; 29 M Kanski (347_CR42) 2015; 17 I Fabiani (347_CR74) 2023; 10 S Cimino (347_CR36) 2012; 35 H Abe (347_CR92) 2013; 14 Y Han (347_CR53) 2019; 9 X Niu (347_CR96) 2024; 24 M Gharib (347_CR39) 2006; 103 J Eriksson (347_CR41) 2013; 14 P Garg (347_CR68) 2019; 20 S Monosilio (347_CR73) 2022; 9 C Li (347_CR47) 2017; 33 L Rossini (347_CR71) 2021; 67 A Demirkiran (347_CR69) 2022; 150 X Chen (347_CR49) 2020; 20 G-R Hong (347_CR31) 2008; 1 G Pedrizzetti (347_CR61) 2017; 60 CD Cordero (347_CR67) 2015; 65 A Pasipoularides (347_CR24) 2015; 8 D Laenens (347_CR81) 2023; 209 VM Stoll (347_CR93) 2019; 12 D Laenens (347_CR82) 2024; 25 D Rodríguez Muñoz (347_CR86) 2019; 32 E Dirkx (347_CR30) 2013; 1832 CJ Carlhäll (347_CR45) 2010; 3 L Rossini (347_CR87) 2016; 49 L Bennati (347_CR7) 2024; 52 Z Ashkir (347_CR60) 2022; 9 D Mele (347_CR75) 2020; 17 347_CR27 347_CR28 J Töger (347_CR59) 2016; 43 J Eriksson (347_CR17) 2011; 300 I-C Kim (347_CR35) 2018; 44 K Kuwahara (347_CR25) 2006; 116 T Sakakibara (347_CR70) 2021; 62 M Dal Ferro (347_CR80) 2019; 6 M Siciliano (347_CR84) 2017; 19 G Pedrizzetti (347_CR21) 2014; 11 H Zhang (347_CR32) 2013; 30 D Mele (347_CR9) 2019; 36 JO Mangual (347_CR18) 2013; 46 JN Ngiam (347_CR10) 2023 C Tang (347_CR37) 2018; 35 A Riva (347_CR44) 2024; 62 G Pedrizzetti (347_CR46) 2024; 14 KK Poh (347_CR40) 2012; 13 K May-Newman (347_CR89) 2013; 59 K Pola (347_CR83) 2023; 25 A Pasipoularides (347_CR22) 2015; 8 V Vu (347_CR90) 2023; 145 W Wang (347_CR51) 2019; 36 L Agati (347_CR20) 2014; 15 JL Vos (347_CR94) 2023; 24 T Lapinskas (347_CR62) 2019; 12 F Jiang (347_CR26) 2021; 12 M Spartera (347_CR95) 2021; 23 D Mele (347_CR3) 2019; 32 A Fiorencis (347_CR5) 2022; 11 PM Arvidsson (347_CR63) 2022; 12 A Aimo (347_CR12) 2024; 2 TA McDonagh (347_CR1) 2021; 42 J Lantz (347_CR6) 2018; 289 JSK Chan (347_CR38) 2023; 49 J Zajac (347_CR58) 2018; 34 D Mele (347_CR11) 2023; 10 D Mele (347_CR2) 2020; 25 J Bermejo (347_CR14) 2014; 306 FO Mutluer (347_CR15) 2021; 19 T Nabeta (347_CR72) 2015; 36 M Brancaccio (347_CR23) 2006; 70 |
References_xml | – volume: 10 start-page: 308 year: 2023 ident: 347_CR11 publication-title: J Cardiovasc Dev Dis doi: 10.3390/jcdd10070308 – volume: 86 start-page: 104334 year: 2022 ident: 347_CR64 publication-title: eBioMedicine doi: 10.1016/j.ebiom.2022.104334 – volume: 14 start-page: 1049 year: 2013 ident: 347_CR92 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jet049 – volume: 29 start-page: 316 year: 2018 ident: 347_CR33 publication-title: Coron Artery Dis doi: 10.1097/MCA.0000000000000596 – volume: 8 start-page: 293 year: 2015 ident: 347_CR24 publication-title: J Cardiovasc Transl Res doi: 10.1007/s12265-015-9630-8 – volume: 34 start-page: 587 year: 2018 ident: 347_CR58 publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-017-1261-5 – volume: 36 start-page: 637 year: 2015 ident: 347_CR72 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehu394 – volume: 1832 start-page: 2414 year: 2013 ident: 347_CR30 publication-title: Biochim Biophys Acta Mol Basis Dis doi: 10.1016/j.bbadis.2013.07.023 – volume: 9 start-page: 866131 year: 2022 ident: 347_CR60 publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2022.866131 – volume: 421 start-page: 172 year: 2003 ident: 347_CR29 publication-title: Nature doi: 10.1038/nature01282 – volume: 13 start-page: 385 year: 2012 ident: 347_CR40 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ejechocard/jer288 – volume: 33 start-page: 1151 year: 2017 ident: 347_CR47 publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-017-1100-8 – volume: 9 start-page: 16264 year: 2019 ident: 347_CR53 publication-title: Sci Rep doi: 10.1038/s41598-019-52680-x – volume: 48 start-page: 794 year: 2020 ident: 347_CR88 publication-title: Ann Biomed Eng doi: 10.1007/s10439-019-02406-x – volume: 209 start-page: 138 year: 2023 ident: 347_CR81 publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2023.09.098 – volume: 35 start-page: 40 year: 2012 ident: 347_CR36 publication-title: Eur J Mech B Fluids doi: 10.1016/j.euromechflu.2012.03.014 – volume: 62 start-page: 3671 year: 2024 ident: 347_CR44 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-024-03154-4 – volume: 20 start-page: 108 year: 2019 ident: 347_CR68 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jey121 – volume: 9 start-page: 741 year: 2007 ident: 347_CR16 publication-title: J Cardiovasc Magn Reson doi: 10.1080/10976640701544530 – volume: 17 start-page: 111 year: 2015 ident: 347_CR42 publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-015-0211-4 – volume: 300 start-page: H2135 year: 2011 ident: 347_CR17 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00993.2010 – volume: 17 start-page: 384 year: 2020 ident: 347_CR75 publication-title: Curr Heart Fail Rep doi: 10.1007/s11897-020-00484-w – volume: 12 start-page: e008130 year: 2019 ident: 347_CR93 publication-title: Circ Cardiovasc Imaging doi: 10.1161/CIRCIMAGING.118.008130 – volume: 24 start-page: 499 year: 2021 ident: 347_CR91 publication-title: J Ultrasound doi: 10.1007/s40477-020-00533-z – volume: 34 start-page: 709 year: 2017 ident: 347_CR79 publication-title: Echocardiography doi: 10.1111/echo.13518 – volume: 25 start-page: 45 year: 2023 ident: 347_CR83 publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-023-00955-8 – volume: 36 start-page: 567 year: 2019 ident: 347_CR51 publication-title: Echocardiography doi: 10.1111/echo.14264 – volume: 67 start-page: 74 year: 2021 ident: 347_CR71 publication-title: ASAIO J doi: 10.1097/MAT.0000000000001158 – volume: 6 start-page: 59 year: 2019 ident: 347_CR80 publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2019.00059 – volume: 24 start-page: 1231 year: 2023 ident: 347_CR94 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jead083 – volume: 398 start-page: 108895 year: 2019 ident: 347_CR8 publication-title: J Comput Phys doi: 10.1016/j.jcp.2019.108895 – volume: 41 start-page: 301 year: 2014 ident: 347_CR34 publication-title: J Med Ultrason doi: 10.1007/s10396-014-0530-3 – volume: 14 start-page: 417 year: 2013 ident: 347_CR41 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jes159 – volume: 12 start-page: 377 year: 2019 ident: 347_CR62 publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2018.08.012 – ident: 347_CR4 doi: 10.1093/ehjimp/qyaf022 – volume: 12 start-page: 4017 year: 2022 ident: 347_CR63 publication-title: Sci Rep doi: 10.1038/s41598-022-08023-4 – volume: 46 start-page: 1611 year: 2013 ident: 347_CR18 publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.04.012 – volume: 49 start-page: 2152 year: 2016 ident: 347_CR87 publication-title: J Biomech doi: 10.1016/j.jbiomech.2015.11.049 – volume: 35 start-page: 965 year: 2016 ident: 347_CR50 publication-title: J Ultrasound Med doi: 10.7863/ultra.15.06009 – volume: 49 start-page: 982 year: 2023 ident: 347_CR38 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2022.12.001 – volume: 12 start-page: 869 year: 2021 ident: 347_CR26 publication-title: Nat Commun doi: 10.1038/s41467-021-21178-4 – volume: 30 start-page: 27 year: 2013 ident: 347_CR32 publication-title: Echocardiography doi: 10.1111/j.1540-8175.2012.01806.x – volume: 11 start-page: e0161391 year: 2016 ident: 347_CR43 publication-title: PLoS ONE doi: 10.1371/journal.pone.0161391 – volume: 42 start-page: 1730 year: 2016 ident: 347_CR48 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2016.03.008 – volume: 6 start-page: 704 year: 2013 ident: 347_CR76 publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2013.04.004 – volume: 32 start-page: 744 year: 2019 ident: 347_CR86 publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2019.01.018 – volume: 42 start-page: 3599 year: 2021 ident: 347_CR1 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehab368 – year: 2023 ident: 347_CR10 publication-title: Singap Med J doi: 10.4103/singaporemedj.SMJ-2022-132 – volume: 76 start-page: 2640 year: 2012 ident: 347_CR66 publication-title: Circ J doi: 10.1253/circj.CJ-12-0360 – volume: 8 start-page: 704909 year: 2021 ident: 347_CR65 publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2021.704909 – volume: 25 start-page: 220 year: 2012 ident: 347_CR55 publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2011.10.003 – volume: 52 start-page: 3295 year: 2024 ident: 347_CR7 publication-title: Ann Biomed Eng doi: 10.1007/s10439-024-03597-8 – volume: 19 start-page: 38 year: 2021 ident: 347_CR15 publication-title: Cardiovasc Ultrasound doi: 10.1186/s12947-021-00269-8 – volume: 44 start-page: 1951 year: 2018 ident: 347_CR35 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2018.05.015 – volume: 25 start-page: 217 year: 2020 ident: 347_CR2 publication-title: Heart Fail Rev doi: 10.1007/s10741-019-09826-w – volume: 48 start-page: 388 year: 2015 ident: 347_CR77 publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.11.049 – volume: 65 start-page: A1310 year: 2015 ident: 347_CR67 publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(15)61310-9 – volume: 15 start-page: 1203 year: 2014 ident: 347_CR20 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jeu106 – volume: 3 start-page: 326 year: 2010 ident: 347_CR45 publication-title: Circ Heart Fail doi: 10.1161/CIRCHEARTFAILURE.109.911867 – volume: 25 start-page: 1721 year: 2024 ident: 347_CR82 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jeae181 – volume: 10 start-page: 2927 year: 2023 ident: 347_CR74 publication-title: ESC Heart Fail doi: 10.1002/ehf2.14346 – volume: 150 start-page: 110233 year: 2022 ident: 347_CR69 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2022.110233 – volume: 7 start-page: 2971 year: 2017 ident: 347_CR56 publication-title: Sci Rep doi: 10.1038/s41598-017-03089-x – volume: 103 start-page: 6305 year: 2006 ident: 347_CR39 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0600520103 – volume: 60 start-page: 203 year: 2017 ident: 347_CR61 publication-title: J Biomech doi: 10.1016/j.jbiomech.2017.06.046 – volume: 24 start-page: 131 year: 2024 ident: 347_CR96 publication-title: BMC Med Imaging doi: 10.1186/s12880-024-01310-8 – volume: 116 start-page: 3114 year: 2006 ident: 347_CR25 publication-title: J Clin Invest doi: 10.1172/JCI27702 – volume: 1 start-page: 705 year: 2008 ident: 347_CR31 publication-title: JACC Cardiovasc Imaging doi: 10.1016/j.jcmg.2008.06.008 – volume: 315 start-page: H1627 year: 2018 ident: 347_CR57 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00112.2018 – volume: 2 start-page: qyae077 year: 2024 ident: 347_CR12 publication-title: Eur Heart J Imaging Methods Pract doi: 10.1093/ehjimp/qyae077 – ident: 347_CR28 doi: 10.3389/fphys.2014.00318 – volume: 48 start-page: 1822 year: 2022 ident: 347_CR19 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2022.05.007 – volume: 8 start-page: 76 year: 2015 ident: 347_CR22 publication-title: J Cardiovasc Transl Res doi: 10.1007/s12265-015-9611-y – volume: 23 start-page: 29 year: 2021 ident: 347_CR95 publication-title: J Cardiovasc Magn Reson doi: 10.1186/s12968-021-00729-0 – volume: 63 start-page: A992 year: 2014 ident: 347_CR52 publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(14)60992-X – volume: 19 start-page: 1833 year: 2017 ident: 347_CR84 publication-title: Europace doi: 10.1093/europace/euw331 – volume: 9 start-page: 883769 year: 2022 ident: 347_CR73 publication-title: Front Cardiovasc Med doi: 10.3389/fcvm.2022.883769 – volume: 70 start-page: 422 year: 2006 ident: 347_CR23 publication-title: Cardiovasc Res doi: 10.1016/j.cardiores.2005.12.015 – volume: 59 start-page: 452 year: 2013 ident: 347_CR89 publication-title: ASAIO J doi: 10.1097/MAT.0b013e318299fced – volume: 306 start-page: H718 year: 2014 ident: 347_CR14 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00697.2013 – volume: 62 start-page: 1287 year: 2021 ident: 347_CR70 publication-title: Int Heart J doi: 10.1536/ihj.20-792 – volume: 43 start-page: 1386 year: 2016 ident: 347_CR59 publication-title: Magn Reson Imaging doi: 10.1002/jmri.25111 – volume: 32 start-page: 319 year: 2019 ident: 347_CR3 publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2018.10.018 – volume: 35 start-page: 1627 year: 2019 ident: 347_CR54 publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-019-01612-x – volume: 145 start-page: 111010 year: 2023 ident: 347_CR90 publication-title: J Biomech Eng doi: 10.1115/1.4063147 – volume: 14 start-page: 22760 year: 2024 ident: 347_CR46 publication-title: Sci Rep doi: 10.1038/s41598-024-74155-4 – volume: 10 start-page: e023417 year: 2021 ident: 347_CR13 publication-title: J Am Heart Assoc doi: 10.1161/JAHA.121.023417 – volume: 36 start-page: 1919 year: 2019 ident: 347_CR9 publication-title: Echocardiography doi: 10.1111/echo.14477 – volume: 11 start-page: 545 year: 2014 ident: 347_CR21 publication-title: Nat Rev Cardiol doi: 10.1038/nrcardio.2014.75 – volume: 289 start-page: 51 year: 2018 ident: 347_CR6 publication-title: Radiology doi: 10.1148/radiol.2018173017 – ident: 347_CR27 doi: 10.1016/j.cardiores.2007.03.029 – ident: 347_CR85 doi: 10.1161/CIRCEP.116.004927 – volume: 35 start-page: 56 year: 2018 ident: 347_CR37 publication-title: Echocardiography doi: 10.1111/echo.13732 – volume: 17 start-page: 203 year: 2016 ident: 347_CR78 publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jev137 – volume: 20 start-page: 355 year: 2020 ident: 347_CR49 publication-title: BMC Cardiovasc Disord doi: 10.1186/s12872-020-01640-9 – volume: 11 start-page: 2216 year: 2022 ident: 347_CR5 publication-title: J Clin Med doi: 10.3390/jcm11082216 |
SSID | ssj0022138 |
Score | 2.3656845 |
SecondaryResourceType | review_article |
Snippet | Background
The evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This... The evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This approach has been... BackgroundThe evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics. This... Abstract Background The evaluation of left ventricular (LV) flow dynamics is a novel approach to assessing LV function that goes beyond traditional metrics.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 13 |
SubjectTerms | Angiology Biomarkers Blood Flow Velocity - physiology Cardiac function Cardiac vortex Cardiology Congestive heart failure Contrast agents Echocardiography Echocardiography - methods Energy Energy transfer Heart failure Heart Failure - diagnosis Heart Failure - diagnostic imaging Heart Failure - physiopathology Heart Ventricles - diagnostic imaging Heart Ventricles - physiopathology Hemodynamic forces Hemodynamics Humans Imaging Imaging techniques Intracardiac flow dynamics Kinetic energy Magnetic resonance imaging Medical imaging Medicine Medicine & Public Health Particle image velocimetry Physiology Radiology Review Shear stress Thrombosis Ultrasonic imaging Ultrasound Ventricle Ventricular Dysfunction, Left - diagnostic imaging Ventricular Dysfunction, Left - physiopathology Ventricular Function, Left - physiology Vortices Vorticity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QDogLYuOrsE1B4gbRmqT54gYT04QYpyHtFjmpqz0J-qa1E-K_X5K2Dx4f4sK1ycGyndpO7N-PkJetCjyFMZGBbi1r2jYwZ1EwdDLWoABMmZA7-6RPPzcfLtTFT1RfuSdsggeeFHfEQanWct1FXZi6QbYcO8MRQesgyt83xbylmJpLLcGlXUZkrD4aUlRrDMvUrRmQxTC-FYYKWv-fUszfOyV_eS4tUejkAbk_p4_07ST2LrmD_R65ezY_kD8klx-xG2nuYSwXe3BNuy_rb7SdeOcHGr7TWHwi0tXXQlBENyiuA131NBNcj7SDVW5XpzPq6vCGlsEjuu5oShhp2vKInJ-8Pz8-ZTOZAospRRqZA1fHFOs1RA0tBA6ItTOYCrJG1IBaRCnQgATApPHAdQBQKVhp06Hi8jHZ6dc9PiXUoY3B1sJloJiAjY0WjA4SXJcZbGJFXi2q9VcTZIYvpYbVfjKET4bwxRCeV-Rd1v5mZ4a7Lh-SE_jZCfy_nKAi-4vt_HwGBy9FRhbKdzoVebFZTqcnP4lAj-ubvCclgFpq01TkyWTqjSRNnat3Yypit5xgS9TtlX51WRC6uahTIaqSXK8Xf_kh19918ex_6OI5uSeKoyvG3T7ZGa9v8CAlTmM4LGfkFjeAFQs priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuiDeBgozEDazGdvwIF0RRqwrRCqEi9WaNHYeuBEnZpEL8e2zHSbW8rrEPE8_YM-MZfx9CLxphaXBjLALdalI1jSW19oz4mrsSBIBKL-SOT-TR5-r9mTjLF25Dbqucz8R0UDe9i3fke5xFnJiYob-5-E4ia1SsrmYKjetoJxzBWqzQzv7BycdPS8rFKNfzUxkt94bg3SpFIoVrBGZRhG65o4Ta_7dQ88-Oyd_KpskbHd5Gt3IYid9Oer-DrvnuLrpxnAvl99D5B9-OOPYypgs-2OD2a_8DNxP__IDtT-ySbTi8_paIivCC5jrgdYcj0fWIW1jHtnWc0VeH1zg9QMJ9i0PgiMOU--j08OD03RHJpArEhVBpJDXUpQs-X4KT0ICl4H1ZKx8Ss4qV4CVznHkFHMAL0VgqLYAITkuq1gvKH6BV13f-EcK1187qktURMMb6SjsNSloOdRuZbFyBXs5Lay4m6AyTUg4tzaQIExRhkiIMLdB-XP1lZoS9Th_6zReTd5GhEETSVLZOJtp24A31raLeg5SWsQLtzrozeS8O5spyCvR8GQ67KJZGoPP9ZZwTAkHJpaoK9HBS9SJJVcYsXqkC6S0j2BJ1e6RbnyekbsrKkJCKINer2V6u5Pr3Wjz-_288QTdZMmFBaL2LVuPm0j8NodFon2X7_wVB1w3O priority: 102 providerName: ProQuest |
Title | Left ventricular flow dynamics by cardiac imaging techniques in heart failure patients: state of the art |
URI | https://link.springer.com/article/10.1186/s12947-025-00347-1 https://www.ncbi.nlm.nih.gov/pubmed/40383777 https://www.proquest.com/docview/3216563901 https://www.proquest.com/docview/3205663674 https://pubmed.ncbi.nlm.nih.gov/PMC12087152 https://doaj.org/article/1a55d816fc614389a3d1ef71eea66b22 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gkxAviG86xilIvEFFk7ZJyhs37ZgQm9A0pBMvkZO62kmjh9ZOE_89TtorHIwHXvLQuJIV27Idxz8z9qounSA3JgPQrUmLunZpZVCmWOU-gxJAxw654xN19KX4uCyXI0xO6IX5vX4vjHrbkT8qdBqGrgYoFZ1SprNbBpyxUJhVB1NyJUVuNk0xN_635XgiPv9NQeXfbyP_KJBGv7O4z-6NASN_P0j4AbuF7UN253gsiT9i55-w6Xl4tRiv8uCSNxfra14Pk-Y77n5wH7XA89W3OJKIT7itHV-1PIy07nkDq_BAnY84q907HluN-LrhFCJyInnMzhaHZwdH6Tg-IfUUFPVpBVXmybsr8ApqcAIQs0ojpWCFzACV9LlEDTkAlmXthHIAJbknpRukI37Cdtp1i88Yr9B4ZzJZBWgYh4XxBrRyOVRNmFnjE_Z6c7T2-wCSYWNyYZQdBGFJEDYKwoqEzcPpT5QB4Dp-ILnb0V6sAGLJCNV4FQe0Q14LbLRABKWclAnb38jOjlbX2VwGLKFwi5Owl9M22UsogkCL66tAQyGfIv0pEvZ0EPXESZGFfF3rhJktJdhidXunXZ1HTG4hM0o9S-LrzUZffvH177PY-z_y5-yujCpdpqLaZzv95RW-oKCodzN2Wy81rWbxYcZ254cnn09n0UJm8ZqB1tP5158OJwq_ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDeBAkaCE0SNncR2kBCi0GpLd1cILVJv1thx6EqQlM1WVX8U_xHbSbZaXrdeEyuaeGY8Mx77-wCel7mmLowxD3Qr46wsdVxIy2JbpCbBHFGEG3KTKR99yT4e5Ucb8HO4C-OPVQ5rYlioy8b4PfKdlHmcGF-hvz35EXvWKN9dHSg0OrM4tOdnrmRr3xx8cPp9wdj-3uz9KO5ZBWLjcoVlXGCRGBf0OBqOJWqK1iaFsK4yyViCljOTMiswRbR5XmrKNWLuVm0uKpvT1H32Cmy5LKNwTrS1uzf99HlV4TGayuFmjuQ7rQummYg9Y6zHgRExXYt-gSTgb5ntnwc0f-vShuC3fxNu9FkredeZ2S3YsPVtuDrp-_J34HhsqyXxRyfDfiIuSPWtOSNlR3ffEn1OTDBFQ-bfAy8SWYHHtmReE8-rvSQVzv0pedKDvbavSbjvRJqKuDyVuCF3YXYZs30PNuumtg-AFFYaLRNWeHwabTNpJAquUywqT5xjIng5TK066ZA6VKhwJFedIpRThAqKUDSCXT_7q5EeZTs8aBZfVe-0iqITSVJeGR5Y4jEtqa0EtRY514xFsD3oTvWu36oLQ43g2eq1c1rficHaNqd-jMs7ecpFFsH9TtUrSbLEbxoIEYFcM4I1Udff1PPjAAxOWeLq39zJ9Wqwlwu5_j0XD___G0_h2mg2GavxwfTwEVxnwZzzmBbbsLlcnNrHLitb6ie9LxBQl-x9vwBvl0rx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_QTZp4QWN8lY0tSLxBtSZtk5S34-M0jm1CYkh7i5zUZSdBO107If57kvQDjo0HXhtXsmJbtmP7Z0JelLlhzo1xD3Sr4qwsTVwo5DEWqU0gB5BhQu70TBx_yZYX-cUfU_yh230sSfYzDR6lqe6OrsqqN3EljlrnpTIZ-1WsHmBFxi7_2VLChQ8zsjWfLz8vp6SLs1SNwzK3_rnhkAJu_23B5s2eyb8Kp8EfLXbIvSGQpPNe8vfJHax3yfbpUCp_QC5PsOqo72YMT3ywptW35gct-w30LTU_qQ3aYenqe1hVRCc815auaupXXXe0gpVvXKcD_mr7moYRJNpU1IWO1JE8JOeL9-dvj-NhrUJsXbDUxQUUiXVeX4AVUIJhgJgUEl1qlvEEUHCbcpSQAmCel4YJA5A7tyVkhTlLH5FZ3dT4hNAClTUq4YWHjDGYKatACpNCUfldNjYiL8er1Vc9eIYOSYcSuheEdoLQQRCaReSNv_2J0gNfhw_N-qse7EgzcCwpJiorwuJ2SEuGlWSIIIThPCL7o-z0YI2tTrnHGPKvOxF5Ph07O_LFEaixufY0LhQUqZBZRB73op44yRKfx0sZEbWhBBusbp7Uq8uA1c144lLS3PH1atSX33z9-y6e_h_5Idn-9G6hTz6cfdwjd3nQ7jxmxT6ZdetrfObips4cDKbxCyjbEe8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Left+ventricular+flow+dynamics+by+cardiac+imaging+techniques+in+heart+failure+patients%3A+state+of+the+art&rft.jtitle=Cardiovascular+ultrasound&rft.au=Mele%2C+Donato&rft.au=Serio%2C+Lorenzo&rft.au=Beccari%2C+Riccardo&rft.au=Cecchetto%2C+Antonella&rft.date=2025-05-19&rft.pub=BioMed+Central&rft.eissn=1476-7120&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs12947-025-00347-1&rft.externalDocID=10_1186_s12947_025_00347_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-7120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-7120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-7120&client=summon |