Cdkn2a deficiency promotes adipose tissue browning
Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the co...
Saved in:
Published in | Molecular metabolism (Germany) Vol. 8; pp. 65 - 76 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Elsevier GmbH
01.02.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis.
We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients.
We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression.
Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders.
•Cdkn2a deficiency protects mice against high fat diet-induced obesity.•Cdkn2a modulates brown-like/beige fat gene networks involved in energy production and lipid metabolism.•Increased CDKN2A expression in human obese adipocytes.•Increased UCP1 levels in adipocytes differentiated from CDKN2A-silenced hiPS cells. |
---|---|
AbstractList | Objectives: Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis. Methods: We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients. Results: We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression. Conclusion: Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders. Keywords: Obesity, Type 2 diabetes, Insulin sensitivity, Energy expenditure, cdkn2a, Genome-wide association study, Adipose tissue browning • Cdkn2a deficiency protects mice against high fat diet-induced obesity. • Cdkn2a modulates brown-like/beige fat gene networks involved in energy production and lipid metabolism. • Increased CDKN2A expression in human obese adipocytes. • Increased UCP1 levels in adipocytes differentiated from CDKN2A- silenced hiPS cells. Objectives: Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis. Methods: We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients. Results: We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/ beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression. Conclusion: Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders. Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis. We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients. We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression. Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders. •Cdkn2a deficiency protects mice against high fat diet-induced obesity.•Cdkn2a modulates brown-like/beige fat gene networks involved in energy production and lipid metabolism.•Increased CDKN2A expression in human obese adipocytes.•Increased UCP1 levels in adipocytes differentiated from CDKN2A-silenced hiPS cells. Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis. We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients. We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression. Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders. Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis.OBJECTIVESGenome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis.We first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients.METHODSWe first analyzed glucose and energy homeostasis from Cdkn2a-deficient mice subjected to normal or high fat diets. Subsequently Cdkn2a-deficient primary adipose cells and human-induced pluripotent stem differentiated into adipocytes were further characterized for their capacity to promote browning of adipose tissue. Finally CDKN2A levels were studied in adipocytes from lean and obese patients.We report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression.RESULTSWe report that Cdkn2a deficiency protects mice against high fat diet-induced obesity, increases energy expenditure and modulates adaptive thermogenesis, in addition to improving insulin sensitivity. Disruption of Cdkn2a associates with increased expression of brown-like/beige fat markers in inguinal adipose tissue and enhances respiration in primary adipose cells. Kinase activity profiling and RNA-sequencing analysis of primary adipose cells further demonstrate that Cdkn2a modulates gene networks involved in energy production and lipid metabolism, through the activation of the Protein Kinase A (PKA), PKG, PPARGC1A and PRDM16 signaling pathways, key regulators of adipocyte beiging. Importantly, CDKN2A expression is increased in adipocytes from obese compared to lean subjects. Moreover silencing CDKN2A expression during human-induced pluripotent stem cells adipogenic differentiation promoted UCP1 expression.Our results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders.CONCLUSIONOur results offer novel insight into brown/beige adipocyte functions, which has recently emerged as an attractive therapeutic strategy for obesity and T2D. Modulating Cdkn2a-regulated signaling cascades may be of interest for the treatment of metabolic disorders. |
Author | Fajas, Lluis Annicotte, Jean-Sébastien Lopez-Mejia, Isabel C. Salas, Elisabet Oger, Frédérik Bonnefond, Amélie Yao, Xi Rabearivelo, Iandry Rabhi, Nabil Caron, Emilie Dani, Christian Hannou, Sarah Anissa Durand, Emmanuelle Gromada, Xavier Froguel, Philippe Carney, Charlène |
AuthorAffiliation | 4 Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, F-06107 Nice Cedex 2, France 6 INSERM, UMR S-1172, Development and Plasticity of Postnatal Brain, F-59000 Lille, France 1 Lille University, UMR 8199 – EGID, F-59000 Lille, France 3 Institut Pasteur de Lille, F-59000 Lille, France 5 Center for Integrative Genomics, Université de Lausanne, CH-1015 Lausanne, Switzerland 2 CNRS, UMR 8199, F-59000 Lille, France 7 Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London W12 0NN, UK |
AuthorAffiliation_xml | – name: 1 Lille University, UMR 8199 – EGID, F-59000 Lille, France – name: 4 Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, F-06107 Nice Cedex 2, France – name: 5 Center for Integrative Genomics, Université de Lausanne, CH-1015 Lausanne, Switzerland – name: 3 Institut Pasteur de Lille, F-59000 Lille, France – name: 2 CNRS, UMR 8199, F-59000 Lille, France – name: 6 INSERM, UMR S-1172, Development and Plasticity of Postnatal Brain, F-59000 Lille, France – name: 7 Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London W12 0NN, UK |
Author_xml | – sequence: 1 givenname: Nabil surname: Rabhi fullname: Rabhi, Nabil organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 2 givenname: Sarah Anissa surname: Hannou fullname: Hannou, Sarah Anissa organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 3 givenname: Xavier surname: Gromada fullname: Gromada, Xavier organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 4 givenname: Elisabet surname: Salas fullname: Salas, Elisabet organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 5 givenname: Xi surname: Yao fullname: Yao, Xi organization: Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, F-06107 Nice Cedex 2, France – sequence: 6 givenname: Frédérik surname: Oger fullname: Oger, Frédérik organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 7 givenname: Charlène surname: Carney fullname: Carney, Charlène organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 8 givenname: Isabel C. surname: Lopez-Mejia fullname: Lopez-Mejia, Isabel C. organization: Center for Integrative Genomics, Université de Lausanne, CH-1015 Lausanne, Switzerland – sequence: 9 givenname: Emmanuelle surname: Durand fullname: Durand, Emmanuelle organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 10 givenname: Iandry surname: Rabearivelo fullname: Rabearivelo, Iandry organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 11 givenname: Amélie surname: Bonnefond fullname: Bonnefond, Amélie organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 12 givenname: Emilie surname: Caron fullname: Caron, Emilie organization: INSERM, UMR S-1172, Development and Plasticity of Postnatal Brain, F-59000 Lille, France – sequence: 13 givenname: Lluis surname: Fajas fullname: Fajas, Lluis organization: Center for Integrative Genomics, Université de Lausanne, CH-1015 Lausanne, Switzerland – sequence: 14 givenname: Christian surname: Dani fullname: Dani, Christian organization: Université Côte d'Azur, CNRS, INSERM, iBV, Faculté de Médecine, F-06107 Nice Cedex 2, France – sequence: 15 givenname: Philippe surname: Froguel fullname: Froguel, Philippe email: p.froguel@imperial.ac.uk organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France – sequence: 16 givenname: Jean-Sébastien surname: Annicotte fullname: Annicotte, Jean-Sébastien email: jean-sebastien.annicotte@inserm.fr organization: Lille University, UMR 8199 – EGID, F-59000 Lille, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29237539$$D View this record in MEDLINE/PubMed https://hal.science/hal-04284710$$DView record in HAL |
BookMark | eNqFkl1vFCEUhompsXXtPzBmL_ViR2CGL2NMmo21TTbxRq8Jwxy2bGdghdk1--9lO61pe6EkBHI473MO8L5GJyEGQOgtwRXBhH_cVEPsBxgriomoCKkwoS_QGaWELqQQ8uTR_hSd57zBZUjOOSOv0ClVtBasVmeILrvbQM28A-eth2AP822KQxwhz03ntzHDfPQ572Depvg7-LB-g14602c4v19n6Ofl1x_Lq8Xq-7fr5cVqYRkn40Iq7rh0rmGKEida4IYoaAmRQjqlGO1aqWqsKDBlJBetrbsSx05QrDim9QxdT9wumo3eJj-YdNDReH0XiGmtTRq97UG3Qta8toI1rmm6jkrGW1AOC1rqWlsX1peJtd21A3QWwphM_wT69CT4G72Oe82UZLiwZ-jDBLh5Jru6WOljDDdUNoLgPSm57--LpfhrB3nUg88W-t4EiLusiRKiTFquP0PvHvf1l_zwQSXh05RgU8w5gdPWj2b08dim7zXB-mgIvdGTIfTREJoQXQxRxM0z8QP_P7LPkwzK7-49JG17H7w1_S0cyuP7f8v_ABhjzuQ |
CitedBy_id | crossref_primary_10_1186_s12920_022_01387_6 crossref_primary_10_1093_bioinformatics_btz858 crossref_primary_10_1016_j_lfs_2023_121652 crossref_primary_10_1016_j_livres_2020_01_001 crossref_primary_10_1016_j_celrep_2022_111170 crossref_primary_10_4163_jnh_2024_57_4_376 crossref_primary_10_1515_jbcpp_2019_0120 crossref_primary_10_3390_cells13110983 crossref_primary_10_7717_peerj_15494 crossref_primary_10_1007_s00204_020_02815_1 crossref_primary_10_1038_s41598_024_56753_4 crossref_primary_10_1083_jcb_202401112 crossref_primary_10_1016_j_devcel_2021_02_018 crossref_primary_10_1172_jci_insight_143451 crossref_primary_10_1016_j_gene_2018_10_012 crossref_primary_10_1096_fj_202000683R crossref_primary_10_3390_ijms23031499 crossref_primary_10_1016_j_prp_2023_154453 crossref_primary_10_3390_biom10091350 crossref_primary_10_1016_j_isci_2023_107231 crossref_primary_10_1152_ajpheart_00580_2024 crossref_primary_10_3390_ijerph19020647 crossref_primary_10_3390_cells11020291 crossref_primary_10_3390_cells11121966 crossref_primary_10_1210_endocr_bqab096 crossref_primary_10_3389_fphys_2019_00039 crossref_primary_10_1016_j_ccell_2023_05_001 crossref_primary_10_3390_ijms19041095 crossref_primary_10_1038_s41467_023_38471_z crossref_primary_10_3390_cells12060870 crossref_primary_10_1016_j_bbrc_2019_01_111 crossref_primary_10_1177_1066896920904423 crossref_primary_10_1016_j_obmed_2022_100432 crossref_primary_10_1038_s42255_021_00432_5 |
Cites_doi | 10.2337/db13-0949 10.1158/0008-5472.CAN-11-3536 10.1007/BF00402783 10.1126/science.1439824 10.2337/db14-0513 10.2337/db14-0746 10.1172/JCI81480 10.1038/nm.4031 10.1038/nature05092 10.1016/j.molmet.2013.05.002 10.1016/j.cmet.2012.06.011 10.1038/nature13267 10.1172/JCI67803 10.1126/science.1198973 10.2337/db15-0602 10.1016/j.cmet.2005.09.003 10.1038/nm.4054 10.1016/j.cellsig.2013.02.006 10.1016/j.cmet.2015.11.003 10.1152/physrev.00015.2003 10.1371/journal.pone.0178485 10.1074/jbc.272.28.17686 10.1194/jlr.M041814 10.1155/2014/873679 10.1016/j.bbrc.2014.03.075 10.1007/s00125-011-2324-0 10.1016/j.cmet.2015.06.022 10.1016/j.tem.2015.01.008 10.1016/j.ebiom.2017.03.037 10.2337/db13-1921 10.1101/gad.211649.112 10.1007/978-1-62703-284-1_21 10.1038/ng.2383 10.1210/jc.2013-3901 10.1007/s12170-013-0368-z 10.1038/nature13528 10.1016/j.celrep.2015.10.028 10.1038/ncb2309 10.1002/stem.1607 10.1126/science.aal2066 10.1096/fj.12-221580 10.1186/gb-2013-14-4-r36 10.1016/S0092-8674(00)81079-X 10.1016/j.cmet.2015.09.007 10.1007/978-1-62703-459-3_11 10.1046/j.1432-1033.2003.03422.x 10.1093/nar/gkt214 10.1016/j.celrep.2016.03.079 10.1016/j.cmet.2014.06.011 10.1093/nar/gkh070 10.1038/ng.609 10.1038/8751 10.1016/j.cell.2012.05.016 10.1096/fj.11-190892 10.1038/srep32490 10.1038/nm.3819 10.1016/S1534-5807(02)00190-9 10.1038/ncb1915 10.1186/s13059-014-0550-8 10.1038/nm.3056 10.1038/nm.3891 10.2337/diabetes.53.7.1857 10.1016/j.cmet.2013.04.011 10.1172/JCI68993 10.1007/s00125-011-2160-2 10.1126/science.1252651 |
ContentType | Journal Article |
Copyright | 2017 The Authors Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License 2017 The Authors 2017 |
Copyright_xml | – notice: 2017 The Authors – notice: Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2017 The Authors 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.molmet.2017.11.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2212-8778 |
EndPage | 76 |
ExternalDocumentID | oai_doaj_org_article_b78363c754f44dd2856be9f0727becc3 PMC5985036 oai_HAL_hal_04284710v1 29237539 10_1016_j_molmet_2017_11_012 S2212877817309353 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 294785 |
GroupedDBID | -IN .1- .FO 0R~ 1P~ 457 4G. 53G 5VS 7-5 AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGHFR AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E O-L O9- OB0 OK1 ON- RIG ROL RPM SSZ Z5R AAYXX AFCTW CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c561t-896f68ff45921f7be6a19eb11878f9952db893092e59a867bc3df990f72096023 |
IEDL.DBID | M48 |
ISSN | 2212-8778 |
IngestDate | Wed Aug 27 01:20:45 EDT 2025 Thu Aug 21 13:31:11 EDT 2025 Tue Jun 24 07:01:20 EDT 2025 Fri Jul 11 16:15:57 EDT 2025 Mon Jul 21 06:05:30 EDT 2025 Tue Jul 01 04:29:46 EDT 2025 Thu Apr 24 23:00:16 EDT 2025 Tue Aug 26 16:41:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Type 2 diabetes cdkn2a Obesity Genome-wide association study Insulin sensitivity Energy expenditure Adipose tissue browning |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-896f68ff45921f7be6a19eb11878f9952db893092e59a867bc3df990f72096023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Senior authors. These authors contributed equally. Present address: Department of Biochemistry, Boston University School of Medicine, MA 02118, USA. Lead contact. |
ORCID | 0000-0002-2109-4849 0000-0001-9976-3005 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.molmet.2017.11.012 |
PMID | 29237539 |
PQID | 1977197289 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b78363c754f44dd2856be9f0727becc3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5985036 hal_primary_oai_HAL_hal_04284710v1 proquest_miscellaneous_1977197289 pubmed_primary_29237539 crossref_citationtrail_10_1016_j_molmet_2017_11_012 crossref_primary_10_1016_j_molmet_2017_11_012 elsevier_clinicalkey_doi_10_1016_j_molmet_2017_11_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Molecular metabolism (Germany) |
PublicationTitleAlternate | Mol Metab |
PublicationYear | 2018 |
Publisher | Elsevier GmbH Elsevier |
Publisher_xml | – name: Elsevier GmbH – name: Elsevier |
References | Wan, Mathur, Hu, Liu, Zhang, Peng (bib13) 2013; 25 Blondin, Labbe, Tingelstad, Noll, Kunach, Phoenix (bib47) 2014; 99 Helman, Klochendler, Azazmeh, Gabai, Horwitz, Anzi (bib25) 2016; 22 Wu, Bostrom, Sparks, Ye, Choi, Giang (bib5) 2012; 150 Yoneshiro, Aita, Matsushita, Kayahara, Kameya, Kawai (bib49) 2013; 123 Horswell, Fryer, Hutchison, Zindrou, Speedy, Town (bib18) 2013; 54 Krishnamurthy, Ramsey, Ligon, Torrice, Koh, Bonner-Weir (bib23) 2006; 443 Kim, Pertea, Trapnell, Pimentel, Kelley, Salzberg (bib33) 2013; 14 Cannon, Nedergaard (bib40) 2004; 84 Patsouris, Qi, Abdullahi, Stanojcic, Chen, Parousis (bib53) 2015; 13 Mohsen-Kanson, Hafner, Wdziekonski, Takashima, Villageois, Carrière (bib65) 2014 Jun; 32 van der Lans, Hoeks, Brans, Vijgen, Visser, Vosselman (bib48) 2013; 123 Kulyte, Ehrlund, Arner, Dahlman (bib36) 2017; 12 Min, Kady, Nam, Rojas-Rodriguez, Berkenwald, Kim (bib50) 2016; 22 Jespersen, Larsen, Peijs, Daugaard, Homoe, Loft (bib51) 2013; 17 Fearon, Glass, Guttridge (bib64) 2012; 16 Salas, Rabhi, Froguel, Annicotte (bib24) 2014; 2014 Pal, Potjer, Thomsen, Ng, Barrett, Scharfmann (bib16) 2016; 65 Shinoda, Luijten, Hasegawa, Hong, Sonne, Kim (bib52) 2015; 21 Voight, Scott, Steinthorsdottir, Morris, Dina, Welch (bib11) 2010; 42 Fajas, Landsberg, Huss-Garcia, Sardet, Lees, Auwerx (bib2) 2002; 3 Hannou, Wouters, Paumelle, Staels (bib9) 2015; 26 Lee, Smith, Linderman, Courville, Brychta, Dieckmann (bib8) 2014; 63 Love, Huber, Anders (bib35) 2014; 15 Svensson, Wahlstrand, Olsson, Froguel, Falchi, Bergman (bib17) 2014; 446 Abella, Dubus, Malumbres, Rane, Kiyokawa, Sicard (bib19) 2005; 2 Kir, White, Kleiner, Kazak, Cohen, Baracos (bib60) 2014; 513 Cannon-Albright, Goldgar, Meyer, Lewis, Anderson, Fountain (bib57) 1992; 258 Chappuis, Ripperger, Schnell, Rando, Jud, Wahli (bib44) 2013; 2 Das, Eder, Schauer, Diwoky, Temmel, Guertl (bib63) 2011; 333 Chondronikola, Volpi, Borsheim, Porter, Annamalai, Enerback (bib46) 2014; 63 Hafner, Contet, Ravaud, Yao, Villageois, Suknuntha (bib66) 2016 Aug 31; 6 Lagarrigue, Lopez-Mejia, Denechaud, Escote, Castillo-Armengol, Jimenez (bib56) 2016; 126 Liew, Boucher, Cheong, Vernochet, Koh, Mallol (bib3) 2013; 19 Kajimura, Spiegelman, Seale (bib4) 2015; 22 Fuentes, Wouters, Hannou, Cudejko, Rigamonti, Mayi (bib20) 2011; 54 Rabhi, Denechaud, Gromada, Hannou, Zhang, Rashid (bib29) 2016; 15 Grujic, Susulic, Harper, Himms-Hagen, Cunningham, Corkey (bib41) 1997; 272 Hanssen, Hoeks, Brans, van der Lans, Schaart, van den Driessche (bib7) 2015; 21 Lee, Dominy, Choi, Jurczak, Tolliday, Camporez (bib21) 2014; 510 Hilhorst, Houkes, Mommersteeg, Musch, van den Berg, Ruijtenbeek (bib32) 2013; 977 Satyanarayana, Klarmann, Gavrilova, Keller (bib45) 2012; 26 Petruzzelli, Schweiger, Schreiber, Campos-Olivas, Tsoli, Allen (bib61) 2014; 20 Tsoli, Moore, Burg, Painter, Taylor, Lockie (bib58) 2012; 72 Larrieu, Britton, Demir, Rodriguez, Jackson (bib31) 2014; 344 Wu, Cohen, Spiegelman (bib6) 2013; 27 Mitschke, Hoffmann, Gnad, Scholz, Kruithoff, Mayer (bib39) 2013; 27 Jimenez, Barbatelli, Allevi, Cinti, Seydoux, Giacobino (bib42) 2003; 270 Blanchet, Annicotte, Lagarrigue, Aguilar, Clapé, Chavey (bib1) 2011; 13 Liao, Smyth, Shi (bib34) 2013; 41 Sidossis, Porter, Saraf, Borsheim, Radhakrishnan, Chao (bib54) 2015; 22 Mody, Agouni, McIlroy, Platt, Delibegovic (bib14) 2011; 54 Rane, Dubus, Mettus, Galbreath, Boden, Reddy (bib55) 1999; 22 Shellock, Riedinger, Fishbein (bib59) 1986; 111 Lillycrop, Murray, Cheong, Teh, Clarke-Harris, Barton (bib15) 2017; 19 Bantubungi, Hannou, Caron-Houde, Vallez, Baron, Lucas (bib22) 2014; 63 Peri, Navarro, Kristiansen, Amanchy, Surendranath, Muthusamy (bib37) 2004; 32 Jennissen, Haas, Mitschke, Siegel, Pfeifer (bib38) 2013; 1020 Kir, Komaba, Garcia, Economopoulos, Liu, Lanske (bib62) 2016; 23 Dimas, Lagou, Barker, Knowles, Magi, Hivert (bib26) 2014; 63 Serrano, Lee, Chin, Cordon-Cardo, Beach, DePinho (bib27) 1996; 85 Bell, Benzinou, Siddiq, Lecoeur, Dina, Lemainque (bib43) 2004; 53 Annicotte, Blanchet, Chavey, Iankova, Costes, Assou (bib28) 2009; 11 Dauriz, Meigs (bib12) 2014; 8 Tyler, Vappiani, Caneque, Lam, Ward, Gilan (bib30) 2017; 356 Morris, Voight, Teslovich, Ferreira, Segre, Steinthorsdottir (bib10) 2012; 44 Petruzzelli (10.1016/j.molmet.2017.11.012_bib61) 2014; 20 Hafner (10.1016/j.molmet.2017.11.012_bib66) 2016; 6 Jespersen (10.1016/j.molmet.2017.11.012_bib51) 2013; 17 Min (10.1016/j.molmet.2017.11.012_bib50) 2016; 22 Svensson (10.1016/j.molmet.2017.11.012_bib17) 2014; 446 Lee (10.1016/j.molmet.2017.11.012_bib21) 2014; 510 Wu (10.1016/j.molmet.2017.11.012_bib5) 2012; 150 Liao (10.1016/j.molmet.2017.11.012_bib34) 2013; 41 Voight (10.1016/j.molmet.2017.11.012_bib11) 2010; 42 Kajimura (10.1016/j.molmet.2017.11.012_bib4) 2015; 22 Yoneshiro (10.1016/j.molmet.2017.11.012_bib49) 2013; 123 Wan (10.1016/j.molmet.2017.11.012_bib13) 2013; 25 Fajas (10.1016/j.molmet.2017.11.012_bib2) 2002; 3 Fearon (10.1016/j.molmet.2017.11.012_bib64) 2012; 16 Abella (10.1016/j.molmet.2017.11.012_bib19) 2005; 2 Salas (10.1016/j.molmet.2017.11.012_bib24) 2014; 2014 Chappuis (10.1016/j.molmet.2017.11.012_bib44) 2013; 2 Mohsen-Kanson (10.1016/j.molmet.2017.11.012_bib65) 2014; 32 Chondronikola (10.1016/j.molmet.2017.11.012_bib46) 2014; 63 Helman (10.1016/j.molmet.2017.11.012_bib25) 2016; 22 Annicotte (10.1016/j.molmet.2017.11.012_bib28) 2009; 11 Lillycrop (10.1016/j.molmet.2017.11.012_bib15) 2017; 19 Mody (10.1016/j.molmet.2017.11.012_bib14) 2011; 54 Sidossis (10.1016/j.molmet.2017.11.012_bib54) 2015; 22 Liew (10.1016/j.molmet.2017.11.012_bib3) 2013; 19 Jimenez (10.1016/j.molmet.2017.11.012_bib42) 2003; 270 Larrieu (10.1016/j.molmet.2017.11.012_bib31) 2014; 344 Bell (10.1016/j.molmet.2017.11.012_bib43) 2004; 53 Dauriz (10.1016/j.molmet.2017.11.012_bib12) 2014; 8 Tyler (10.1016/j.molmet.2017.11.012_bib30) 2017; 356 Kulyte (10.1016/j.molmet.2017.11.012_bib36) 2017; 12 Hannou (10.1016/j.molmet.2017.11.012_bib9) 2015; 26 Mitschke (10.1016/j.molmet.2017.11.012_bib39) 2013; 27 Morris (10.1016/j.molmet.2017.11.012_bib10) 2012; 44 Patsouris (10.1016/j.molmet.2017.11.012_bib53) 2015; 13 Cannon-Albright (10.1016/j.molmet.2017.11.012_bib57) 1992; 258 Pal (10.1016/j.molmet.2017.11.012_bib16) 2016; 65 Rabhi (10.1016/j.molmet.2017.11.012_bib29) 2016; 15 Rane (10.1016/j.molmet.2017.11.012_bib55) 1999; 22 Wu (10.1016/j.molmet.2017.11.012_bib6) 2013; 27 Fuentes (10.1016/j.molmet.2017.11.012_bib20) 2011; 54 Lee (10.1016/j.molmet.2017.11.012_bib8) 2014; 63 Das (10.1016/j.molmet.2017.11.012_bib63) 2011; 333 Hanssen (10.1016/j.molmet.2017.11.012_bib7) 2015; 21 van der Lans (10.1016/j.molmet.2017.11.012_bib48) 2013; 123 Shellock (10.1016/j.molmet.2017.11.012_bib59) 1986; 111 Kir (10.1016/j.molmet.2017.11.012_bib60) 2014; 513 Hilhorst (10.1016/j.molmet.2017.11.012_bib32) 2013; 977 Lagarrigue (10.1016/j.molmet.2017.11.012_bib56) 2016; 126 Blanchet (10.1016/j.molmet.2017.11.012_bib1) 2011; 13 Peri (10.1016/j.molmet.2017.11.012_bib37) 2004; 32 Tsoli (10.1016/j.molmet.2017.11.012_bib58) 2012; 72 Satyanarayana (10.1016/j.molmet.2017.11.012_bib45) 2012; 26 Krishnamurthy (10.1016/j.molmet.2017.11.012_bib23) 2006; 443 Love (10.1016/j.molmet.2017.11.012_bib35) 2014; 15 Bantubungi (10.1016/j.molmet.2017.11.012_bib22) 2014; 63 Jennissen (10.1016/j.molmet.2017.11.012_bib38) 2013; 1020 Cannon (10.1016/j.molmet.2017.11.012_bib40) 2004; 84 Grujic (10.1016/j.molmet.2017.11.012_bib41) 1997; 272 Horswell (10.1016/j.molmet.2017.11.012_bib18) 2013; 54 Kim (10.1016/j.molmet.2017.11.012_bib33) 2013; 14 Shinoda (10.1016/j.molmet.2017.11.012_bib52) 2015; 21 Kir (10.1016/j.molmet.2017.11.012_bib62) 2016; 23 Blondin (10.1016/j.molmet.2017.11.012_bib47) 2014; 99 Dimas (10.1016/j.molmet.2017.11.012_bib26) 2014; 63 Serrano (10.1016/j.molmet.2017.11.012_bib27) 1996; 85 |
References_xml | – volume: 21 start-page: 863 year: 2015 end-page: 865 ident: bib7 article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus publication-title: Nature Medicine – volume: 22 start-page: 219 year: 2015 end-page: 227 ident: bib54 article-title: Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress publication-title: Cell Metabolism – volume: 63 start-page: 3686 year: 2014 end-page: 3698 ident: bib8 article-title: Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans publication-title: Diabetes – volume: 23 start-page: 315 year: 2016 end-page: 323 ident: bib62 article-title: PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer publication-title: Cell Metabolism – volume: 19 start-page: 60 year: 2017 end-page: 72 ident: bib15 article-title: ANRIL promoter DNA methylation: a perinatal marker for later adiposity publication-title: EBioMedicine – volume: 12 start-page: e0178485 year: 2017 ident: bib36 article-title: Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women publication-title: PloS One – volume: 13 start-page: 1146 year: 2011 end-page: 1152 ident: bib1 article-title: E2F transcription factor-1 regulates oxidative metabolism publication-title: Nature Cell Biology – volume: 2 start-page: 184 year: 2013 end-page: 193 ident: bib44 article-title: Role of the circadian clock gene Per2 in adaptation to cold temperature publication-title: Molecular Metabolism – volume: 26 start-page: 176 year: 2015 end-page: 184 ident: bib9 article-title: Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? publication-title: Trends in Endocrinology & Metabolism – volume: 99 start-page: E438 year: 2014 end-page: E446 ident: bib47 article-title: Increased brown adipose tissue oxidative capacity in cold-acclimated humans publication-title: The Journal of Clinical Endocrinology & Metabolism – volume: 11 start-page: 1017 year: 2009 end-page: 1023 ident: bib28 article-title: The CDK4-pRB-E2F1 pathway controls insulin secretion publication-title: Nature Cell Biology – volume: 22 start-page: 44 year: 1999 end-page: 52 ident: bib55 article-title: Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia publication-title: Nature Genetics – volume: 72 start-page: 4372 year: 2012 end-page: 4382 ident: bib58 article-title: Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice publication-title: Cancer Research – volume: 443 start-page: 453 year: 2006 end-page: 457 ident: bib23 article-title: p16INK4a induces an age-dependent decline in islet regenerative potential publication-title: Nature – volume: 65 start-page: 527 year: 2016 end-page: 533 ident: bib16 article-title: Loss-of-function mutations in the cell-cycle control gene CDKN2A impact on glucose homeostasis in humans publication-title: Diabetes – volume: 356 start-page: 1397 year: 2017 end-page: 1401 ident: bib30 article-title: Click chemistry enables preclinical evaluation of targeted epigenetic therapies publication-title: Science – volume: 42 start-page: 579 year: 2010 end-page: 589 ident: bib11 article-title: Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis publication-title: Nature Genetics – volume: 17 start-page: 798 year: 2013 end-page: 805 ident: bib51 article-title: A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans publication-title: Cell Metabolism – volume: 513 start-page: 100 year: 2014 end-page: 104 ident: bib60 article-title: Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia publication-title: Nature – volume: 32 start-page: D497 year: 2004 end-page: D501 ident: bib37 article-title: Human protein reference database as a discovery resource for proteomics publication-title: Nucleic Acid Research – volume: 84 start-page: 277 year: 2004 end-page: 359 ident: bib40 article-title: Brown adipose tissue: function and physiological significance publication-title: Physiological Reviews – volume: 272 start-page: 17686 year: 1997 end-page: 17693 ident: bib41 article-title: Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice publication-title: The Journal of Biological Chemistry – volume: 54 start-page: 2143 year: 2011 end-page: 2151 ident: bib14 article-title: Susceptibility to diet-induced obesity and glucose intolerance in the APP (SWE)/PSEN1 (A246E) mouse model of Alzheimer's disease is associated with increased brain levels of protein tyrosine phosphatase 1B (PTP1B) and retinol-binding protein 4 (RBP4), and basal phosphorylation of S6 ribosomal protein publication-title: Diabetologia – volume: 25 start-page: 1086 year: 2013 end-page: 1095 ident: bib13 article-title: Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway publication-title: Cellular Signalling – volume: 14 start-page: R36 year: 2013 ident: bib33 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biology – volume: 111 start-page: 82 year: 1986 end-page: 85 ident: bib59 article-title: Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia publication-title: Journal of Cancer Research and Clinical Oncology – volume: 123 start-page: 3395 year: 2013 end-page: 3403 ident: bib48 article-title: Cold acclimation recruits human brown fat and increases nonshivering thermogenesis publication-title: Journal of Clinical Investigation – volume: 977 start-page: 259 year: 2013 end-page: 271 ident: bib32 article-title: Peptide microarrays for profiling of serine/threonine kinase activity of recombinant kinases and lysates of cells and tissue samples publication-title: Methods in Molecular Biology – volume: 22 start-page: 412 year: 2016 end-page: 420 ident: bib25 article-title: p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion publication-title: Nature Medicine – volume: 6 start-page: 32490 year: 2016 Aug 31 ident: bib66 article-title: Brown-like adipose progenitors derived from human induced pluripotent stem cells: identification of critical pathways governing their adipogenic capacity publication-title: Science Reports – volume: 13 start-page: 1538 year: 2015 end-page: 1544 ident: bib53 article-title: Burn induces browning of the subcutaneous white adipose tissue in mice and humans publication-title: Cell Reports – volume: 16 start-page: 153 year: 2012 end-page: 166 ident: bib64 article-title: Cancer cachexia: mediators, signaling, and metabolic pathways publication-title: Cell Metabolism – volume: 344 start-page: 527 year: 2014 end-page: 532 ident: bib31 article-title: Chemical inhibition of NAT10 corrects defects of laminopathic cells publication-title: Science – volume: 2014 start-page: 873679 year: 2014 ident: bib24 article-title: Role of Ink4a/Arf locus in beta cell mass expansion under physiological and pathological conditions publication-title: Journal of Diabetes Research – volume: 2 start-page: 239 year: 2005 end-page: 249 ident: bib19 article-title: Cdk4 promotes adipogenesis through PPARgamma activation publication-title: Cell Metabolism – volume: 53 start-page: 1857 year: 2004 end-page: 1865 ident: bib43 article-title: Genome-wide linkage analysis for severe obesity in French Caucasians finds significant susceptibility locus on chromosome 19q publication-title: Diabetes – volume: 15 start-page: 550 year: 2014 ident: bib35 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biology – volume: 15 start-page: 1051 year: 2016 end-page: 1061 ident: bib29 article-title: KAT2B is required for pancreatic beta cell adaptation to metabolic stress by controlling the unfolded protein response publication-title: Cell Reports – volume: 123 start-page: 3404 year: 2013 end-page: 3408 ident: bib49 article-title: Recruited brown adipose tissue as an antiobesity agent in humans publication-title: Journal of Clinical Investigation – volume: 333 start-page: 233 year: 2011 end-page: 238 ident: bib63 article-title: Adipose triglyceride lipase contributes to cancer-associated cachexia publication-title: Science – volume: 26 start-page: 309 year: 2012 end-page: 323 ident: bib45 article-title: Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis publication-title: FASEB Journal – volume: 446 start-page: 1126 year: 2014 end-page: 1131 ident: bib17 article-title: CDKN2B expression and subcutaneous adipose tissue expandability: possible influence of the 9p21 atherosclerosis locus publication-title: Biochemical and Biophysical Research Communications – volume: 21 start-page: 389 year: 2015 end-page: 394 ident: bib52 article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes publication-title: Nature Medicine – volume: 150 start-page: 366 year: 2012 end-page: 376 ident: bib5 article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human publication-title: Cell – volume: 126 start-page: 335 year: 2016 end-page: 348 ident: bib56 article-title: CDK4 is an essential insulin effector in adipocytes publication-title: Journal of Clinical Investigation – volume: 8 start-page: 368 year: 2014 ident: bib12 article-title: Current insights into the joint genetic basis of type 2 diabetes and coronary heart disease publication-title: Current Cardiovascular Risk Reports – volume: 270 start-page: 699 year: 2003 end-page: 705 ident: bib42 article-title: Beta 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat publication-title: European Journal of Biochemistry – volume: 44 start-page: 981 year: 2012 end-page: 990 ident: bib10 article-title: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes publication-title: Nature Genetics – volume: 27 start-page: 1621 year: 2013 end-page: 1630 ident: bib39 article-title: Increased cGMP promotes healthy expansion and browning of white adipose tissue publication-title: FASEB Journal – volume: 3 start-page: 39 year: 2002 end-page: 49 ident: bib2 article-title: E2Fs regulate adipocyte differentiation publication-title: Developmental Cell – volume: 63 start-page: 2158 year: 2014 end-page: 2171 ident: bib26 article-title: Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity publication-title: Diabetes – volume: 41 start-page: e108 year: 2013 ident: bib34 article-title: The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote publication-title: Nucleic Acid Research – volume: 63 start-page: 4089 year: 2014 end-page: 4099 ident: bib46 article-title: Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans publication-title: Diabetes – volume: 20 start-page: 433 year: 2014 end-page: 447 ident: bib61 article-title: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia publication-title: Cell Metabolism – volume: 22 start-page: 546 year: 2015 end-page: 559 ident: bib4 article-title: Brown and beige fat: physiological roles beyond heat generation publication-title: Cell Metabolism – volume: 85 start-page: 27 year: 1996 end-page: 37 ident: bib27 article-title: Role of the INK4a locus in tumor suppression and cell mortality publication-title: Cell – volume: 22 start-page: 312 year: 2016 end-page: 318 ident: bib50 article-title: Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice publication-title: Nature Medicine – volume: 510 start-page: 547 year: 2014 end-page: 551 ident: bib21 article-title: Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression publication-title: Nature – volume: 63 start-page: 3199 year: 2014 end-page: 3209 ident: bib22 article-title: Cdkn2a/p16Ink4a regulates fasting-induced hepatic gluconeogenesis through the PKA-CREB-PGC1alpha pathway publication-title: Diabetes – volume: 19 start-page: 217 year: 2013 end-page: 226 ident: bib3 article-title: Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance publication-title: Nature Medicine – volume: 258 start-page: 1148 year: 1992 end-page: 1152 ident: bib57 article-title: Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22 publication-title: Science – volume: 54 start-page: 3491 year: 2013 end-page: 3505 ident: bib18 article-title: CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients publication-title: Journal of Lipid Research – volume: 32 start-page: 1459 year: 2014 Jun end-page: 1467 ident: bib65 article-title: Differentiation of human induced pluripotent stem cells into brown and white adipocytes: role of Pax3 publication-title: Stem Cells – volume: 27 start-page: 234 year: 2013 end-page: 250 ident: bib6 article-title: Adaptive thermogenesis in adipocytes: is beige the new brown? publication-title: Genes & Development – volume: 1020 start-page: 175 year: 2013 end-page: 192 ident: bib38 article-title: Analysis of cGMP signaling in adipocytes publication-title: Methods in Molecular Biology – volume: 54 start-page: 3150 year: 2011 end-page: 3156 ident: bib20 article-title: Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)-like phenotype publication-title: Diabetologia – volume: 63 start-page: 2158 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib26 article-title: Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity publication-title: Diabetes doi: 10.2337/db13-0949 – volume: 72 start-page: 4372 year: 2012 ident: 10.1016/j.molmet.2017.11.012_bib58 article-title: Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-11-3536 – volume: 111 start-page: 82 year: 1986 ident: 10.1016/j.molmet.2017.11.012_bib59 article-title: Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia publication-title: Journal of Cancer Research and Clinical Oncology doi: 10.1007/BF00402783 – volume: 258 start-page: 1148 year: 1992 ident: 10.1016/j.molmet.2017.11.012_bib57 article-title: Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22 publication-title: Science doi: 10.1126/science.1439824 – volume: 63 start-page: 3686 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib8 article-title: Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans publication-title: Diabetes doi: 10.2337/db14-0513 – volume: 63 start-page: 4089 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib46 article-title: Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans publication-title: Diabetes doi: 10.2337/db14-0746 – volume: 126 start-page: 335 year: 2016 ident: 10.1016/j.molmet.2017.11.012_bib56 article-title: CDK4 is an essential insulin effector in adipocytes publication-title: Journal of Clinical Investigation doi: 10.1172/JCI81480 – volume: 22 start-page: 312 year: 2016 ident: 10.1016/j.molmet.2017.11.012_bib50 article-title: Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice publication-title: Nature Medicine doi: 10.1038/nm.4031 – volume: 443 start-page: 453 year: 2006 ident: 10.1016/j.molmet.2017.11.012_bib23 article-title: p16INK4a induces an age-dependent decline in islet regenerative potential publication-title: Nature doi: 10.1038/nature05092 – volume: 2 start-page: 184 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib44 article-title: Role of the circadian clock gene Per2 in adaptation to cold temperature publication-title: Molecular Metabolism doi: 10.1016/j.molmet.2013.05.002 – volume: 16 start-page: 153 year: 2012 ident: 10.1016/j.molmet.2017.11.012_bib64 article-title: Cancer cachexia: mediators, signaling, and metabolic pathways publication-title: Cell Metabolism doi: 10.1016/j.cmet.2012.06.011 – volume: 510 start-page: 547 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib21 article-title: Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression publication-title: Nature doi: 10.1038/nature13267 – volume: 123 start-page: 3404 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib49 article-title: Recruited brown adipose tissue as an antiobesity agent in humans publication-title: Journal of Clinical Investigation doi: 10.1172/JCI67803 – volume: 333 start-page: 233 year: 2011 ident: 10.1016/j.molmet.2017.11.012_bib63 article-title: Adipose triglyceride lipase contributes to cancer-associated cachexia publication-title: Science doi: 10.1126/science.1198973 – volume: 65 start-page: 527 year: 2016 ident: 10.1016/j.molmet.2017.11.012_bib16 article-title: Loss-of-function mutations in the cell-cycle control gene CDKN2A impact on glucose homeostasis in humans publication-title: Diabetes doi: 10.2337/db15-0602 – volume: 2 start-page: 239 year: 2005 ident: 10.1016/j.molmet.2017.11.012_bib19 article-title: Cdk4 promotes adipogenesis through PPARgamma activation publication-title: Cell Metabolism doi: 10.1016/j.cmet.2005.09.003 – volume: 22 start-page: 412 year: 2016 ident: 10.1016/j.molmet.2017.11.012_bib25 article-title: p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion publication-title: Nature Medicine doi: 10.1038/nm.4054 – volume: 25 start-page: 1086 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib13 article-title: Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway publication-title: Cellular Signalling doi: 10.1016/j.cellsig.2013.02.006 – volume: 23 start-page: 315 year: 2016 ident: 10.1016/j.molmet.2017.11.012_bib62 article-title: PTH/PTHrP receptor mediates cachexia in models of kidney failure and cancer publication-title: Cell Metabolism doi: 10.1016/j.cmet.2015.11.003 – volume: 84 start-page: 277 year: 2004 ident: 10.1016/j.molmet.2017.11.012_bib40 article-title: Brown adipose tissue: function and physiological significance publication-title: Physiological Reviews doi: 10.1152/physrev.00015.2003 – volume: 12 start-page: e0178485 year: 2017 ident: 10.1016/j.molmet.2017.11.012_bib36 article-title: Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women publication-title: PloS One doi: 10.1371/journal.pone.0178485 – volume: 272 start-page: 17686 year: 1997 ident: 10.1016/j.molmet.2017.11.012_bib41 article-title: Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.272.28.17686 – volume: 54 start-page: 3491 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib18 article-title: CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients publication-title: Journal of Lipid Research doi: 10.1194/jlr.M041814 – volume: 2014 start-page: 873679 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib24 article-title: Role of Ink4a/Arf locus in beta cell mass expansion under physiological and pathological conditions publication-title: Journal of Diabetes Research doi: 10.1155/2014/873679 – volume: 446 start-page: 1126 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib17 article-title: CDKN2B expression and subcutaneous adipose tissue expandability: possible influence of the 9p21 atherosclerosis locus publication-title: Biochemical and Biophysical Research Communications doi: 10.1016/j.bbrc.2014.03.075 – volume: 54 start-page: 3150 year: 2011 ident: 10.1016/j.molmet.2017.11.012_bib20 article-title: Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)-like phenotype publication-title: Diabetologia doi: 10.1007/s00125-011-2324-0 – volume: 22 start-page: 219 year: 2015 ident: 10.1016/j.molmet.2017.11.012_bib54 article-title: Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress publication-title: Cell Metabolism doi: 10.1016/j.cmet.2015.06.022 – volume: 26 start-page: 176 year: 2015 ident: 10.1016/j.molmet.2017.11.012_bib9 article-title: Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? publication-title: Trends in Endocrinology & Metabolism doi: 10.1016/j.tem.2015.01.008 – volume: 19 start-page: 60 year: 2017 ident: 10.1016/j.molmet.2017.11.012_bib15 article-title: ANRIL promoter DNA methylation: a perinatal marker for later adiposity publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.03.037 – volume: 63 start-page: 3199 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib22 article-title: Cdkn2a/p16Ink4a regulates fasting-induced hepatic gluconeogenesis through the PKA-CREB-PGC1alpha pathway publication-title: Diabetes doi: 10.2337/db13-1921 – volume: 27 start-page: 234 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib6 article-title: Adaptive thermogenesis in adipocytes: is beige the new brown? publication-title: Genes & Development doi: 10.1101/gad.211649.112 – volume: 977 start-page: 259 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib32 article-title: Peptide microarrays for profiling of serine/threonine kinase activity of recombinant kinases and lysates of cells and tissue samples publication-title: Methods in Molecular Biology doi: 10.1007/978-1-62703-284-1_21 – volume: 44 start-page: 981 year: 2012 ident: 10.1016/j.molmet.2017.11.012_bib10 article-title: Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes publication-title: Nature Genetics doi: 10.1038/ng.2383 – volume: 99 start-page: E438 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib47 article-title: Increased brown adipose tissue oxidative capacity in cold-acclimated humans publication-title: The Journal of Clinical Endocrinology & Metabolism doi: 10.1210/jc.2013-3901 – volume: 8 start-page: 368 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib12 article-title: Current insights into the joint genetic basis of type 2 diabetes and coronary heart disease publication-title: Current Cardiovascular Risk Reports doi: 10.1007/s12170-013-0368-z – volume: 513 start-page: 100 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib60 article-title: Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia publication-title: Nature doi: 10.1038/nature13528 – volume: 13 start-page: 1538 year: 2015 ident: 10.1016/j.molmet.2017.11.012_bib53 article-title: Burn induces browning of the subcutaneous white adipose tissue in mice and humans publication-title: Cell Reports doi: 10.1016/j.celrep.2015.10.028 – volume: 13 start-page: 1146 year: 2011 ident: 10.1016/j.molmet.2017.11.012_bib1 article-title: E2F transcription factor-1 regulates oxidative metabolism publication-title: Nature Cell Biology doi: 10.1038/ncb2309 – volume: 32 start-page: 1459 issue: 6 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib65 article-title: Differentiation of human induced pluripotent stem cells into brown and white adipocytes: role of Pax3 publication-title: Stem Cells doi: 10.1002/stem.1607 – volume: 356 start-page: 1397 year: 2017 ident: 10.1016/j.molmet.2017.11.012_bib30 article-title: Click chemistry enables preclinical evaluation of targeted epigenetic therapies publication-title: Science doi: 10.1126/science.aal2066 – volume: 27 start-page: 1621 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib39 article-title: Increased cGMP promotes healthy expansion and browning of white adipose tissue publication-title: FASEB Journal doi: 10.1096/fj.12-221580 – volume: 14 start-page: R36 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib33 article-title: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions publication-title: Genome Biology doi: 10.1186/gb-2013-14-4-r36 – volume: 85 start-page: 27 year: 1996 ident: 10.1016/j.molmet.2017.11.012_bib27 article-title: Role of the INK4a locus in tumor suppression and cell mortality publication-title: Cell doi: 10.1016/S0092-8674(00)81079-X – volume: 22 start-page: 546 year: 2015 ident: 10.1016/j.molmet.2017.11.012_bib4 article-title: Brown and beige fat: physiological roles beyond heat generation publication-title: Cell Metabolism doi: 10.1016/j.cmet.2015.09.007 – volume: 1020 start-page: 175 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib38 article-title: Analysis of cGMP signaling in adipocytes publication-title: Methods in Molecular Biology doi: 10.1007/978-1-62703-459-3_11 – volume: 270 start-page: 699 year: 2003 ident: 10.1016/j.molmet.2017.11.012_bib42 article-title: Beta 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat publication-title: European Journal of Biochemistry doi: 10.1046/j.1432-1033.2003.03422.x – volume: 41 start-page: e108 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib34 article-title: The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote publication-title: Nucleic Acid Research doi: 10.1093/nar/gkt214 – volume: 15 start-page: 1051 year: 2016 ident: 10.1016/j.molmet.2017.11.012_bib29 article-title: KAT2B is required for pancreatic beta cell adaptation to metabolic stress by controlling the unfolded protein response publication-title: Cell Reports doi: 10.1016/j.celrep.2016.03.079 – volume: 20 start-page: 433 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib61 article-title: A switch from white to brown fat increases energy expenditure in cancer-associated cachexia publication-title: Cell Metabolism doi: 10.1016/j.cmet.2014.06.011 – volume: 32 start-page: D497 year: 2004 ident: 10.1016/j.molmet.2017.11.012_bib37 article-title: Human protein reference database as a discovery resource for proteomics publication-title: Nucleic Acid Research doi: 10.1093/nar/gkh070 – volume: 42 start-page: 579 year: 2010 ident: 10.1016/j.molmet.2017.11.012_bib11 article-title: Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis publication-title: Nature Genetics doi: 10.1038/ng.609 – volume: 22 start-page: 44 year: 1999 ident: 10.1016/j.molmet.2017.11.012_bib55 article-title: Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia publication-title: Nature Genetics doi: 10.1038/8751 – volume: 150 start-page: 366 year: 2012 ident: 10.1016/j.molmet.2017.11.012_bib5 article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human publication-title: Cell doi: 10.1016/j.cell.2012.05.016 – volume: 26 start-page: 309 year: 2012 ident: 10.1016/j.molmet.2017.11.012_bib45 article-title: Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis publication-title: FASEB Journal doi: 10.1096/fj.11-190892 – volume: 6 start-page: 32490 year: 2016 ident: 10.1016/j.molmet.2017.11.012_bib66 article-title: Brown-like adipose progenitors derived from human induced pluripotent stem cells: identification of critical pathways governing their adipogenic capacity publication-title: Science Reports doi: 10.1038/srep32490 – volume: 21 start-page: 389 year: 2015 ident: 10.1016/j.molmet.2017.11.012_bib52 article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes publication-title: Nature Medicine doi: 10.1038/nm.3819 – volume: 3 start-page: 39 year: 2002 ident: 10.1016/j.molmet.2017.11.012_bib2 article-title: E2Fs regulate adipocyte differentiation publication-title: Developmental Cell doi: 10.1016/S1534-5807(02)00190-9 – volume: 11 start-page: 1017 year: 2009 ident: 10.1016/j.molmet.2017.11.012_bib28 article-title: The CDK4-pRB-E2F1 pathway controls insulin secretion publication-title: Nature Cell Biology doi: 10.1038/ncb1915 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib35 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biology doi: 10.1186/s13059-014-0550-8 – volume: 19 start-page: 217 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib3 article-title: Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance publication-title: Nature Medicine doi: 10.1038/nm.3056 – volume: 21 start-page: 863 year: 2015 ident: 10.1016/j.molmet.2017.11.012_bib7 article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus publication-title: Nature Medicine doi: 10.1038/nm.3891 – volume: 53 start-page: 1857 year: 2004 ident: 10.1016/j.molmet.2017.11.012_bib43 article-title: Genome-wide linkage analysis for severe obesity in French Caucasians finds significant susceptibility locus on chromosome 19q publication-title: Diabetes doi: 10.2337/diabetes.53.7.1857 – volume: 17 start-page: 798 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib51 article-title: A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans publication-title: Cell Metabolism doi: 10.1016/j.cmet.2013.04.011 – volume: 123 start-page: 3395 year: 2013 ident: 10.1016/j.molmet.2017.11.012_bib48 article-title: Cold acclimation recruits human brown fat and increases nonshivering thermogenesis publication-title: Journal of Clinical Investigation doi: 10.1172/JCI68993 – volume: 54 start-page: 2143 year: 2011 ident: 10.1016/j.molmet.2017.11.012_bib14 publication-title: Diabetologia doi: 10.1007/s00125-011-2160-2 – volume: 344 start-page: 527 year: 2014 ident: 10.1016/j.molmet.2017.11.012_bib31 article-title: Chemical inhibition of NAT10 corrects defects of laminopathic cells publication-title: Science doi: 10.1126/science.1252651 |
SSID | ssj0000866651 |
Score | 2.2812855 |
Snippet | Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes... Objectives: Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2... • Cdkn2a deficiency protects mice against high fat diet-induced obesity. • Cdkn2a modulates brown-like/beige fat gene networks involved in energy production... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | Adipocytes, Brown - cytology Adipocytes, Brown - metabolism Adipogenesis Adipose tissue browning Animals cdkn2a Cells, Cultured Cyclin-Dependent Kinase Inhibitor p16 - genetics Cyclin-Dependent Kinase Inhibitor p16 - metabolism Energy expenditure Gene Regulatory Networks Genome-wide association study Glucose - metabolism Humans Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Insulin sensitivity Life Sciences Mice Obesity Obesity - metabolism Original Thermogenesis Type 2 diabetes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZapEpcKmh5hEeVVr0GYq-fR0CgFUI9dSVuVhzbYqFkV93dSvx7ZpzNakMPe-HqOLE8Hnu-UT5_Q8hPQNjeC10XWvJQcCl8UXlVFdGrCPieMuqT2ucvORzx23txv1bqCzlhrTxwa7hzh9cMBrUSPHLuPdNCumBiCXEXh086nxDz1pKpdAZrgOWp9iKDsxm2vNLdvblE7npGvj9SKak6QxFPynpxKcn398LTxwfkSf4PQt9yKdeC080O-bxElflFO5td8iE0X8ints7ky1fCrvxTw6rcB9SLwMuW-TTR8MIsr_x4OpmFfJ5WIHeYlkM42yOjm-vfV8NiWSyhqAECzQttZJQ6Ri4MoxFsIytq4CCmWulojGDeATQpDQvCVFoqVw88tJdRMcxi2GCfbDWTJhySXLrInfTelSFwGgTYWwhZB1caHZRQGRl0prL1UkkcC1r8sR1l7NG2BrZoYEgyLBg4I8XqrWmrpLGh_yWuwqov6mCnBvAOu_QOu8k7MiK6NbTdVVM4HOFD4w2D_4AF7409vLiz2IZJJkT08h_NyPfOHyxsSvzTUjVhsphZCqga67lpk5GD1j9W32IAqSFHhCeq5zm9wfpPmvFDEv4WRgtAHEfvYZljsg3z1S0B_YRszf8uwingq7n7lrbSK2m2IJA priority: 102 providerName: Directory of Open Access Journals |
Title | Cdkn2a deficiency promotes adipose tissue browning |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2212877817309353 https://www.ncbi.nlm.nih.gov/pubmed/29237539 https://www.proquest.com/docview/1977197289 https://hal.science/hal-04284710 https://pubmed.ncbi.nlm.nih.gov/PMC5985036 https://doaj.org/article/b78363c754f44dd2856be9f0727becc3 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuqLxDYRUQ11SJ4-ehQktFtaLAAbGiNyuO7XahZJfdLWr_PTNOshAeqjjGcexoPJ75JhnPR8gLQNjOcVVnSjCfMcFdVjlZZcHJAPi-oIWL1T7fi8mUvTnhJ1uk52ztBLj6a2iHfFLT5fn-5berl7DhD37man3F9H3MjCzkPtbkRNrhHfBNEjkN3nWAP9pmBXA9cjJSsNlgCqTqz9P9Y6CBv4pl_Qdu68YZ5k_-CU5_z7H8xWkd7ZLbHdpMx6163CFbvrlLbrb8k1f3CD10Xxpapc5jHQk8hJkuYnqeX6WVmy3mK5-u48qkFsN1cHP3yfTo9cfDSdaRKGQ1QKN1prQIQoXAuKZFkNaLqtBgoAslVdCaU2cBsuSaeq4rJaStSwfteZAUoxtaPiDbzbzxj0gqbGBWOGdz71nhufWac1F7m2vlJZcJKXtRmbqrMI5EF-emTyX7bFoBGxQwBB8GBJyQbPPUoq2wcU3_V7gKm75YHzs2zJenpttuxuLhlLKWnAXGnKOKC3jbkANaQ6UtE8L7NTT9EVQwmjDQ7JrJn8OCD-aejN8abMPgEzx9_r1IyLNeHwxsVvwDUzV-frEyBaBt5HlTOiEPW_3YjEUBakPsCHfkQHMGkw3vNLOzWBCca8UBiTz-T0nukVtwpdoc9Cdke7288E8BYq3tiOyMjz98Oh7FTxSjuId-AKLKJNo |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cdkn2a+deficiency+promotes+adipose+tissue+browning&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Rabhi%2C+Nabil&rft.au=Hannou%2C+Sarah+Anissa&rft.au=Gromada%2C+Xavier&rft.au=Salas%2C+Elisabet&rft.date=2018-02-01&rft.issn=2212-8778&rft.eissn=2212-8778&rft.volume=8&rft.spage=65&rft.epage=76&rft_id=info:doi/10.1016%2Fj.molmet.2017.11.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molmet_2017_11_012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8778&client=summon |