Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device
These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this...
Saved in:
Published in | Cell reports. Medicine Vol. 2; no. 12; p. 100466 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
21.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2666-3791 2666-3791 |
DOI | 10.1016/j.xcrm.2021.100466 |
Cover
Loading…
Abstract | These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3–12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants.
[Display omitted]
•Findings are shared for the first 17 participants in a phase 1/2 trial of VC-02•This investigational device was implanted into type 1 diabetes patients•VC-02 contains pluripotent stem cell-derived pancreatic endoderm cells•C-peptide levels and insulin expression correlate with engraftment in 63% of subjects
Shapiro et al. report preliminary proof-of-concept that in 17 people with type 1 diabetes, pancreatic endoderm cells in an investigational subcutaneous device (VC-02) achieved engraftment and insulin expression in 63% of units at 3–12 months post-implant. Pluripotent stem cells may be a scalable, renewable alternative to pancreatic islet transplants. |
---|---|
AbstractList | These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3–12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants.
•
Findings are shared for the first 17 participants in a phase 1/2 trial of VC-02
•
This investigational device was implanted into type 1 diabetes patients
•
VC-02 contains pluripotent stem cell-derived pancreatic endoderm cells
•
C-peptide levels and insulin expression correlate with engraftment in 63% of subjects
Shapiro et al. report preliminary proof-of-concept that in 17 people with type 1 diabetes, pancreatic endoderm cells in an investigational subcutaneous device (VC-02) achieved engraftment and insulin expression in 63% of units at 3–12 months post-implant. Pluripotent stem cells may be a scalable, renewable alternative to pancreatic islet transplants. These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3-12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants.These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3-12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants. SummaryThese preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3–12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants. These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3-12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants. These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3–12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants. [Display omitted] •Findings are shared for the first 17 participants in a phase 1/2 trial of VC-02•This investigational device was implanted into type 1 diabetes patients•VC-02 contains pluripotent stem cell-derived pancreatic endoderm cells•C-peptide levels and insulin expression correlate with engraftment in 63% of subjects Shapiro et al. report preliminary proof-of-concept that in 17 people with type 1 diabetes, pancreatic endoderm cells in an investigational subcutaneous device (VC-02) achieved engraftment and insulin expression in 63% of units at 3–12 months post-implant. Pluripotent stem cells may be a scalable, renewable alternative to pancreatic islet transplants. |
ArticleNumber | 100466 |
Author | Bellin, Melena D. Jaiman, Manasi S. Wang, Richard M. Hsueh, Willa D’Amour, Kevin A. Donner, Thomas W. Shapiro, A.M. James Wilensky, Jon Thompson, David Foyt, Howard L. Kroon, Evert J. Pettus, Jeremy Brandon, Eugene P. Daniels, Mark |
Author_xml | – sequence: 1 givenname: A.M. James surname: Shapiro fullname: Shapiro, A.M. James organization: Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton AB T6G 2E1, Canada – sequence: 2 givenname: David surname: Thompson fullname: Thompson, David organization: Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada – sequence: 3 givenname: Thomas W. surname: Donner fullname: Donner, Thomas W. organization: Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 4 givenname: Melena D. surname: Bellin fullname: Bellin, Melena D. organization: Schulze Diabetes Institute, University of Minnesota Medical Center, Minneapolis, MN 55455, USA – sequence: 5 givenname: Willa orcidid: 0000-0002-7321-4398 surname: Hsueh fullname: Hsueh, Willa organization: Division of Endocrinology, Diabetes and Metabolism, The Ohio State College of Medicine, Columbus, OH 43210, USA – sequence: 6 givenname: Jeremy orcidid: 0000-0002-5999-0091 surname: Pettus fullname: Pettus, Jeremy organization: Department of Medicine, UC San Diego Health, La Jolla, CA 92037, USA – sequence: 7 givenname: Jon orcidid: 0000-0002-3982-2947 surname: Wilensky fullname: Wilensky, Jon organization: Plastic and Reconstructive Surgery, Scripps Memorial Hospital, La Jolla, CA 92037, USA – sequence: 8 givenname: Mark orcidid: 0000-0002-9170-8121 surname: Daniels fullname: Daniels, Mark organization: ViaCyte Inc., San Diego, CA 92121, USA – sequence: 9 givenname: Richard M. orcidid: 0000-0003-0079-9214 surname: Wang fullname: Wang, Richard M. organization: ViaCyte Inc., San Diego, CA 92121, USA – sequence: 10 givenname: Eugene P. surname: Brandon fullname: Brandon, Eugene P. organization: ViaCyte Inc., San Diego, CA 92121, USA – sequence: 11 givenname: Manasi S. surname: Jaiman fullname: Jaiman, Manasi S. organization: ViaCyte Inc., San Diego, CA 92121, USA – sequence: 12 givenname: Evert J. surname: Kroon fullname: Kroon, Evert J. organization: ViaCyte Inc., San Diego, CA 92121, USA – sequence: 13 givenname: Kevin A. surname: D’Amour fullname: D’Amour, Kevin A. organization: ViaCyte Inc., San Diego, CA 92121, USA – sequence: 14 givenname: Howard L. orcidid: 0000-0002-5209-1261 surname: Foyt fullname: Foyt, Howard L. email: hfoyt@viacyte.com organization: ViaCyte Inc., San Diego, CA 92121, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35028608$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1DAUjVARfdAfYIG8ZJPBdl4ehCpVIwqVKrEA1pYfd6hD4gTbGTq_wRdzQ1pUKlFWtu89D9vnHmcHfvCQZS8YXTHK6tft6saEfsUpZ1igZV0_yY54Xdd50azZwb39YXYaY0sp5RVjoqDPssOiolzUVBxlPy99nDrnCdyMAWJ0gyfKW7LJRxiTs0Cwl_YjEEasUxoSRBIn3YJJkbh-7JRPYMkPl65JTNATA12XWwhuh-VReRNAJWcIeDtgeQHEWVahqzdqxAsgAo0t7JyB59nTreoinN6uJ9mXi3efNx_yq4_vLzfnV7mpapbyshQNXVdlWWujhKjwZPBRmhVcgKmsadS2sWBFaQoGQlOtDYWSVtyuta6a4iQ7W3THSfdgDfgUVCfH4HoV9nJQTv7d8e5afh12UjSsFFWBAq9uBcLwfYKYZO_i_DrlYZii5DWnVNCScoS-vO_1x-QuCASIBWDCEGOArTQu_f4VtHadZFTOsctWzrHLOXa5xI5U_oB6p_4o6e1CAvzhnYMgo3GYBlgXMFppB_c4_ewB3eAQOaO6b7CH2A5T8JidZDJySeWneRjnWeTILwpRosCbfwv8z_0Xj_vx1w |
CitedBy_id | crossref_primary_10_1186_s13619_022_00125_8 crossref_primary_10_1097_TP_0000000000004328 crossref_primary_10_1016_j_ecl_2022_07_001 crossref_primary_10_1097_MD_0000000000037945 crossref_primary_10_2337_db23_0887 crossref_primary_10_3389_fendo_2022_1042611 crossref_primary_10_1111_jcmm_17499 crossref_primary_10_1210_endrev_bnac021 crossref_primary_10_1126_sciadv_abm4389 crossref_primary_10_51335_organoid_2023_3_e16 crossref_primary_10_1038_s44222_024_00238_6 crossref_primary_10_1186_s12967_024_05226_3 crossref_primary_10_1002_jbm_a_37666 crossref_primary_10_1038_s41574_022_00689_0 crossref_primary_10_14232_abs_2023_1_87_101 crossref_primary_10_51335_organoid_2023_3_e17 crossref_primary_10_1007_s11428_022_00954_w crossref_primary_10_1371_journal_pone_0318204 crossref_primary_10_3803_EnM_2023_1910 crossref_primary_10_1172_JCI162720 crossref_primary_10_3389_fimmu_2023_1323439 crossref_primary_10_1055_a_1718_7744 crossref_primary_10_3389_fphar_2024_1366417 crossref_primary_10_3389_fendo_2022_1086667 crossref_primary_10_1038_s41587_022_01540_7 crossref_primary_10_1177_09636897231167323 crossref_primary_10_1002_advs_202401385 crossref_primary_10_1159_000539120 crossref_primary_10_4239_wjd_v15_i6_1142 crossref_primary_10_2337_db23_0123 crossref_primary_10_51335_organoid_2024_4_e5 crossref_primary_10_1038_s41574_022_00790_4 crossref_primary_10_1038_s41467_024_53068_w crossref_primary_10_3238_PersDia_2023_11_03_03 crossref_primary_10_3389_fcell_2022_886153 crossref_primary_10_3389_fcell_2024_1484859 crossref_primary_10_1111_jdi_14264 crossref_primary_10_3389_fimmu_2024_1375177 crossref_primary_10_1002_adhm_202200243 crossref_primary_10_1021_acs_nanolett_4c02096 crossref_primary_10_1097_TP_0000000000004347 crossref_primary_10_1007_s00125_024_06194_5 crossref_primary_10_3389_fimmu_2024_1470881 crossref_primary_10_3389_fimmu_2025_1555310 crossref_primary_10_1016_j_stem_2022_03_010 crossref_primary_10_3389_ti_2022_10575 crossref_primary_10_3389_fendo_2022_927324 crossref_primary_10_3389_fbiom_2025_1524518 crossref_primary_10_3390_ijms23179699 crossref_primary_10_1007_s11154_024_09930_9 crossref_primary_10_1007_s11626_024_00991_3 crossref_primary_10_1111_jdi_13884 crossref_primary_10_1007_s40200_023_01280_8 crossref_primary_10_1111_aor_14538 crossref_primary_10_1016_j_celrep_2022_111238 crossref_primary_10_1111_jdi_14175 crossref_primary_10_3389_frtra_2025_1514956 crossref_primary_10_1016_j_mmm_2023_05_009 crossref_primary_10_2217_rme_2022_0045 crossref_primary_10_4239_wjd_v15_i10_2022 crossref_primary_10_1002_ibra_12095 crossref_primary_10_3389_fimmu_2024_1391504 crossref_primary_10_1038_s41587_023_02055_5 crossref_primary_10_1007_s40259_025_00703_7 crossref_primary_10_3389_fendo_2023_1250126 crossref_primary_10_1016_j_lfs_2022_121204 crossref_primary_10_1080_17425247_2022_2076834 crossref_primary_10_1111_ajt_16647 crossref_primary_10_1093_stmcls_sxac040 crossref_primary_10_1002_btm2_10740 crossref_primary_10_3390_biomedicines13020383 crossref_primary_10_1242_dev_202067 crossref_primary_10_1016_j_xcrm_2023_100959 crossref_primary_10_5528_wjtm_v10_i1_1 crossref_primary_10_1097_TP_0000000000004909 crossref_primary_10_3390_pharmaceutics15041137 crossref_primary_10_1016_j_mtbio_2023_100696 crossref_primary_10_1016_j_stem_2021_10_003 crossref_primary_10_1369_00221554241299862 crossref_primary_10_1016_j_molmet_2022_101618 crossref_primary_10_1016_j_coemr_2022_100321 crossref_primary_10_1111_aor_14950 crossref_primary_10_3389_ti_2022_10555 crossref_primary_10_3390_ijms23010501 crossref_primary_10_1002_bdr2_2178 crossref_primary_10_1039_D2CC06550A crossref_primary_10_15283_ijsc24036 crossref_primary_10_1080_14656566_2025_2468906 crossref_primary_10_3389_fcell_2023_1103719 crossref_primary_10_1089_ten_teb_2024_0041 crossref_primary_10_7554_eLife_89962 crossref_primary_10_1007_s12015_022_10391_3 crossref_primary_10_1038_s41574_021_00620_z crossref_primary_10_1111_ggi_14414 crossref_primary_10_1021_acsami_3c12359 crossref_primary_10_3389_fimmu_2024_1349138 crossref_primary_10_1210_clinem_dgad257 crossref_primary_10_1210_clinem_dgad499 crossref_primary_10_20945_2359_4292_2024_0233 crossref_primary_10_3390_cells12081103 crossref_primary_10_7554_eLife_89962_3 crossref_primary_10_1172_JCI158305 crossref_primary_10_3390_endocrines5040034 crossref_primary_10_1097_TP_0000000000005108 crossref_primary_10_37349_eemd_2023_00005 crossref_primary_10_1007_s13770_024_00627_3 crossref_primary_10_1177_09636897251315123 crossref_primary_10_3390_cells12202423 crossref_primary_10_1016_j_cmet_2022_01_002 crossref_primary_10_3389_fendo_2023_1130465 crossref_primary_10_1360_SSV_2022_0031 crossref_primary_10_2174_011574888X271344231129053003 crossref_primary_10_1186_s13287_024_03636_0 crossref_primary_10_1038_s41467_022_31829_9 crossref_primary_10_3389_ti_2022_10817 crossref_primary_10_1002_SMMD_20230042 crossref_primary_10_1093_stcltm_szac030 crossref_primary_10_3390_ijms23095099 crossref_primary_10_1210_endocr_bqac193 crossref_primary_10_3389_fragi_2024_1495029 crossref_primary_10_1126_scitranslmed_adg5794 crossref_primary_10_3390_biomedicines12122853 crossref_primary_10_1016_j_biomaterials_2024_123040 crossref_primary_10_1093_stcltm_szae059 crossref_primary_10_1097_TXD_0000000000001658 crossref_primary_10_1111_1753_0407_70048 crossref_primary_10_1038_s44324_024_00014_5 crossref_primary_10_3389_fceng_2022_832754 crossref_primary_10_1016_j_addr_2024_115179 crossref_primary_10_1016_j_cell_2024_01_042 crossref_primary_10_1089_dia_2024_2525_abstracts crossref_primary_10_3389_fendo_2022_989815 crossref_primary_10_1038_s41574_024_01029_0 crossref_primary_10_2217_rme_2023_0187 crossref_primary_10_1038_s41574_024_01064_x crossref_primary_10_1080_07853890_2024_2322047 crossref_primary_10_1038_s42003_023_04627_2 crossref_primary_10_29001_2073_8552_2024_39_4_38_46 crossref_primary_10_1055_a_1834_3188 crossref_primary_10_1016_j_stem_2021_11_008 crossref_primary_10_1016_j_stemcr_2022_03_004 crossref_primary_10_1038_s41551_023_01145_8 crossref_primary_10_1111_dme_14834 crossref_primary_10_1557_s43579_024_00678_6 crossref_primary_10_1038_s44222_024_00214_0 crossref_primary_10_3390_cells11142145 crossref_primary_10_1007_s11010_024_04999_x crossref_primary_10_3390_ijms242417320 crossref_primary_10_1002_bies_202400072 crossref_primary_10_1177_20417314241284826 crossref_primary_10_3389_fbioe_2023_1138596 crossref_primary_10_1111_obr_13899 crossref_primary_10_1007_s12195_023_00778_8 crossref_primary_10_1111_cpr_13232 crossref_primary_10_1021_acsbiomaterials_2c01415 crossref_primary_10_2217_rme_2022_0011 |
Cites_doi | 10.1016/j.stemcr.2019.02.002 10.2337/db11-1711 10.1056/NEJM200007273430401 10.1038/nbt1163 10.1371/journal.pone.0037004 10.2337/dc15-1988 10.1016/j.stem.2021.10.003 10.2337/db21-196-LB 10.1038/nbt1393 10.5966/sctm.2015-0079 10.1007/s00125-013-2955-4 10.1016/S2213-8587(18)30078-0 10.1152/ajpendo.00219.2014 10.5966/sctm.2015-0058 10.1038/nbt.1931 10.1126/science.282.5391.1145 10.1038/nbt1259 10.2337/db18-138-OR 10.1369/jhc.4A6514.2005 |
ContentType | Journal Article |
Copyright | 2021 The Authors The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.xcrm.2021.100466 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2666-3791 |
EndPage | 100466 |
ExternalDocumentID | PMC8714853 35028608 10_1016_j_xcrm_2021_100466 S2666379121003384 1_s2_0_S2666379121003384 |
Genre | Multicenter Study Clinical Trial, Phase II Clinical Trial, Phase I Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | .1- .FO 0R~ 53G AAEDW AALRI AAMRU AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM Z5R AAHOK NCXOZ 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c561t-4487095446bca885870c286b1328ec5dc7af7ded84c31e8b0bbc0e4052d9bb573 |
ISSN | 2666-3791 |
IngestDate | Thu Aug 21 14:06:45 EDT 2025 Fri Jul 11 10:04:05 EDT 2025 Wed Feb 19 02:26:05 EST 2025 Tue Jul 01 01:25:23 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 Sun Apr 06 06:54:37 EDT 2025 Sun Feb 23 10:18:53 EST 2025 Tue Aug 26 19:32:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c561t-4487095446bca885870c286b1328ec5dc7af7ded84c31e8b0bbc0e4052d9bb573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
ORCID | 0000-0003-0079-9214 0000-0002-3982-2947 0000-0002-9170-8121 0000-0002-5209-1261 0000-0002-7321-4398 0000-0002-5999-0091 |
OpenAccessLink | http://dx.doi.org/10.1016/j.xcrm.2021.100466 |
PMID | 35028608 |
PQID | 2620080402 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8714853 proquest_miscellaneous_2620080402 pubmed_primary_35028608 crossref_citationtrail_10_1016_j_xcrm_2021_100466 crossref_primary_10_1016_j_xcrm_2021_100466 elsevier_sciencedirect_doi_10_1016_j_xcrm_2021_100466 elsevier_clinicalkeyesjournals_1_s2_0_S2666379121003384 elsevier_clinicalkey_doi_10_1016_j_xcrm_2021_100466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-21 |
PublicationDateYYYYMMDD | 2021-12-21 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports. Medicine |
PublicationTitleAlternate | Cell Rep Med |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Henry, Pettus, Wilensky, Shapiro, Senior, Roep, Wang, Kroon, Scott, D’Amour, Foyt (bib20) 2018 Thomson, Itskovitz-Eldor, Shapiro, Waknitz, Swiergiel, Marshall, Jones (bib4) 1998; 282 D’Amour, Agulnick, Eliazer, Kelly, Kroon, Baetge (bib5) 2005; 23 Bruin, Rezania, Xu, Narayan, Fox, O’Neil, Kieffer (bib15) 2013; 56 Kelly, Chan, Martinson, Kadoya, Ostertag, Ross, Richardson, Carpenter, D’Amour, Kroon (bib11) 2011; 29 Agulnick, Ambruzs, Moorman, Bhoumik, Cesario, Payne, Kelly, Haakmeester, Srijemac, Wilson (bib14) 2015; 4 Brandon, Scott, Zimmerman, D’Amour (bib9) 2020 Lablanche, Vantyghem, Kessler, Wojtusciszyn, Borot, Thivolet, Girerd, Bosco, Bosson, Colin (bib3) 2018; 6 Kroon, Martinson, Kadoya, Bang, Kelly, Eliazer, Young, Richardson, Smart, Cunningham (bib10) 2008; 26 Shapiro, Lakey, Ryan, Korbutt, Toth, Warnock, Kneteman, Rajotte (bib1) 2000; 343 D’Amour, Bang, Eliazer, Kelly, Agulnick, Smart, Moorman, Kroon, Carpenter, Baetge (bib6) 2006; 24 Motté, Szepessy, Suenens, Stangé, Bomans, Jacobs-Tulleneers-Thevissen, Ling, Kroon, Pipeleers (bib13) 2014; 307 Pusztaszeri, Seelentag, Bosman (bib18) 2006; 54 Haller, Piccand, De Franceschi, Ohi, Bhoumik, Boss, De Marchi, Jacot, Metairon, Descombes (bib16) 2019; 12 Schulz, Young, Agulnick, Babin, Baetge, Bang, Bhoumik, Cepa, Cesario, Haakmeester (bib7) 2012; 7 Ramzy, Thompson, Ward-Hartsonge, Ivison, Cook, Garcia, Loyal, Kim, Warnock, Levings, Kieffer (bib17) 2021; 28 Schulz (bib8) 2015; 4 Rezania, Bruin, Riedel, Mojibian, Asadi, Xu, Gauvin, Narayan, Karanu, O’Neil (bib12) 2012; 61 Keymeulen, Jacobs-Tulleneers-Thevissen, Kroon, Jaiman, Daniels, Wang, Pipeleers, D’Amour, Foyt (bib19) 2021 Hering, Clarke, Bridges, Eggerman, Alejandro, Bellin, Chaloner, Czarniecki, Goldstein, Hunsicker (bib2) 2016; 39 Kelly (10.1016/j.xcrm.2021.100466_bib11) 2011; 29 Schulz (10.1016/j.xcrm.2021.100466_bib7) 2012; 7 Keymeulen (10.1016/j.xcrm.2021.100466_bib19) 2021 D’Amour (10.1016/j.xcrm.2021.100466_bib6) 2006; 24 Rezania (10.1016/j.xcrm.2021.100466_bib12) 2012; 61 Agulnick (10.1016/j.xcrm.2021.100466_bib14) 2015; 4 Shapiro (10.1016/j.xcrm.2021.100466_bib1) 2000; 343 Kroon (10.1016/j.xcrm.2021.100466_bib10) 2008; 26 Ramzy (10.1016/j.xcrm.2021.100466_bib17) 2021; 28 Hering (10.1016/j.xcrm.2021.100466_bib2) 2016; 39 Lablanche (10.1016/j.xcrm.2021.100466_bib3) 2018; 6 Brandon (10.1016/j.xcrm.2021.100466_bib9) 2020 Pusztaszeri (10.1016/j.xcrm.2021.100466_bib18) 2006; 54 Bruin (10.1016/j.xcrm.2021.100466_bib15) 2013; 56 Henry (10.1016/j.xcrm.2021.100466_bib20) 2018 Motté (10.1016/j.xcrm.2021.100466_bib13) 2014; 307 Schulz (10.1016/j.xcrm.2021.100466_bib8) 2015; 4 Thomson (10.1016/j.xcrm.2021.100466_bib4) 1998; 282 Haller (10.1016/j.xcrm.2021.100466_bib16) 2019; 12 D’Amour (10.1016/j.xcrm.2021.100466_bib5) 2005; 23 35108510 - Cell Metab. 2022 Feb 1;34(2):193-196 34893786 - Nat Rev Endocrinol. 2022 Feb;18(2):67 |
References_xml | – volume: 7 start-page: e37004 year: 2012 ident: bib7 article-title: A scalable system for production of functional pancreatic progenitors from human embryonic stem cells publication-title: PLoS ONE – year: 2020 ident: bib9 article-title: Stem cell-derived islet replacement: Which cells & how to protect them from the immune system? publication-title: Second Generation Cell and Gene-based Therapies: Biological Advances, Clinical Outcomes, and Strategies for Capitalisation – volume: 28 start-page: 2047 year: 2021 end-page: 2061 ident: bib17 article-title: Implanted pluripotent stem cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in subjects with type 1 diabetes publication-title: Cell Stem Cell – volume: 12 start-page: 787 year: 2019 end-page: 800 ident: bib16 article-title: Macroencapsulated Human iPSC-Derived Pancreatic Progenitors Protect against STZ-Induced Hyperglycemia in Mice publication-title: Stem Cell Reports – year: 2018 ident: bib20 article-title: Initial Clinical Evaluation of VC-01TM Combination Product: A Stem Cell-Derived Islet Replacement for Type 1 Diabetes (T1D) publication-title: Diabetes – volume: 56 start-page: 1987 year: 2013 end-page: 1998 ident: bib15 article-title: Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice publication-title: Diabetologia – year: 2021 ident: bib19 article-title: 196-LB: Stem Cell–Derived Islet Replacement Therapy (VC-02) Demonstrates Production of C-Peptide in Patients with Type 1 Diabetes (T1D) and Hypoglycemia Unawareness publication-title: Diabetes – volume: 6 start-page: 527 year: 2018 end-page: 537 ident: bib3 article-title: Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial publication-title: Lancet Diabetes Endocrinol. – volume: 282 start-page: 1145 year: 1998 end-page: 1147 ident: bib4 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science – volume: 4 start-page: 1214 year: 2015 end-page: 1222 ident: bib14 article-title: Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo publication-title: Stem Cells Transl. Med. – volume: 24 start-page: 1392 year: 2006 end-page: 1401 ident: bib6 article-title: Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells publication-title: Nat. Biotechnol. – volume: 29 start-page: 750 year: 2011 end-page: 756 ident: bib11 article-title: Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells publication-title: Nat. Biotechnol. – volume: 61 start-page: 2016 year: 2012 end-page: 2029 ident: bib12 article-title: Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice publication-title: Diabetes – volume: 23 start-page: 1534 year: 2005 end-page: 1541 ident: bib5 article-title: Efficient differentiation of human embryonic stem cells to definitive endoderm publication-title: Nat. Biotechnol. – volume: 307 start-page: E838 year: 2014 end-page: E846 ident: bib13 article-title: Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 39 start-page: 1230 year: 2016 end-page: 1240 ident: bib2 article-title: Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia publication-title: Diabetes Care – volume: 4 start-page: 927 year: 2015 end-page: 931 ident: bib8 article-title: Concise Review: Manufacturing of Pancreatic Endoderm Cells for Clinical Trials in Type 1 Diabetes publication-title: Stem Cells Transl. Med. – volume: 26 start-page: 443 year: 2008 end-page: 452 ident: bib10 article-title: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo publication-title: Nat. Biotechnol. – volume: 343 start-page: 230 year: 2000 end-page: 238 ident: bib1 article-title: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen publication-title: N. Engl. J. Med. – volume: 54 start-page: 385 year: 2006 end-page: 395 ident: bib18 article-title: Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues publication-title: J. Histochem. Cytochem. – volume: 12 start-page: 787 year: 2019 ident: 10.1016/j.xcrm.2021.100466_bib16 article-title: Macroencapsulated Human iPSC-Derived Pancreatic Progenitors Protect against STZ-Induced Hyperglycemia in Mice publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2019.02.002 – volume: 61 start-page: 2016 year: 2012 ident: 10.1016/j.xcrm.2021.100466_bib12 article-title: Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice publication-title: Diabetes doi: 10.2337/db11-1711 – volume: 343 start-page: 230 year: 2000 ident: 10.1016/j.xcrm.2021.100466_bib1 article-title: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen publication-title: N. Engl. J. Med. doi: 10.1056/NEJM200007273430401 – volume: 23 start-page: 1534 year: 2005 ident: 10.1016/j.xcrm.2021.100466_bib5 article-title: Efficient differentiation of human embryonic stem cells to definitive endoderm publication-title: Nat. Biotechnol. doi: 10.1038/nbt1163 – volume: 7 start-page: e37004 year: 2012 ident: 10.1016/j.xcrm.2021.100466_bib7 article-title: A scalable system for production of functional pancreatic progenitors from human embryonic stem cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0037004 – volume: 39 start-page: 1230 year: 2016 ident: 10.1016/j.xcrm.2021.100466_bib2 article-title: Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia publication-title: Diabetes Care doi: 10.2337/dc15-1988 – volume: 28 start-page: 2047 year: 2021 ident: 10.1016/j.xcrm.2021.100466_bib17 article-title: Implanted pluripotent stem cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in subjects with type 1 diabetes publication-title: Cell Stem Cell doi: 10.1016/j.stem.2021.10.003 – year: 2021 ident: 10.1016/j.xcrm.2021.100466_bib19 article-title: 196-LB: Stem Cell–Derived Islet Replacement Therapy (VC-02) Demonstrates Production of C-Peptide in Patients with Type 1 Diabetes (T1D) and Hypoglycemia Unawareness publication-title: Diabetes doi: 10.2337/db21-196-LB – year: 2020 ident: 10.1016/j.xcrm.2021.100466_bib9 article-title: Stem cell-derived islet replacement: Which cells & how to protect them from the immune system? – volume: 26 start-page: 443 year: 2008 ident: 10.1016/j.xcrm.2021.100466_bib10 article-title: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt1393 – volume: 4 start-page: 1214 year: 2015 ident: 10.1016/j.xcrm.2021.100466_bib14 article-title: Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2015-0079 – volume: 56 start-page: 1987 year: 2013 ident: 10.1016/j.xcrm.2021.100466_bib15 article-title: Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice publication-title: Diabetologia doi: 10.1007/s00125-013-2955-4 – volume: 6 start-page: 527 year: 2018 ident: 10.1016/j.xcrm.2021.100466_bib3 article-title: Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial publication-title: Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(18)30078-0 – volume: 307 start-page: E838 year: 2014 ident: 10.1016/j.xcrm.2021.100466_bib13 article-title: Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00219.2014 – volume: 4 start-page: 927 year: 2015 ident: 10.1016/j.xcrm.2021.100466_bib8 article-title: Concise Review: Manufacturing of Pancreatic Endoderm Cells for Clinical Trials in Type 1 Diabetes publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2015-0058 – volume: 29 start-page: 750 year: 2011 ident: 10.1016/j.xcrm.2021.100466_bib11 article-title: Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1931 – volume: 282 start-page: 1145 year: 1998 ident: 10.1016/j.xcrm.2021.100466_bib4 article-title: Embryonic stem cell lines derived from human blastocysts publication-title: Science doi: 10.1126/science.282.5391.1145 – volume: 24 start-page: 1392 year: 2006 ident: 10.1016/j.xcrm.2021.100466_bib6 article-title: Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt1259 – year: 2018 ident: 10.1016/j.xcrm.2021.100466_bib20 article-title: Initial Clinical Evaluation of VC-01TM Combination Product: A Stem Cell-Derived Islet Replacement for Type 1 Diabetes (T1D) publication-title: Diabetes doi: 10.2337/db18-138-OR – volume: 54 start-page: 385 year: 2006 ident: 10.1016/j.xcrm.2021.100466_bib18 article-title: Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues publication-title: J. Histochem. Cytochem. doi: 10.1369/jhc.4A6514.2005 – reference: 35108510 - Cell Metab. 2022 Feb 1;34(2):193-196 – reference: 34893786 - Nat Rev Endocrinol. 2022 Feb;18(2):67 |
SSID | ssj0002511830 |
Score | 2.5734513 |
Snippet | These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic... SummaryThese preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100466 |
SubjectTerms | Adolescent Adult Advanced Basic Science Aged C-Peptide - metabolism Cells, Immobilized - cytology Diabetes Mellitus, Type 1 - metabolism Diabetes Mellitus, Type 1 - therapy Endoderm - cytology Female Humans Insulin - metabolism Male Middle Aged Pancreas - cytology Stem Cell Transplantation Stem Cells - cytology Young Adult |
Title | Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2666379121003384 https://www.clinicalkey.es/playcontent/1-s2.0-S2666379121003384 https://dx.doi.org/10.1016/j.xcrm.2021.100466 https://www.ncbi.nlm.nih.gov/pubmed/35028608 https://www.proquest.com/docview/2620080402 https://pubmed.ncbi.nlm.nih.gov/PMC8714853 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKkKa9IP6vAyYj8VYlShwnTR9RAQ2kIqRtYm9W7Lhaqy2rlhZN-xh8DD4ld_6TpFsZsJeqTew49f1s351_viPkXVkaUcuAJdMi4GkUBbLgSMuZ8inyooZmo33yNTs45l9O0pNe71eHtbRaylBdbzxXch-pwjWQK56S_Q_JNg-FC_Ad5AufIGH4_CcZf3ZEcn3l6KyWWTwOFshVKU08EONjjVsfa72Sc8PgmJ0vzrBbHf0cAzoP0I0flPDqP-AyzBNWpVQDXZWYM80WMAxamBagJwqwsS2ZDk9fORpdE_gA3YJuTyK0O0KdTfzD02Ixc4dswklo6bq3aSprrHtMqOxThVlm0-B72DgUMLSoZSbjUloMPoRdlwaLkR7CWpeGP2tjlygzF4IakcFcaBN7-YmbdfHJNq4H1jUxD6_UJYYdYDGyQrjN89IByOLcICRJQdvKorxdGxvG4rfJGExLDsrNA_KQgUnCOp4hXPWNqZZE7lyWpRDebHWHbPsm_qQG3TZzbrJ1O-rP0WPyyNkt9L0F4RPS09VTsu2F-oz8dFikLRYpYJE2WKRwD7FIY-qxSD0WaYNFilikiEXaxSJtsUg9Fk2BGh9bQKtdLFKLxefk-NPHo_FB4PJ9BAq0-GXAwXgGjZ_zTKoiz1P4paCzZJywXKu0VMNiOix1mXOVxDqXkZQq0mBxsHIkZTpMXpCt6qLSu4RqWKgiDfppMtU8yeUoY6ooMybTROsiG_VJ7LtfKBcMH3OynAnPepwLlJ5A6QkrvT4ZNHUWNhTMnaUTL1XhDznDsiwAmXfWGm6qpWs369QiFjUTkTjEEYEDgsWYjjHnfZI2NZ3ybJXiv7b41kNOwMqCoisqfbGqBaaqAHuSR6xPXloINv_bwxjedw2cTQGMWr9-p5qdmuj1bhjt3bvmK7LTThqvydbycqXfgGWwlPvGo7ZvBuZvF74Xqw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulin+expression+and+C-peptide+in+type+1+diabetes+subjects+implanted+with+stem+cell-derived+pancreatic+endoderm+cells+in+an+encapsulation+device&rft.jtitle=Cell+reports.+Medicine&rft.au=Shapiro%2C+A.M.+James&rft.au=Thompson%2C+David&rft.au=Donner%2C+Thomas+W.&rft.au=Bellin%2C+Melena+D.&rft.date=2021-12-21&rft.pub=Elsevier&rft.eissn=2666-3791&rft.volume=2&rft.issue=12&rft_id=info:doi/10.1016%2Fj.xcrm.2021.100466&rft_id=info%3Apmid%2F35028608&rft.externalDocID=PMC8714853 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26663791%2FS2666379120X0022X%2Fcov150h.gif |