Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device

These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this...

Full description

Saved in:
Bibliographic Details
Published inCell reports. Medicine Vol. 2; no. 12; p. 100466
Main Authors Shapiro, A.M. James, Thompson, David, Donner, Thomas W., Bellin, Melena D., Hsueh, Willa, Pettus, Jeremy, Wilensky, Jon, Daniels, Mark, Wang, Richard M., Brandon, Eugene P., Jaiman, Manasi S., Kroon, Evert J., D’Amour, Kevin A., Foyt, Howard L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 21.12.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2666-3791
2666-3791
DOI10.1016/j.xcrm.2021.100466

Cover

Loading…
Abstract These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3–12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants. [Display omitted] •Findings are shared for the first 17 participants in a phase 1/2 trial of VC-02•This investigational device was implanted into type 1 diabetes patients•VC-02 contains pluripotent stem cell-derived pancreatic endoderm cells•C-peptide levels and insulin expression correlate with engraftment in 63% of subjects Shapiro et al. report preliminary proof-of-concept that in 17 people with type 1 diabetes, pancreatic endoderm cells in an investigational subcutaneous device (VC-02) achieved engraftment and insulin expression in 63% of units at 3–12 months post-implant. Pluripotent stem cells may be a scalable, renewable alternative to pancreatic islet transplants.
AbstractList These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3–12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants. • Findings are shared for the first 17 participants in a phase 1/2 trial of VC-02 • This investigational device was implanted into type 1 diabetes patients • VC-02 contains pluripotent stem cell-derived pancreatic endoderm cells • C-peptide levels and insulin expression correlate with engraftment in 63% of subjects Shapiro et al. report preliminary proof-of-concept that in 17 people with type 1 diabetes, pancreatic endoderm cells in an investigational subcutaneous device (VC-02) achieved engraftment and insulin expression in 63% of units at 3–12 months post-implant. Pluripotent stem cells may be a scalable, renewable alternative to pancreatic islet transplants.
These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3-12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants.These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3-12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants.
SummaryThese preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3–12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants.
These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3-12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants.
These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic endoderm cells (PEC-01) engrafted in type 1 diabetes patients become islet cells releasing insulin in a physiologically regulated fashion. In this study of 17 subjects aged 22-57 with type 1 diabetes, PEC-01 cells were implanted subcutaneously in VC-02 macroencapsulation devices, allowing for direct vascularization of the cells. Engraftment and insulin expression were observed in 63% of VC-02 units explanted from subjects at 3–12 months post-implant. Six of 17 subjects (35.3%) demonstrated positive C-peptide as early as 6 months post-implant. Most reported adverse events were related to surgical implant or explant procedures (27.9%) or to side-effects of immunosuppression (33.7%). Initial data suggest that pluripotent stem cells, which can be propagated to the desired biomass and differentiated into pancreatic islet-like tissue, may offer a scalable, renewable alternative to pancreatic islet transplants. [Display omitted] •Findings are shared for the first 17 participants in a phase 1/2 trial of VC-02•This investigational device was implanted into type 1 diabetes patients•VC-02 contains pluripotent stem cell-derived pancreatic endoderm cells•C-peptide levels and insulin expression correlate with engraftment in 63% of subjects Shapiro et al. report preliminary proof-of-concept that in 17 people with type 1 diabetes, pancreatic endoderm cells in an investigational subcutaneous device (VC-02) achieved engraftment and insulin expression in 63% of units at 3–12 months post-implant. Pluripotent stem cells may be a scalable, renewable alternative to pancreatic islet transplants.
ArticleNumber 100466
Author Bellin, Melena D.
Jaiman, Manasi S.
Wang, Richard M.
Hsueh, Willa
D’Amour, Kevin A.
Donner, Thomas W.
Shapiro, A.M. James
Wilensky, Jon
Thompson, David
Foyt, Howard L.
Kroon, Evert J.
Pettus, Jeremy
Brandon, Eugene P.
Daniels, Mark
Author_xml – sequence: 1
  givenname: A.M. James
  surname: Shapiro
  fullname: Shapiro, A.M. James
  organization: Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton AB T6G 2E1, Canada
– sequence: 2
  givenname: David
  surname: Thompson
  fullname: Thompson, David
  organization: Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
– sequence: 3
  givenname: Thomas W.
  surname: Donner
  fullname: Donner, Thomas W.
  organization: Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 4
  givenname: Melena D.
  surname: Bellin
  fullname: Bellin, Melena D.
  organization: Schulze Diabetes Institute, University of Minnesota Medical Center, Minneapolis, MN 55455, USA
– sequence: 5
  givenname: Willa
  orcidid: 0000-0002-7321-4398
  surname: Hsueh
  fullname: Hsueh, Willa
  organization: Division of Endocrinology, Diabetes and Metabolism, The Ohio State College of Medicine, Columbus, OH 43210, USA
– sequence: 6
  givenname: Jeremy
  orcidid: 0000-0002-5999-0091
  surname: Pettus
  fullname: Pettus, Jeremy
  organization: Department of Medicine, UC San Diego Health, La Jolla, CA 92037, USA
– sequence: 7
  givenname: Jon
  orcidid: 0000-0002-3982-2947
  surname: Wilensky
  fullname: Wilensky, Jon
  organization: Plastic and Reconstructive Surgery, Scripps Memorial Hospital, La Jolla, CA 92037, USA
– sequence: 8
  givenname: Mark
  orcidid: 0000-0002-9170-8121
  surname: Daniels
  fullname: Daniels, Mark
  organization: ViaCyte Inc., San Diego, CA 92121, USA
– sequence: 9
  givenname: Richard M.
  orcidid: 0000-0003-0079-9214
  surname: Wang
  fullname: Wang, Richard M.
  organization: ViaCyte Inc., San Diego, CA 92121, USA
– sequence: 10
  givenname: Eugene P.
  surname: Brandon
  fullname: Brandon, Eugene P.
  organization: ViaCyte Inc., San Diego, CA 92121, USA
– sequence: 11
  givenname: Manasi S.
  surname: Jaiman
  fullname: Jaiman, Manasi S.
  organization: ViaCyte Inc., San Diego, CA 92121, USA
– sequence: 12
  givenname: Evert J.
  surname: Kroon
  fullname: Kroon, Evert J.
  organization: ViaCyte Inc., San Diego, CA 92121, USA
– sequence: 13
  givenname: Kevin A.
  surname: D’Amour
  fullname: D’Amour, Kevin A.
  organization: ViaCyte Inc., San Diego, CA 92121, USA
– sequence: 14
  givenname: Howard L.
  orcidid: 0000-0002-5209-1261
  surname: Foyt
  fullname: Foyt, Howard L.
  email: hfoyt@viacyte.com
  organization: ViaCyte Inc., San Diego, CA 92121, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35028608$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUjVARfdAfYIG8ZJPBdl4ehCpVIwqVKrEA1pYfd6hD4gTbGTq_wRdzQ1pUKlFWtu89D9vnHmcHfvCQZS8YXTHK6tft6saEfsUpZ1igZV0_yY54Xdd50azZwb39YXYaY0sp5RVjoqDPssOiolzUVBxlPy99nDrnCdyMAWJ0gyfKW7LJRxiTs0Cwl_YjEEasUxoSRBIn3YJJkbh-7JRPYMkPl65JTNATA12XWwhuh-VReRNAJWcIeDtgeQHEWVahqzdqxAsgAo0t7JyB59nTreoinN6uJ9mXi3efNx_yq4_vLzfnV7mpapbyshQNXVdlWWujhKjwZPBRmhVcgKmsadS2sWBFaQoGQlOtDYWSVtyuta6a4iQ7W3THSfdgDfgUVCfH4HoV9nJQTv7d8e5afh12UjSsFFWBAq9uBcLwfYKYZO_i_DrlYZii5DWnVNCScoS-vO_1x-QuCASIBWDCEGOArTQu_f4VtHadZFTOsctWzrHLOXa5xI5U_oB6p_4o6e1CAvzhnYMgo3GYBlgXMFppB_c4_ewB3eAQOaO6b7CH2A5T8JidZDJySeWneRjnWeTILwpRosCbfwv8z_0Xj_vx1w
CitedBy_id crossref_primary_10_1186_s13619_022_00125_8
crossref_primary_10_1097_TP_0000000000004328
crossref_primary_10_1016_j_ecl_2022_07_001
crossref_primary_10_1097_MD_0000000000037945
crossref_primary_10_2337_db23_0887
crossref_primary_10_3389_fendo_2022_1042611
crossref_primary_10_1111_jcmm_17499
crossref_primary_10_1210_endrev_bnac021
crossref_primary_10_1126_sciadv_abm4389
crossref_primary_10_51335_organoid_2023_3_e16
crossref_primary_10_1038_s44222_024_00238_6
crossref_primary_10_1186_s12967_024_05226_3
crossref_primary_10_1002_jbm_a_37666
crossref_primary_10_1038_s41574_022_00689_0
crossref_primary_10_14232_abs_2023_1_87_101
crossref_primary_10_51335_organoid_2023_3_e17
crossref_primary_10_1007_s11428_022_00954_w
crossref_primary_10_1371_journal_pone_0318204
crossref_primary_10_3803_EnM_2023_1910
crossref_primary_10_1172_JCI162720
crossref_primary_10_3389_fimmu_2023_1323439
crossref_primary_10_1055_a_1718_7744
crossref_primary_10_3389_fphar_2024_1366417
crossref_primary_10_3389_fendo_2022_1086667
crossref_primary_10_1038_s41587_022_01540_7
crossref_primary_10_1177_09636897231167323
crossref_primary_10_1002_advs_202401385
crossref_primary_10_1159_000539120
crossref_primary_10_4239_wjd_v15_i6_1142
crossref_primary_10_2337_db23_0123
crossref_primary_10_51335_organoid_2024_4_e5
crossref_primary_10_1038_s41574_022_00790_4
crossref_primary_10_1038_s41467_024_53068_w
crossref_primary_10_3238_PersDia_2023_11_03_03
crossref_primary_10_3389_fcell_2022_886153
crossref_primary_10_3389_fcell_2024_1484859
crossref_primary_10_1111_jdi_14264
crossref_primary_10_3389_fimmu_2024_1375177
crossref_primary_10_1002_adhm_202200243
crossref_primary_10_1021_acs_nanolett_4c02096
crossref_primary_10_1097_TP_0000000000004347
crossref_primary_10_1007_s00125_024_06194_5
crossref_primary_10_3389_fimmu_2024_1470881
crossref_primary_10_3389_fimmu_2025_1555310
crossref_primary_10_1016_j_stem_2022_03_010
crossref_primary_10_3389_ti_2022_10575
crossref_primary_10_3389_fendo_2022_927324
crossref_primary_10_3389_fbiom_2025_1524518
crossref_primary_10_3390_ijms23179699
crossref_primary_10_1007_s11154_024_09930_9
crossref_primary_10_1007_s11626_024_00991_3
crossref_primary_10_1111_jdi_13884
crossref_primary_10_1007_s40200_023_01280_8
crossref_primary_10_1111_aor_14538
crossref_primary_10_1016_j_celrep_2022_111238
crossref_primary_10_1111_jdi_14175
crossref_primary_10_3389_frtra_2025_1514956
crossref_primary_10_1016_j_mmm_2023_05_009
crossref_primary_10_2217_rme_2022_0045
crossref_primary_10_4239_wjd_v15_i10_2022
crossref_primary_10_1002_ibra_12095
crossref_primary_10_3389_fimmu_2024_1391504
crossref_primary_10_1038_s41587_023_02055_5
crossref_primary_10_1007_s40259_025_00703_7
crossref_primary_10_3389_fendo_2023_1250126
crossref_primary_10_1016_j_lfs_2022_121204
crossref_primary_10_1080_17425247_2022_2076834
crossref_primary_10_1111_ajt_16647
crossref_primary_10_1093_stmcls_sxac040
crossref_primary_10_1002_btm2_10740
crossref_primary_10_3390_biomedicines13020383
crossref_primary_10_1242_dev_202067
crossref_primary_10_1016_j_xcrm_2023_100959
crossref_primary_10_5528_wjtm_v10_i1_1
crossref_primary_10_1097_TP_0000000000004909
crossref_primary_10_3390_pharmaceutics15041137
crossref_primary_10_1016_j_mtbio_2023_100696
crossref_primary_10_1016_j_stem_2021_10_003
crossref_primary_10_1369_00221554241299862
crossref_primary_10_1016_j_molmet_2022_101618
crossref_primary_10_1016_j_coemr_2022_100321
crossref_primary_10_1111_aor_14950
crossref_primary_10_3389_ti_2022_10555
crossref_primary_10_3390_ijms23010501
crossref_primary_10_1002_bdr2_2178
crossref_primary_10_1039_D2CC06550A
crossref_primary_10_15283_ijsc24036
crossref_primary_10_1080_14656566_2025_2468906
crossref_primary_10_3389_fcell_2023_1103719
crossref_primary_10_1089_ten_teb_2024_0041
crossref_primary_10_7554_eLife_89962
crossref_primary_10_1007_s12015_022_10391_3
crossref_primary_10_1038_s41574_021_00620_z
crossref_primary_10_1111_ggi_14414
crossref_primary_10_1021_acsami_3c12359
crossref_primary_10_3389_fimmu_2024_1349138
crossref_primary_10_1210_clinem_dgad257
crossref_primary_10_1210_clinem_dgad499
crossref_primary_10_20945_2359_4292_2024_0233
crossref_primary_10_3390_cells12081103
crossref_primary_10_7554_eLife_89962_3
crossref_primary_10_1172_JCI158305
crossref_primary_10_3390_endocrines5040034
crossref_primary_10_1097_TP_0000000000005108
crossref_primary_10_37349_eemd_2023_00005
crossref_primary_10_1007_s13770_024_00627_3
crossref_primary_10_1177_09636897251315123
crossref_primary_10_3390_cells12202423
crossref_primary_10_1016_j_cmet_2022_01_002
crossref_primary_10_3389_fendo_2023_1130465
crossref_primary_10_1360_SSV_2022_0031
crossref_primary_10_2174_011574888X271344231129053003
crossref_primary_10_1186_s13287_024_03636_0
crossref_primary_10_1038_s41467_022_31829_9
crossref_primary_10_3389_ti_2022_10817
crossref_primary_10_1002_SMMD_20230042
crossref_primary_10_1093_stcltm_szac030
crossref_primary_10_3390_ijms23095099
crossref_primary_10_1210_endocr_bqac193
crossref_primary_10_3389_fragi_2024_1495029
crossref_primary_10_1126_scitranslmed_adg5794
crossref_primary_10_3390_biomedicines12122853
crossref_primary_10_1016_j_biomaterials_2024_123040
crossref_primary_10_1093_stcltm_szae059
crossref_primary_10_1097_TXD_0000000000001658
crossref_primary_10_1111_1753_0407_70048
crossref_primary_10_1038_s44324_024_00014_5
crossref_primary_10_3389_fceng_2022_832754
crossref_primary_10_1016_j_addr_2024_115179
crossref_primary_10_1016_j_cell_2024_01_042
crossref_primary_10_1089_dia_2024_2525_abstracts
crossref_primary_10_3389_fendo_2022_989815
crossref_primary_10_1038_s41574_024_01029_0
crossref_primary_10_2217_rme_2023_0187
crossref_primary_10_1038_s41574_024_01064_x
crossref_primary_10_1080_07853890_2024_2322047
crossref_primary_10_1038_s42003_023_04627_2
crossref_primary_10_29001_2073_8552_2024_39_4_38_46
crossref_primary_10_1055_a_1834_3188
crossref_primary_10_1016_j_stem_2021_11_008
crossref_primary_10_1016_j_stemcr_2022_03_004
crossref_primary_10_1038_s41551_023_01145_8
crossref_primary_10_1111_dme_14834
crossref_primary_10_1557_s43579_024_00678_6
crossref_primary_10_1038_s44222_024_00214_0
crossref_primary_10_3390_cells11142145
crossref_primary_10_1007_s11010_024_04999_x
crossref_primary_10_3390_ijms242417320
crossref_primary_10_1002_bies_202400072
crossref_primary_10_1177_20417314241284826
crossref_primary_10_3389_fbioe_2023_1138596
crossref_primary_10_1111_obr_13899
crossref_primary_10_1007_s12195_023_00778_8
crossref_primary_10_1111_cpr_13232
crossref_primary_10_1021_acsbiomaterials_2c01415
crossref_primary_10_2217_rme_2022_0011
Cites_doi 10.1016/j.stemcr.2019.02.002
10.2337/db11-1711
10.1056/NEJM200007273430401
10.1038/nbt1163
10.1371/journal.pone.0037004
10.2337/dc15-1988
10.1016/j.stem.2021.10.003
10.2337/db21-196-LB
10.1038/nbt1393
10.5966/sctm.2015-0079
10.1007/s00125-013-2955-4
10.1016/S2213-8587(18)30078-0
10.1152/ajpendo.00219.2014
10.5966/sctm.2015-0058
10.1038/nbt.1931
10.1126/science.282.5391.1145
10.1038/nbt1259
10.2337/db18-138-OR
10.1369/jhc.4A6514.2005
ContentType Journal Article
Copyright 2021 The Authors
The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.xcrm.2021.100466
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2666-3791
EndPage 100466
ExternalDocumentID PMC8714853
35028608
10_1016_j_xcrm_2021_100466
S2666379121003384
1_s2_0_S2666379121003384
Genre Multicenter Study
Clinical Trial, Phase II
Clinical Trial, Phase I
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID .1-
.FO
0R~
53G
AAEDW
AALRI
AAMRU
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
Z5R
AAHOK
NCXOZ
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c561t-4487095446bca885870c286b1328ec5dc7af7ded84c31e8b0bbc0e4052d9bb573
ISSN 2666-3791
IngestDate Thu Aug 21 14:06:45 EDT 2025
Fri Jul 11 10:04:05 EDT 2025
Wed Feb 19 02:26:05 EST 2025
Tue Jul 01 01:25:23 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Sun Apr 06 06:54:37 EDT 2025
Sun Feb 23 10:18:53 EST 2025
Tue Aug 26 19:32:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c561t-4487095446bca885870c286b1328ec5dc7af7ded84c31e8b0bbc0e4052d9bb573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
ORCID 0000-0003-0079-9214
0000-0002-3982-2947
0000-0002-9170-8121
0000-0002-5209-1261
0000-0002-7321-4398
0000-0002-5999-0091
OpenAccessLink http://dx.doi.org/10.1016/j.xcrm.2021.100466
PMID 35028608
PQID 2620080402
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8714853
proquest_miscellaneous_2620080402
pubmed_primary_35028608
crossref_citationtrail_10_1016_j_xcrm_2021_100466
crossref_primary_10_1016_j_xcrm_2021_100466
elsevier_sciencedirect_doi_10_1016_j_xcrm_2021_100466
elsevier_clinicalkeyesjournals_1_s2_0_S2666379121003384
elsevier_clinicalkey_doi_10_1016_j_xcrm_2021_100466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-21
PublicationDateYYYYMMDD 2021-12-21
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports. Medicine
PublicationTitleAlternate Cell Rep Med
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Henry, Pettus, Wilensky, Shapiro, Senior, Roep, Wang, Kroon, Scott, D’Amour, Foyt (bib20) 2018
Thomson, Itskovitz-Eldor, Shapiro, Waknitz, Swiergiel, Marshall, Jones (bib4) 1998; 282
D’Amour, Agulnick, Eliazer, Kelly, Kroon, Baetge (bib5) 2005; 23
Bruin, Rezania, Xu, Narayan, Fox, O’Neil, Kieffer (bib15) 2013; 56
Kelly, Chan, Martinson, Kadoya, Ostertag, Ross, Richardson, Carpenter, D’Amour, Kroon (bib11) 2011; 29
Agulnick, Ambruzs, Moorman, Bhoumik, Cesario, Payne, Kelly, Haakmeester, Srijemac, Wilson (bib14) 2015; 4
Brandon, Scott, Zimmerman, D’Amour (bib9) 2020
Lablanche, Vantyghem, Kessler, Wojtusciszyn, Borot, Thivolet, Girerd, Bosco, Bosson, Colin (bib3) 2018; 6
Kroon, Martinson, Kadoya, Bang, Kelly, Eliazer, Young, Richardson, Smart, Cunningham (bib10) 2008; 26
Shapiro, Lakey, Ryan, Korbutt, Toth, Warnock, Kneteman, Rajotte (bib1) 2000; 343
D’Amour, Bang, Eliazer, Kelly, Agulnick, Smart, Moorman, Kroon, Carpenter, Baetge (bib6) 2006; 24
Motté, Szepessy, Suenens, Stangé, Bomans, Jacobs-Tulleneers-Thevissen, Ling, Kroon, Pipeleers (bib13) 2014; 307
Pusztaszeri, Seelentag, Bosman (bib18) 2006; 54
Haller, Piccand, De Franceschi, Ohi, Bhoumik, Boss, De Marchi, Jacot, Metairon, Descombes (bib16) 2019; 12
Schulz, Young, Agulnick, Babin, Baetge, Bang, Bhoumik, Cepa, Cesario, Haakmeester (bib7) 2012; 7
Ramzy, Thompson, Ward-Hartsonge, Ivison, Cook, Garcia, Loyal, Kim, Warnock, Levings, Kieffer (bib17) 2021; 28
Schulz (bib8) 2015; 4
Rezania, Bruin, Riedel, Mojibian, Asadi, Xu, Gauvin, Narayan, Karanu, O’Neil (bib12) 2012; 61
Keymeulen, Jacobs-Tulleneers-Thevissen, Kroon, Jaiman, Daniels, Wang, Pipeleers, D’Amour, Foyt (bib19) 2021
Hering, Clarke, Bridges, Eggerman, Alejandro, Bellin, Chaloner, Czarniecki, Goldstein, Hunsicker (bib2) 2016; 39
Kelly (10.1016/j.xcrm.2021.100466_bib11) 2011; 29
Schulz (10.1016/j.xcrm.2021.100466_bib7) 2012; 7
Keymeulen (10.1016/j.xcrm.2021.100466_bib19) 2021
D’Amour (10.1016/j.xcrm.2021.100466_bib6) 2006; 24
Rezania (10.1016/j.xcrm.2021.100466_bib12) 2012; 61
Agulnick (10.1016/j.xcrm.2021.100466_bib14) 2015; 4
Shapiro (10.1016/j.xcrm.2021.100466_bib1) 2000; 343
Kroon (10.1016/j.xcrm.2021.100466_bib10) 2008; 26
Ramzy (10.1016/j.xcrm.2021.100466_bib17) 2021; 28
Hering (10.1016/j.xcrm.2021.100466_bib2) 2016; 39
Lablanche (10.1016/j.xcrm.2021.100466_bib3) 2018; 6
Brandon (10.1016/j.xcrm.2021.100466_bib9) 2020
Pusztaszeri (10.1016/j.xcrm.2021.100466_bib18) 2006; 54
Bruin (10.1016/j.xcrm.2021.100466_bib15) 2013; 56
Henry (10.1016/j.xcrm.2021.100466_bib20) 2018
Motté (10.1016/j.xcrm.2021.100466_bib13) 2014; 307
Schulz (10.1016/j.xcrm.2021.100466_bib8) 2015; 4
Thomson (10.1016/j.xcrm.2021.100466_bib4) 1998; 282
Haller (10.1016/j.xcrm.2021.100466_bib16) 2019; 12
D’Amour (10.1016/j.xcrm.2021.100466_bib5) 2005; 23
35108510 - Cell Metab. 2022 Feb 1;34(2):193-196
34893786 - Nat Rev Endocrinol. 2022 Feb;18(2):67
References_xml – volume: 7
  start-page: e37004
  year: 2012
  ident: bib7
  article-title: A scalable system for production of functional pancreatic progenitors from human embryonic stem cells
  publication-title: PLoS ONE
– year: 2020
  ident: bib9
  article-title: Stem cell-derived islet replacement: Which cells & how to protect them from the immune system?
  publication-title: Second Generation Cell and Gene-based Therapies: Biological Advances, Clinical Outcomes, and Strategies for Capitalisation
– volume: 28
  start-page: 2047
  year: 2021
  end-page: 2061
  ident: bib17
  article-title: Implanted pluripotent stem cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in subjects with type 1 diabetes
  publication-title: Cell Stem Cell
– volume: 12
  start-page: 787
  year: 2019
  end-page: 800
  ident: bib16
  article-title: Macroencapsulated Human iPSC-Derived Pancreatic Progenitors Protect against STZ-Induced Hyperglycemia in Mice
  publication-title: Stem Cell Reports
– year: 2018
  ident: bib20
  article-title: Initial Clinical Evaluation of VC-01TM Combination Product: A Stem Cell-Derived Islet Replacement for Type 1 Diabetes (T1D)
  publication-title: Diabetes
– volume: 56
  start-page: 1987
  year: 2013
  end-page: 1998
  ident: bib15
  article-title: Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice
  publication-title: Diabetologia
– year: 2021
  ident: bib19
  article-title: 196-LB: Stem Cell–Derived Islet Replacement Therapy (VC-02) Demonstrates Production of C-Peptide in Patients with Type 1 Diabetes (T1D) and Hypoglycemia Unawareness
  publication-title: Diabetes
– volume: 6
  start-page: 527
  year: 2018
  end-page: 537
  ident: bib3
  article-title: Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial
  publication-title: Lancet Diabetes Endocrinol.
– volume: 282
  start-page: 1145
  year: 1998
  end-page: 1147
  ident: bib4
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
– volume: 4
  start-page: 1214
  year: 2015
  end-page: 1222
  ident: bib14
  article-title: Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo
  publication-title: Stem Cells Transl. Med.
– volume: 24
  start-page: 1392
  year: 2006
  end-page: 1401
  ident: bib6
  article-title: Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells
  publication-title: Nat. Biotechnol.
– volume: 29
  start-page: 750
  year: 2011
  end-page: 756
  ident: bib11
  article-title: Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells
  publication-title: Nat. Biotechnol.
– volume: 61
  start-page: 2016
  year: 2012
  end-page: 2029
  ident: bib12
  article-title: Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice
  publication-title: Diabetes
– volume: 23
  start-page: 1534
  year: 2005
  end-page: 1541
  ident: bib5
  article-title: Efficient differentiation of human embryonic stem cells to definitive endoderm
  publication-title: Nat. Biotechnol.
– volume: 307
  start-page: E838
  year: 2014
  end-page: E846
  ident: bib13
  article-title: Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 39
  start-page: 1230
  year: 2016
  end-page: 1240
  ident: bib2
  article-title: Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia
  publication-title: Diabetes Care
– volume: 4
  start-page: 927
  year: 2015
  end-page: 931
  ident: bib8
  article-title: Concise Review: Manufacturing of Pancreatic Endoderm Cells for Clinical Trials in Type 1 Diabetes
  publication-title: Stem Cells Transl. Med.
– volume: 26
  start-page: 443
  year: 2008
  end-page: 452
  ident: bib10
  article-title: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo
  publication-title: Nat. Biotechnol.
– volume: 343
  start-page: 230
  year: 2000
  end-page: 238
  ident: bib1
  article-title: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen
  publication-title: N. Engl. J. Med.
– volume: 54
  start-page: 385
  year: 2006
  end-page: 395
  ident: bib18
  article-title: Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues
  publication-title: J. Histochem. Cytochem.
– volume: 12
  start-page: 787
  year: 2019
  ident: 10.1016/j.xcrm.2021.100466_bib16
  article-title: Macroencapsulated Human iPSC-Derived Pancreatic Progenitors Protect against STZ-Induced Hyperglycemia in Mice
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2019.02.002
– volume: 61
  start-page: 2016
  year: 2012
  ident: 10.1016/j.xcrm.2021.100466_bib12
  article-title: Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice
  publication-title: Diabetes
  doi: 10.2337/db11-1711
– volume: 343
  start-page: 230
  year: 2000
  ident: 10.1016/j.xcrm.2021.100466_bib1
  article-title: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM200007273430401
– volume: 23
  start-page: 1534
  year: 2005
  ident: 10.1016/j.xcrm.2021.100466_bib5
  article-title: Efficient differentiation of human embryonic stem cells to definitive endoderm
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1163
– volume: 7
  start-page: e37004
  year: 2012
  ident: 10.1016/j.xcrm.2021.100466_bib7
  article-title: A scalable system for production of functional pancreatic progenitors from human embryonic stem cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0037004
– volume: 39
  start-page: 1230
  year: 2016
  ident: 10.1016/j.xcrm.2021.100466_bib2
  article-title: Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia
  publication-title: Diabetes Care
  doi: 10.2337/dc15-1988
– volume: 28
  start-page: 2047
  year: 2021
  ident: 10.1016/j.xcrm.2021.100466_bib17
  article-title: Implanted pluripotent stem cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in subjects with type 1 diabetes
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2021.10.003
– year: 2021
  ident: 10.1016/j.xcrm.2021.100466_bib19
  article-title: 196-LB: Stem Cell–Derived Islet Replacement Therapy (VC-02) Demonstrates Production of C-Peptide in Patients with Type 1 Diabetes (T1D) and Hypoglycemia Unawareness
  publication-title: Diabetes
  doi: 10.2337/db21-196-LB
– year: 2020
  ident: 10.1016/j.xcrm.2021.100466_bib9
  article-title: Stem cell-derived islet replacement: Which cells & how to protect them from the immune system?
– volume: 26
  start-page: 443
  year: 2008
  ident: 10.1016/j.xcrm.2021.100466_bib10
  article-title: Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1393
– volume: 4
  start-page: 1214
  year: 2015
  ident: 10.1016/j.xcrm.2021.100466_bib14
  article-title: Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo
  publication-title: Stem Cells Transl. Med.
  doi: 10.5966/sctm.2015-0079
– volume: 56
  start-page: 1987
  year: 2013
  ident: 10.1016/j.xcrm.2021.100466_bib15
  article-title: Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-013-2955-4
– volume: 6
  start-page: 527
  year: 2018
  ident: 10.1016/j.xcrm.2021.100466_bib3
  article-title: Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(18)30078-0
– volume: 307
  start-page: E838
  year: 2014
  ident: 10.1016/j.xcrm.2021.100466_bib13
  article-title: Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts
  publication-title: Am. J. Physiol. Endocrinol. Metab.
  doi: 10.1152/ajpendo.00219.2014
– volume: 4
  start-page: 927
  year: 2015
  ident: 10.1016/j.xcrm.2021.100466_bib8
  article-title: Concise Review: Manufacturing of Pancreatic Endoderm Cells for Clinical Trials in Type 1 Diabetes
  publication-title: Stem Cells Transl. Med.
  doi: 10.5966/sctm.2015-0058
– volume: 29
  start-page: 750
  year: 2011
  ident: 10.1016/j.xcrm.2021.100466_bib11
  article-title: Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1931
– volume: 282
  start-page: 1145
  year: 1998
  ident: 10.1016/j.xcrm.2021.100466_bib4
  article-title: Embryonic stem cell lines derived from human blastocysts
  publication-title: Science
  doi: 10.1126/science.282.5391.1145
– volume: 24
  start-page: 1392
  year: 2006
  ident: 10.1016/j.xcrm.2021.100466_bib6
  article-title: Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1259
– year: 2018
  ident: 10.1016/j.xcrm.2021.100466_bib20
  article-title: Initial Clinical Evaluation of VC-01TM Combination Product: A Stem Cell-Derived Islet Replacement for Type 1 Diabetes (T1D)
  publication-title: Diabetes
  doi: 10.2337/db18-138-OR
– volume: 54
  start-page: 385
  year: 2006
  ident: 10.1016/j.xcrm.2021.100466_bib18
  article-title: Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/jhc.4A6514.2005
– reference: 35108510 - Cell Metab. 2022 Feb 1;34(2):193-196
– reference: 34893786 - Nat Rev Endocrinol. 2022 Feb;18(2):67
SSID ssj0002511830
Score 2.5734513
Snippet These preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic...
SummaryThese preliminary data from an ongoing first-in-human phase 1/2, open-label study provide proof-of-concept that pluripotent stem cell-derived pancreatic...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100466
SubjectTerms Adolescent
Adult
Advanced Basic Science
Aged
C-Peptide - metabolism
Cells, Immobilized - cytology
Diabetes Mellitus, Type 1 - metabolism
Diabetes Mellitus, Type 1 - therapy
Endoderm - cytology
Female
Humans
Insulin - metabolism
Male
Middle Aged
Pancreas - cytology
Stem Cell Transplantation
Stem Cells - cytology
Young Adult
Title Insulin expression and C-peptide in type 1 diabetes subjects implanted with stem cell-derived pancreatic endoderm cells in an encapsulation device
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2666379121003384
https://www.clinicalkey.es/playcontent/1-s2.0-S2666379121003384
https://dx.doi.org/10.1016/j.xcrm.2021.100466
https://www.ncbi.nlm.nih.gov/pubmed/35028608
https://www.proquest.com/docview/2620080402
https://pubmed.ncbi.nlm.nih.gov/PMC8714853
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKkKa9IP6vAyYj8VYlShwnTR9RAQ2kIqRtYm9W7Lhaqy2rlhZN-xh8DD4ld_6TpFsZsJeqTew49f1s351_viPkXVkaUcuAJdMi4GkUBbLgSMuZ8inyooZmo33yNTs45l9O0pNe71eHtbRaylBdbzxXch-pwjWQK56S_Q_JNg-FC_Ad5AufIGH4_CcZf3ZEcn3l6KyWWTwOFshVKU08EONjjVsfa72Sc8PgmJ0vzrBbHf0cAzoP0I0flPDqP-AyzBNWpVQDXZWYM80WMAxamBagJwqwsS2ZDk9fORpdE_gA3YJuTyK0O0KdTfzD02Ixc4dswklo6bq3aSprrHtMqOxThVlm0-B72DgUMLSoZSbjUloMPoRdlwaLkR7CWpeGP2tjlygzF4IakcFcaBN7-YmbdfHJNq4H1jUxD6_UJYYdYDGyQrjN89IByOLcICRJQdvKorxdGxvG4rfJGExLDsrNA_KQgUnCOp4hXPWNqZZE7lyWpRDebHWHbPsm_qQG3TZzbrJ1O-rP0WPyyNkt9L0F4RPS09VTsu2F-oz8dFikLRYpYJE2WKRwD7FIY-qxSD0WaYNFilikiEXaxSJtsUg9Fk2BGh9bQKtdLFKLxefk-NPHo_FB4PJ9BAq0-GXAwXgGjZ_zTKoiz1P4paCzZJywXKu0VMNiOix1mXOVxDqXkZQq0mBxsHIkZTpMXpCt6qLSu4RqWKgiDfppMtU8yeUoY6ooMybTROsiG_VJ7LtfKBcMH3OynAnPepwLlJ5A6QkrvT4ZNHUWNhTMnaUTL1XhDznDsiwAmXfWGm6qpWs369QiFjUTkTjEEYEDgsWYjjHnfZI2NZ3ybJXiv7b41kNOwMqCoisqfbGqBaaqAHuSR6xPXloINv_bwxjedw2cTQGMWr9-p5qdmuj1bhjt3bvmK7LTThqvydbycqXfgGWwlPvGo7ZvBuZvF74Xqw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insulin+expression+and+C-peptide+in+type+1+diabetes+subjects+implanted+with+stem+cell-derived+pancreatic+endoderm+cells+in+an+encapsulation+device&rft.jtitle=Cell+reports.+Medicine&rft.au=Shapiro%2C+A.M.+James&rft.au=Thompson%2C+David&rft.au=Donner%2C+Thomas+W.&rft.au=Bellin%2C+Melena+D.&rft.date=2021-12-21&rft.pub=Elsevier&rft.eissn=2666-3791&rft.volume=2&rft.issue=12&rft_id=info:doi/10.1016%2Fj.xcrm.2021.100466&rft_id=info%3Apmid%2F35028608&rft.externalDocID=PMC8714853
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26663791%2FS2666379120X0022X%2Fcov150h.gif