UBR2 Mediates Transcriptional Silencing during Spermatogenesis via Histone Ubiquitination
Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear....
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 107; no. 5; pp. 1912 - 1917 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.02.2010
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B-H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosomewide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation. |
---|---|
AbstractList | Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B-H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosomewide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation. Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B–H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosome-wide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation. Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B - H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosome-wide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation. [PUBLICATION ABSTRACT] Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B-H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosome-wide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation.Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B-H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosome-wide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation. |
Author | Jiang, Yonghua Mook-Jung, Inhee Kwon, Yong Tae Young, Jee Lee, Min Jae Kim, Dong Eun Varshavsky, Alexander Zakrzewska, Adriana Zhang, Yi Kirn, Eun-A. |
Author_xml | – sequence: 1 givenname: Jee surname: Young fullname: Young, Jee – sequence: 2 givenname: Eun-A. surname: Kirn fullname: Kirn, Eun-A. – sequence: 3 givenname: Yonghua surname: Jiang fullname: Jiang, Yonghua – sequence: 4 givenname: Adriana surname: Zakrzewska fullname: Zakrzewska, Adriana – sequence: 5 givenname: Dong Eun surname: Kim fullname: Kim, Dong Eun – sequence: 6 givenname: Min Jae surname: Lee fullname: Lee, Min Jae – sequence: 7 givenname: Inhee surname: Mook-Jung fullname: Mook-Jung, Inhee – sequence: 8 givenname: Yi surname: Zhang fullname: Zhang, Yi – sequence: 9 givenname: Yong Tae surname: Kwon fullname: Kwon, Yong Tae – sequence: 10 givenname: Alexander surname: Varshavsky fullname: Varshavsky, Alexander |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20080676$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URLeFMydQxAFOaccf8ccFCSqgSEVItHvgZDmOd_Eq66S2U4n_Hodtt9BDTyN7fm_m2e8IHYQhOIReYjjBIOjpGEw6AYWBcFEunqAFLqeaMwUHaAFARC0ZYYfoKKUNAKhGwjN0SAAkcMEX6Ofy4w9SfXOdN9ml6iqakGz0Y_ZDMH116XsXrA_rqpviXC5HF7cmD2sXXPKpuvGmOvcpF1vVsvXXk88-mFn9HD1dmT65F7f1GC0_f7o6O68vvn_5evbhorYNx7mmBlTHpVVWqo4wyRzDVnTguOErKW1LjDOlBcow0xosRSudFZauWswd7egxer-bO07t1nXWhRxNr8fotyb-1oPx-v9O8L_0erjRRFLOCS0D3t0OiMP15FLWW5-s63sT3DAlLSjlWAJlhXz7KMl4Q5WiTQHfPAA3wxTLhyZNADPKBMEFev2v8b3ju3AKcLoDbBxSim61RzDoOX49x6_v4y-K5oHC-vw3jfJy3z-iu7MyN-63CN1orDApwKsdsClRxz3BoKG8AUn_AMnkybw |
CitedBy_id | crossref_primary_10_1095_biolreprod_112_103648 crossref_primary_10_1371_journal_pone_0033735 crossref_primary_10_1155_2014_870695 crossref_primary_10_1093_hmg_ddw344 crossref_primary_10_7554_eLife_89373_3 crossref_primary_10_1101_gad_202713_112 crossref_primary_10_1021_acs_jproteome_3c00598 crossref_primary_10_1038_ncb3177 crossref_primary_10_1111_and_12569 crossref_primary_10_3389_fphys_2015_00059 crossref_primary_10_1080_15548627_2016_1222991 crossref_primary_10_1016_j_cbd_2023_101108 crossref_primary_10_1146_annurev_biochem_051710_093308 crossref_primary_10_1002_mrd_21369 crossref_primary_10_1186_1471_2164_11_367 crossref_primary_10_3892_mmr_2016_5360 crossref_primary_10_1371_journal_pgen_1006904 crossref_primary_10_1186_1471_2164_13_495 crossref_primary_10_1074_jbc_M116_747956 crossref_primary_10_1080_19396368_2022_2027554 crossref_primary_10_1186_s12610_022_00179_3 crossref_primary_10_1038_nrm3217 crossref_primary_10_1016_j_devcel_2010_10_009 crossref_primary_10_1080_15384101_2020_1754585 crossref_primary_10_1111_j_1365_2958_2011_07605_x crossref_primary_10_1007_s10815_011_9576_y crossref_primary_10_2217_epi_2023_0234 crossref_primary_10_1002_pro_666 crossref_primary_10_1371_journal_pone_0014017 crossref_primary_10_1111_and_14437 crossref_primary_10_1371_journal_pone_0202260 crossref_primary_10_3390_cells2040732 crossref_primary_10_1007_s11033_012_2397_y crossref_primary_10_3390_cells11061058 crossref_primary_10_1371_journal_pone_0172219 crossref_primary_10_1021_jm400046q crossref_primary_10_1007_s11684_016_0458_7 crossref_primary_10_7554_eLife_89373 crossref_primary_10_1126_science_aaa3844 crossref_primary_10_3390_jcm9030640 crossref_primary_10_1186_s13062_015_0066_5 crossref_primary_10_3390_ani11113265 crossref_primary_10_1016_j_bbagen_2016_04_001 crossref_primary_10_1007_s00018_012_0941_5 crossref_primary_10_1002_yea_2936 crossref_primary_10_1038_nsmb_1894 crossref_primary_10_1095_biolreprod_115_137802 crossref_primary_10_3389_fphys_2022_886261 crossref_primary_10_1016_j_bcp_2024_116684 crossref_primary_10_1016_j_cbd_2021_100919 crossref_primary_10_1080_15384101_2017_1361066 crossref_primary_10_1016_j_ydbio_2011_02_027 crossref_primary_10_1016_j_tplants_2010_04_011 crossref_primary_10_1101_gad_219477_113 crossref_primary_10_1002_advs_202406332 crossref_primary_10_1186_s12575_022_00165_z crossref_primary_10_29252_sjrm_2_4_177 crossref_primary_10_1038_embor_2012_78 crossref_primary_10_1002_jcsm_12060 crossref_primary_10_1016_j_tips_2015_07_004 crossref_primary_10_1371_journal_pone_0037414 crossref_primary_10_1038_srep06344 crossref_primary_10_1530_REP_17_0153 |
Cites_doi | 10.1128/MCB.21.23.8007-8021.2001 10.1016/S0021-9258(18)37700-7 10.1073/pnas.0601700103 10.1016/j.tibs.2007.08.010 10.1128/MCB.25.3.1041-1053.2005 10.1126/science.287.5452.501 10.1016/j.cell.2007.09.040 10.1016/j.cub.2004.11.032 10.1016/j.molcel.2007.11.002 10.1016/j.cub.2006.01.066 10.1016/S1097-2765(02)00802-X 10.1073/pnas.0507533102 10.1016/j.molcel.2005.12.002 10.1016/j.molcel.2005.09.025 10.1016/j.devcel.2004.10.005 10.1242/jcs.03451 10.1126/science.3018930 10.1074/jbc.C400493200 10.1038/nature02985 10.1126/science.1069531 10.1128/MCB.23.22.8255-8271.2003 10.1242/dev.000018 10.1016/j.cell.2009.02.027 10.1242/jcs.01368 10.1128/MCB.25.16.7120-7136.2005 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Feb 2, 2010 |
Copyright_xml | – notice: Copyright National Academy of Sciences Feb 2, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0910267107 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef AGRICOLA Virology and AIDS Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 1917 |
ExternalDocumentID | PMC2836623 1955617721 20080676 10_1073_pnas_0910267107 107_5_1912 40536508 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c561t-3a09d68c9c89d2484e41c7d0e6a6f88cb2aea89d09a4aba187b8ec7c3fb16e3d3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:51:59 EDT 2025 Thu Jul 10 23:05:03 EDT 2025 Fri Jul 11 01:32:12 EDT 2025 Sat Aug 16 21:26:26 EDT 2025 Mon Jul 21 05:58:18 EDT 2025 Tue Jul 01 00:46:49 EDT 2025 Thu Apr 24 23:00:30 EDT 2025 Wed Nov 11 00:30:41 EST 2020 Thu May 29 08:41:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c561t-3a09d68c9c89d2484e41c7d0e6a6f88cb2aea89d09a4aba187b8ec7c3fb16e3d3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 1J.Y.A., E.-A. K., and Y.J. contributed equally to this work. Edited by Alexander Varshavsky, California Institute of Technology, Pasadena, CA, and approved November 6, 2009 (received for review September 9, 2009) Author contributions: J.Y.A., E.-A. K., Y.J., M.J.L., I.M.-J., and Y.T.K. designed research; J.Y.A., E.-A. K., Y.J., A.Z., D.E.K., and M.J.L. performed research; Y.Z. contributed new reagents/analytic tools; J.Y.A., E.-A. K., Y.J., D.E.K., M.J.L., I.M.-J., Y.Z., and Y.T.K. analyzed data; and J.Y.A., E.-A. K., Y.J., and Y.T.K. wrote the paper. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2836623 |
PMID | 20080676 |
PQID | 201434721 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_46539935 pubmed_primary_20080676 crossref_citationtrail_10_1073_pnas_0910267107 pnas_primary_107_5_1912 proquest_journals_201434721 crossref_primary_10_1073_pnas_0910267107 jstor_primary_40536508 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2836623 proquest_miscellaneous_733618034 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-02 |
PublicationDateYYYYMMDD | 2010-02-02 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2010 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 16307923 - Mol Cell. 2005 Nov 23;20(4):601-11 16055722 - Mol Cell Biol. 2005 Aug;25(16):7120-36 18001824 - Cell. 2007 Nov 30;131(5):887-900 12535539 - Mol Cell. 2003 Jan;11(1):267-74 16359901 - Mol Cell. 2005 Dec 22;20(6):845-54 17329371 - Development. 2007 May;134(10):1823-31 15657431 - Mol Cell Biol. 2005 Feb;25(3):1041-53 19410543 - Cell. 2009 May 1;137(3):459-71 15386022 - Nature. 2004 Oct 14;431(7010):873-8 15509584 - J Biol Chem. 2004 Dec 17;279(51):52812-5 2843516 - J Biol Chem. 1988 Sep 15;263(26):13268-75 15525528 - Dev Cell. 2004 Nov;7(5):663-76 15383616 - J Cell Sci. 2004 Oct 1;117(Pt 21):5023-33 17488778 - J Cell Sci. 2007 Jun 1;120(Pt 11):1841-51 14585983 - Mol Cell Biol. 2003 Nov;23(22):8255-71 16606826 - Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6212-7 17962019 - Trends Biochem Sci. 2007 Nov;32(11):520-8 16217033 - Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15030-5 11689692 - Mol Cell Biol. 2001 Dec;21(23):8007-21 15589157 - Curr Biol. 2004 Dec 14;14(23):2135-42 10642555 - Science. 2000 Jan 21;287(5452):501-4 3018930 - Science. 1986 Oct 10;234(4773):179-86 16581510 - Curr Biol. 2006 Apr 4;16(7):660-7 18206970 - Mol Cell. 2008 Jan 18;29(1):69-80 12098698 - Science. 2002 Jul 5;297(5578):96-9 |
References_xml | – ident: e_1_3_3_3_2 doi: 10.1128/MCB.21.23.8007-8021.2001 – ident: e_1_3_3_22_2 doi: 10.1016/S0021-9258(18)37700-7 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.0601700103 – ident: e_1_3_3_2_2 doi: 10.1016/j.tibs.2007.08.010 – ident: e_1_3_3_11_2 doi: 10.1128/MCB.25.3.1041-1053.2005 – ident: e_1_3_3_17_2 doi: 10.1126/science.287.5452.501 – ident: e_1_3_3_20_2 doi: 10.1016/j.cell.2007.09.040 – ident: e_1_3_3_24_2 doi: 10.1016/j.cub.2004.11.032 – ident: e_1_3_3_16_2 doi: 10.1016/j.molcel.2007.11.002 – ident: e_1_3_3_23_2 doi: 10.1016/j.cub.2006.01.066 – ident: e_1_3_3_25_2 doi: 10.1016/S1097-2765(02)00802-X – ident: e_1_3_3_7_2 doi: 10.1073/pnas.0507533102 – ident: e_1_3_3_15_2 doi: 10.1016/j.molcel.2005.12.002 – ident: e_1_3_3_18_2 doi: 10.1016/j.molcel.2005.09.025 – ident: e_1_3_3_14_2 doi: 10.1016/j.devcel.2004.10.005 – ident: e_1_3_3_10_2 doi: 10.1242/jcs.03451 – ident: e_1_3_3_1_2 doi: 10.1126/science.3018930 – ident: e_1_3_3_12_2 doi: 10.1074/jbc.C400493200 – ident: e_1_3_3_13_2 doi: 10.1038/nature02985 – ident: e_1_3_3_4_2 doi: 10.1126/science.1069531 – ident: e_1_3_3_5_2 doi: 10.1128/MCB.23.22.8255-8271.2003 – ident: e_1_3_3_9_2 doi: 10.1242/dev.000018 – ident: e_1_3_3_19_2 doi: 10.1016/j.cell.2009.02.027 – ident: e_1_3_3_21_2 doi: 10.1242/jcs.01368 – ident: e_1_3_3_6_2 doi: 10.1128/MCB.25.16.7120-7136.2005 – reference: 17962019 - Trends Biochem Sci. 2007 Nov;32(11):520-8 – reference: 18001824 - Cell. 2007 Nov 30;131(5):887-900 – reference: 19410543 - Cell. 2009 May 1;137(3):459-71 – reference: 16055722 - Mol Cell Biol. 2005 Aug;25(16):7120-36 – reference: 15589157 - Curr Biol. 2004 Dec 14;14(23):2135-42 – reference: 15525528 - Dev Cell. 2004 Nov;7(5):663-76 – reference: 16581510 - Curr Biol. 2006 Apr 4;16(7):660-7 – reference: 17488778 - J Cell Sci. 2007 Jun 1;120(Pt 11):1841-51 – reference: 12535539 - Mol Cell. 2003 Jan;11(1):267-74 – reference: 16217033 - Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15030-5 – reference: 16359901 - Mol Cell. 2005 Dec 22;20(6):845-54 – reference: 15386022 - Nature. 2004 Oct 14;431(7010):873-8 – reference: 15383616 - J Cell Sci. 2004 Oct 1;117(Pt 21):5023-33 – reference: 17329371 - Development. 2007 May;134(10):1823-31 – reference: 10642555 - Science. 2000 Jan 21;287(5452):501-4 – reference: 2843516 - J Biol Chem. 1988 Sep 15;263(26):13268-75 – reference: 12098698 - Science. 2002 Jul 5;297(5578):96-9 – reference: 15509584 - J Biol Chem. 2004 Dec 17;279(51):52812-5 – reference: 3018930 - Science. 1986 Oct 10;234(4773):179-86 – reference: 16606826 - Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6212-7 – reference: 18206970 - Mol Cell. 2008 Jan 18;29(1):69-80 – reference: 14585983 - Mol Cell Biol. 2003 Nov;23(22):8255-71 – reference: 15657431 - Mol Cell Biol. 2005 Feb;25(3):1041-53 – reference: 11689692 - Mol Cell Biol. 2001 Dec;21(23):8007-21 – reference: 16307923 - Mol Cell. 2005 Nov 23;20(4):601-11 |
SSID | ssj0009580 |
Score | 2.2565193 |
Snippet | Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1912 |
SubjectTerms | Animals Biological Sciences Chromatin Chromatin - genetics Chromatin - metabolism Chromatin Assembly and Disassembly - genetics Chromatin Assembly and Disassembly - physiology Chromosomes Enzymes Gene expression gene expression regulation Gene Silencing - physiology Genes Histones Histones - chemistry Histones - metabolism Humans Inactivation Male Meiosis Meiosis - genetics Meiosis - physiology Mice Mice, Knockout Models, Biological Pachytene stage proteolysis Sex chromosomes Spermatocytes Spermatocytes - metabolism spermatogenesis Spermatogenesis - genetics Spermatogenesis - physiology Testes transcription (genetics) ubiquitin Ubiquitin-Conjugating Enzymes - metabolism ubiquitin-protein ligase Ubiquitin-Protein Ligases - deficiency Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination Ubiquitins X Chromosome - genetics X Chromosome - metabolism Y chromosome Y Chromosome - genetics Y Chromosome - metabolism |
Title | UBR2 Mediates Transcriptional Silencing during Spermatogenesis via Histone Ubiquitination |
URI | https://www.jstor.org/stable/40536508 http://www.pnas.org/content/107/5/1912.abstract https://www.ncbi.nlm.nih.gov/pubmed/20080676 https://www.proquest.com/docview/201434721 https://www.proquest.com/docview/46539935 https://www.proquest.com/docview/733618034 https://pubmed.ncbi.nlm.nih.gov/PMC2836623 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMWAQxsUPPAxVKYnjXPpYJtCEtKpCq7TxEjmOu0Vj6VgSHvYP-VecEzuXRh2CvURVbMetz9dzcXy-Q8j7iEvHT31hK4gFIEARiT1dydT2fB46vkgDZ4XZyMfz4GjJv576p6PR796ppapMJvJ2a17JfaQK90CumCX7H5JtHwo34DPIF64gYbj-k4yXn74xnfuBu6clmp1GCWAaSIYJRbgVYHIRkRQcHNT1Oeq3rBj_yoTmGwZHs0qyn1VWZnknKeOyLloTVzQHCubNDuKsy0cxSqIY2-PFvKtuPNO5H0qNa73SvfK_0mk2uT2btKd4MrN5fbbOzy-q1mB8F5c3t6CML_UecAorq2t-N9sV-Kad2U4X3P7tC_b1NAPbyXV29URp1QyejR1wXVy01d26ZK4Bqd_TxBCHsp5Vx7B0q8UAFYdljnNRTNB1YkFontnDz_VVDSA8KgLGfcDcXfsCi-ND8NMC8CUfkIcMIhZW24g-_3Oks6HMD2tYpkLv42BupKc2E234Svq4LHLwQv9t8dDwWG_PTzp5Qh6bAIfONFp3yUjlT8lus_j0wPCcf3hGzhC-tIEvHcCXtvClGr50AF8K8KUGvnQTvs_J8svnk8Mj21T6sCX476XtCWeaBpGcymiaMh5xxV0Zpo4KRLCKIpkwoQQ0OVPBRSLcKEwiJUPprRI3UF7q7ZGdHGZ7SShjzkomyoURHFx9RwhXpC5PnTSQ4OoGFpk0axpLQ4OP1Vh-xPVxjNCLcX3jTh4WOWgHXGsGmLu77tVCavtBNORhCGSRF3XXbnwY-zFC1CL7jSBjo1mKmCHpJg-Za5F3bSuofXyXJ3K1roqY15TSnm8RekcP5Dl1I8fjOHmNi3b6Bl8WCTcQ03ZAzvnNljy7qLnnDcpf3XvkPnnUqYXXZKe8qdQb8OvL5G39j_kDJhX8fQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UBR2+mediates+transcriptional+silencing+during+spermatogenesis+via+histone+ubiquitination&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=An%2C+Jee+Young&rft.au=Kim%2C+Eun-A.&rft.au=Jiang%2C+Yonghua&rft.au=Zakrzewska%2C+Adriana&rft.date=2010-02-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=5&rft.spage=1912&rft.epage=1917&rft_id=info:doi/10.1073%2Fpnas.0910267107&rft_id=info%3Apmid%2F20080676&rft.externalDocID=PMC2836623 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F5.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F5.cover.gif |