UBR2 Mediates Transcriptional Silencing during Spermatogenesis via Histone Ubiquitination

Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear....

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 107; no. 5; pp. 1912 - 1917
Main Authors Young, Jee, Kirn, Eun-A., Jiang, Yonghua, Zakrzewska, Adriana, Kim, Dong Eun, Lee, Min Jae, Mook-Jung, Inhee, Zhang, Yi, Kwon, Yong Tae, Varshavsky, Alexander
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.02.2010
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B-H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosomewide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation.
AbstractList Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B-H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosomewide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation.
Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B–H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosome-wide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation.
Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B - H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosome-wide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation. [PUBLICATION ABSTRACT]
Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B-H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosome-wide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation.Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases involved in histone ubiquitination, yet the responsible enzymes and the function of histone ubiquitination in spermatogenesis remain unclear. We have previously shown that mice lacking the ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule proteolytic pathway, are infertile associated with meiotic arrest at prophase I. We here show that UBR2 localizes to meiotic chromatin regions, including unsynapsed axial elements linked to chromatin inactivation, and mediates transcriptional silencing via the ubiquitination of histone H2A. UBR2 interacts with the ubiquitin conjugating enzyme HR6B and its substrate H2A and promotes the HR6B-H2A interaction and the HR6B-to-H2A transfer of ubiquitin. UBR2 and ubiquitinated H2A (uH2A) spatiotemporally mark meiotic chromatin regions subject to transcriptional silencing, and UBR2-deficient spermatocytes fail to induce the ubiquitination of H2A during meiosis. UBR2-deficient spermatocytes are profoundly impaired in chromosome-wide transcriptional silencing of genes linked to unsynapsed axes of the X and Y chromosomes. Our findings suggest that insufficiency in UBR2-dependent histone ubiquitination triggers a pachytene checkpoint system, providing a new insight into chromatin remodeling and gene expression regulation.
Author Jiang, Yonghua
Mook-Jung, Inhee
Kwon, Yong Tae
Young, Jee
Lee, Min Jae
Kim, Dong Eun
Varshavsky, Alexander
Zakrzewska, Adriana
Zhang, Yi
Kirn, Eun-A.
Author_xml – sequence: 1
  givenname: Jee
  surname: Young
  fullname: Young, Jee
– sequence: 2
  givenname: Eun-A.
  surname: Kirn
  fullname: Kirn, Eun-A.
– sequence: 3
  givenname: Yonghua
  surname: Jiang
  fullname: Jiang, Yonghua
– sequence: 4
  givenname: Adriana
  surname: Zakrzewska
  fullname: Zakrzewska, Adriana
– sequence: 5
  givenname: Dong Eun
  surname: Kim
  fullname: Kim, Dong Eun
– sequence: 6
  givenname: Min Jae
  surname: Lee
  fullname: Lee, Min Jae
– sequence: 7
  givenname: Inhee
  surname: Mook-Jung
  fullname: Mook-Jung, Inhee
– sequence: 8
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 9
  givenname: Yong Tae
  surname: Kwon
  fullname: Kwon, Yong Tae
– sequence: 10
  givenname: Alexander
  surname: Varshavsky
  fullname: Varshavsky, Alexander
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20080676$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URLeFMydQxAFOaccf8ccFCSqgSEVItHvgZDmOd_Eq66S2U4n_Hodtt9BDTyN7fm_m2e8IHYQhOIReYjjBIOjpGEw6AYWBcFEunqAFLqeaMwUHaAFARC0ZYYfoKKUNAKhGwjN0SAAkcMEX6Ofy4w9SfXOdN9ml6iqakGz0Y_ZDMH116XsXrA_rqpviXC5HF7cmD2sXXPKpuvGmOvcpF1vVsvXXk88-mFn9HD1dmT65F7f1GC0_f7o6O68vvn_5evbhorYNx7mmBlTHpVVWqo4wyRzDVnTguOErKW1LjDOlBcow0xosRSudFZauWswd7egxer-bO07t1nXWhRxNr8fotyb-1oPx-v9O8L_0erjRRFLOCS0D3t0OiMP15FLWW5-s63sT3DAlLSjlWAJlhXz7KMl4Q5WiTQHfPAA3wxTLhyZNADPKBMEFev2v8b3ju3AKcLoDbBxSim61RzDoOX49x6_v4y-K5oHC-vw3jfJy3z-iu7MyN-63CN1orDApwKsdsClRxz3BoKG8AUn_AMnkybw
CitedBy_id crossref_primary_10_1095_biolreprod_112_103648
crossref_primary_10_1371_journal_pone_0033735
crossref_primary_10_1155_2014_870695
crossref_primary_10_1093_hmg_ddw344
crossref_primary_10_7554_eLife_89373_3
crossref_primary_10_1101_gad_202713_112
crossref_primary_10_1021_acs_jproteome_3c00598
crossref_primary_10_1038_ncb3177
crossref_primary_10_1111_and_12569
crossref_primary_10_3389_fphys_2015_00059
crossref_primary_10_1080_15548627_2016_1222991
crossref_primary_10_1016_j_cbd_2023_101108
crossref_primary_10_1146_annurev_biochem_051710_093308
crossref_primary_10_1002_mrd_21369
crossref_primary_10_1186_1471_2164_11_367
crossref_primary_10_3892_mmr_2016_5360
crossref_primary_10_1371_journal_pgen_1006904
crossref_primary_10_1186_1471_2164_13_495
crossref_primary_10_1074_jbc_M116_747956
crossref_primary_10_1080_19396368_2022_2027554
crossref_primary_10_1186_s12610_022_00179_3
crossref_primary_10_1038_nrm3217
crossref_primary_10_1016_j_devcel_2010_10_009
crossref_primary_10_1080_15384101_2020_1754585
crossref_primary_10_1111_j_1365_2958_2011_07605_x
crossref_primary_10_1007_s10815_011_9576_y
crossref_primary_10_2217_epi_2023_0234
crossref_primary_10_1002_pro_666
crossref_primary_10_1371_journal_pone_0014017
crossref_primary_10_1111_and_14437
crossref_primary_10_1371_journal_pone_0202260
crossref_primary_10_3390_cells2040732
crossref_primary_10_1007_s11033_012_2397_y
crossref_primary_10_3390_cells11061058
crossref_primary_10_1371_journal_pone_0172219
crossref_primary_10_1021_jm400046q
crossref_primary_10_1007_s11684_016_0458_7
crossref_primary_10_7554_eLife_89373
crossref_primary_10_1126_science_aaa3844
crossref_primary_10_3390_jcm9030640
crossref_primary_10_1186_s13062_015_0066_5
crossref_primary_10_3390_ani11113265
crossref_primary_10_1016_j_bbagen_2016_04_001
crossref_primary_10_1007_s00018_012_0941_5
crossref_primary_10_1002_yea_2936
crossref_primary_10_1038_nsmb_1894
crossref_primary_10_1095_biolreprod_115_137802
crossref_primary_10_3389_fphys_2022_886261
crossref_primary_10_1016_j_bcp_2024_116684
crossref_primary_10_1016_j_cbd_2021_100919
crossref_primary_10_1080_15384101_2017_1361066
crossref_primary_10_1016_j_ydbio_2011_02_027
crossref_primary_10_1016_j_tplants_2010_04_011
crossref_primary_10_1101_gad_219477_113
crossref_primary_10_1002_advs_202406332
crossref_primary_10_1186_s12575_022_00165_z
crossref_primary_10_29252_sjrm_2_4_177
crossref_primary_10_1038_embor_2012_78
crossref_primary_10_1002_jcsm_12060
crossref_primary_10_1016_j_tips_2015_07_004
crossref_primary_10_1371_journal_pone_0037414
crossref_primary_10_1038_srep06344
crossref_primary_10_1530_REP_17_0153
Cites_doi 10.1128/MCB.21.23.8007-8021.2001
10.1016/S0021-9258(18)37700-7
10.1073/pnas.0601700103
10.1016/j.tibs.2007.08.010
10.1128/MCB.25.3.1041-1053.2005
10.1126/science.287.5452.501
10.1016/j.cell.2007.09.040
10.1016/j.cub.2004.11.032
10.1016/j.molcel.2007.11.002
10.1016/j.cub.2006.01.066
10.1016/S1097-2765(02)00802-X
10.1073/pnas.0507533102
10.1016/j.molcel.2005.12.002
10.1016/j.molcel.2005.09.025
10.1016/j.devcel.2004.10.005
10.1242/jcs.03451
10.1126/science.3018930
10.1074/jbc.C400493200
10.1038/nature02985
10.1126/science.1069531
10.1128/MCB.23.22.8255-8271.2003
10.1242/dev.000018
10.1016/j.cell.2009.02.027
10.1242/jcs.01368
10.1128/MCB.25.16.7120-7136.2005
ContentType Journal Article
Copyright Copyright National Academy of Sciences Feb 2, 2010
Copyright_xml – notice: Copyright National Academy of Sciences Feb 2, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0910267107
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
CrossRef

AGRICOLA
Virology and AIDS Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 1917
ExternalDocumentID PMC2836623
1955617721
20080676
10_1073_pnas_0910267107
107_5_1912
40536508
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c561t-3a09d68c9c89d2484e41c7d0e6a6f88cb2aea89d09a4aba187b8ec7c3fb16e3d3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:51:59 EDT 2025
Thu Jul 10 23:05:03 EDT 2025
Fri Jul 11 01:32:12 EDT 2025
Sat Aug 16 21:26:26 EDT 2025
Mon Jul 21 05:58:18 EDT 2025
Tue Jul 01 00:46:49 EDT 2025
Thu Apr 24 23:00:30 EDT 2025
Wed Nov 11 00:30:41 EST 2020
Thu May 29 08:41:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c561t-3a09d68c9c89d2484e41c7d0e6a6f88cb2aea89d09a4aba187b8ec7c3fb16e3d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
1J.Y.A., E.-A. K., and Y.J. contributed equally to this work.
Edited by Alexander Varshavsky, California Institute of Technology, Pasadena, CA, and approved November 6, 2009 (received for review September 9, 2009)
Author contributions: J.Y.A., E.-A. K., Y.J., M.J.L., I.M.-J., and Y.T.K. designed research; J.Y.A., E.-A. K., Y.J., A.Z., D.E.K., and M.J.L. performed research; Y.Z. contributed new reagents/analytic tools; J.Y.A., E.-A. K., Y.J., D.E.K., M.J.L., I.M.-J., Y.Z., and Y.T.K. analyzed data; and J.Y.A., E.-A. K., Y.J., and Y.T.K. wrote the paper.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2836623
PMID 20080676
PQID 201434721
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_46539935
pubmed_primary_20080676
crossref_citationtrail_10_1073_pnas_0910267107
pnas_primary_107_5_1912
proquest_journals_201434721
crossref_primary_10_1073_pnas_0910267107
jstor_primary_40536508
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2836623
proquest_miscellaneous_733618034
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-02
PublicationDateYYYYMMDD 2010-02-02
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
16307923 - Mol Cell. 2005 Nov 23;20(4):601-11
16055722 - Mol Cell Biol. 2005 Aug;25(16):7120-36
18001824 - Cell. 2007 Nov 30;131(5):887-900
12535539 - Mol Cell. 2003 Jan;11(1):267-74
16359901 - Mol Cell. 2005 Dec 22;20(6):845-54
17329371 - Development. 2007 May;134(10):1823-31
15657431 - Mol Cell Biol. 2005 Feb;25(3):1041-53
19410543 - Cell. 2009 May 1;137(3):459-71
15386022 - Nature. 2004 Oct 14;431(7010):873-8
15509584 - J Biol Chem. 2004 Dec 17;279(51):52812-5
2843516 - J Biol Chem. 1988 Sep 15;263(26):13268-75
15525528 - Dev Cell. 2004 Nov;7(5):663-76
15383616 - J Cell Sci. 2004 Oct 1;117(Pt 21):5023-33
17488778 - J Cell Sci. 2007 Jun 1;120(Pt 11):1841-51
14585983 - Mol Cell Biol. 2003 Nov;23(22):8255-71
16606826 - Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6212-7
17962019 - Trends Biochem Sci. 2007 Nov;32(11):520-8
16217033 - Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15030-5
11689692 - Mol Cell Biol. 2001 Dec;21(23):8007-21
15589157 - Curr Biol. 2004 Dec 14;14(23):2135-42
10642555 - Science. 2000 Jan 21;287(5452):501-4
3018930 - Science. 1986 Oct 10;234(4773):179-86
16581510 - Curr Biol. 2006 Apr 4;16(7):660-7
18206970 - Mol Cell. 2008 Jan 18;29(1):69-80
12098698 - Science. 2002 Jul 5;297(5578):96-9
References_xml – ident: e_1_3_3_3_2
  doi: 10.1128/MCB.21.23.8007-8021.2001
– ident: e_1_3_3_22_2
  doi: 10.1016/S0021-9258(18)37700-7
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.0601700103
– ident: e_1_3_3_2_2
  doi: 10.1016/j.tibs.2007.08.010
– ident: e_1_3_3_11_2
  doi: 10.1128/MCB.25.3.1041-1053.2005
– ident: e_1_3_3_17_2
  doi: 10.1126/science.287.5452.501
– ident: e_1_3_3_20_2
  doi: 10.1016/j.cell.2007.09.040
– ident: e_1_3_3_24_2
  doi: 10.1016/j.cub.2004.11.032
– ident: e_1_3_3_16_2
  doi: 10.1016/j.molcel.2007.11.002
– ident: e_1_3_3_23_2
  doi: 10.1016/j.cub.2006.01.066
– ident: e_1_3_3_25_2
  doi: 10.1016/S1097-2765(02)00802-X
– ident: e_1_3_3_7_2
  doi: 10.1073/pnas.0507533102
– ident: e_1_3_3_15_2
  doi: 10.1016/j.molcel.2005.12.002
– ident: e_1_3_3_18_2
  doi: 10.1016/j.molcel.2005.09.025
– ident: e_1_3_3_14_2
  doi: 10.1016/j.devcel.2004.10.005
– ident: e_1_3_3_10_2
  doi: 10.1242/jcs.03451
– ident: e_1_3_3_1_2
  doi: 10.1126/science.3018930
– ident: e_1_3_3_12_2
  doi: 10.1074/jbc.C400493200
– ident: e_1_3_3_13_2
  doi: 10.1038/nature02985
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1069531
– ident: e_1_3_3_5_2
  doi: 10.1128/MCB.23.22.8255-8271.2003
– ident: e_1_3_3_9_2
  doi: 10.1242/dev.000018
– ident: e_1_3_3_19_2
  doi: 10.1016/j.cell.2009.02.027
– ident: e_1_3_3_21_2
  doi: 10.1242/jcs.01368
– ident: e_1_3_3_6_2
  doi: 10.1128/MCB.25.16.7120-7136.2005
– reference: 17962019 - Trends Biochem Sci. 2007 Nov;32(11):520-8
– reference: 18001824 - Cell. 2007 Nov 30;131(5):887-900
– reference: 19410543 - Cell. 2009 May 1;137(3):459-71
– reference: 16055722 - Mol Cell Biol. 2005 Aug;25(16):7120-36
– reference: 15589157 - Curr Biol. 2004 Dec 14;14(23):2135-42
– reference: 15525528 - Dev Cell. 2004 Nov;7(5):663-76
– reference: 16581510 - Curr Biol. 2006 Apr 4;16(7):660-7
– reference: 17488778 - J Cell Sci. 2007 Jun 1;120(Pt 11):1841-51
– reference: 12535539 - Mol Cell. 2003 Jan;11(1):267-74
– reference: 16217033 - Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15030-5
– reference: 16359901 - Mol Cell. 2005 Dec 22;20(6):845-54
– reference: 15386022 - Nature. 2004 Oct 14;431(7010):873-8
– reference: 15383616 - J Cell Sci. 2004 Oct 1;117(Pt 21):5023-33
– reference: 17329371 - Development. 2007 May;134(10):1823-31
– reference: 10642555 - Science. 2000 Jan 21;287(5452):501-4
– reference: 2843516 - J Biol Chem. 1988 Sep 15;263(26):13268-75
– reference: 12098698 - Science. 2002 Jul 5;297(5578):96-9
– reference: 15509584 - J Biol Chem. 2004 Dec 17;279(51):52812-5
– reference: 3018930 - Science. 1986 Oct 10;234(4773):179-86
– reference: 16606826 - Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6212-7
– reference: 18206970 - Mol Cell. 2008 Jan 18;29(1):69-80
– reference: 14585983 - Mol Cell Biol. 2003 Nov;23(22):8255-71
– reference: 15657431 - Mol Cell Biol. 2005 Feb;25(3):1041-53
– reference: 11689692 - Mol Cell Biol. 2001 Dec;21(23):8007-21
– reference: 16307923 - Mol Cell. 2005 Nov 23;20(4):601-11
SSID ssj0009580
Score 2.2565193
Snippet Ubiquitination of histones provides an important mechanism regulating chromatin remodeling and gene expression. Recent studies have revealed ubiquitin ligases...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1912
SubjectTerms Animals
Biological Sciences
Chromatin
Chromatin - genetics
Chromatin - metabolism
Chromatin Assembly and Disassembly - genetics
Chromatin Assembly and Disassembly - physiology
Chromosomes
Enzymes
Gene expression
gene expression regulation
Gene Silencing - physiology
Genes
Histones
Histones - chemistry
Histones - metabolism
Humans
Inactivation
Male
Meiosis
Meiosis - genetics
Meiosis - physiology
Mice
Mice, Knockout
Models, Biological
Pachytene stage
proteolysis
Sex chromosomes
Spermatocytes
Spermatocytes - metabolism
spermatogenesis
Spermatogenesis - genetics
Spermatogenesis - physiology
Testes
transcription (genetics)
ubiquitin
Ubiquitin-Conjugating Enzymes - metabolism
ubiquitin-protein ligase
Ubiquitin-Protein Ligases - deficiency
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Ubiquitins
X Chromosome - genetics
X Chromosome - metabolism
Y chromosome
Y Chromosome - genetics
Y Chromosome - metabolism
Title UBR2 Mediates Transcriptional Silencing during Spermatogenesis via Histone Ubiquitination
URI https://www.jstor.org/stable/40536508
http://www.pnas.org/content/107/5/1912.abstract
https://www.ncbi.nlm.nih.gov/pubmed/20080676
https://www.proquest.com/docview/201434721
https://www.proquest.com/docview/46539935
https://www.proquest.com/docview/733618034
https://pubmed.ncbi.nlm.nih.gov/PMC2836623
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMWAQxsUPPAxVKYnjXPpYJtCEtKpCq7TxEjmOu0Vj6VgSHvYP-VecEzuXRh2CvURVbMetz9dzcXy-Q8j7iEvHT31hK4gFIEARiT1dydT2fB46vkgDZ4XZyMfz4GjJv576p6PR796ppapMJvJ2a17JfaQK90CumCX7H5JtHwo34DPIF64gYbj-k4yXn74xnfuBu6clmp1GCWAaSIYJRbgVYHIRkRQcHNT1Oeq3rBj_yoTmGwZHs0qyn1VWZnknKeOyLloTVzQHCubNDuKsy0cxSqIY2-PFvKtuPNO5H0qNa73SvfK_0mk2uT2btKd4MrN5fbbOzy-q1mB8F5c3t6CML_UecAorq2t-N9sV-Kad2U4X3P7tC_b1NAPbyXV29URp1QyejR1wXVy01d26ZK4Bqd_TxBCHsp5Vx7B0q8UAFYdljnNRTNB1YkFontnDz_VVDSA8KgLGfcDcXfsCi-ND8NMC8CUfkIcMIhZW24g-_3Oks6HMD2tYpkLv42BupKc2E234Svq4LHLwQv9t8dDwWG_PTzp5Qh6bAIfONFp3yUjlT8lus_j0wPCcf3hGzhC-tIEvHcCXtvClGr50AF8K8KUGvnQTvs_J8svnk8Mj21T6sCX476XtCWeaBpGcymiaMh5xxV0Zpo4KRLCKIpkwoQQ0OVPBRSLcKEwiJUPprRI3UF7q7ZGdHGZ7SShjzkomyoURHFx9RwhXpC5PnTSQ4OoGFpk0axpLQ4OP1Vh-xPVxjNCLcX3jTh4WOWgHXGsGmLu77tVCavtBNORhCGSRF3XXbnwY-zFC1CL7jSBjo1mKmCHpJg-Za5F3bSuofXyXJ3K1roqY15TSnm8RekcP5Dl1I8fjOHmNi3b6Bl8WCTcQ03ZAzvnNljy7qLnnDcpf3XvkPnnUqYXXZKe8qdQb8OvL5G39j_kDJhX8fQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UBR2+mediates+transcriptional+silencing+during+spermatogenesis+via+histone+ubiquitination&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=An%2C+Jee+Young&rft.au=Kim%2C+Eun-A.&rft.au=Jiang%2C+Yonghua&rft.au=Zakrzewska%2C+Adriana&rft.date=2010-02-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=107&rft.issue=5&rft.spage=1912&rft.epage=1917&rft_id=info:doi/10.1073%2Fpnas.0910267107&rft_id=info%3Apmid%2F20080676&rft.externalDocID=PMC2836623
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F5.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F107%2F5.cover.gif