Strain engineering in alloy nanoparticles
The deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of finite size, morphology, domain structure and lattice mismatch between their atomic compounds. Strain can strongly affect the functional pro...
Saved in:
Published in | Advances in physics: X Vol. 8; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
31.12.2023
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of finite size, morphology, domain structure and lattice mismatch between their atomic compounds. Strain can strongly affect the functional properties of nanoalloys, as it alters their electronic energy levels. Moreover, atomic-level strain generates atomic-level stress, which in turn results in distortions induced by strain. When the stress accumulated in a nanoalloy exceeds a certain level, the particle can relax that stress by undergoing structural transitions such as shape and/or chemical ordering transitions. Atomic-level strain is then a powerful tool to control and manipulate the structural and functional properties of nanoalloys. This requires a combined theoretical and experimental approach both to deeply understand the physical origin of strain, and to characterize it with a sub-angstrom resolution. Here, we present a theoretical analysis of the main sources of strain in nanoalloys, we analyse how atomic-level strain can be experimentally measured with transmission electron microscopy, we discuss its effect on the functional properties of nanoalloys, finally we describe how atomic-level stress arises from atomic-level strain, and how stress can induce structural transformations at the nanoscale. |
---|---|
AbstractList | The deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of finite size, morphology, domain structure and lattice mismatch between their atomic compounds. Strain can strongly affect the functional properties of nanoalloys, as it alters their electronic energy levels. Moreover, atomic-level strain generates atomic-level stress, which in turn results in distortions induced by strain. When the stress accumulated in a nanoalloy exceeds a certain level, the particle can relax that stress by undergoing structural transitions such as shape and/or chemical ordering transitions. Atomic-level strain is then a powerful tool to control and manipulate the structural and functional properties of nanoalloys. This requires a combined theoretical and experimental approach both to deeply understand the physical origin of strain, and to characterize it with a sub-angstrom resolution. Here, we present a theoretical analysis of the main sources of strain in nanoalloys, we analyse how atomic-level strain can be experimentally measured with transmission electron microscopy, we discuss its effect on the functional properties of nanoalloys, finally we describe how atomic-level stress arises from atomic-level strain, and how stress can induce structural transformations at the nanoscale. ABSTRACTThe deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of finite size, morphology, domain structure and lattice mismatch between their atomic compounds. Strain can strongly affect the functional properties of nanoalloys, as it alters their electronic energy levels. Moreover, atomic-level strain generates atomic-level stress, which in turn results in distortions induced by strain. When the stress accumulated in a nanoalloy exceeds a certain level, the particle can relax that stress by undergoing structural transitions such as shape and/or chemical ordering transitions. Atomic-level strain is then a powerful tool to control and manipulate the structural and functional properties of nanoalloys. This requires a combined theoretical and experimental approach both to deeply understand the physical origin of strain, and to characterize it with a sub-angstrom resolution. Here, we present a theoretical analysis of the main sources of strain in nanoalloys, we analyse how atomic-level strain can be experimentally measured with transmission electron microscopy, we discuss its effect on the functional properties of nanoalloys, finally we describe how atomic-level stress arises from atomic-level strain, and how stress can induce structural transformations at the nanoscale. |
Author | Nelli, Diana Minnai, Chloé Roncaglia, Cesare |
Author_xml | – sequence: 1 givenname: Diana surname: Nelli fullname: Nelli, Diana email: diana.nelli@edu.unige.it organization: University of Genoa – sequence: 2 givenname: Cesare surname: Roncaglia fullname: Roncaglia, Cesare organization: University of Genoa – sequence: 3 givenname: Chloé surname: Minnai fullname: Minnai, Chloé email: chloe.minnai@oist.jp organization: Okinawa Institute of Science and Technology Graduate University |
BookMark | eNqFkMtKAzEUhoNUsNY-glBw5WJqrjMT3CjFS6HgQl2H01xKyjSpmSnSt3fGqSIudJXk5HzfOfynaBBisAidEzwluMRXlBU8J1xOKaZ0SgktGMNHaNjVs-5j8ON-gsZ1vcYYk7xoYTZEl89NAh8mNqx8sDb5sJq0T6iquJ8ECHELqfG6svUZOnZQ1XZ8OEfo9f7uZfaYLZ4e5rPbRaZFTpqMYSoKrsGxpdWaGQEUC8wML4yhnAteYmm5dLmmTlthCmKlk25JuQHqgLMRmvdeE2GttslvIO1VBK8-CzGt1GElpQ0zjEEudL7kpXFABUiyFKUF0grL1nXRu7Ypvu1s3ah13KXQrq9oWZSSkpzJtkv0XTrFuk7WfU8lWHUhq6-QVReyOoTccte_OO0baHwMXabVv_RNT_vgYtrAe0yVUQ3sq5hcgqB9rdjfig8DDJWc |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_4c01912 crossref_primary_10_1007_s11051_025_06276_4 crossref_primary_10_1021_acsanm_3c00995 crossref_primary_10_1063_5_0180906 crossref_primary_10_1021_acs_jpcc_3c05926 crossref_primary_10_1063_5_0159257 crossref_primary_10_1021_acs_jpcc_3c07824 crossref_primary_10_1039_D4CP00672K crossref_primary_10_1007_s11051_022_05638_6 crossref_primary_10_1021_acsnano_2c09741 crossref_primary_10_1021_acsnano_3c05653 crossref_primary_10_1080_08927022_2024_2373151 crossref_primary_10_1021_acs_jpcc_3c03541 crossref_primary_10_13005_ojc_390511 crossref_primary_10_1021_acsnano_2c11825 crossref_primary_10_1088_1402_4896_ad5f01 crossref_primary_10_1007_s42864_024_00314_9 crossref_primary_10_1080_23746149_2023_2175623 crossref_primary_10_1007_s11051_023_05821_3 |
Cites_doi | 10.1038/nnano.2008.360 10.1038/nchem.367 10.1038/nature02773 10.1021/jp2021209 10.1021/jp112224t 10.1016/S0039-6028(00)01103-1 10.1103/PhysRevB.53.13740 10.1039/D1CP04145B 10.1007/s00339-017-1546-5 10.1021/acscatal.0c00224 10.1016/j.jssc.2008.03.013 10.1016/j.ssc.2011.10.019 10.1103/PhysRevLett.81.1453 10.1103/PhysRevLett.103.205701 10.1021/jz4024699 10.1080/01418618908205062 10.1021/nl102588p 10.1103/PhysRevB.66.155420 10.1038/srep07909 10.1038/nmat1840 10.1016/j.ssc.2012.01.011 10.1002/ange.201406468 10.1021/jz300192b 10.1002/smll.201601203 10.1016/j.rser.2014.12.023 10.1021/nn507202c 10.1016/j.jpcs.2020.109655 10.1038/nmat3700 10.1007/s100530170273 10.1039/C5CP00491H 10.1021/nl401945b 10.1039/B9NR00326F 10.1021/acscatal.7b02501 10.1038/s41598-020-60059-6 10.1038/39282 10.1103/PhysRevLett.97.105502 10.1038/srep13126 10.1021/nl503834b 10.1021/acs.jpcc.6b02169 10.1021/jp9006075 10.1016/j.chempr.2018.05.001 10.1021/acs.jpcc.5b05583 10.1103/PhysRevLett.81.3467 10.1103/PhysRevLett.53.2390 10.1021/acs.jpcc.6b08548 10.1038/nmat2132 10.1126/science.1177046 10.1039/c2ce25235j 10.1039/D0NR08862E 10.1002/adfm.200902293 10.1103/PhysRevA.43.3161 10.1039/D0CP04318D 10.1016/j.jmmm.2010.10.030 10.1166/jctn.2009.1085 10.1103/PhysRevLett.90.135504 10.1002/anie.201401059 10.1039/c4cp00081a 10.1063/1.5004577 10.1016/0304-3991(93)90046-Z 10.1016/j.commatsci.2020.109822 10.1140/epjd/e2012-30054-0 10.1038/s41467-019-09841-3 10.1088/0953-8984/27/1/013003 10.1016/j.actamat.2022.118038 10.1126/sciadv.abe6679 10.1016/j.ultramic.2007.01.019 10.1007/s100530170024 10.1021/nl302995z 10.1038/s41467-017-00613-5 10.1021/jp410379u 10.1021/acs.nanolett.5b03008 10.1126/science.aah6133 10.1098/rsta.2009.0134 10.1103/PhysRevLett.81.2819 10.1007/BF01328601 10.1103/PhysRevB.87.165435 10.1088/0305-4608/4/3/002 10.1021/acsnano.9b01394 10.1088/0957-4484/21/36/365704 10.1021/acs.jpclett.1c00787 10.1038/nature21042 10.1021/jacs.0c12696 10.1103/PhysRevB.4.2406 10.1016/j.jmps.2009.12.001 10.1039/c2cs35189g 10.1126/science.aax3233 10.1039/C6NR03560D 10.1016/S0304-3991(00)00059-0 10.1016/j.apsusc.2015.12.205 10.1126/science.aaf7680 10.1166/jctn.2009.1116 10.1166/jnn.2011.4294 10.1103/PhysRevLett.87.036103 10.1103/PhysRev.60.661 10.1007/BF02872890 10.1021/nl300067q 10.1039/D0TA01247E 10.1021/ja01195a024 10.1016/S0304-8853(03)00460-8 10.1016/j.surfrep.2015.02.002 10.1002/pssb.2221440113 10.1103/PhysRevB.79.220101 10.1103/PhysRevB.23.6265 10.1140/epjb/e2011-20728-2 10.1038/nchem.623 10.1007/s00339-004-2600-7 10.1021/cr040090g 10.1016/j.jpcs.2014.11.002 10.1016/j.comptc.2013.07.017 10.1103/PhysRevB.69.045105 10.1016/S0304-3991(98)00035-7 10.1021/acs.nanolett.7b01994 10.1039/c0nr00245c 10.1021/cm501001f 10.1364/OL.39.003833 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022 – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION 3V. 7XB 8FD 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH H8D L7M M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1080/23746149.2022.2127330 |
DatabaseName | Taylor & Francis Free Journals (Free resource, activated by CARLI) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep Aerospace Database Advanced Technologies Database with Aerospace Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Engineering |
EISSN | 2374-6149 |
ExternalDocumentID | oai_doaj_org_article_cd3d33a65c6b48dfa25a91b58ea1b248 10_1080_23746149_2022_2127330 2127330 |
Genre | Review |
GroupedDBID | 0YH 8G5 ABDBF ABUWG ACGFS ACUHS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BCNDV BENPR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ GUQSH H13 M2O M4Z M~E OK1 PIMPY PROAC TDBHL TFW AAFWJ AAYXX ADMLS AFPKN CITATION PHGZM PHGZT 3V. 7XB 8FD 8FK H8D L7M MBDVC PKEHL PQEST PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c561t-302574caf3becc3d5a20503d47dd24454809e49f6c2fce5d71e9f9fb24da2fa43 |
IEDL.DBID | DOA |
ISSN | 2374-6149 |
IngestDate | Wed Aug 27 01:31:30 EDT 2025 Mon Jun 30 07:10:57 EDT 2025 Thu Apr 24 23:02:28 EDT 2025 Tue Jul 01 01:13:49 EDT 2025 Wed Dec 25 09:02:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-302574caf3becc3d5a20503d47dd24454809e49f6c2fce5d71e9f9fb24da2fa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/cd3d33a65c6b48dfa25a91b58ea1b248 |
PQID | 2878921639 |
PQPubID | 3933228 |
ParticipantIDs | proquest_journals_2878921639 informaworld_taylorfrancis_310_1080_23746149_2022_2127330 crossref_citationtrail_10_1080_23746149_2022_2127330 crossref_primary_10_1080_23746149_2022_2127330 doaj_primary_oai_doaj_org_article_cd3d33a65c6b48dfa25a91b58ea1b248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 12/31/2023 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 12/31/2023 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Advances in physics: X |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | e_1_3_4_3_1 e_1_3_4_114_1 e_1_3_4_61_1 e_1_3_4_84_1 e_1_3_4_118_1 e_1_3_4_80_1 e_1_3_4_7_1 e_1_3_4_46_1 e_1_3_4_69_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_88_1 e_1_3_4_121_1 Kumarakuru H (e_1_3_4_74_1) 2012; 371 e_1_3_4_102_1 e_1_3_4_125_1 e_1_3_4_72_1 e_1_3_4_95_1 e_1_3_4_106_1 e_1_3_4_53_1 e_1_3_4_91_1 e_1_3_4_30_1 e_1_3_4_34_1 e_1_3_4_11_1 e_1_3_4_76_1 e_1_3_4_99_1 e_1_3_4_38_1 e_1_3_4_15_1 Ferrando R (e_1_3_4_43_1) 2016 e_1_3_4_19_1 (e_1_3_4_23_1) 2009; 5 e_1_3_4_2_1 e_1_3_4_113_1 e_1_3_4_62_1 e_1_3_4_85_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_81_1 e_1_3_4_24_1 e_1_3_4_28_1 e_1_3_4_47_1 e_1_3_4_89_1 (e_1_3_4_4_1) 2018; 9 e_1_3_4_120_1 e_1_3_4_101_1 Wales DJ (e_1_3_4_64_1) 2003 e_1_3_4_124_1 e_1_3_4_73_1 e_1_3_4_105_1 e_1_3_4_96_1 e_1_3_4_31_1 e_1_3_4_109_1 (e_1_3_4_108_1) 1976 e_1_3_4_50_1 e_1_3_4_92_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_58_1 Sun CQ (e_1_3_4_57_1) 2002; 14 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_77_1 e_1_3_4_112_1 e_1_3_4_116_1 e_1_3_4_63_1 e_1_3_4_86_1 (e_1_3_4_110_1) 1929; 123 e_1_3_4_9_1 e_1_3_4_40_1 e_1_3_4_82_1 e_1_3_4_5_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_67_1 e_1_3_4_29_1 Barrett CS (e_1_3_4_66_1) 1952 e_1_3_4_100_1 e_1_3_4_123_1 e_1_3_4_104_1 e_1_3_4_127_1 e_1_3_4_97_1 e_1_3_4_51_1 e_1_3_4_70_1 e_1_3_4_93_1 e_1_3_4_13_1 e_1_3_4_59_1 e_1_3_4_55_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_78_1 e_1_3_4_36_1 e_1_3_4_111_1 e_1_3_4_115_1 e_1_3_4_83_1 e_1_3_4_8_1 e_1_3_4_119_1 e_1_3_4_41_1 e_1_3_4_60_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_49_1 e_1_3_4_87_1 e_1_3_4_26_1 Butt H-J (e_1_3_4_42_1) 2013 e_1_3_4_68_1 e_1_3_4_122_1 e_1_3_4_103_1 e_1_3_4_94_1 e_1_3_4_126_1 e_1_3_4_75_1 e_1_3_4_107_1 Front A (e_1_3_4_117_1) 2021; 33 e_1_3_4_52_1 e_1_3_4_90_1 e_1_3_4_71_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_98_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_56_1 e_1_3_4_79_1 e_1_3_4_18_1 |
References_xml | – ident: e_1_3_4_21_1 doi: 10.1038/nnano.2008.360 – ident: e_1_3_4_101_1 doi: 10.1038/nchem.367 – ident: e_1_3_4_94_1 doi: 10.1038/nature02773 – ident: e_1_3_4_73_1 doi: 10.1021/jp2021209 – ident: e_1_3_4_70_1 doi: 10.1021/jp112224t – ident: e_1_3_4_106_1 doi: 10.1016/S0039-6028(00)01103-1 – ident: e_1_3_4_55_1 doi: 10.1103/PhysRevB.53.13740 – ident: e_1_3_4_116_1 doi: 10.1039/D1CP04145B – ident: e_1_3_4_25_1 doi: 10.1007/s00339-017-1546-5 – start-page: 1 volume-title: Structure and properties of nanoalloys year: 2016 ident: e_1_3_4_43_1 – ident: e_1_3_4_40_1 doi: 10.1021/acscatal.0c00224 – ident: e_1_3_4_68_1 doi: 10.1016/j.jssc.2008.03.013 – ident: e_1_3_4_31_1 doi: 10.1016/j.ssc.2011.10.019 – ident: e_1_3_4_56_1 doi: 10.1103/PhysRevLett.81.1453 – ident: e_1_3_4_125_1 doi: 10.1103/PhysRevLett.103.205701 – ident: e_1_3_4_11_1 doi: 10.1021/jz4024699 – ident: e_1_3_4_46_1 doi: 10.1080/01418618908205062 – ident: e_1_3_4_47_1 doi: 10.1021/nl102588p – ident: e_1_3_4_124_1 doi: 10.1103/PhysRevB.66.155420 – ident: e_1_3_4_98_1 doi: 10.1038/srep07909 – ident: e_1_3_4_99_1 doi: 10.1038/nmat1840 – ident: e_1_3_4_30_1 doi: 10.1016/j.ssc.2012.01.011 – ident: e_1_3_4_13_1 doi: 10.1002/ange.201406468 – ident: e_1_3_4_75_1 doi: 10.1021/jz300192b – ident: e_1_3_4_2_1 doi: 10.1002/smll.201601203 – ident: e_1_3_4_5_1 doi: 10.1016/j.rser.2014.12.023 – ident: e_1_3_4_90_1 doi: 10.1021/nn507202c – ident: e_1_3_4_26_1 doi: 10.1016/j.jpcs.2020.109655 – ident: e_1_3_4_104_1 doi: 10.1038/nmat3700 – ident: e_1_3_4_16_1 doi: 10.1007/s100530170273 – ident: e_1_3_4_127_1 doi: 10.1039/C5CP00491H – ident: e_1_3_4_39_1 doi: 10.1021/nl401945b – ident: e_1_3_4_60_1 doi: 10.1039/B9NR00326F – ident: e_1_3_4_78_1 doi: 10.1021/acscatal.7b02501 – ident: e_1_3_4_123_1 doi: 10.1038/s41598-020-60059-6 – ident: e_1_3_4_88_1 doi: 10.1038/39282 – ident: e_1_3_4_93_1 doi: 10.1103/PhysRevLett.97.105502 – ident: e_1_3_4_10_1 doi: 10.1038/srep13126 – ident: e_1_3_4_96_1 doi: 10.1021/nl503834b – ident: e_1_3_4_20_1 doi: 10.1021/acs.jpcc.6b02169 – ident: e_1_3_4_51_1 doi: 10.1021/jp9006075 – ident: e_1_3_4_100_1 doi: 10.1016/j.chempr.2018.05.001 – ident: e_1_3_4_91_1 doi: 10.1021/acs.jpcc.5b05583 – ident: e_1_3_4_97_1 doi: 10.1103/PhysRevLett.81.3467 – ident: e_1_3_4_121_1 doi: 10.1103/PhysRevLett.53.2390 – ident: e_1_3_4_22_1 doi: 10.1021/acs.jpcc.6b08548 – ident: e_1_3_4_63_1 doi: 10.1038/nmat2132 – ident: e_1_3_4_29_1 doi: 10.1126/science.1177046 – ident: e_1_3_4_69_1 doi: 10.1039/c2ce25235j – ident: e_1_3_4_81_1 doi: 10.1039/D0NR08862E – ident: e_1_3_4_6_1 doi: 10.1002/adfm.200902293 – ident: e_1_3_4_67_1 doi: 10.1103/PhysRevA.43.3161 – ident: e_1_3_4_79_1 doi: 10.1039/D0CP04318D – ident: e_1_3_4_95_1 doi: 10.1016/j.jmmm.2010.10.030 – volume-title: Energy Landscapes year: 2003 ident: e_1_3_4_64_1 – ident: e_1_3_4_59_1 doi: 10.1166/jctn.2009.1085 – ident: e_1_3_4_120_1 doi: 10.1103/PhysRevLett.90.135504 – ident: e_1_3_4_38_1 doi: 10.1002/anie.201401059 – ident: e_1_3_4_62_1 doi: 10.1039/c4cp00081a – volume-title: Solid state physics year: 1976 ident: e_1_3_4_108_1 – ident: e_1_3_4_27_1 doi: 10.1063/1.5004577 – ident: e_1_3_4_84_1 doi: 10.1016/0304-3991(93)90046-Z – ident: e_1_3_4_41_1 doi: 10.1016/j.commatsci.2020.109822 – ident: e_1_3_4_111_1 doi: 10.1140/epjd/e2012-30054-0 – ident: e_1_3_4_115_1 doi: 10.1038/s41467-019-09841-3 – ident: e_1_3_4_114_1 doi: 10.1088/0953-8984/27/1/013003 – ident: e_1_3_4_118_1 doi: 10.1016/j.actamat.2022.118038 – ident: e_1_3_4_36_1 doi: 10.1126/sciadv.abe6679 – ident: e_1_3_4_85_1 doi: 10.1016/j.ultramic.2007.01.019 – ident: e_1_3_4_17_1 doi: 10.1007/s100530170024 – ident: e_1_3_4_76_1 doi: 10.1021/nl302995z – ident: e_1_3_4_102_1 doi: 10.1038/s41467-017-00613-5 – ident: e_1_3_4_49_1 doi: 10.1021/jp410379u – ident: e_1_3_4_35_1 doi: 10.1021/acs.nanolett.5b03008 – ident: e_1_3_4_77_1 doi: 10.1126/science.aah6133 – volume: 9 start-page: 1 year: 2018 ident: e_1_3_4_4_1 article-title: Influence of atomic site-specific strain on catalytic activity of supported nanoparticles publication-title: Nat Commun – ident: e_1_3_4_86_1 doi: 10.1098/rsta.2009.0134 – ident: e_1_3_4_3_1 doi: 10.1103/PhysRevLett.81.2819 – ident: e_1_3_4_109_1 doi: 10.1007/BF01328601 – ident: e_1_3_4_113_1 doi: 10.1103/PhysRevB.87.165435 – ident: e_1_3_4_54_1 doi: 10.1088/0305-4608/4/3/002 – ident: e_1_3_4_105_1 doi: 10.1021/acsnano.9b01394 – ident: e_1_3_4_18_1 doi: 10.1088/0957-4484/21/36/365704 – volume-title: Structure of materials year: 1952 ident: e_1_3_4_66_1 – ident: e_1_3_4_32_1 doi: 10.1021/acs.jpclett.1c00787 – ident: e_1_3_4_37_1 doi: 10.1038/nature21042 – ident: e_1_3_4_107_1 doi: 10.1021/jacs.0c12696 – volume: 123 start-page: 714 volume-title: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character year: 1929 ident: e_1_3_4_110_1 – volume: 33 start-page: 154006 year: 2021 ident: e_1_3_4_117_1 article-title: Stress effect on segregation and ordering in Pt–Ag nanoalloys publication-title: J Phys – ident: e_1_3_4_44_1 doi: 10.1103/PhysRevB.4.2406 – ident: e_1_3_4_15_1 doi: 10.1016/j.jmps.2009.12.001 – ident: e_1_3_4_8_1 doi: 10.1039/c2cs35189g – ident: e_1_3_4_34_1 doi: 10.1126/science.aax3233 – ident: e_1_3_4_33_1 doi: 10.1039/C6NR03560D – ident: e_1_3_4_83_1 doi: 10.1016/S0304-3991(00)00059-0 – ident: e_1_3_4_24_1 doi: 10.1016/j.apsusc.2015.12.205 – ident: e_1_3_4_103_1 doi: 10.1126/science.aaf7680 – ident: e_1_3_4_122_1 doi: 10.1166/jctn.2009.1116 – ident: e_1_3_4_19_1 doi: 10.1166/jnn.2011.4294 – volume: 14 start-page: 7781 year: 2002 ident: e_1_3_4_57_1 article-title: Bond-order bond-length bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid publication-title: J Phys – ident: e_1_3_4_12_1 doi: 10.1103/PhysRevLett.87.036103 – ident: e_1_3_4_52_1 doi: 10.1103/PhysRev.60.661 – ident: e_1_3_4_126_1 doi: 10.1007/BF02872890 – ident: e_1_3_4_7_1 doi: 10.1021/nl300067q – ident: e_1_3_4_9_1 doi: 10.1039/D0TA01247E – ident: e_1_3_4_53_1 doi: 10.1021/ja01195a024 – ident: e_1_3_4_71_1 doi: 10.1016/S0304-8853(03)00460-8 – ident: e_1_3_4_80_1 doi: 10.1016/j.surfrep.2015.02.002 – ident: e_1_3_4_119_1 doi: 10.1002/pssb.2221440113 – ident: e_1_3_4_28_1 doi: 10.1103/PhysRevB.79.220101 – ident: e_1_3_4_45_1 doi: 10.1103/PhysRevB.23.6265 – ident: e_1_3_4_92_1 doi: 10.1140/epjb/e2011-20728-2 – ident: e_1_3_4_72_1 doi: 10.1038/nchem.623 – volume: 371 start-page: 12025 year: 2012 ident: e_1_3_4_74_1 article-title: TEM studies of stress relaxation in catalytic Au-Pd core-shell nanoparticles publication-title: J Phys – ident: e_1_3_4_82_1 doi: 10.1007/s00339-004-2600-7 – ident: e_1_3_4_65_1 doi: 10.1021/cr040090g – ident: e_1_3_4_89_1 doi: 10.1016/j.jpcs.2014.11.002 – ident: e_1_3_4_112_1 doi: 10.1016/j.comptc.2013.07.017 – ident: e_1_3_4_58_1 doi: 10.1103/PhysRevB.69.045105 – ident: e_1_3_4_87_1 doi: 10.1016/S0304-3991(98)00035-7 – ident: e_1_3_4_48_1 doi: 10.1021/acs.nanolett.7b01994 – ident: e_1_3_4_61_1 doi: 10.1039/c0nr00245c – ident: e_1_3_4_50_1 doi: 10.1021/cm501001f – ident: e_1_3_4_14_1 doi: 10.1364/OL.39.003833 – volume: 5 start-page: 25 year: 2009 ident: e_1_3_4_23_1 article-title: Magnetic anisotropic energy gap and strain effect in Au nanoparticles publication-title: Nanoscale Res Lett – volume-title: Physics and chemistry of interfaces year: 2013 ident: e_1_3_4_42_1 |
SSID | ssj0001670803 |
Score | 2.4749167 |
SecondaryResourceType | review_article |
Snippet | The deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of... ABSTRACTThe deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | atomistic simulations Deformation Electrons Energy levels Engineering HRTEM lattice mismatch Nanoalloys Nanoparticles Strain strain engineering stress Transmission electron microscopy |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9swED5B0ST2MEE3RLcO5WEvPASo7ST20zQmEEKimvgh8WY5PnsvKC1t98B_z13q0GpI8JbEsZR859xdznffAfwgQcaqNjJ3XLas0NNRKTCPRRlRkc70ngucr8blxZ26vC_uU8BtntIqO53YKmqceI6RH5Nnr40g78H8nD7m3DWKd1dTC41N2CIVrHUPtk7Pxn-uV1GWsiKXSHalO_rkWMhKkUniGhUhjpjfXHIG9JpRarn7_2MufaWpW_NzvgOfkt-Y_VoKehc2QtOHj2tsgn340GZz-vlnOLxpOz9kYTWc0SnvsT9ljWvoRznlw32Bu_Oz298XeeqJkHvydBa5JB-lUt5FyeBLLJxgRhdUFSJZamZvM0GZWHoRfSiwGgUTTayFQieiU3IPes2kCfuQxboICqtwoqqoSoc6kDtBEHmy4KgVDkB1oFifCMP56R_sKPGKdlhaxtImLAdw9DJtumTMeG_CKSP-cjMTXrcXJrO_NsFhPUqU0pWFL2ulMTpRODOqCx3ciF5OD8Csy8su2nhHXDYnsfKdBxh2wrXpC57b1Xr7-vbwN9jmFvRL8sch9Bazf-E7OSqL-iCtxme8seGc priority: 102 providerName: ProQuest – databaseName: Taylor & Francis Free Journals (Free resource, activated by CARLI) dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCIkF8RSFgjKwMKQ0fsYjIKoKCRaoBJPl-MGCUtSEgX_POXEoD6EOTHkojuzvYt-dc_cdQqcgSC8KSVId0papNXDGsU09495SWDONCQnOt3d8MqU3j6yLJqxiWGXwoX1LFNGs1WFy66LqIuLOMREUtEpIM8F4GCjKwSlfRWtwHIUiBqOnyWKbhQtoQrrcnb9af9NKDXn_D-rSX0t1o3_GW2gzGo7JRSvpbbTiyh203gRwmmoXnd03xR4St-AXTOAy_FZ_T0pdgm8cQ-D20HR8_XA1SWMZhNSAcVOnMCgmqNGeBLyJZRoHEhdLhbWgnANhm3RUem6wN45ZkTnppS8wtRp7Tck-6pWz0h2gxBfMUSvciApPuba5AwsCQDGgtG1ObR_RDgZlIkd46P2LyiKVaIeeCuipiF4fDT-bvbYkGcsaXAaMPx8OHNfNjdn8WUU4lLHEEqI5M7ygufUaMy2zguVOZzC4vI_kVwmputni8G09EkWWdGDQiVPFSVspcB5zicFAlYf_ePUR2ggl6VsyyAHq1fM3dwyGS12cNJ_mB6P94NY priority: 102 providerName: Taylor & Francis |
Title | Strain engineering in alloy nanoparticles |
URI | https://www.tandfonline.com/doi/abs/10.1080/23746149.2022.2127330 https://www.proquest.com/docview/2878921639 https://doaj.org/article/cd3d33a65c6b48dfa25a91b58ea1b248 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgCIkF8SkKpcrAwpC2sZ04HilqVSFRIaBSmSzHHxMKiIaBf8_ZcUoEQxe2JIql07vE92zfvUPoChxpWcFJLF3ZMtUKrjKsY5tmVlOYM5VyBc7382y2oHfLdNlq9eVywmp54Bq4odJEEyKzVGUFzbWVOJU8KdLcyKTA1Jf5QsxrLab87krGgAqRpmQnHw0xYRRCkatNwXjgdM2Jy3xuBSOv2f9LsfTPDO3DzvQA7Qe-GN3Udh6iLVMeoV2ft6lWx-j6yfd4iMyPrGAEt-40_SsqZQlL4pD5doIW08nz7SwO3Q9iBZymigmwEUaVtMTBTHQqsdNu0ZRpDTHZ6bRxQ7nNFLbKpJolhltuARMtsZWUnKJO-VaaMxTZIjVUMzOizNJM6twAcQBQFMRqnVPdRbSBQaggDe6sfxVJUBBt0BMOPRHQ66LBeth7rY2xacDYYbx-2Ulb-wfgcBHgEJsc3kW87SFR-Z0NW7chEWSDAb3GnSL8qysBa8acY-Cl_Pw_7LtAe64lfS0G2UOd6uPTXAJxqYo-2h69zPpoZzyZPzz2_Rf7Deum52c |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9QwDLbGTQh4QDBAHAzoAzzw0O0uSdPmASEGm25sOyHYpL2FNE54Qb2xO4T2p_iN2G26O4HEnvbWNk2U2q7tJPZngJfEyFjWRuaO05YVerrSAvNY6IiKdKb3nOB8NNWTE_XxtDhdg999LgyHVfY6sVXUOPO8R75Nnn1lBHkP5u3Zj5yrRvHpal9CoxOLg3Dxi5Zs8zf7H4i_r4TY2z1-P8lTVYHck6-wyCVZ-VJ5FyVPX2LhBGOioCoRydYx_pkJykTtRfShwHIcTDSxFgqdiE5JGvcGrCupR2IA6zu700-fl7s6uiQXTPapQtVoW8hSkQnknBghthhPXXLE9YoRbGsF_IWU-o9laM3d3j24m_zU7F0nWPdhLTQbcGcFvXADbrbRo37-AF5_aStNZGHZnNEtn-lfZI1raGGe4u8ewsm1UOsRDJpZEx5DFusiKCzDSJVRaYdVIPeFSOTJY8BK4RBUTxTrE0A5z_67HScc056WlmlpEy2HsHXZ7axD6Liqww5T_PJlBthuH8zOv9lEDutRopROF17XqsLoROHMuC6q4Mb0cdUQzCq_7KLdX4ldMRQrr5jAZs9cmzTG3C7l-8n_m1_Arcnx0aE93J8ePIXbNLDsgCc3YbA4_xmekZO0qJ8nyczg63X_DH8AzwsfZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VViAuiBZQA33sAQ4cNjR-7K4PPbS0UUpLhQSRwsl4PXYv1SZKUlX9WfxDxrvehIKqHqre9mVrPGN7Zrwz3wC8J0H6vFQ8NSFtWaClq4xh6mXmUdCeaW1IcP56ng2G4stIjlbgd5sLE8Iqgw_tG6CIeq8Oi3uCvo2I-8R4LkirhDQTxroBopyc8hhXeepurslrm-2fHJGIPzDWP_7xeZDGwgKpJXNhnnJS9LmwxvMwAo7SsACLgiJHJHUXINCUE8pnlnnrJOY9p7zyJRNomDeCU79PYE2Srg_VIvZ-DpbHOllOJPI2V-guam9pwbpYwD9Qqf-phlrf9V_Ci2ioJgfNzFqHFVdtwNM6YNTOXsHH73VxicQt8QwTug2_8W-SylTki8eQu9cwfBTuvIHValy5TUh8KZ3A3O2J3IvMYOHIYiGmWDISsBDYAdGyQduISR6ov9S9CF3ack8H7unIvQ50F80mDSjHfQ0OA48XHwdM7frBeHqhIzu0RY6cm0zarBQFesOkUb1SFs70aHBFB9TfEtLz-kjFN_VPNL-HgK1WnDpuEjNNzmqhGBnE6u0Dut6FZ9-O-vrs5Pz0HTynN7zBodyC1fn0ym2TzTQvd-pZmsCvx14WfwDPVx5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+engineering+in+alloy+nanoparticles&rft.jtitle=Advances+in+physics%3A+X&rft.au=Diana+Nelli&rft.au=Cesare+Roncaglia&rft.au=Chlo%C3%A9+Minnai&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2374-6149&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1080%2F23746149.2022.2127330&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cd3d33a65c6b48dfa25a91b58ea1b248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon |