Strain engineering in alloy nanoparticles

The deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of finite size, morphology, domain structure and lattice mismatch between their atomic compounds. Strain can strongly affect the functional pro...

Full description

Saved in:
Bibliographic Details
Published inAdvances in physics: X Vol. 8; no. 1
Main Authors Nelli, Diana, Roncaglia, Cesare, Minnai, Chloé
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2023
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of finite size, morphology, domain structure and lattice mismatch between their atomic compounds. Strain can strongly affect the functional properties of nanoalloys, as it alters their electronic energy levels. Moreover, atomic-level strain generates atomic-level stress, which in turn results in distortions induced by strain. When the stress accumulated in a nanoalloy exceeds a certain level, the particle can relax that stress by undergoing structural transitions such as shape and/or chemical ordering transitions. Atomic-level strain is then a powerful tool to control and manipulate the structural and functional properties of nanoalloys. This requires a combined theoretical and experimental approach both to deeply understand the physical origin of strain, and to characterize it with a sub-angstrom resolution. Here, we present a theoretical analysis of the main sources of strain in nanoalloys, we analyse how atomic-level strain can be experimentally measured with transmission electron microscopy, we discuss its effect on the functional properties of nanoalloys, finally we describe how atomic-level stress arises from atomic-level strain, and how stress can induce structural transformations at the nanoscale.
AbstractList The deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of finite size, morphology, domain structure and lattice mismatch between their atomic compounds. Strain can strongly affect the functional properties of nanoalloys, as it alters their electronic energy levels. Moreover, atomic-level strain generates atomic-level stress, which in turn results in distortions induced by strain. When the stress accumulated in a nanoalloy exceeds a certain level, the particle can relax that stress by undergoing structural transitions such as shape and/or chemical ordering transitions. Atomic-level strain is then a powerful tool to control and manipulate the structural and functional properties of nanoalloys. This requires a combined theoretical and experimental approach both to deeply understand the physical origin of strain, and to characterize it with a sub-angstrom resolution. Here, we present a theoretical analysis of the main sources of strain in nanoalloys, we analyse how atomic-level strain can be experimentally measured with transmission electron microscopy, we discuss its effect on the functional properties of nanoalloys, finally we describe how atomic-level stress arises from atomic-level strain, and how stress can induce structural transformations at the nanoscale.
ABSTRACTThe deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of finite size, morphology, domain structure and lattice mismatch between their atomic compounds. Strain can strongly affect the functional properties of nanoalloys, as it alters their electronic energy levels. Moreover, atomic-level strain generates atomic-level stress, which in turn results in distortions induced by strain. When the stress accumulated in a nanoalloy exceeds a certain level, the particle can relax that stress by undergoing structural transitions such as shape and/or chemical ordering transitions. Atomic-level strain is then a powerful tool to control and manipulate the structural and functional properties of nanoalloys. This requires a combined theoretical and experimental approach both to deeply understand the physical origin of strain, and to characterize it with a sub-angstrom resolution. Here, we present a theoretical analysis of the main sources of strain in nanoalloys, we analyse how atomic-level strain can be experimentally measured with transmission electron microscopy, we discuss its effect on the functional properties of nanoalloys, finally we describe how atomic-level stress arises from atomic-level strain, and how stress can induce structural transformations at the nanoscale.
Author Nelli, Diana
Minnai, Chloé
Roncaglia, Cesare
Author_xml – sequence: 1
  givenname: Diana
  surname: Nelli
  fullname: Nelli, Diana
  email: diana.nelli@edu.unige.it
  organization: University of Genoa
– sequence: 2
  givenname: Cesare
  surname: Roncaglia
  fullname: Roncaglia, Cesare
  organization: University of Genoa
– sequence: 3
  givenname: Chloé
  surname: Minnai
  fullname: Minnai, Chloé
  email: chloe.minnai@oist.jp
  organization: Okinawa Institute of Science and Technology Graduate University
BookMark eNqFkMtKAzEUhoNUsNY-glBw5WJqrjMT3CjFS6HgQl2H01xKyjSpmSnSt3fGqSIudJXk5HzfOfynaBBisAidEzwluMRXlBU8J1xOKaZ0SgktGMNHaNjVs-5j8ON-gsZ1vcYYk7xoYTZEl89NAh8mNqx8sDb5sJq0T6iquJ8ECHELqfG6svUZOnZQ1XZ8OEfo9f7uZfaYLZ4e5rPbRaZFTpqMYSoKrsGxpdWaGQEUC8wML4yhnAteYmm5dLmmTlthCmKlk25JuQHqgLMRmvdeE2GttslvIO1VBK8-CzGt1GElpQ0zjEEudL7kpXFABUiyFKUF0grL1nXRu7Ypvu1s3ah13KXQrq9oWZSSkpzJtkv0XTrFuk7WfU8lWHUhq6-QVReyOoTccte_OO0baHwMXabVv_RNT_vgYtrAe0yVUQ3sq5hcgqB9rdjfig8DDJWc
CitedBy_id crossref_primary_10_1021_acs_jpclett_4c01912
crossref_primary_10_1007_s11051_025_06276_4
crossref_primary_10_1021_acsanm_3c00995
crossref_primary_10_1063_5_0180906
crossref_primary_10_1021_acs_jpcc_3c05926
crossref_primary_10_1063_5_0159257
crossref_primary_10_1021_acs_jpcc_3c07824
crossref_primary_10_1039_D4CP00672K
crossref_primary_10_1007_s11051_022_05638_6
crossref_primary_10_1021_acsnano_2c09741
crossref_primary_10_1021_acsnano_3c05653
crossref_primary_10_1080_08927022_2024_2373151
crossref_primary_10_1021_acs_jpcc_3c03541
crossref_primary_10_13005_ojc_390511
crossref_primary_10_1021_acsnano_2c11825
crossref_primary_10_1088_1402_4896_ad5f01
crossref_primary_10_1007_s42864_024_00314_9
crossref_primary_10_1080_23746149_2023_2175623
crossref_primary_10_1007_s11051_023_05821_3
Cites_doi 10.1038/nnano.2008.360
10.1038/nchem.367
10.1038/nature02773
10.1021/jp2021209
10.1021/jp112224t
10.1016/S0039-6028(00)01103-1
10.1103/PhysRevB.53.13740
10.1039/D1CP04145B
10.1007/s00339-017-1546-5
10.1021/acscatal.0c00224
10.1016/j.jssc.2008.03.013
10.1016/j.ssc.2011.10.019
10.1103/PhysRevLett.81.1453
10.1103/PhysRevLett.103.205701
10.1021/jz4024699
10.1080/01418618908205062
10.1021/nl102588p
10.1103/PhysRevB.66.155420
10.1038/srep07909
10.1038/nmat1840
10.1016/j.ssc.2012.01.011
10.1002/ange.201406468
10.1021/jz300192b
10.1002/smll.201601203
10.1016/j.rser.2014.12.023
10.1021/nn507202c
10.1016/j.jpcs.2020.109655
10.1038/nmat3700
10.1007/s100530170273
10.1039/C5CP00491H
10.1021/nl401945b
10.1039/B9NR00326F
10.1021/acscatal.7b02501
10.1038/s41598-020-60059-6
10.1038/39282
10.1103/PhysRevLett.97.105502
10.1038/srep13126
10.1021/nl503834b
10.1021/acs.jpcc.6b02169
10.1021/jp9006075
10.1016/j.chempr.2018.05.001
10.1021/acs.jpcc.5b05583
10.1103/PhysRevLett.81.3467
10.1103/PhysRevLett.53.2390
10.1021/acs.jpcc.6b08548
10.1038/nmat2132
10.1126/science.1177046
10.1039/c2ce25235j
10.1039/D0NR08862E
10.1002/adfm.200902293
10.1103/PhysRevA.43.3161
10.1039/D0CP04318D
10.1016/j.jmmm.2010.10.030
10.1166/jctn.2009.1085
10.1103/PhysRevLett.90.135504
10.1002/anie.201401059
10.1039/c4cp00081a
10.1063/1.5004577
10.1016/0304-3991(93)90046-Z
10.1016/j.commatsci.2020.109822
10.1140/epjd/e2012-30054-0
10.1038/s41467-019-09841-3
10.1088/0953-8984/27/1/013003
10.1016/j.actamat.2022.118038
10.1126/sciadv.abe6679
10.1016/j.ultramic.2007.01.019
10.1007/s100530170024
10.1021/nl302995z
10.1038/s41467-017-00613-5
10.1021/jp410379u
10.1021/acs.nanolett.5b03008
10.1126/science.aah6133
10.1098/rsta.2009.0134
10.1103/PhysRevLett.81.2819
10.1007/BF01328601
10.1103/PhysRevB.87.165435
10.1088/0305-4608/4/3/002
10.1021/acsnano.9b01394
10.1088/0957-4484/21/36/365704
10.1021/acs.jpclett.1c00787
10.1038/nature21042
10.1021/jacs.0c12696
10.1103/PhysRevB.4.2406
10.1016/j.jmps.2009.12.001
10.1039/c2cs35189g
10.1126/science.aax3233
10.1039/C6NR03560D
10.1016/S0304-3991(00)00059-0
10.1016/j.apsusc.2015.12.205
10.1126/science.aaf7680
10.1166/jctn.2009.1116
10.1166/jnn.2011.4294
10.1103/PhysRevLett.87.036103
10.1103/PhysRev.60.661
10.1007/BF02872890
10.1021/nl300067q
10.1039/D0TA01247E
10.1021/ja01195a024
10.1016/S0304-8853(03)00460-8
10.1016/j.surfrep.2015.02.002
10.1002/pssb.2221440113
10.1103/PhysRevB.79.220101
10.1103/PhysRevB.23.6265
10.1140/epjb/e2011-20728-2
10.1038/nchem.623
10.1007/s00339-004-2600-7
10.1021/cr040090g
10.1016/j.jpcs.2014.11.002
10.1016/j.comptc.2013.07.017
10.1103/PhysRevB.69.045105
10.1016/S0304-3991(98)00035-7
10.1021/acs.nanolett.7b01994
10.1039/c0nr00245c
10.1021/cm501001f
10.1364/OL.39.003833
ContentType Journal Article
Copyright 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022
– notice: 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
3V.
7XB
8FD
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
H8D
L7M
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1080/23746149.2022.2127330
DatabaseName Taylor & Francis Free Journals (Free resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
Aerospace Database
Advanced Technologies Database with Aerospace
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Engineering
EISSN 2374-6149
ExternalDocumentID oai_doaj_org_article_cd3d33a65c6b48dfa25a91b58ea1b248
10_1080_23746149_2022_2127330
2127330
Genre Review
GroupedDBID 0YH
8G5
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
GUQSH
H13
M2O
M4Z
M~E
OK1
PIMPY
PROAC
TDBHL
TFW
AAFWJ
AAYXX
ADMLS
AFPKN
CITATION
PHGZM
PHGZT
3V.
7XB
8FD
8FK
H8D
L7M
MBDVC
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c561t-302574caf3becc3d5a20503d47dd24454809e49f6c2fce5d71e9f9fb24da2fa43
IEDL.DBID DOA
ISSN 2374-6149
IngestDate Wed Aug 27 01:31:30 EDT 2025
Mon Jun 30 07:10:57 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
Tue Jul 01 01:13:49 EDT 2025
Wed Dec 25 09:02:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-302574caf3becc3d5a20503d47dd24454809e49f6c2fce5d71e9f9fb24da2fa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/cd3d33a65c6b48dfa25a91b58ea1b248
PQID 2878921639
PQPubID 3933228
ParticipantIDs proquest_journals_2878921639
informaworld_taylorfrancis_310_1080_23746149_2022_2127330
crossref_citationtrail_10_1080_23746149_2022_2127330
crossref_primary_10_1080_23746149_2022_2127330
doaj_primary_oai_doaj_org_article_cd3d33a65c6b48dfa25a91b58ea1b248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 12/31/2023
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 12/31/2023
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Advances in physics: X
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_114_1
e_1_3_4_61_1
e_1_3_4_84_1
e_1_3_4_118_1
e_1_3_4_80_1
e_1_3_4_7_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_88_1
e_1_3_4_121_1
Kumarakuru H (e_1_3_4_74_1) 2012; 371
e_1_3_4_102_1
e_1_3_4_125_1
e_1_3_4_72_1
e_1_3_4_95_1
e_1_3_4_106_1
e_1_3_4_53_1
e_1_3_4_91_1
e_1_3_4_30_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_76_1
e_1_3_4_99_1
e_1_3_4_38_1
e_1_3_4_15_1
Ferrando R (e_1_3_4_43_1) 2016
e_1_3_4_19_1
(e_1_3_4_23_1) 2009; 5
e_1_3_4_2_1
e_1_3_4_113_1
e_1_3_4_62_1
e_1_3_4_85_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_81_1
e_1_3_4_24_1
e_1_3_4_28_1
e_1_3_4_47_1
e_1_3_4_89_1
(e_1_3_4_4_1) 2018; 9
e_1_3_4_120_1
e_1_3_4_101_1
Wales DJ (e_1_3_4_64_1) 2003
e_1_3_4_124_1
e_1_3_4_73_1
e_1_3_4_105_1
e_1_3_4_96_1
e_1_3_4_31_1
e_1_3_4_109_1
(e_1_3_4_108_1) 1976
e_1_3_4_50_1
e_1_3_4_92_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
Sun CQ (e_1_3_4_57_1) 2002; 14
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_77_1
e_1_3_4_112_1
e_1_3_4_116_1
e_1_3_4_63_1
e_1_3_4_86_1
(e_1_3_4_110_1) 1929; 123
e_1_3_4_9_1
e_1_3_4_40_1
e_1_3_4_82_1
e_1_3_4_5_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_67_1
e_1_3_4_29_1
Barrett CS (e_1_3_4_66_1) 1952
e_1_3_4_100_1
e_1_3_4_123_1
e_1_3_4_104_1
e_1_3_4_127_1
e_1_3_4_97_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_93_1
e_1_3_4_13_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_78_1
e_1_3_4_36_1
e_1_3_4_111_1
e_1_3_4_115_1
e_1_3_4_83_1
e_1_3_4_8_1
e_1_3_4_119_1
e_1_3_4_41_1
e_1_3_4_60_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_49_1
e_1_3_4_87_1
e_1_3_4_26_1
Butt H-J (e_1_3_4_42_1) 2013
e_1_3_4_68_1
e_1_3_4_122_1
e_1_3_4_103_1
e_1_3_4_94_1
e_1_3_4_126_1
e_1_3_4_75_1
e_1_3_4_107_1
Front A (e_1_3_4_117_1) 2021; 33
e_1_3_4_52_1
e_1_3_4_90_1
e_1_3_4_71_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_98_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_79_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_21_1
  doi: 10.1038/nnano.2008.360
– ident: e_1_3_4_101_1
  doi: 10.1038/nchem.367
– ident: e_1_3_4_94_1
  doi: 10.1038/nature02773
– ident: e_1_3_4_73_1
  doi: 10.1021/jp2021209
– ident: e_1_3_4_70_1
  doi: 10.1021/jp112224t
– ident: e_1_3_4_106_1
  doi: 10.1016/S0039-6028(00)01103-1
– ident: e_1_3_4_55_1
  doi: 10.1103/PhysRevB.53.13740
– ident: e_1_3_4_116_1
  doi: 10.1039/D1CP04145B
– ident: e_1_3_4_25_1
  doi: 10.1007/s00339-017-1546-5
– start-page: 1
  volume-title: Structure and properties of nanoalloys
  year: 2016
  ident: e_1_3_4_43_1
– ident: e_1_3_4_40_1
  doi: 10.1021/acscatal.0c00224
– ident: e_1_3_4_68_1
  doi: 10.1016/j.jssc.2008.03.013
– ident: e_1_3_4_31_1
  doi: 10.1016/j.ssc.2011.10.019
– ident: e_1_3_4_56_1
  doi: 10.1103/PhysRevLett.81.1453
– ident: e_1_3_4_125_1
  doi: 10.1103/PhysRevLett.103.205701
– ident: e_1_3_4_11_1
  doi: 10.1021/jz4024699
– ident: e_1_3_4_46_1
  doi: 10.1080/01418618908205062
– ident: e_1_3_4_47_1
  doi: 10.1021/nl102588p
– ident: e_1_3_4_124_1
  doi: 10.1103/PhysRevB.66.155420
– ident: e_1_3_4_98_1
  doi: 10.1038/srep07909
– ident: e_1_3_4_99_1
  doi: 10.1038/nmat1840
– ident: e_1_3_4_30_1
  doi: 10.1016/j.ssc.2012.01.011
– ident: e_1_3_4_13_1
  doi: 10.1002/ange.201406468
– ident: e_1_3_4_75_1
  doi: 10.1021/jz300192b
– ident: e_1_3_4_2_1
  doi: 10.1002/smll.201601203
– ident: e_1_3_4_5_1
  doi: 10.1016/j.rser.2014.12.023
– ident: e_1_3_4_90_1
  doi: 10.1021/nn507202c
– ident: e_1_3_4_26_1
  doi: 10.1016/j.jpcs.2020.109655
– ident: e_1_3_4_104_1
  doi: 10.1038/nmat3700
– ident: e_1_3_4_16_1
  doi: 10.1007/s100530170273
– ident: e_1_3_4_127_1
  doi: 10.1039/C5CP00491H
– ident: e_1_3_4_39_1
  doi: 10.1021/nl401945b
– ident: e_1_3_4_60_1
  doi: 10.1039/B9NR00326F
– ident: e_1_3_4_78_1
  doi: 10.1021/acscatal.7b02501
– ident: e_1_3_4_123_1
  doi: 10.1038/s41598-020-60059-6
– ident: e_1_3_4_88_1
  doi: 10.1038/39282
– ident: e_1_3_4_93_1
  doi: 10.1103/PhysRevLett.97.105502
– ident: e_1_3_4_10_1
  doi: 10.1038/srep13126
– ident: e_1_3_4_96_1
  doi: 10.1021/nl503834b
– ident: e_1_3_4_20_1
  doi: 10.1021/acs.jpcc.6b02169
– ident: e_1_3_4_51_1
  doi: 10.1021/jp9006075
– ident: e_1_3_4_100_1
  doi: 10.1016/j.chempr.2018.05.001
– ident: e_1_3_4_91_1
  doi: 10.1021/acs.jpcc.5b05583
– ident: e_1_3_4_97_1
  doi: 10.1103/PhysRevLett.81.3467
– ident: e_1_3_4_121_1
  doi: 10.1103/PhysRevLett.53.2390
– ident: e_1_3_4_22_1
  doi: 10.1021/acs.jpcc.6b08548
– ident: e_1_3_4_63_1
  doi: 10.1038/nmat2132
– ident: e_1_3_4_29_1
  doi: 10.1126/science.1177046
– ident: e_1_3_4_69_1
  doi: 10.1039/c2ce25235j
– ident: e_1_3_4_81_1
  doi: 10.1039/D0NR08862E
– ident: e_1_3_4_6_1
  doi: 10.1002/adfm.200902293
– ident: e_1_3_4_67_1
  doi: 10.1103/PhysRevA.43.3161
– ident: e_1_3_4_79_1
  doi: 10.1039/D0CP04318D
– ident: e_1_3_4_95_1
  doi: 10.1016/j.jmmm.2010.10.030
– volume-title: Energy Landscapes
  year: 2003
  ident: e_1_3_4_64_1
– ident: e_1_3_4_59_1
  doi: 10.1166/jctn.2009.1085
– ident: e_1_3_4_120_1
  doi: 10.1103/PhysRevLett.90.135504
– ident: e_1_3_4_38_1
  doi: 10.1002/anie.201401059
– ident: e_1_3_4_62_1
  doi: 10.1039/c4cp00081a
– volume-title: Solid state physics
  year: 1976
  ident: e_1_3_4_108_1
– ident: e_1_3_4_27_1
  doi: 10.1063/1.5004577
– ident: e_1_3_4_84_1
  doi: 10.1016/0304-3991(93)90046-Z
– ident: e_1_3_4_41_1
  doi: 10.1016/j.commatsci.2020.109822
– ident: e_1_3_4_111_1
  doi: 10.1140/epjd/e2012-30054-0
– ident: e_1_3_4_115_1
  doi: 10.1038/s41467-019-09841-3
– ident: e_1_3_4_114_1
  doi: 10.1088/0953-8984/27/1/013003
– ident: e_1_3_4_118_1
  doi: 10.1016/j.actamat.2022.118038
– ident: e_1_3_4_36_1
  doi: 10.1126/sciadv.abe6679
– ident: e_1_3_4_85_1
  doi: 10.1016/j.ultramic.2007.01.019
– ident: e_1_3_4_17_1
  doi: 10.1007/s100530170024
– ident: e_1_3_4_76_1
  doi: 10.1021/nl302995z
– ident: e_1_3_4_102_1
  doi: 10.1038/s41467-017-00613-5
– ident: e_1_3_4_49_1
  doi: 10.1021/jp410379u
– ident: e_1_3_4_35_1
  doi: 10.1021/acs.nanolett.5b03008
– ident: e_1_3_4_77_1
  doi: 10.1126/science.aah6133
– volume: 9
  start-page: 1
  year: 2018
  ident: e_1_3_4_4_1
  article-title: Influence of atomic site-specific strain on catalytic activity of supported nanoparticles
  publication-title: Nat Commun
– ident: e_1_3_4_86_1
  doi: 10.1098/rsta.2009.0134
– ident: e_1_3_4_3_1
  doi: 10.1103/PhysRevLett.81.2819
– ident: e_1_3_4_109_1
  doi: 10.1007/BF01328601
– ident: e_1_3_4_113_1
  doi: 10.1103/PhysRevB.87.165435
– ident: e_1_3_4_54_1
  doi: 10.1088/0305-4608/4/3/002
– ident: e_1_3_4_105_1
  doi: 10.1021/acsnano.9b01394
– ident: e_1_3_4_18_1
  doi: 10.1088/0957-4484/21/36/365704
– volume-title: Structure of materials
  year: 1952
  ident: e_1_3_4_66_1
– ident: e_1_3_4_32_1
  doi: 10.1021/acs.jpclett.1c00787
– ident: e_1_3_4_37_1
  doi: 10.1038/nature21042
– ident: e_1_3_4_107_1
  doi: 10.1021/jacs.0c12696
– volume: 123
  start-page: 714
  volume-title: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character
  year: 1929
  ident: e_1_3_4_110_1
– volume: 33
  start-page: 154006
  year: 2021
  ident: e_1_3_4_117_1
  article-title: Stress effect on segregation and ordering in Pt–Ag nanoalloys
  publication-title: J Phys
– ident: e_1_3_4_44_1
  doi: 10.1103/PhysRevB.4.2406
– ident: e_1_3_4_15_1
  doi: 10.1016/j.jmps.2009.12.001
– ident: e_1_3_4_8_1
  doi: 10.1039/c2cs35189g
– ident: e_1_3_4_34_1
  doi: 10.1126/science.aax3233
– ident: e_1_3_4_33_1
  doi: 10.1039/C6NR03560D
– ident: e_1_3_4_83_1
  doi: 10.1016/S0304-3991(00)00059-0
– ident: e_1_3_4_24_1
  doi: 10.1016/j.apsusc.2015.12.205
– ident: e_1_3_4_103_1
  doi: 10.1126/science.aaf7680
– ident: e_1_3_4_122_1
  doi: 10.1166/jctn.2009.1116
– ident: e_1_3_4_19_1
  doi: 10.1166/jnn.2011.4294
– volume: 14
  start-page: 7781
  year: 2002
  ident: e_1_3_4_57_1
  article-title: Bond-order bond-length bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid
  publication-title: J Phys
– ident: e_1_3_4_12_1
  doi: 10.1103/PhysRevLett.87.036103
– ident: e_1_3_4_52_1
  doi: 10.1103/PhysRev.60.661
– ident: e_1_3_4_126_1
  doi: 10.1007/BF02872890
– ident: e_1_3_4_7_1
  doi: 10.1021/nl300067q
– ident: e_1_3_4_9_1
  doi: 10.1039/D0TA01247E
– ident: e_1_3_4_53_1
  doi: 10.1021/ja01195a024
– ident: e_1_3_4_71_1
  doi: 10.1016/S0304-8853(03)00460-8
– ident: e_1_3_4_80_1
  doi: 10.1016/j.surfrep.2015.02.002
– ident: e_1_3_4_119_1
  doi: 10.1002/pssb.2221440113
– ident: e_1_3_4_28_1
  doi: 10.1103/PhysRevB.79.220101
– ident: e_1_3_4_45_1
  doi: 10.1103/PhysRevB.23.6265
– ident: e_1_3_4_92_1
  doi: 10.1140/epjb/e2011-20728-2
– ident: e_1_3_4_72_1
  doi: 10.1038/nchem.623
– volume: 371
  start-page: 12025
  year: 2012
  ident: e_1_3_4_74_1
  article-title: TEM studies of stress relaxation in catalytic Au-Pd core-shell nanoparticles
  publication-title: J Phys
– ident: e_1_3_4_82_1
  doi: 10.1007/s00339-004-2600-7
– ident: e_1_3_4_65_1
  doi: 10.1021/cr040090g
– ident: e_1_3_4_89_1
  doi: 10.1016/j.jpcs.2014.11.002
– ident: e_1_3_4_112_1
  doi: 10.1016/j.comptc.2013.07.017
– ident: e_1_3_4_58_1
  doi: 10.1103/PhysRevB.69.045105
– ident: e_1_3_4_87_1
  doi: 10.1016/S0304-3991(98)00035-7
– ident: e_1_3_4_48_1
  doi: 10.1021/acs.nanolett.7b01994
– ident: e_1_3_4_61_1
  doi: 10.1039/c0nr00245c
– ident: e_1_3_4_50_1
  doi: 10.1021/cm501001f
– ident: e_1_3_4_14_1
  doi: 10.1364/OL.39.003833
– volume: 5
  start-page: 25
  year: 2009
  ident: e_1_3_4_23_1
  article-title: Magnetic anisotropic energy gap and strain effect in Au nanoparticles
  publication-title: Nanoscale Res Lett
– volume-title: Physics and chemistry of interfaces
  year: 2013
  ident: e_1_3_4_42_1
SSID ssj0001670803
Score 2.4749167
SecondaryResourceType review_article
Snippet The deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise because of...
ABSTRACTThe deformation of interatomic distances with respect to those of the perfect crystal generates atomic-level strain. In nanoalloys, strain can arise...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms atomistic simulations
Deformation
Electrons
Energy levels
Engineering
HRTEM
lattice mismatch
Nanoalloys
Nanoparticles
Strain
strain engineering
stress
Transmission electron microscopy
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9swED5B0ST2MEE3RLcO5WEvPASo7ST20zQmEEKimvgh8WY5PnsvKC1t98B_z13q0GpI8JbEsZR859xdznffAfwgQcaqNjJ3XLas0NNRKTCPRRlRkc70ngucr8blxZ26vC_uU8BtntIqO53YKmqceI6RH5Nnr40g78H8nD7m3DWKd1dTC41N2CIVrHUPtk7Pxn-uV1GWsiKXSHalO_rkWMhKkUniGhUhjpjfXHIG9JpRarn7_2MufaWpW_NzvgOfkt-Y_VoKehc2QtOHj2tsgn340GZz-vlnOLxpOz9kYTWc0SnvsT9ljWvoRznlw32Bu_Oz298XeeqJkHvydBa5JB-lUt5FyeBLLJxgRhdUFSJZamZvM0GZWHoRfSiwGgUTTayFQieiU3IPes2kCfuQxboICqtwoqqoSoc6kDtBEHmy4KgVDkB1oFifCMP56R_sKPGKdlhaxtImLAdw9DJtumTMeG_CKSP-cjMTXrcXJrO_NsFhPUqU0pWFL2ulMTpRODOqCx3ciF5OD8Csy8su2nhHXDYnsfKdBxh2wrXpC57b1Xr7-vbwN9jmFvRL8sch9Bazf-E7OSqL-iCtxme8seGc
  priority: 102
  providerName: ProQuest
– databaseName: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCIkF8RSFgjKwMKQ0fsYjIKoKCRaoBJPl-MGCUtSEgX_POXEoD6EOTHkojuzvYt-dc_cdQqcgSC8KSVId0papNXDGsU09495SWDONCQnOt3d8MqU3j6yLJqxiWGXwoX1LFNGs1WFy66LqIuLOMREUtEpIM8F4GCjKwSlfRWtwHIUiBqOnyWKbhQtoQrrcnb9af9NKDXn_D-rSX0t1o3_GW2gzGo7JRSvpbbTiyh203gRwmmoXnd03xR4St-AXTOAy_FZ_T0pdgm8cQ-D20HR8_XA1SWMZhNSAcVOnMCgmqNGeBLyJZRoHEhdLhbWgnANhm3RUem6wN45ZkTnppS8wtRp7Tck-6pWz0h2gxBfMUSvciApPuba5AwsCQDGgtG1ObR_RDgZlIkd46P2LyiKVaIeeCuipiF4fDT-bvbYkGcsaXAaMPx8OHNfNjdn8WUU4lLHEEqI5M7ygufUaMy2zguVOZzC4vI_kVwmputni8G09EkWWdGDQiVPFSVspcB5zicFAlYf_ePUR2ggl6VsyyAHq1fM3dwyGS12cNJ_mB6P94NY
  priority: 102
  providerName: Taylor & Francis
Title Strain engineering in alloy nanoparticles
URI https://www.tandfonline.com/doi/abs/10.1080/23746149.2022.2127330
https://www.proquest.com/docview/2878921639
https://doaj.org/article/cd3d33a65c6b48dfa25a91b58ea1b248
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgCIkF8SkKpcrAwpC2sZ04HilqVSFRIaBSmSzHHxMKiIaBf8_ZcUoEQxe2JIql07vE92zfvUPoChxpWcFJLF3ZMtUKrjKsY5tmVlOYM5VyBc7382y2oHfLdNlq9eVywmp54Bq4odJEEyKzVGUFzbWVOJU8KdLcyKTA1Jf5QsxrLab87krGgAqRpmQnHw0xYRRCkatNwXjgdM2Jy3xuBSOv2f9LsfTPDO3DzvQA7Qe-GN3Udh6iLVMeoV2ft6lWx-j6yfd4iMyPrGAEt-40_SsqZQlL4pD5doIW08nz7SwO3Q9iBZymigmwEUaVtMTBTHQqsdNu0ZRpDTHZ6bRxQ7nNFLbKpJolhltuARMtsZWUnKJO-VaaMxTZIjVUMzOizNJM6twAcQBQFMRqnVPdRbSBQaggDe6sfxVJUBBt0BMOPRHQ66LBeth7rY2xacDYYbx-2Ulb-wfgcBHgEJsc3kW87SFR-Z0NW7chEWSDAb3GnSL8qysBa8acY-Cl_Pw_7LtAe64lfS0G2UOd6uPTXAJxqYo-2h69zPpoZzyZPzz2_Rf7Deum52c
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9QwDLbGTQh4QDBAHAzoAzzw0O0uSdPmASEGm25sOyHYpL2FNE54Qb2xO4T2p_iN2G26O4HEnvbWNk2U2q7tJPZngJfEyFjWRuaO05YVerrSAvNY6IiKdKb3nOB8NNWTE_XxtDhdg999LgyHVfY6sVXUOPO8R75Nnn1lBHkP5u3Zj5yrRvHpal9CoxOLg3Dxi5Zs8zf7H4i_r4TY2z1-P8lTVYHck6-wyCVZ-VJ5FyVPX2LhBGOioCoRydYx_pkJykTtRfShwHIcTDSxFgqdiE5JGvcGrCupR2IA6zu700-fl7s6uiQXTPapQtVoW8hSkQnknBghthhPXXLE9YoRbGsF_IWU-o9laM3d3j24m_zU7F0nWPdhLTQbcGcFvXADbrbRo37-AF5_aStNZGHZnNEtn-lfZI1raGGe4u8ewsm1UOsRDJpZEx5DFusiKCzDSJVRaYdVIPeFSOTJY8BK4RBUTxTrE0A5z_67HScc056WlmlpEy2HsHXZ7axD6Liqww5T_PJlBthuH8zOv9lEDutRopROF17XqsLoROHMuC6q4Mb0cdUQzCq_7KLdX4ldMRQrr5jAZs9cmzTG3C7l-8n_m1_Arcnx0aE93J8ePIXbNLDsgCc3YbA4_xmekZO0qJ8nyczg63X_DH8AzwsfZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VViAuiBZQA33sAQ4cNjR-7K4PPbS0UUpLhQSRwsl4PXYv1SZKUlX9WfxDxrvehIKqHqre9mVrPGN7Zrwz3wC8J0H6vFQ8NSFtWaClq4xh6mXmUdCeaW1IcP56ng2G4stIjlbgd5sLE8Iqgw_tG6CIeq8Oi3uCvo2I-8R4LkirhDQTxroBopyc8hhXeepurslrm-2fHJGIPzDWP_7xeZDGwgKpJXNhnnJS9LmwxvMwAo7SsACLgiJHJHUXINCUE8pnlnnrJOY9p7zyJRNomDeCU79PYE2Srg_VIvZ-DpbHOllOJPI2V-guam9pwbpYwD9Qqf-phlrf9V_Ci2ioJgfNzFqHFVdtwNM6YNTOXsHH73VxicQt8QwTug2_8W-SylTki8eQu9cwfBTuvIHValy5TUh8KZ3A3O2J3IvMYOHIYiGmWDISsBDYAdGyQduISR6ov9S9CF3ack8H7unIvQ50F80mDSjHfQ0OA48XHwdM7frBeHqhIzu0RY6cm0zarBQFesOkUb1SFs70aHBFB9TfEtLz-kjFN_VPNL-HgK1WnDpuEjNNzmqhGBnE6u0Dut6FZ9-O-vrs5Pz0HTynN7zBodyC1fn0ym2TzTQvd-pZmsCvx14WfwDPVx5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain+engineering+in+alloy+nanoparticles&rft.jtitle=Advances+in+physics%3A+X&rft.au=Diana+Nelli&rft.au=Cesare+Roncaglia&rft.au=Chlo%C3%A9+Minnai&rft.date=2023-12-31&rft.pub=Taylor+%26+Francis+Group&rft.eissn=2374-6149&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1080%2F23746149.2022.2127330&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cd3d33a65c6b48dfa25a91b58ea1b248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-6149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-6149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-6149&client=summon