Noise Reduction Using Singular Value Decomposition with Jensen–Shannon Divergence for Coronary Computed Tomography Angiography
Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beati...
Saved in:
Published in | Diagnostics (Basel) Vol. 13; no. 6; p. 1111 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
15.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2075-4418 2075-4418 |
DOI | 10.3390/diagnostics13061111 |
Cover
Loading…
Abstract | Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beating heart in a stationary state. However, reconstructed CT images, including those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study, we introduce an image-processing technique for noise reduction using singular value decomposition (SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of Jensen–Shannon (JS) divergence. Experiments were performed with various numerical phantoms and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold value. The numerical phantoms produced 10% higher-quality images than the conventional noise reduction method when compared on a quantitative SSIM basis. The threshold value determined by minimizing the JS–divergence was found to be useful for efficient noise reduction in actual clinical images, depending on the level of noise. |
---|---|
AbstractList | Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beating heart in a stationary state. However, reconstructed CT images, including those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study, we introduce an image-processing technique for noise reduction using singular value decomposition (SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of Jensen–Shannon (JS) divergence. Experiments were performed with various numerical phantoms and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold value. The numerical phantoms produced 10% higher-quality images than the conventional noise reduction method when compared on a quantitative SSIM basis. The threshold value determined by minimizing the JS–divergence was found to be useful for efficient noise reduction in actual clinical images, depending on the level of noise. Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beating heart in a stationary state. However, reconstructed CT images, including those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study, we introduce an image-processing technique for noise reduction using singular value decomposition (SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of Jensen-Shannon (JS) divergence. Experiments were performed with various numerical phantoms and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold value. The numerical phantoms produced 10% higher-quality images than the conventional noise reduction method when compared on a quantitative SSIM basis. The threshold value determined by minimizing the JS-divergence was found to be useful for efficient noise reduction in actual clinical images, depending on the level of noise.Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beating heart in a stationary state. However, reconstructed CT images, including those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study, we introduce an image-processing technique for noise reduction using singular value decomposition (SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of Jensen-Shannon (JS) divergence. Experiments were performed with various numerical phantoms and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold value. The numerical phantoms produced 10% higher-quality images than the conventional noise reduction method when compared on a quantitative SSIM basis. The threshold value determined by minimizing the JS-divergence was found to be useful for efficient noise reduction in actual clinical images, depending on the level of noise. |
Audience | Academic |
Author | Kasai, Ryosuke Otsuka, Hideki |
AuthorAffiliation | Department of Medical Imaging/Nuclear Medicine, Institute of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8509, Japan; kasai-r@tokushima-u.ac.jp |
AuthorAffiliation_xml | – name: Department of Medical Imaging/Nuclear Medicine, Institute of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8509, Japan; kasai-r@tokushima-u.ac.jp |
Author_xml | – sequence: 1 givenname: Ryosuke orcidid: 0000-0002-4699-1642 surname: Kasai fullname: Kasai, Ryosuke – sequence: 2 givenname: Hideki orcidid: 0000-0001-7165-6099 surname: Otsuka fullname: Otsuka, Hideki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36980419$$D View this record in MEDLINE/PubMed |
BookMark | eNptksluFDEQhlsoiISQJ0BCLXHhMsFrLyc0mrAERSCRhKvlpdzjUbc92N1BueUdeEOeBE8yhAxKWbJL5c-_q0r1vNjzwUNRvMTomNIWvTVOdj6k0emEKapwtifFAUE1nzGGm70H_n5xlNIKZWsxbQh_VuzTqm0Qw-1BcfMluATlNzCTHl3w5WVyvivP8zb1MpbfZT9BeQI6DOuQ3C3y043L8jP4BP73za_zpfQ5ufLEXUHswGsobYjlIsTgZbzOzrCeRjDlRRhCF-V6eV3Ofee2_oviqZV9gqPteVhcfnh_sfg0O_v68XQxP5tpXuFxhhsjjbasUpjohkpFQZmWam1VrSipSU2pRYhobEzbUsWIVQC41ZxTS5mkh8Xpna4JciXW0Q05ORGkE7eBEDshY25nD6ICSY21zFS8ZtxK1TTYcqt4zZlRpMpa7-601pMawGjwY5T9jujujXdL0YUrgRFiNcYoK7zZKsTwY4I0isElDX0vPYQpCVK3hCNEGcno6__QVZiiz73aULhCFUP0H9XJXIHzNuSP9UZUzGtG64q09Ubr-BEqLwOD03nCrMvxnQevHlZ6X-LfAcoAvQN0DClFsPcIRmIzqeKRSaV_AKJ84SE |
Cites_doi | 10.1023/A:1008325607354 10.1016/j.media.2015.02.003 10.1016/j.jcct.2011.05.002 10.1016/j.sigpro.2022.108486 10.1109/TIT.2003.813506 10.1038/nature25988 10.1016/j.jacc.2010.08.634 10.1109/TNS.1974.6499235 10.1109/TIP.2003.819861 10.1007/BF02288367 10.1016/j.media.2014.08.004 10.3390/e23081005 10.3390/s20113063 10.1093/biomet/85.3.549 10.1007/s00330-017-4849-1 10.1109/TIT.2014.2323359 10.1109/TCSVT.2015.2416631 10.1016/j.media.2016.05.012 10.3390/e17127858 10.1093/eurheartj/ehn485 10.1109/TIT.2006.881731 10.3390/s21144856 10.1007/BF02517812 10.1137/1035134 10.1109/18.61115 10.1155/2018/8973131 10.1056/NEJMoa1805971 10.1093/ehjci/jex008 10.1016/j.mri.2006.03.006 10.1214/aoms/1177729694 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/diagnostics13061111 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2075-4418 |
ExternalDocumentID | oai_doaj_org_article_6ea3dff4d65745fab881f5fb5754db26 PMC10047110 A743762972 36980419 10_3390_diagnostics13061111 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM PMFND 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c561t-18dadcf46b12c83ab3ebd93ccfb7b3272733f002c1dd993b42fbee19c553f34a3 |
IEDL.DBID | BENPR |
ISSN | 2075-4418 |
IngestDate | Wed Aug 27 00:03:28 EDT 2025 Thu Aug 21 18:38:12 EDT 2025 Fri Sep 05 08:09:49 EDT 2025 Mon Jun 30 04:51:42 EDT 2025 Tue Jun 17 22:20:44 EDT 2025 Tue Jun 10 21:18:02 EDT 2025 Thu Jan 02 22:52:04 EST 2025 Tue Jul 01 02:36:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | noise reduction coronary computed tomography angiography Jensen–Shannon divergence singular value decomposition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c561t-18dadcf46b12c83ab3ebd93ccfb7b3272733f002c1dd993b42fbee19c553f34a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7165-6099 0000-0002-4699-1642 |
OpenAccessLink | https://www.proquest.com/docview/2791606403?pq-origsite=%requestingapplication% |
PMID | 36980419 |
PQID | 2791606403 |
PQPubID | 2032410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6ea3dff4d65745fab881f5fb5754db26 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10047110 proquest_miscellaneous_2792500342 proquest_journals_2791606403 gale_infotracmisc_A743762972 gale_infotracacademiconefile_A743762972 pubmed_primary_36980419 crossref_primary_10_3390_diagnostics13061111 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230315 |
PublicationDateYYYYMMDD | 2023-03-15 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230315 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Diagnostics (Basel) |
PublicationTitleAlternate | Diagnostics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | (ref_24) 2000; 13 Wang (ref_34) 2004; 13 Guo (ref_8) 2015; 26 ref_14 ref_13 ref_11 Barnhill (ref_32) 2017; 35 Stewart (ref_16) 1993; 35 Buechel (ref_2) 2011; 57 Zhu (ref_7) 2018; 555 Zhang (ref_9) 2015; 19 Newby (ref_4) 2018; 379 Benz (ref_5) 2018; 19 Kullback (ref_18) 1951; 22 Vajda (ref_23) 2003; 55 Liese (ref_26) 2006; 52 Gavish (ref_30) 2014; 60 ref_21 ref_20 Eckart (ref_17) 1936; 1 Basu (ref_12) 1998; 85 Katatbeh (ref_25) 2015; 17 Herzog (ref_1) 2008; 29 Endres (ref_22) 2003; 49 Shepp (ref_31) 1974; NS-21 Renker (ref_6) 2011; 5 ref_29 Goodfellow (ref_15) 2014; 27 ref_28 ref_27 Bydder (ref_10) 2006; 24 Clerc (ref_3) 2017; 27 Lin (ref_19) 1991; 37 Chung (ref_33) 2015; 22 |
References_xml | – volume: 13 start-page: 35 year: 2000 ident: ref_24 article-title: An analysis of edge detection by using the Jensen-Shannon divergence publication-title: J. Math. Imaging Vis. doi: 10.1023/A:1008325607354 – volume: 22 start-page: 63 year: 2015 ident: ref_33 article-title: Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images publication-title: Med. Image Anal. doi: 10.1016/j.media.2015.02.003 – volume: 5 start-page: 225 year: 2011 ident: ref_6 article-title: Iterative image reconstruction techniques: Applications for cardiac CT publication-title: J. Cardiovasc. Comput. Tomogr. doi: 10.1016/j.jcct.2011.05.002 – ident: ref_29 doi: 10.1016/j.sigpro.2022.108486 – volume: 49 start-page: 1858 year: 2003 ident: ref_22 article-title: A new metric for probability distributions publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2003.813506 – ident: ref_11 – volume: 555 start-page: 487 year: 2018 ident: ref_7 article-title: Image reconstruction by domain-transform manifold learning publication-title: Nature doi: 10.1038/nature25988 – volume: 57 start-page: 332 year: 2011 ident: ref_2 article-title: Low-dose computed tomography coronary angiography with prospective electrocardiogram triggering. feasibility in a large population publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2010.08.634 – volume: NS-21 start-page: 21 year: 1974 ident: ref_31 article-title: The fourier reconstruction of a head section publication-title: IEEE Trans. Nucl. Sci. doi: 10.1109/TNS.1974.6499235 – volume: 13 start-page: 600 year: 2004 ident: ref_34 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 1 start-page: 211 year: 1936 ident: ref_17 article-title: The approximation of one matrix by another of lower rank publication-title: Psychometrika doi: 10.1007/BF02288367 – ident: ref_21 – volume: 19 start-page: 75 year: 2015 ident: ref_9 article-title: Denoising of 3D magnetic resonance images by using higher-order singular value decomposition publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.08.004 – ident: ref_14 doi: 10.3390/e23081005 – ident: ref_27 doi: 10.3390/s20113063 – volume: 85 start-page: 549 year: 1998 ident: ref_12 article-title: Robust and efficient estimation by minimising a density power divergence publication-title: Biometrika doi: 10.1093/biomet/85.3.549 – volume: 27 start-page: 4650 year: 2017 ident: ref_3 article-title: Long-term prognostic performance of low-dose coronary computed tomography angiography with prospective electrocardiogram triggering publication-title: Eur. Radiol. doi: 10.1007/s00330-017-4849-1 – volume: 27 start-page: 2672 year: 2014 ident: ref_15 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – volume: 60 start-page: 5040 year: 2014 ident: ref_30 article-title: The optimal hard threshold for singular values is 4/3 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2014.2323359 – volume: 26 start-page: 868 year: 2015 ident: ref_8 article-title: An efficient SVD-based method for image denoising publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2015.2416631 – volume: 35 start-page: 133 year: 2017 ident: ref_32 article-title: Nonlinear multiscale regularisation in MR elastography: Towards fine feature mapping publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.012 – volume: 17 start-page: 7996 year: 2015 ident: ref_25 article-title: An Optimal Segmentation Method Using Jensen–Shannon Divergence via a Multi-Size Sliding Window Technique publication-title: Entropy doi: 10.3390/e17127858 – volume: 29 start-page: 3037 year: 2008 ident: ref_1 article-title: Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: First clinical experience publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehn485 – volume: 52 start-page: 4394 year: 2006 ident: ref_26 article-title: On divergences and informations in statistics and information theory publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.881731 – ident: ref_28 doi: 10.3390/s21144856 – volume: 55 start-page: 639 year: 2003 ident: ref_23 article-title: A new class of metric divergences on probability spaces and its applicability in statistics publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF02517812 – volume: 35 start-page: 551 year: 1993 ident: ref_16 article-title: On the early history of the singular value decomposition publication-title: SIAM Rev. doi: 10.1137/1035134 – volume: 37 start-page: 145 year: 1991 ident: ref_19 article-title: Divergence measures based on the Shannon entropy publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.61115 – ident: ref_13 doi: 10.1155/2018/8973131 – ident: ref_20 – volume: 379 start-page: 924 year: 2018 ident: ref_4 article-title: The SCOT-HEART Investigators. Coronary CT angiography and 5-year risk of myocardial infarction publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1805971 – volume: 19 start-page: 193 year: 2018 ident: ref_5 article-title: Head-to-head comparison of adaptive statistical and model-based iterative reconstruction algorithms for submillisievert coronary CT angiography publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jex008 – volume: 24 start-page: 849 year: 2006 ident: ref_10 article-title: Noise reduction in multiple-echo data sets using singular value decomposition publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2006.03.006 – volume: 22 start-page: 79 year: 1951 ident: ref_18 article-title: On information and sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 |
SSID | ssj0000913825 |
Score | 2.214102 |
Snippet | Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1111 |
SubjectTerms | Analysis Angiography Approximation Artificial intelligence Cardiovascular disease Care and treatment coronary computed tomography angiography Coronary heart disease CT imaging Decomposition Deep learning Diagnosis Health aspects Jensen–Shannon divergence Linear algebra Medical imaging Methods Neural networks Noise control noise reduction Probability distribution Risk factors singular value decomposition Tomography |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hHhAXxDeBgoyExIWoSmwn9nFpqapK7YG2qDfLn3QlyKJ298Ct_6H_sL-EGcddbQQSFy5RlHEkxzOeeU5engHeS6zqXilbJ-5lLRwebK9VLZoQAtqa3tK_w0fH3cGZODyX5xtbfREnbJQHHgdup4uWh5RE6GQvZLJOqSbJ5BBmiODaLLaNNW9jMZVzsCZtPTnKDHFc1--EkblG2seYtjvKFJNSlBX7_8zLG4VpSprcqEL7j-BhgY9sNnb7MdyLwxO4f1Q-kD-F6-PF_CqyLyTISkPOMiWAneCB-Kbsq_2-imwvEpO80LUYvYplh5FeMt9e35xc2GHAq3tE2MhKnQxxLdslpQN7-YuVbSACO138KHLXbDZ8m5fzZ3C2__l096AumyzUHqHTsm5UsMEn0bmm9Ypbx6MLmnufXO94S_CGJ0ybHp2HWMaJNrkYG-2l5IkLy5_DFvYqvgSGFqE5D02HNc8j8pSuR3ippVbe-z5W8PFuvM3PUUvD4BqE3GP-4p4KPpFP1k1JCDtfwPAwJTzMv8Kjgg_kUUPTFd3mbfnrAHtMwldmhggK64Hu2wq2Jy1xmvmp-S4mTJnmV6btEV3Tt1Bewbu1me4k6toQF6vcBmEmKS1W8GIMofUj8U6T_pOuQE2Ca_LMU8swv8gi4KT01yN2e_U_Ruk1PGgRvBG3rpHbsLW8XMU3CLaW7m2eV78BeNgt7g priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2VIiEuiO8GCjISEhcCSmwn8QGhpaWqKm0PtIt6s_zZrlSysN2V6K3_gX_IL2Em8a4aUbhEUcaRnMx45tl5eQZ4LbGqu6YxeeRO5sLiwdSqyUXhvUdbURv6d3h8WO1PxMGJPNmA1a6o6QVe3Di1o_2kJvPzdz9_XH7EAf-BZpw4ZX_ve1IayRpjRq4oCdyC21iaKgrzccL7XWpWJLkne_Whf907qFCdkP_f6fpavRpyKa8Vp737cC-hSjbqw-ABbIT2IdwZp-_mj-DqcDa9COwL6bSSJ1jHFGBHeCAaKvtqzpeB7QYimCcWF6MVWnYQaO3599WvozPTtnh1l3gcnYAnQ7jLdkgAwcwvWdodwrPj2bekgs1G7ek0nT-Gyd7n4539PO29kDtEVIu8aLzxLorKFqVruLE8WK-4c9HWlpeEenjEbOrQpwhxrCijDaFQTkoeuTD8CWxir8IWMLQIxbkvKiyFDgGptDWiTiVV45yrQwZvV-9bf-8lNjROTcg9-gb3ZPCJfLJuSvrY3YXZ_FSn4aarYLiPUfhK1kJGY5umiDJaBKfC27LK4A15VFNcoducST8jYI9JD0uPEFhhmVB1mcH2oCWOPjc0r2JCr4JXlzWCbvpEyjN4tTbTncRoa8Ns2bVB9EkCjBk87UNo_Ui8UiQLpTJoBsE1eOahpZ2eddrgJABYI6R79v9-PYe7JaI1ItMVchs2F_NleIHoamFfdiPmD80EKgI priority: 102 providerName: Scholars Portal |
Title | Noise Reduction Using Singular Value Decomposition with Jensen–Shannon Divergence for Coronary Computed Tomography Angiography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36980419 https://www.proquest.com/docview/2791606403 https://www.proquest.com/docview/2792500342 https://pubmed.ncbi.nlm.nih.gov/PMC10047110 https://doaj.org/article/6ea3dff4d65745fab881f5fb5754db26 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aDZReSt91mwYVCr3UBFuSLZ_K5kUI7FLyKLkZPZOF1k73cegt_6H_sL-kM7Z2G9PSizAeGWSPZubTaPwJ4L3EqG6V0mngVqbCYKPLSqUic86hLCs1_Ts8mRbHF-LkUl7GhNsillWufWLnqF1rKUe-m5cIZGjbiX-6-Z7SqVG0uxqP0LgPW-iClRzB1t7h9PPpJstCrJe4Burphjiu73ddX8FGHMjovgvyGIOQ1DH3_-2f7wSoYfHknWh09BgeRRjJxr3en8A93zyFB5O4Uf4MbqftbOHZKRGz0qdnXWkAO8OG6k7ZF_115dmBp4ryWLbFKCXLTjwlm3_d_jy71k2Ddw-ocKNj7GSIb9k-MR7o-Q8Wj4Nw7Lz9Fmmv2bi5msXr53BxdHi-f5zGwxZSixBqmWbKaWeDKEyWW8W14d64ilsbTGl4TjCHB3SfFpWImMaIPBjvs8pKyQMXmr-AEY7KvwKGElFx7rICY59FBCpNiTCzkpWy1pY-gY_r713f9JwaNa5FSD31P9STwB7pZNOVCLG7G-38qo72VRdecxeCcIUshQzaKJUFGQyiUeFMXiTwgTRak9mi2qyOfx_giIkAqx4jksK4UJV5AtuDnmhudihez4k6mvui_jM5E3i3EdOTVMLW-HbV9UG4SYyLCbzsp9DmlXhREQ9UlYAaTK7BOw8lzey6IwMnxr8SMdzr_4_rDTzMEZ5R9Vwmt2G0nK_8W4RTS7MTbWanS0dgOxHqN1ozJ6A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FRAIuiB1DgEYCccEKdru9HBCaZBJNlhmhLCg3p9dkJPCEWYRyyz_wH3wUX0KV3TPEAnHLxRq521Z7anvdXf0K4LXAqK7zXIaOaxEmCi8yK_IwiYwx2BZlks4O9wdp7yjZORbHS_BzfhaG0irnPrF21GakaY18Lc4QyNC2E_94_i2kqlG0uzovodGoxa69-I5TtsmH7S7K900cb20ebvRCX1Ug1IgVpmGUG2m0S1IVxTrnUnGrTMG1dipTPKZ4zh36CY2jxeCtktgpa6NCC8EdTyTH996AFYQZBVrRyvrm4NP-YlWHWDZxztXQG3FevF8zTcYccS5juEjJQ7VCYF0p4O94cCUgtpM1r0S_rbtwx8NW1mn07B4s2eo-3Oz7jfkHcDkYDSeW7RMRLIma1akI7AAvlOfKPssvM8u6ljLYfZoYoyVgtmNpcfvX5Y-DM1lVeLdLiSI1QyhDPM02iGFBji-YLz9h2OHoq6fZZp3qdOh_P4SjaxHDI1jGUdknwLAlKTg3UYqxViPiFSpDWFuIItdaZzaAd_P_uzxvODxKnPuQeMp_iCeAdZLJoisRcNc3RuPT0ttzmVrJjXOJSUWWCCdVnkdOOIXoNzEqTgN4SxItyU2g2LT0px1wxES4VXYQuWEcKrI4gNVWTzRv3W6e60Tp3cuk_GMMAbxaNNOTlDJX2dGs7oPwlhgeA3jcqNDik3haEO9UEUDeUq7WN7dbquFZTT5ODIMZYsan_x_XS7jVO-zvlXvbg91ncDtGaEiZe5FYheXpeGafI5SbqhfefhicXLfJ_gbm2GRA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qU6lig3gTKGAkEBuikjjOY4HQtNNRH3RU9YG6S_1sR4JMmYdQd_0H_obP4Uu4N_EMjUDsuolGsRM5c33vPbaPjwFeC8zqOs9l6LgWYaLwIrMiD5PIGINlUSZp7_DeIN06TnZOxMkS_JzvhSFa5Twm1oHajDTNka_FGQIZWnbia87TIvZ7_Y8X30I6QYpWWufHaTRdZNdefsfh2-TDdg9t_SaO-5tHG1uhP2Eg1IgbpmGUG2m0S1IVxTrnUnGrTMG1dipTPKbczh3GDI0tx0Suktgpa6NCC8EdTyTH996C5QyzYt6B5fXNwf7BYoaHFDdx_NVIHXFevF8zDXuO9JcxdaQUrVrpsD414O_ccC05tomb1zJh_y7c8RCWdZs-dw-WbHUfVvb8Iv0DuBqMhhPLDkgUlszOaloCO8QLcV7ZZ_llZlnPEpvdU8YYTQezHUsT3b-ufhyey6rCuz0ijdRqoQyxNdsgtQU5vmT-KArDjkZfveQ261ZnQ__7IRzfiBkeQQdbZZ8Aw5Kk4NxEKeZdjehXqAwhbiGKXGud2QDezf_v8qLR8yhxHETmKf9hngDWySaLqiTGXd8Yjc9K79tlaiU3ziUmFVkinFR5HjnhFCLhxKg4DeAtWbSkkIFm09LvfMAWk_hW2UUUhzmpyOIAVls10dV1u3jeJ0ofaiblH8cI4NWimJ4k-lxlR7O6DkJdUnsM4HHThRafxNOCNKiKAPJW52p9c7ukGp7XQuSkNpghfnz6_3a9hBV01fLT9mD3GdyOESUSiS8Sq9CZjmf2OaK6qXrh3YfB6U177G_2dmhs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+Using+Singular+Value+Decomposition+with+Jensen%E2%80%93Shannon+Divergence+for+Coronary+Computed+Tomography+Angiography&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Kasai%2C+Ryosuke&rft.au=Otsuka%2C+Hideki&rft.date=2023-03-15&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=13&rft.issue=6&rft.spage=1111&rft_id=info:doi/10.3390%2Fdiagnostics13061111&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |