Noise Reduction Using Singular Value Decomposition with Jensen–Shannon Divergence for Coronary Computed Tomography Angiography

Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beati...

Full description

Saved in:
Bibliographic Details
Published inDiagnostics (Basel) Vol. 13; no. 6; p. 1111
Main Authors Kasai, Ryosuke, Otsuka, Hideki
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.03.2023
MDPI
Subjects
Online AccessGet full text
ISSN2075-4418
2075-4418
DOI10.3390/diagnostics13061111

Cover

Loading…
Abstract Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beating heart in a stationary state. However, reconstructed CT images, including those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study, we introduce an image-processing technique for noise reduction using singular value decomposition (SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of Jensen–Shannon (JS) divergence. Experiments were performed with various numerical phantoms and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold value. The numerical phantoms produced 10% higher-quality images than the conventional noise reduction method when compared on a quantitative SSIM basis. The threshold value determined by minimizing the JS–divergence was found to be useful for efficient noise reduction in actual clinical images, depending on the level of noise.
AbstractList Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beating heart in a stationary state. However, reconstructed CT images, including those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study, we introduce an image-processing technique for noise reduction using singular value decomposition (SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of Jensen–Shannon (JS) divergence. Experiments were performed with various numerical phantoms and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold value. The numerical phantoms produced 10% higher-quality images than the conventional noise reduction method when compared on a quantitative SSIM basis. The threshold value determined by minimizing the JS–divergence was found to be useful for efficient noise reduction in actual clinical images, depending on the level of noise.
Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beating heart in a stationary state. However, reconstructed CT images, including those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study, we introduce an image-processing technique for noise reduction using singular value decomposition (SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of Jensen-Shannon (JS) divergence. Experiments were performed with various numerical phantoms and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold value. The numerical phantoms produced 10% higher-quality images than the conventional noise reduction method when compared on a quantitative SSIM basis. The threshold value determined by minimizing the JS-divergence was found to be useful for efficient noise reduction in actual clinical images, depending on the level of noise.Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT examinations, CCTA requires shorter rotation times of the X-ray tube, improving the temporal resolution and facilitating the imaging of the beating heart in a stationary state. However, reconstructed CT images, including those of the coronary arteries, contain insufficient X-ray photons and considerable noise. In this study, we introduce an image-processing technique for noise reduction using singular value decomposition (SVD) for CCTA images. The threshold of SVD was determined on the basis of minimization of Jensen-Shannon (JS) divergence. Experiments were performed with various numerical phantoms and varying levels of noise to reduce noise in clinical CCTA images using the determined threshold value. The numerical phantoms produced 10% higher-quality images than the conventional noise reduction method when compared on a quantitative SSIM basis. The threshold value determined by minimizing the JS-divergence was found to be useful for efficient noise reduction in actual clinical images, depending on the level of noise.
Audience Academic
Author Kasai, Ryosuke
Otsuka, Hideki
AuthorAffiliation Department of Medical Imaging/Nuclear Medicine, Institute of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8509, Japan; kasai-r@tokushima-u.ac.jp
AuthorAffiliation_xml – name: Department of Medical Imaging/Nuclear Medicine, Institute of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8509, Japan; kasai-r@tokushima-u.ac.jp
Author_xml – sequence: 1
  givenname: Ryosuke
  orcidid: 0000-0002-4699-1642
  surname: Kasai
  fullname: Kasai, Ryosuke
– sequence: 2
  givenname: Hideki
  orcidid: 0000-0001-7165-6099
  surname: Otsuka
  fullname: Otsuka, Hideki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36980419$$D View this record in MEDLINE/PubMed
BookMark eNptksluFDEQhlsoiISQJ0BCLXHhMsFrLyc0mrAERSCRhKvlpdzjUbc92N1BueUdeEOeBE8yhAxKWbJL5c-_q0r1vNjzwUNRvMTomNIWvTVOdj6k0emEKapwtifFAUE1nzGGm70H_n5xlNIKZWsxbQh_VuzTqm0Qw-1BcfMluATlNzCTHl3w5WVyvivP8zb1MpbfZT9BeQI6DOuQ3C3y043L8jP4BP73za_zpfQ5ufLEXUHswGsobYjlIsTgZbzOzrCeRjDlRRhCF-V6eV3Ofee2_oviqZV9gqPteVhcfnh_sfg0O_v68XQxP5tpXuFxhhsjjbasUpjohkpFQZmWam1VrSipSU2pRYhobEzbUsWIVQC41ZxTS5mkh8Xpna4JciXW0Q05ORGkE7eBEDshY25nD6ICSY21zFS8ZtxK1TTYcqt4zZlRpMpa7-601pMawGjwY5T9jujujXdL0YUrgRFiNcYoK7zZKsTwY4I0isElDX0vPYQpCVK3hCNEGcno6__QVZiiz73aULhCFUP0H9XJXIHzNuSP9UZUzGtG64q09Ubr-BEqLwOD03nCrMvxnQevHlZ6X-LfAcoAvQN0DClFsPcIRmIzqeKRSaV_AKJ84SE
Cites_doi 10.1023/A:1008325607354
10.1016/j.media.2015.02.003
10.1016/j.jcct.2011.05.002
10.1016/j.sigpro.2022.108486
10.1109/TIT.2003.813506
10.1038/nature25988
10.1016/j.jacc.2010.08.634
10.1109/TNS.1974.6499235
10.1109/TIP.2003.819861
10.1007/BF02288367
10.1016/j.media.2014.08.004
10.3390/e23081005
10.3390/s20113063
10.1093/biomet/85.3.549
10.1007/s00330-017-4849-1
10.1109/TIT.2014.2323359
10.1109/TCSVT.2015.2416631
10.1016/j.media.2016.05.012
10.3390/e17127858
10.1093/eurheartj/ehn485
10.1109/TIT.2006.881731
10.3390/s21144856
10.1007/BF02517812
10.1137/1035134
10.1109/18.61115
10.1155/2018/8973131
10.1056/NEJMoa1805971
10.1093/ehjci/jex008
10.1016/j.mri.2006.03.006
10.1214/aoms/1177729694
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics13061111
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_6ea3dff4d65745fab881f5fb5754db26
PMC10047110
A743762972
36980419
10_3390_diagnostics13061111
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
PMFND
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c561t-18dadcf46b12c83ab3ebd93ccfb7b3272733f002c1dd993b42fbee19c553f34a3
IEDL.DBID BENPR
ISSN 2075-4418
IngestDate Wed Aug 27 00:03:28 EDT 2025
Thu Aug 21 18:38:12 EDT 2025
Fri Sep 05 08:09:49 EDT 2025
Mon Jun 30 04:51:42 EDT 2025
Tue Jun 17 22:20:44 EDT 2025
Tue Jun 10 21:18:02 EDT 2025
Thu Jan 02 22:52:04 EST 2025
Tue Jul 01 02:36:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords noise reduction
coronary computed tomography angiography
Jensen–Shannon divergence
singular value decomposition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c561t-18dadcf46b12c83ab3ebd93ccfb7b3272733f002c1dd993b42fbee19c553f34a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7165-6099
0000-0002-4699-1642
OpenAccessLink https://www.proquest.com/docview/2791606403?pq-origsite=%requestingapplication%
PMID 36980419
PQID 2791606403
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_6ea3dff4d65745fab881f5fb5754db26
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10047110
proquest_miscellaneous_2792500342
proquest_journals_2791606403
gale_infotracmisc_A743762972
gale_infotracacademiconefile_A743762972
pubmed_primary_36980419
crossref_primary_10_3390_diagnostics13061111
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230315
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 3
  year: 2023
  text: 20230315
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References (ref_24) 2000; 13
Wang (ref_34) 2004; 13
Guo (ref_8) 2015; 26
ref_14
ref_13
ref_11
Barnhill (ref_32) 2017; 35
Stewart (ref_16) 1993; 35
Buechel (ref_2) 2011; 57
Zhu (ref_7) 2018; 555
Zhang (ref_9) 2015; 19
Newby (ref_4) 2018; 379
Benz (ref_5) 2018; 19
Kullback (ref_18) 1951; 22
Vajda (ref_23) 2003; 55
Liese (ref_26) 2006; 52
Gavish (ref_30) 2014; 60
ref_21
ref_20
Eckart (ref_17) 1936; 1
Basu (ref_12) 1998; 85
Katatbeh (ref_25) 2015; 17
Herzog (ref_1) 2008; 29
Endres (ref_22) 2003; 49
Shepp (ref_31) 1974; NS-21
Renker (ref_6) 2011; 5
ref_29
Goodfellow (ref_15) 2014; 27
ref_28
ref_27
Bydder (ref_10) 2006; 24
Clerc (ref_3) 2017; 27
Lin (ref_19) 1991; 37
Chung (ref_33) 2015; 22
References_xml – volume: 13
  start-page: 35
  year: 2000
  ident: ref_24
  article-title: An analysis of edge detection by using the Jensen-Shannon divergence
  publication-title: J. Math. Imaging Vis.
  doi: 10.1023/A:1008325607354
– volume: 22
  start-page: 63
  year: 2015
  ident: ref_33
  article-title: Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2015.02.003
– volume: 5
  start-page: 225
  year: 2011
  ident: ref_6
  article-title: Iterative image reconstruction techniques: Applications for cardiac CT
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2011.05.002
– ident: ref_29
  doi: 10.1016/j.sigpro.2022.108486
– volume: 49
  start-page: 1858
  year: 2003
  ident: ref_22
  article-title: A new metric for probability distributions
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2003.813506
– ident: ref_11
– volume: 555
  start-page: 487
  year: 2018
  ident: ref_7
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
  doi: 10.1038/nature25988
– volume: 57
  start-page: 332
  year: 2011
  ident: ref_2
  article-title: Low-dose computed tomography coronary angiography with prospective electrocardiogram triggering. feasibility in a large population
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2010.08.634
– volume: NS-21
  start-page: 21
  year: 1974
  ident: ref_31
  article-title: The fourier reconstruction of a head section
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.1974.6499235
– volume: 13
  start-page: 600
  year: 2004
  ident: ref_34
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 1
  start-page: 211
  year: 1936
  ident: ref_17
  article-title: The approximation of one matrix by another of lower rank
  publication-title: Psychometrika
  doi: 10.1007/BF02288367
– ident: ref_21
– volume: 19
  start-page: 75
  year: 2015
  ident: ref_9
  article-title: Denoising of 3D magnetic resonance images by using higher-order singular value decomposition
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.08.004
– ident: ref_14
  doi: 10.3390/e23081005
– ident: ref_27
  doi: 10.3390/s20113063
– volume: 85
  start-page: 549
  year: 1998
  ident: ref_12
  article-title: Robust and efficient estimation by minimising a density power divergence
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.549
– volume: 27
  start-page: 4650
  year: 2017
  ident: ref_3
  article-title: Long-term prognostic performance of low-dose coronary computed tomography angiography with prospective electrocardiogram triggering
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-4849-1
– volume: 27
  start-page: 2672
  year: 2014
  ident: ref_15
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 60
  start-page: 5040
  year: 2014
  ident: ref_30
  article-title: The optimal hard threshold for singular values is 4/3
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2014.2323359
– volume: 26
  start-page: 868
  year: 2015
  ident: ref_8
  article-title: An efficient SVD-based method for image denoising
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2015.2416631
– volume: 35
  start-page: 133
  year: 2017
  ident: ref_32
  article-title: Nonlinear multiscale regularisation in MR elastography: Towards fine feature mapping
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.012
– volume: 17
  start-page: 7996
  year: 2015
  ident: ref_25
  article-title: An Optimal Segmentation Method Using Jensen–Shannon Divergence via a Multi-Size Sliding Window Technique
  publication-title: Entropy
  doi: 10.3390/e17127858
– volume: 29
  start-page: 3037
  year: 2008
  ident: ref_1
  article-title: Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: First clinical experience
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehn485
– volume: 52
  start-page: 4394
  year: 2006
  ident: ref_26
  article-title: On divergences and informations in statistics and information theory
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.881731
– ident: ref_28
  doi: 10.3390/s21144856
– volume: 55
  start-page: 639
  year: 2003
  ident: ref_23
  article-title: A new class of metric divergences on probability spaces and its applicability in statistics
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF02517812
– volume: 35
  start-page: 551
  year: 1993
  ident: ref_16
  article-title: On the early history of the singular value decomposition
  publication-title: SIAM Rev.
  doi: 10.1137/1035134
– volume: 37
  start-page: 145
  year: 1991
  ident: ref_19
  article-title: Divergence measures based on the Shannon entropy
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.61115
– ident: ref_13
  doi: 10.1155/2018/8973131
– ident: ref_20
– volume: 379
  start-page: 924
  year: 2018
  ident: ref_4
  article-title: The SCOT-HEART Investigators. Coronary CT angiography and 5-year risk of myocardial infarction
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1805971
– volume: 19
  start-page: 193
  year: 2018
  ident: ref_5
  article-title: Head-to-head comparison of adaptive statistical and model-based iterative reconstruction algorithms for submillisievert coronary CT angiography
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jex008
– volume: 24
  start-page: 849
  year: 2006
  ident: ref_10
  article-title: Noise reduction in multiple-echo data sets using singular value decomposition
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2006.03.006
– volume: 22
  start-page: 79
  year: 1951
  ident: ref_18
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
SSID ssj0000913825
Score 2.214102
Snippet Coronary computed tomography angiography (CCTA) is widely used due to its improvements in computed tomography (CT) diagnostic performance. Unlike other CT...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1111
SubjectTerms Analysis
Angiography
Approximation
Artificial intelligence
Cardiovascular disease
Care and treatment
coronary computed tomography angiography
Coronary heart disease
CT imaging
Decomposition
Deep learning
Diagnosis
Health aspects
Jensen–Shannon divergence
Linear algebra
Medical imaging
Methods
Neural networks
Noise control
noise reduction
Probability distribution
Risk factors
singular value decomposition
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hHhAXxDeBgoyExIWoSmwn9nFpqapK7YG2qDfLn3QlyKJ298Ct_6H_sL-EGcddbQQSFy5RlHEkxzOeeU5engHeS6zqXilbJ-5lLRwebK9VLZoQAtqa3tK_w0fH3cGZODyX5xtbfREnbJQHHgdup4uWh5RE6GQvZLJOqSbJ5BBmiODaLLaNNW9jMZVzsCZtPTnKDHFc1--EkblG2seYtjvKFJNSlBX7_8zLG4VpSprcqEL7j-BhgY9sNnb7MdyLwxO4f1Q-kD-F6-PF_CqyLyTISkPOMiWAneCB-Kbsq_2-imwvEpO80LUYvYplh5FeMt9e35xc2GHAq3tE2MhKnQxxLdslpQN7-YuVbSACO138KHLXbDZ8m5fzZ3C2__l096AumyzUHqHTsm5UsMEn0bmm9Ypbx6MLmnufXO94S_CGJ0ybHp2HWMaJNrkYG-2l5IkLy5_DFvYqvgSGFqE5D02HNc8j8pSuR3ippVbe-z5W8PFuvM3PUUvD4BqE3GP-4p4KPpFP1k1JCDtfwPAwJTzMv8Kjgg_kUUPTFd3mbfnrAHtMwldmhggK64Hu2wq2Jy1xmvmp-S4mTJnmV6btEV3Tt1Bewbu1me4k6toQF6vcBmEmKS1W8GIMofUj8U6T_pOuQE2Ca_LMU8swv8gi4KT01yN2e_U_Ruk1PGgRvBG3rpHbsLW8XMU3CLaW7m2eV78BeNgt7g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2VIiEuiO8GCjISEhcCSmwn8QGhpaWqKm0PtIt6s_zZrlSysN2V6K3_gX_IL2Em8a4aUbhEUcaRnMx45tl5eQZ4LbGqu6YxeeRO5sLiwdSqyUXhvUdbURv6d3h8WO1PxMGJPNmA1a6o6QVe3Di1o_2kJvPzdz9_XH7EAf-BZpw4ZX_ve1IayRpjRq4oCdyC21iaKgrzccL7XWpWJLkne_Whf907qFCdkP_f6fpavRpyKa8Vp737cC-hSjbqw-ABbIT2IdwZp-_mj-DqcDa9COwL6bSSJ1jHFGBHeCAaKvtqzpeB7QYimCcWF6MVWnYQaO3599WvozPTtnh1l3gcnYAnQ7jLdkgAwcwvWdodwrPj2bekgs1G7ek0nT-Gyd7n4539PO29kDtEVIu8aLzxLorKFqVruLE8WK-4c9HWlpeEenjEbOrQpwhxrCijDaFQTkoeuTD8CWxir8IWMLQIxbkvKiyFDgGptDWiTiVV45yrQwZvV-9bf-8lNjROTcg9-gb3ZPCJfLJuSvrY3YXZ_FSn4aarYLiPUfhK1kJGY5umiDJaBKfC27LK4A15VFNcoducST8jYI9JD0uPEFhhmVB1mcH2oCWOPjc0r2JCr4JXlzWCbvpEyjN4tTbTncRoa8Ns2bVB9EkCjBk87UNo_Ui8UiQLpTJoBsE1eOahpZ2eddrgJABYI6R79v9-PYe7JaI1ItMVchs2F_NleIHoamFfdiPmD80EKgI
  priority: 102
  providerName: Scholars Portal
Title Noise Reduction Using Singular Value Decomposition with Jensen–Shannon Divergence for Coronary Computed Tomography Angiography
URI https://www.ncbi.nlm.nih.gov/pubmed/36980419
https://www.proquest.com/docview/2791606403
https://www.proquest.com/docview/2792500342
https://pubmed.ncbi.nlm.nih.gov/PMC10047110
https://doaj.org/article/6ea3dff4d65745fab881f5fb5754db26
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7aDZReSt91mwYVCr3UBFuSLZ_K5kUI7FLyKLkZPZOF1k73cegt_6H_sL-kM7Z2G9PSizAeGWSPZubTaPwJ4L3EqG6V0mngVqbCYKPLSqUic86hLCs1_Ts8mRbHF-LkUl7GhNsillWufWLnqF1rKUe-m5cIZGjbiX-6-Z7SqVG0uxqP0LgPW-iClRzB1t7h9PPpJstCrJe4Burphjiu73ddX8FGHMjovgvyGIOQ1DH3_-2f7wSoYfHknWh09BgeRRjJxr3en8A93zyFB5O4Uf4MbqftbOHZKRGz0qdnXWkAO8OG6k7ZF_115dmBp4ryWLbFKCXLTjwlm3_d_jy71k2Ddw-ocKNj7GSIb9k-MR7o-Q8Wj4Nw7Lz9Fmmv2bi5msXr53BxdHi-f5zGwxZSixBqmWbKaWeDKEyWW8W14d64ilsbTGl4TjCHB3SfFpWImMaIPBjvs8pKyQMXmr-AEY7KvwKGElFx7rICY59FBCpNiTCzkpWy1pY-gY_r713f9JwaNa5FSD31P9STwB7pZNOVCLG7G-38qo72VRdecxeCcIUshQzaKJUFGQyiUeFMXiTwgTRak9mi2qyOfx_giIkAqx4jksK4UJV5AtuDnmhudihez4k6mvui_jM5E3i3EdOTVMLW-HbV9UG4SYyLCbzsp9DmlXhREQ9UlYAaTK7BOw8lzey6IwMnxr8SMdzr_4_rDTzMEZ5R9Vwmt2G0nK_8W4RTS7MTbWanS0dgOxHqN1ozJ6A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FRAIuiB1DgEYCccEKdru9HBCaZBJNlhmhLCg3p9dkJPCEWYRyyz_wH3wUX0KV3TPEAnHLxRq521Z7anvdXf0K4LXAqK7zXIaOaxEmCi8yK_IwiYwx2BZlks4O9wdp7yjZORbHS_BzfhaG0irnPrF21GakaY18Lc4QyNC2E_94_i2kqlG0uzovodGoxa69-I5TtsmH7S7K900cb20ebvRCX1Ug1IgVpmGUG2m0S1IVxTrnUnGrTMG1dipTPKZ4zh36CY2jxeCtktgpa6NCC8EdTyTH996AFYQZBVrRyvrm4NP-YlWHWDZxztXQG3FevF8zTcYccS5juEjJQ7VCYF0p4O94cCUgtpM1r0S_rbtwx8NW1mn07B4s2eo-3Oz7jfkHcDkYDSeW7RMRLIma1akI7AAvlOfKPssvM8u6ljLYfZoYoyVgtmNpcfvX5Y-DM1lVeLdLiSI1QyhDPM02iGFBji-YLz9h2OHoq6fZZp3qdOh_P4SjaxHDI1jGUdknwLAlKTg3UYqxViPiFSpDWFuIItdaZzaAd_P_uzxvODxKnPuQeMp_iCeAdZLJoisRcNc3RuPT0ttzmVrJjXOJSUWWCCdVnkdOOIXoNzEqTgN4SxItyU2g2LT0px1wxES4VXYQuWEcKrI4gNVWTzRv3W6e60Tp3cuk_GMMAbxaNNOTlDJX2dGs7oPwlhgeA3jcqNDik3haEO9UEUDeUq7WN7dbquFZTT5ODIMZYsan_x_XS7jVO-zvlXvbg91ncDtGaEiZe5FYheXpeGafI5SbqhfefhicXLfJ_gbm2GRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0qU6lig3gTKGAkEBuikjjOY4HQtNNRH3RU9YG6S_1sR4JMmYdQd_0H_obP4Uu4N_EMjUDsuolGsRM5c33vPbaPjwFeC8zqOs9l6LgWYaLwIrMiD5PIGINlUSZp7_DeIN06TnZOxMkS_JzvhSFa5Twm1oHajDTNka_FGQIZWnbia87TIvZ7_Y8X30I6QYpWWufHaTRdZNdefsfh2-TDdg9t_SaO-5tHG1uhP2Eg1IgbpmGUG2m0S1IVxTrnUnGrTMG1dipTPKbczh3GDI0tx0Suktgpa6NCC8EdTyTH996C5QyzYt6B5fXNwf7BYoaHFDdx_NVIHXFevF8zDXuO9JcxdaQUrVrpsD414O_ccC05tomb1zJh_y7c8RCWdZs-dw-WbHUfVvb8Iv0DuBqMhhPLDkgUlszOaloCO8QLcV7ZZ_llZlnPEpvdU8YYTQezHUsT3b-ufhyey6rCuz0ijdRqoQyxNdsgtQU5vmT-KArDjkZfveQ261ZnQ__7IRzfiBkeQQdbZZ8Aw5Kk4NxEKeZdjehXqAwhbiGKXGud2QDezf_v8qLR8yhxHETmKf9hngDWySaLqiTGXd8Yjc9K79tlaiU3ziUmFVkinFR5HjnhFCLhxKg4DeAtWbSkkIFm09LvfMAWk_hW2UUUhzmpyOIAVls10dV1u3jeJ0ofaiblH8cI4NWimJ4k-lxlR7O6DkJdUnsM4HHThRafxNOCNKiKAPJW52p9c7ukGp7XQuSkNpghfnz6_3a9hBV01fLT9mD3GdyOESUSiS8Sq9CZjmf2OaK6qXrh3YfB6U177G_2dmhs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+Reduction+Using+Singular+Value+Decomposition+with+Jensen%E2%80%93Shannon+Divergence+for+Coronary+Computed+Tomography+Angiography&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Kasai%2C+Ryosuke&rft.au=Otsuka%2C+Hideki&rft.date=2023-03-15&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=13&rft.issue=6&rft.spage=1111&rft_id=info:doi/10.3390%2Fdiagnostics13061111&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon