Bioaccessibility tests accurately estimate bioavailability of lead to quail
Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb‐contaminated...
Saved in:
Published in | Environmental toxicology and chemistry Vol. 35; no. 9; pp. 2311 - 2319 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb‐contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb‐contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X‐ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb‐contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311–2319. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. |
---|---|
AbstractList | Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016; 35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Abstract Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail ( Coturnix japonica ) fed diets containing Pb‐contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb‐contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X‐ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb‐contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311–2319. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. |
Author | Scheckel, Kirk G. Chaney, Rufus L. Henry, Paula F. P. Weber, John S. Beyer, W. Nelson Mosby, David E. Sprague, Daniel T. Basta, Nicholas T. Rattner, Barnett A. |
Author_xml | – sequence: 1 givenname: W. Nelson surname: Beyer fullname: Beyer, W. Nelson email: nbeyer@usgs.gov organization: US Geological Survey, Patuxent Wildlife Research Center, Maryland, Beltsville, USA – sequence: 2 givenname: Nicholas T. surname: Basta fullname: Basta, Nicholas T. organization: School of Environment and Natural Resources, The Ohio State University, Ohio, Columbus, USA – sequence: 3 givenname: Rufus L. surname: Chaney fullname: Chaney, Rufus L. organization: Crop Systems and Global Change Laboratory, US Department of Agriculture, Maryland, Beltsville, USA – sequence: 4 givenname: Paula F. P. surname: Henry fullname: Henry, Paula F. P. organization: US Geological Survey, Patuxent Wildlife Research Center, Maryland, Beltsville, USA – sequence: 5 givenname: David E. surname: Mosby fullname: Mosby, David E. organization: US Fish and Wildlife Service, Columbia, Missouri, USA – sequence: 6 givenname: Barnett A. surname: Rattner fullname: Rattner, Barnett A. organization: US Geological Survey, Patuxent Wildlife Research Center, Maryland, Beltsville, USA – sequence: 7 givenname: Kirk G. surname: Scheckel fullname: Scheckel, Kirk G. organization: National Risk Management Research Laboratory, US Environmental Protection Agency, Ohio, Cincinnati, USA – sequence: 8 givenname: Daniel T. surname: Sprague fullname: Sprague, Daniel T. organization: US Geological Survey, Patuxent Wildlife Research Center, Maryland, Beltsville, USA – sequence: 9 givenname: John S. surname: Weber fullname: Weber, John S. organization: US Fish and Wildlife Service, Columbia, Missouri, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26876015$$D View this record in MEDLINE/PubMed |
BookMark | eNp10F1LwzAUBuAgivtQ8BdIwRtvOs9JTNJc6tBNHAp-4GVIsxSi3apNq-7fm7GqIHiV5PDwkvMOyPayWjpCDhBGCEBPXGNHjCm1RfrIOU0zgdk26YNkkEoqsh4ZhPAMgEIptUt6cSQFIO-T63NfGWtdCD73pW9WSeNCE5I4a2vTuHKVxLdfxGuSR_pufGk6WRVJ6cw8aarkrY3zPbJTmDK4_e4cksfLi4fxNJ3dTq7GZ7PUcoEqpQxOOWZzRS3FHKlCoDazkucInCHk1CFYYYTgc5lLw2mhFD2VsuCZNUywITne5L7W1Vsbv6cXPlhXlmbpqjZozFAhkxxopEd_6HPV1sv4u7ViFCXQ7DfQ1lUItSv0ax1XrlcaQa8L1rFgvS440sMusM0Xbv4DvxuNIN2AD1-61b9BOpousPM-NO7zx5v6RQsZl9BPNxM9vgd2x-5mesq-ALP-kxw |
CitedBy_id | crossref_primary_10_1021_acs_est_2c01864 crossref_primary_10_1002_jeq2_20368 crossref_primary_10_1002_ieam_4743 crossref_primary_10_1002_jeq2_20347 crossref_primary_10_1016_j_scitotenv_2016_10_027 crossref_primary_10_2139_ssrn_4170475 crossref_primary_10_1007_s00128_017_2137_z crossref_primary_10_1038_s41598_020_65449_4 crossref_primary_10_3389_fsoil_2022_1028328 crossref_primary_10_1016_j_scitotenv_2023_163036 crossref_primary_10_1007_s10661_017_6442_0 crossref_primary_10_1016_j_envres_2020_110364 crossref_primary_10_1016_j_chemosphere_2022_137252 crossref_primary_10_1002_ieam_4157 crossref_primary_10_1098_rspb_2016_0662 crossref_primary_10_1007_s11356_020_08898_8 crossref_primary_10_1007_s40726_016_0029_1 |
Cites_doi | 10.1080/10937404.2013.825216 10.1007/s10311-007-0133-y 10.1002/ieam.1453 10.1016/0013-9351(84)90154-3 10.1021/es00049a030 10.1007/s00244-004-0172-3 10.1016/j.apgeochem.2009.04.015 10.1016/0048-9697(83)90016-5 10.1006/faat.1997.2296 10.1021/es990479z 10.1016/0013-9351(82)90134-7 10.1080/10807030701226350 10.1007/BF01881033 10.2134/jeq2013.07.0273 10.1021/es00044a018 10.1021/es040337r 10.1007/s002440010099 10.2134/jeq2005.0316 10.2134/jeq2004.1288 10.1021/es950057z 10.1238/Physica.Topical.115a01011 10.2134/jeq2014.10.0447 10.1080/10934520701434927 10.1007/BF00661331 10.1289/ehp.8852 10.1023/A:1008998821913 10.1007/s002449900478 10.1016/0300-9629(75)90121-8 10.1007/BF01146165 10.1107/S0909049505012719 10.1016/S0269-7491(96)00084-X 10.1080/15287399309531737 |
ContentType | Journal Article |
Copyright | Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. 2016 SETAC |
Copyright_xml | – notice: Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. – notice: 2016 SETAC |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SN 7SS 7ST 7T7 7TK 7U7 8FD C1K FR3 K9. P64 RC3 SOI |
DOI | 10.1002/etc.3399 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts |
DatabaseTitleList | Toxicology Abstracts CrossRef MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1552-8618 |
EndPage | 2319 |
ExternalDocumentID | 4155846201 10_1002_etc_3399 26876015 ETC3399 ark_67375_WNG_CS03R3RL_H |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | USA, Ohio INW, Japan |
GeographicLocations_xml | – name: INW, Japan – name: USA, Ohio |
GrantInformation_xml | – fundername: Argonne National Laboratory under contract funderid: DE‐AC02‐06CH11357 |
GroupedDBID | --- --K -~X ..I .3N .GA .Y3 05W 0R~ 10A 1B1 1OB 1OC 29G 31~ 33P 36B 3SF 3V. 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X2 7X7 7XC 8-0 8-1 8-3 8-4 8-5 88E 88I 8C1 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAFWJ AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABEFU ABEJV ABJCF ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F D0L D1I DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS ECGQY EJD F00 F01 F04 F5P FEDTE FYUFA G-S G.N GNUQQ GODZA GUQSH GWYGA H.T H.X HCIFZ HF~ HGLYW HMCUK HVGLF HZ~ IHE IX1 J0M KB. L6V LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M0K M1P M2O M2P M41 M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB NQ- O66 O9- OHT P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q.N Q11 Q2X QB0 R.K RIWAO RJQFR RNS ROL RPZ RWI RX1 SAMSI SUPJJ TWZ UB1 UKHRP VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WUPDE WXSBR WYISQ XG1 XIH XV2 YCJ ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SN 7SS 7ST 7T7 7TK 7U7 8FD C1K FR3 K9. P64 RC3 SOI |
ID | FETCH-LOGICAL-c5619-2304518d92c21b129102c8c75b105310b2e10c6a665d7b7a52f992477f58ca363 |
IEDL.DBID | DR2 |
ISSN | 0730-7268 |
IngestDate | Fri Aug 16 22:31:48 EDT 2024 Thu Oct 10 20:55:14 EDT 2024 Fri Aug 23 01:32:32 EDT 2024 Sat Sep 28 08:48:22 EDT 2024 Sat Aug 24 01:01:06 EDT 2024 Wed Oct 30 09:51:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Metal bioavailability Ecological risk assessment Soil contamination Wildlife toxicology |
Language | English |
License | Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5619-2304518d92c21b129102c8c75b105310b2e10c6a665d7b7a52f992477f58ca363 |
Notes | ArticleID:ETC3399 Argonne National Laboratory under contract - No. DE-AC02-06CH11357 ark:/67375/WNG-CS03R3RL-H istex:35587876908E27B833E62FFDDB8E84209D2AD7E4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1978&context=usgsstaffpub |
PMID | 26876015 |
PQID | 1813217028 |
PQPubID | 32741 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1819137502 proquest_journals_1813217028 crossref_primary_10_1002_etc_3399 pubmed_primary_26876015 wiley_primary_10_1002_etc_3399_ETC3399 istex_primary_ark_67375_WNG_CS03R3RL_H |
PublicationCentury | 2000 |
PublicationDate | September 2016 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Environmental toxicology and chemistry |
PublicationTitleAlternate | Environ Toxicol Chem |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM. 1996. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422-430. Beyer WN, Audet DJ, Heinz GH, Hoffman DJ, Day D. 2000. Relation of waterfowl poisoning to sediment lead concentrations in the Coeur d'Alene River basin. Ecotoxicology 9:207-218. Ravel B, Newville M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537-541. Anders E, Dietz DD, Bagnell CR, Gaynor J, Krigman MR, Ross DW, Leander JD, Mushak P. 1982. Morphological, pharmacokinetic, and hematological studies of lead-exposed pigeons. Environ Res 28:344-363. Basta NT, Foster JN, Dayton E, Rodriguez RR, Casteel SW. 2007. The effect of dosing vehicle on arsenic bioaccessibility in smelter-contaminated soils. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1275-1281. Yamamoto K, Hayashi M, Yoshimura M, Hayashi H, Hiratsuka A, Isii Y. 1993. The prevalence and retention of lead pellets in Japanese quail. Arch Environ Contam Toxicol 24:478-482. Scheuhammer AM. 1996. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ Pollut 94:337. Beyer WN, Chen Y, Henry P, May T, Mosby D, Rattner BA, Shearn-Bochsler VI, Sprague D, Weber J. 2013. Toxicity of Pb-contaminated soil to Japanese quail (Coturnix japonica) and the use of the blood/dietary Pb slope in risk assessment. Integr Environ Assess Manage 10:22-29. Weber JS, Goyne KW, Luxton TP, Thompson AL. 2015. Phosphate treatment of lead-contaminated soil: Effects on water quality, plant uptake, and lead speciation. J Environ Qual 44:1127-1136. Webb SM. 2005. SIXpack: A graphical user interface for X-ray absorption spectroscopy analysis using IFEFFIT. Physica Scripta 2005:1011. Furman O, Strawn DG, Heinz GH, Williams B. 2006. Risk assessment test for lead bioaccessibility to waterfowl in mine-impacted soils. J Environ Qual 35:450-458. Brown S, Chaney RL, Sprenger M, Compton H. 2002. Soil remediation using biosolids-Part I. Biocycle 43:41-44. Ruby MV, Schoof R, Brattin W, Goldade M, Post G, Harnois M, Mosby DE, Casteel SW, Berti W, Carpenter M. 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697-3705. Ruby MV, Davis A, Link TE, Schoof R, Chaney RL, Freeman GB, Bergstrom P. 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ Sci Technol 27:2870-2877. Scheckel KG, Ryan JA. 2004. Spectroscopic speciation and quantification of lead in phosphate-amended soils. J Environ Qual 33:1288-1295. Hoet P. 2005. Speciation of lead in occupational exposure and clinical health aspects. In Cornelis R, Caruso J, Crews H, Heumann K, eds, Handbook of Elemental Speciation II. John Wiley & Sons, Chichester, UK, pp 252-276. Davis A, Drexler JW, Ruby MV, Nicholson A. 1993. Micromineralogy of mine wastes in relation to lead bioavailability, Butte, Montana. Environ Sci Technol 27:1415-1425. Duke GE, Jegers AA, Loff G, Evanson OA. 1975. Gastric digestion in some raptors. Comp Biochem Physiol A Physiol 50:649-656. Dieter MP, Matthews H, Jeffcoat R, Moseman R. 1993. Comparison of lead bioavailability in F344 rats fed lead acetate, lead oxide, lead sulfide, or lead ore concentrate from Skagway, Alaska. J Toxicol Environ Health 39:79-93. Casteel SW, Weis CP, Henningsen GM, Brattin WJ. 2006. Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environ Health Perspect 114:1162-1171. Schoof RA, Butcher MK, Sellstone C, Ball RW, Fricke JR, Keller V, Keehn B. 1995. An assessment of lead absorption from soil affected by smelter emissions. Environ Geochem Health 17:189-199. Attanayake CP, Hettiarachchi GM, Harms A, Presley D, Martin S, Pierzynski GM. 2014. Field evaluations on soil plant transfer of lead from an urban garden soil. J Environ Qual 43:475-487. Ryan JA, Scheckel KG, Berti WR, Brown SL, Casteel SW, Chaney RL, Hallfrisch J, Doolan M, Grevatt P, Maddaloni M. 2004. Reducing children's risk from lead in soil. Environ Sci Technol 38:18-24. Hoffman DJ, Heinz GH, Sileo L, Audet DJ, Campbell JK, LeCaptain LJ. 2000. Developmental toxicity of lead-contaminated sediment to mallard ducklings. Arch Environ Contam Toxicol 39:221-232. Bonos E, Christaki E, Soultos N, Abrahim A, Florou-Paneri P. 2012. Comparative evaluation of mannan oligosaccharides and acidifier calcium formate on the quail digestive tract. J Life Sci 6:492-500. Miretzky P, Fernandez-Cirelli A. 2008. Phosphates for Pb immobilization in soils: A review. Environ Chem Lett 6:121-133. Heard MJ, Chamberlain AC, Sherlock JC. 1983. Uptake of lead by humans and effect of minerals and food. Sci Total Environ 30:245-253. Drexler JW, Brattin WJ. 2007. An in vitro procedure for estimation of lead relative bioavailability: With validation. Hum Ecol Risk Assess 13:383-401. Chaney RL, Mielke HW, Sterrett SB. 1989. Speciation, mobility and bioavailability of soil lead. Environ Geochem Health 11:105-129. Wragg J, Cave M, Basta N, Brandon E, Casteel S, Denys S, Gron C, Oomen A, Reimer K, Tack K. 2011. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Sci Total Environ 409:4016-4030. Morman S, Plumlee G, Smith D. 2009. Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada. Appl Geochem 24:1454-1463. Heinz GH. 1999. Toxicity of lead-contaminated sediment to mallards. Arch Environ Contam Toxicol 36:323-333. Brumbaugh WG, Schmitt CJ, May TW. 2005. Concentrations of cadmium, lead, and zinc in fish from mining-influenced waters of northeastern Oklahoma: Sampling of blood, carcass, and liver for aquatic biomonitoring. Arch Environ Contam Toxicol 49:76-88. Pain DJ, Rattner BA. 1988. Mortality and hematology associated with the ingestion of one number four lead shot in black ducks, Anas rubripes. Bull Environ Contam Toxicol 40:159-164. Casteel SW, Cowart RP, Weis CP, Henningsen GM, Hoffman E, Brattin WJ, Guzman RE, Starost MF, Payne JT, Stockham SL. 1997. Bioavailability of lead to juvenile swine dosed with soil from the Smuggler Mountain NPL site of Aspen, Colorado. Fundam Appl Toxicol 36:177-187. Rose HE, Quarterman J. 1984. Effects of dietary phytic acid on lead and cadmium uptake and depletion in rats. Environ Res 35:482-489. Scheckel KG, Diamond GL, Burgess MF, Klotzbach JM, Maddaloni M, Miller BW, Partridge CR, Serda SM. 2013. Amending soils with phosphate as means to mitigate soil lead hazard: A critical review of the state of the science. J Toxicol Environ Health B Crit Rev 16:337-380. 1993; 24 2009; 24 1993; 27 2012 1995; 17 2006; 35 2011 2000; 9 1996; 94 1996; 30 2007 2006 1983; 30 2005 2008; 6 2005; 49 1975; 50 2007; 13 2005; 2005 2006; 114 2014; 43 2004; 33 1989; 11 1982; 28 1993; 39 2000; 39 2013; 16 2013; 10 2000 2011; 409 2004; 38 1997; 36 2002; 43 2015; 44 1999; 36 1984; 35 1999; 33 1988; 40 2007; 42 2012; 6 2005; 12 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_41_1 Chaney RL (e_1_2_8_8_1) 1989; 11 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Wragg J (e_1_2_8_44_1) 2011; 409 Brown S (e_1_2_8_39_1) 2002; 43 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 Hoet P. (e_1_2_8_14_1) 2005 e_1_2_8_33_1 Bonos E (e_1_2_8_29_1) 2012; 6 e_1_2_8_30_1 |
References_xml | – year: 2011 – volume: 24 start-page: 478 year: 1993 end-page: 482 article-title: The prevalence and retention of lead pellets in Japanese quail publication-title: Arch Environ Contam Toxicol – volume: 50 start-page: 649 year: 1975 end-page: 656 article-title: Gastric digestion in some raptors publication-title: Comp Biochem Physiol A Physiol – volume: 39 start-page: 221 year: 2000 end-page: 232 article-title: Developmental toxicity of lead‐contaminated sediment to mallard ducklings publication-title: Arch Environ Contam Toxicol – volume: 43 start-page: 475 year: 2014 end-page: 487 article-title: Field evaluations on soil plant transfer of lead from an urban garden soil publication-title: J Environ Qual – volume: 28 start-page: 344 year: 1982 end-page: 363 article-title: Morphological, pharmacokinetic, and hematological studies of lead‐exposed pigeons publication-title: Environ Res – year: 2007 – volume: 33 start-page: 3697 year: 1999 end-page: 3705 article-title: Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment publication-title: Environ Sci Technol – volume: 27 start-page: 2870 year: 1993 end-page: 2877 article-title: Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine‐waste lead publication-title: Environ Sci Technol – volume: 9 start-page: 207 year: 2000 end-page: 218 article-title: Relation of waterfowl poisoning to sediment lead concentrations in the Coeur d'Alene River basin publication-title: Ecotoxicology – volume: 35 start-page: 450 year: 2006 end-page: 458 article-title: Risk assessment test for lead bioaccessibility to waterfowl in mine‐impacted soils publication-title: J Environ Qual – volume: 39 start-page: 79– year: 1993 end-page: 93 article-title: Comparison of lead bioavailability in F344 rats fed lead acetate, lead oxide, lead sulfide, or lead ore concentrate from Skagway, Alaska publication-title: J Toxicol Environ Health – year: 2000 – volume: 35 start-page: 482 year: 1984 end-page: 489 article-title: Effects of dietary phytic acid on lead and cadmium uptake and depletion in rats publication-title: Environ Res – volume: 44 start-page: 1127 year: 2015 end-page: 1136 article-title: Phosphate treatment of lead‐contaminated soil: Effects on water quality, plant uptake, and lead speciation publication-title: J Environ Qual – volume: 6 start-page: 121 year: 2008 end-page: 133 article-title: Phosphates for Pb immobilization in soils: A review publication-title: Environ Chem Lett – volume: 33 start-page: 1288 year: 2004 end-page: 1295 article-title: Spectroscopic speciation and quantification of lead in phosphate‐amended soils publication-title: J Environ Qual – volume: 43 start-page: 41 year: 2002 end-page: 44 article-title: Soil remediation using biosolids—Part I publication-title: Biocycle – volume: 36 start-page: 323 year: 1999 end-page: 333 article-title: Toxicity of lead‐contaminated sediment to mallards publication-title: Arch Environ Contam Toxicol – start-page: 252 year: 2005 end-page: 276 – volume: 42 start-page: 1275 year: 2007 end-page: 1281 article-title: The effect of dosing vehicle on arsenic bioaccessibility in smelter‐contaminated soils publication-title: J Environ Sci Health A Tox Hazard Subst Environ Eng – volume: 27 start-page: 1415 year: 1993 end-page: 1425 article-title: Micromineralogy of mine wastes in relation to lead bioavailability, Butte, Montana publication-title: Environ Sci Technol – year: 2012 – volume: 17 start-page: 189 year: 1995 end-page: 199 article-title: An assessment of lead absorption from soil affected by smelter emissions publication-title: Environ Geochem Health – volume: 13 start-page: 383 year: 2007 end-page: 401 article-title: An in vitro procedure for estimation of lead relative bioavailability: With validation publication-title: Hum Ecol Risk Assess – volume: 40 start-page: 159 year: 1988 end-page: 164 article-title: Mortality and hematology associated with the ingestion of one number four lead shot in black ducks, publication-title: Bull Environ Contam Toxicol – volume: 49 start-page: 76 year: 2005 end-page: 88 article-title: Concentrations of cadmium, lead, and zinc in fish from mining‐influenced waters of northeastern Oklahoma: Sampling of blood, carcass, and liver for aquatic biomonitoring publication-title: Arch Environ Contam Toxicol – volume: 2005 start-page: 1011 year: 2005 article-title: SIXpack: A graphical user interface for X‐ray absorption spectroscopy analysis using IFEFFIT publication-title: Physica Scripta – volume: 6 start-page: 492 year: 2012 end-page: 500 article-title: Comparative evaluation of mannan oligosaccharides and acidifier calcium formate on the quail digestive tract publication-title: J Life Sci – volume: 11 start-page: 105 year: 1989 end-page: 129 article-title: Speciation, mobility and bioavailability of soil lead publication-title: Environ Geochem Health – volume: 30 start-page: 245 year: 1983 end-page: 253 article-title: Uptake of lead by humans and effect of minerals and food publication-title: Sci Total Environ – volume: 36 start-page: 177 year: 1997 end-page: 187 article-title: Bioavailability of lead to juvenile swine dosed with soil from the Smuggler Mountain NPL site of Aspen, Colorado publication-title: Fundam Appl Toxicol – year: 2006 – volume: 94 start-page: 337 year: 1996 article-title: Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds publication-title: Environ Pollut – volume: 114 start-page: 1162 year: 2006 end-page: 1171 article-title: Estimation of relative bioavailability of lead in soil and soil‐like materials using young swine publication-title: Environ Health Perspect – volume: 16 start-page: 337 year: 2013 end-page: 380 article-title: Amending soils with phosphate as means to mitigate soil lead hazard: A critical review of the state of the science publication-title: J Toxicol Environ Health B Crit Rev – volume: 30 start-page: 422 year: 1996 end-page: 430 article-title: Estimation of lead and arsenic bioavailability using a physiologically based extraction test publication-title: Environ Sci Technol – volume: 12 start-page: 537 year: 2005 end-page: 541 article-title: ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X‐ray absorption spectroscopy using IFEFFIT publication-title: J Synchrotron Radiat – volume: 409 start-page: 4016 year: 2011 end-page: 4030 article-title: An inter‐laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil publication-title: Sci Total Environ – volume: 10 start-page: 22 year: 2013 end-page: 29 article-title: Toxicity of Pb‐contaminated soil to Japanese quail ( ) and the use of the blood/dietary Pb slope in risk assessment publication-title: Integr Environ Assess Manage – volume: 38 start-page: 18 year: 2004 end-page: 24 article-title: Reducing children's risk from lead in soil publication-title: Environ Sci Technol – volume: 24 start-page: 1454 year: 2009 end-page: 1463 article-title: Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada publication-title: Appl Geochem – start-page: 419 year: 2000 end-page: 422 – ident: e_1_2_8_41_1 doi: 10.1080/10937404.2013.825216 – ident: e_1_2_8_42_1 doi: 10.1007/s10311-007-0133-y – ident: e_1_2_8_5_1 doi: 10.1002/ieam.1453 – ident: e_1_2_8_38_1 doi: 10.1016/0013-9351(84)90154-3 – ident: e_1_2_8_4_1 doi: 10.1021/es00049a030 – ident: e_1_2_8_20_1 – ident: e_1_2_8_18_1 doi: 10.1007/s00244-004-0172-3 – ident: e_1_2_8_43_1 doi: 10.1016/j.apgeochem.2009.04.015 – ident: e_1_2_8_36_1 doi: 10.1016/0048-9697(83)90016-5 – ident: e_1_2_8_7_1 doi: 10.1006/faat.1997.2296 – ident: e_1_2_8_25_1 – volume: 409 start-page: 4016 year: 2011 ident: e_1_2_8_44_1 article-title: An inter‐laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil publication-title: Sci Total Environ contributor: fullname: Wragg J – volume: 43 start-page: 41 year: 2002 ident: e_1_2_8_39_1 article-title: Soil remediation using biosolids—Part I publication-title: Biocycle contributor: fullname: Brown S – ident: e_1_2_8_32_1 – ident: e_1_2_8_12_1 doi: 10.1021/es990479z – ident: e_1_2_8_16_1 doi: 10.1016/0013-9351(82)90134-7 – ident: e_1_2_8_3_1 doi: 10.1080/10807030701226350 – ident: e_1_2_8_15_1 doi: 10.1007/BF01881033 – ident: e_1_2_8_22_1 doi: 10.2134/jeq2013.07.0273 – ident: e_1_2_8_34_1 doi: 10.1021/es00044a018 – ident: e_1_2_8_2_1 doi: 10.1021/es040337r – ident: e_1_2_8_9_1 doi: 10.1007/s002440010099 – ident: e_1_2_8_24_1 – ident: e_1_2_8_10_1 doi: 10.2134/jeq2005.0316 – ident: e_1_2_8_11_1 doi: 10.2134/jeq2004.1288 – volume: 11 start-page: 105 year: 1989 ident: e_1_2_8_8_1 article-title: Speciation, mobility and bioavailability of soil lead publication-title: Environ Geochem Health contributor: fullname: Chaney RL – ident: e_1_2_8_21_1 doi: 10.1021/es950057z – ident: e_1_2_8_35_1 – ident: e_1_2_8_28_1 doi: 10.1238/Physica.Topical.115a01011 – volume: 6 start-page: 492 year: 2012 ident: e_1_2_8_29_1 article-title: Comparative evaluation of mannan oligosaccharides and acidifier calcium formate on the quail digestive tract publication-title: J Life Sci contributor: fullname: Bonos E – ident: e_1_2_8_40_1 doi: 10.2134/jeq2014.10.0447 – ident: e_1_2_8_19_1 doi: 10.1080/10934520701434927 – ident: e_1_2_8_33_1 doi: 10.1007/BF00661331 – ident: e_1_2_8_13_1 doi: 10.1289/ehp.8852 – ident: e_1_2_8_6_1 doi: 10.1023/A:1008998821913 – ident: e_1_2_8_17_1 doi: 10.1007/s002449900478 – ident: e_1_2_8_31_1 doi: 10.1016/0300-9629(75)90121-8 – start-page: 252 volume-title: Handbook of Elemental Speciation II year: 2005 ident: e_1_2_8_14_1 contributor: fullname: Hoet P. – ident: e_1_2_8_30_1 doi: 10.1007/BF01146165 – ident: e_1_2_8_23_1 – ident: e_1_2_8_27_1 doi: 10.1107/S0909049505012719 – ident: e_1_2_8_37_1 doi: 10.1016/S0269-7491(96)00084-X – ident: e_1_2_8_45_1 doi: 10.1080/15287399309531737 – ident: e_1_2_8_26_1 |
SSID | ssj0016999 |
Score | 2.3534033 |
Snippet | Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the... Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the... Abstract Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2311 |
SubjectTerms | Absorption spectroscopy Animals Bioavailability Biological Availability Birds Blood Carbonates Coturnix - blood Coturnix japonica Diet Ecological risk assessment Environmental Monitoring - methods Leaching Lead Lead - blood Metal bioavailability Organic matter Phosphorus - chemistry Soil - chemistry Soil contamination Soil Pollutants - blood Soil testing Speciation Sulfates Superfund United States Waterfowl Wildfowl Wildlife toxicology X-Ray Absorption Spectroscopy |
Title | Bioaccessibility tests accurately estimate bioavailability of lead to quail |
URI | https://api.istex.fr/ark:/67375/WNG-CS03R3RL-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fetc.3399 https://www.ncbi.nlm.nih.gov/pubmed/26876015 https://www.proquest.com/docview/1813217028 https://search.proquest.com/docview/1819137502 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iCL54H-tFBPGta5tukvbRe_F6WBUFH0KSpiAuW3Vbcf31TtJDFAXxqZBOyTEzyTfp5AtC2zwkPNKSelRCpNNJIU6JfGq8lGoW6Q6POsaeRr64ZN2bzukdvauyKu1ZmJIfotlws57h5mvr4FINdz9JQ6FX7RCWV5h-g5DbbK7DXsMcFbDYXR1pDdjjhEU176xPdusPv6xEE3ZQ336CmV9Rq1t2jmfQfd3gMtvksV3kqq3fv3E5_q9Hs2i6QqN4rzSfOTRmBvNo8sgxWY8W0Nn-QybdjYplDu0IAzDNhxjKCksx0R9hS9IBoNdgBaKv8qEvK8ksxX2wH5xn-LmA8kV0c3x0fdD1qtsXPA2YKvbsbjENoiQmmgQKYAFAER1pTlVgHddXxAS-ZpIxmnDFJSVpDMEc5ykF5YcsXELjg2xgVhDWBoIu7ieaQfSiEpgjDCUyipOUAfojqoW2ak2Ip5JkQ5R0ykTAoAg7KC2041TUCMiXR5uUxqm4vTwRB1d-2At756LbQuu1DkXlj0MBOCaE4AvAFNTVvAZPsr9H5MBkhZOJwZKoT1poudR9UxlYkE0eotAKp8FfmylgJO1z9a-Ca2gKMBgr09bW0Xj-UpgNwDm52nQW_QEKj_Zr |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5REGovtFBatqVgJMQtS-Ks7UScWl7bsuxhAcGhkmU7joRYbXgkVbe_nrGzCaJqpaqnSM4ksT0z9jfO-DPAtoipSIxiAVMY6fRyjFOSkNkgZ4YnpieSnnW7kU-HvH_R-3bFruZgr9kLU_NDtAtuzjP8eO0c3C1I7z6xhmKzujHOry9gAb09dscXHIxa7qiIp_7wSGfCgaA8aZhnQ7rbPPlsLlpw3frzT0DzOW71E8_Ra_jeVLnON7npVqXuml-_sTn-Z5vewNIMkJLPtQUtw5ydrMDioSeznr6Fky_XhfKHKtZptFOC2LR8IFhWOZaJ8ZQ4ng7EvZZoFP2hrsdqJlnkZIwmRMqC3FVYvgoXR4fn-_1gdgBDYBBWpYFbMGZRkqXU0EgjMkA0YhIjmI6c74aa2ig0XHHOMqGFYjRPMZ4TImeo_5jH72B-UkzsGhBjMe4SYWY4BjA6w2HCMqqSNMs5AkCqO7DVqELe1jwbsmZUphI7RbpO6cCO11EroO5vXF6aYPJyeCz3z8J4FI8Gst-B9UaJcuaSDxKhTIzxF-Ip_FZ7G53J_SFRE1tUXiaN8H0h7cD7Wvntx9CEXP4Qw1p4Ff61mhJ70l0__KvgJrzsn58O5ODr8OQjvEJIxusstnWYL-8r-wlhT6k3vHk_Am5N-oU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VViAu0JbXQktdCXHLNnFiOznSx7LQskILFZV6sGzHkaquNqVNULe_nrHzqFqBhDhFciaJ7Zmxv3HGnwHeiZiK1CgWMIWRTlJgnJKGzAYFMzw1iUgT63Yjf5nw8XHy-YSdtFmVbi9Mww_RL7g5z_DjtXPwi7zYuSUNxVYNY5xeH8BKwuPQpXPtT3vqqIhn_uxIZ8GBoDztiGdDutM9eWcqWnG9ev0nnHkXtvp5Z_QUTrsaN-km58O60kNzc4_M8f-atApPWjhKPjT2swZLdr4ODw88lfXiGRzunpXKH6nYJNEuCCLT6opgWe04JmYL4lg6EPVaolH0lzqbqVayLMgMDYhUJflZY_lzOB4dfN8bB-3xC4FBUJUFbrmYRWmeUUMjjbgAsYhJjWA6cp4bamqj0HDFOcuFForRIsNoToiCofZjHr-A5Xk5t6-AGItRlwhzwzF80TkOEpZRlWZ5wRH-UT2A7U4T8qJh2ZANnzKV2CnSdcoA3nsV9QLq8txlpQkmf0w-yr1vYTyNp0dyPICNToeydcgriUAmxugL0RR-q7-NruT-j6i5LWsvk0X4vpAO4GWj-_5jaEEue4hhLbwG_1pNiT3prq__VXALHn3dH8mjT5PDN_AY8RhvUtg2YLm6rO0mYp5Kv_XG_RuD0vk0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioaccessibility+tests+accurately+estimate+bioavailability+of+lead+to+quail&rft.jtitle=Environmental+toxicology+and+chemistry&rft.au=Beyer%2C+WNelson&rft.au=Basta%2C+Nicholas+T&rft.au=Chaney%2C+Rufus+L&rft.au=Henry%2C+Paula+FP&rft.date=2016-09-01&rft.issn=0730-7268&rft.eissn=1552-8618&rft.volume=35&rft.issue=9&rft.spage=2311&rft.epage=2319&rft_id=info:doi/10.1002%2Fetc.3399&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-7268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-7268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-7268&client=summon |