Bioaccessibility tests accurately estimate bioavailability of lead to quail

Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb‐contaminated...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental toxicology and chemistry Vol. 35; no. 9; pp. 2311 - 2319
Main Authors Beyer, W. Nelson, Basta, Nicholas T., Chaney, Rufus L., Henry, Paula F. P., Mosby, David E., Rattner, Barnett A., Scheckel, Kirk G., Sprague, Daniel T., Weber, John S.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb‐contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb‐contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X‐ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb‐contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311–2319. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
AbstractList Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016; 35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Abstract Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail ( Coturnix japonica ) fed diets containing Pb‐contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb‐contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X‐ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb‐contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311–2319. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Author Scheckel, Kirk G.
Chaney, Rufus L.
Henry, Paula F. P.
Weber, John S.
Beyer, W. Nelson
Mosby, David E.
Sprague, Daniel T.
Basta, Nicholas T.
Rattner, Barnett A.
Author_xml – sequence: 1
  givenname: W. Nelson
  surname: Beyer
  fullname: Beyer, W. Nelson
  email: nbeyer@usgs.gov
  organization: US Geological Survey, Patuxent Wildlife Research Center, Maryland, Beltsville, USA
– sequence: 2
  givenname: Nicholas T.
  surname: Basta
  fullname: Basta, Nicholas T.
  organization: School of Environment and Natural Resources, The Ohio State University, Ohio, Columbus, USA
– sequence: 3
  givenname: Rufus L.
  surname: Chaney
  fullname: Chaney, Rufus L.
  organization: Crop Systems and Global Change Laboratory, US Department of Agriculture, Maryland, Beltsville, USA
– sequence: 4
  givenname: Paula F. P.
  surname: Henry
  fullname: Henry, Paula F. P.
  organization: US Geological Survey, Patuxent Wildlife Research Center, Maryland, Beltsville, USA
– sequence: 5
  givenname: David E.
  surname: Mosby
  fullname: Mosby, David E.
  organization: US Fish and Wildlife Service, Columbia, Missouri, USA
– sequence: 6
  givenname: Barnett A.
  surname: Rattner
  fullname: Rattner, Barnett A.
  organization: US Geological Survey, Patuxent Wildlife Research Center, Maryland, Beltsville, USA
– sequence: 7
  givenname: Kirk G.
  surname: Scheckel
  fullname: Scheckel, Kirk G.
  organization: National Risk Management Research Laboratory, US Environmental Protection Agency, Ohio, Cincinnati, USA
– sequence: 8
  givenname: Daniel T.
  surname: Sprague
  fullname: Sprague, Daniel T.
  organization: US Geological Survey, Patuxent Wildlife Research Center, Maryland, Beltsville, USA
– sequence: 9
  givenname: John S.
  surname: Weber
  fullname: Weber, John S.
  organization: US Fish and Wildlife Service, Columbia, Missouri, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26876015$$D View this record in MEDLINE/PubMed
BookMark eNp10F1LwzAUBuAgivtQ8BdIwRtvOs9JTNJc6tBNHAp-4GVIsxSi3apNq-7fm7GqIHiV5PDwkvMOyPayWjpCDhBGCEBPXGNHjCm1RfrIOU0zgdk26YNkkEoqsh4ZhPAMgEIptUt6cSQFIO-T63NfGWtdCD73pW9WSeNCE5I4a2vTuHKVxLdfxGuSR_pufGk6WRVJ6cw8aarkrY3zPbJTmDK4_e4cksfLi4fxNJ3dTq7GZ7PUcoEqpQxOOWZzRS3FHKlCoDazkucInCHk1CFYYYTgc5lLw2mhFD2VsuCZNUywITne5L7W1Vsbv6cXPlhXlmbpqjZozFAhkxxopEd_6HPV1sv4u7ViFCXQ7DfQ1lUItSv0ax1XrlcaQa8L1rFgvS440sMusM0Xbv4DvxuNIN2AD1-61b9BOpousPM-NO7zx5v6RQsZl9BPNxM9vgd2x-5mesq-ALP-kxw
CitedBy_id crossref_primary_10_1021_acs_est_2c01864
crossref_primary_10_1002_jeq2_20368
crossref_primary_10_1002_ieam_4743
crossref_primary_10_1002_jeq2_20347
crossref_primary_10_1016_j_scitotenv_2016_10_027
crossref_primary_10_2139_ssrn_4170475
crossref_primary_10_1007_s00128_017_2137_z
crossref_primary_10_1038_s41598_020_65449_4
crossref_primary_10_3389_fsoil_2022_1028328
crossref_primary_10_1016_j_scitotenv_2023_163036
crossref_primary_10_1007_s10661_017_6442_0
crossref_primary_10_1016_j_envres_2020_110364
crossref_primary_10_1016_j_chemosphere_2022_137252
crossref_primary_10_1002_ieam_4157
crossref_primary_10_1098_rspb_2016_0662
crossref_primary_10_1007_s11356_020_08898_8
crossref_primary_10_1007_s40726_016_0029_1
Cites_doi 10.1080/10937404.2013.825216
10.1007/s10311-007-0133-y
10.1002/ieam.1453
10.1016/0013-9351(84)90154-3
10.1021/es00049a030
10.1007/s00244-004-0172-3
10.1016/j.apgeochem.2009.04.015
10.1016/0048-9697(83)90016-5
10.1006/faat.1997.2296
10.1021/es990479z
10.1016/0013-9351(82)90134-7
10.1080/10807030701226350
10.1007/BF01881033
10.2134/jeq2013.07.0273
10.1021/es00044a018
10.1021/es040337r
10.1007/s002440010099
10.2134/jeq2005.0316
10.2134/jeq2004.1288
10.1021/es950057z
10.1238/Physica.Topical.115a01011
10.2134/jeq2014.10.0447
10.1080/10934520701434927
10.1007/BF00661331
10.1289/ehp.8852
10.1023/A:1008998821913
10.1007/s002449900478
10.1016/0300-9629(75)90121-8
10.1007/BF01146165
10.1107/S0909049505012719
10.1016/S0269-7491(96)00084-X
10.1080/15287399309531737
ContentType Journal Article
Copyright Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
2016 SETAC
Copyright_xml – notice: Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
– notice: 2016 SETAC
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
7SS
7ST
7T7
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
SOI
DOI 10.1002/etc.3399
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
DatabaseTitleList Toxicology Abstracts
CrossRef
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1552-8618
EndPage 2319
ExternalDocumentID 4155846201
10_1002_etc_3399
26876015
ETC3399
ark_67375_WNG_CS03R3RL_H
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations USA, Ohio
INW, Japan
GeographicLocations_xml – name: INW, Japan
– name: USA, Ohio
GrantInformation_xml – fundername: Argonne National Laboratory under contract
  funderid: DE‐AC02‐06CH11357
GroupedDBID ---
--K
-~X
..I
.3N
.GA
.Y3
05W
0R~
10A
1B1
1OB
1OC
29G
31~
33P
36B
3SF
3V.
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X2
7X7
7XC
8-0
8-1
8-3
8-4
8-5
88E
88I
8C1
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAFWJ
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABEJV
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
D0L
D1I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNUQQ
GODZA
GUQSH
GWYGA
H.T
H.X
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
IHE
IX1
J0M
KB.
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M1P
M2O
M2P
M41
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
NQ-
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
R.K
RIWAO
RJQFR
RNS
ROL
RPZ
RWI
RX1
SAMSI
SUPJJ
TWZ
UB1
UKHRP
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WUPDE
WXSBR
WYISQ
XG1
XIH
XV2
YCJ
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
7SS
7ST
7T7
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
SOI
ID FETCH-LOGICAL-c5619-2304518d92c21b129102c8c75b105310b2e10c6a665d7b7a52f992477f58ca363
IEDL.DBID DR2
ISSN 0730-7268
IngestDate Fri Aug 16 22:31:48 EDT 2024
Thu Oct 10 20:55:14 EDT 2024
Fri Aug 23 01:32:32 EDT 2024
Sat Sep 28 08:48:22 EDT 2024
Sat Aug 24 01:01:06 EDT 2024
Wed Oct 30 09:51:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Metal bioavailability
Ecological risk assessment
Soil contamination
Wildlife toxicology
Language English
License Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5619-2304518d92c21b129102c8c75b105310b2e10c6a665d7b7a52f992477f58ca363
Notes ArticleID:ETC3399
Argonne National Laboratory under contract - No. DE-AC02-06CH11357
ark:/67375/WNG-CS03R3RL-H
istex:35587876908E27B833E62FFDDB8E84209D2AD7E4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1978&context=usgsstaffpub
PMID 26876015
PQID 1813217028
PQPubID 32741
PageCount 9
ParticipantIDs proquest_miscellaneous_1819137502
proquest_journals_1813217028
crossref_primary_10_1002_etc_3399
pubmed_primary_26876015
wiley_primary_10_1002_etc_3399_ETC3399
istex_primary_ark_67375_WNG_CS03R3RL_H
PublicationCentury 2000
PublicationDate September 2016
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Environmental toxicology and chemistry
PublicationTitleAlternate Environ Toxicol Chem
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM. 1996. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422-430.
Beyer WN, Audet DJ, Heinz GH, Hoffman DJ, Day D. 2000. Relation of waterfowl poisoning to sediment lead concentrations in the Coeur d'Alene River basin. Ecotoxicology 9:207-218.
Ravel B, Newville M. 2005. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537-541.
Anders E, Dietz DD, Bagnell CR, Gaynor J, Krigman MR, Ross DW, Leander JD, Mushak P. 1982. Morphological, pharmacokinetic, and hematological studies of lead-exposed pigeons. Environ Res 28:344-363.
Basta NT, Foster JN, Dayton E, Rodriguez RR, Casteel SW. 2007. The effect of dosing vehicle on arsenic bioaccessibility in smelter-contaminated soils. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1275-1281.
Yamamoto K, Hayashi M, Yoshimura M, Hayashi H, Hiratsuka A, Isii Y. 1993. The prevalence and retention of lead pellets in Japanese quail. Arch Environ Contam Toxicol 24:478-482.
Scheuhammer AM. 1996. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ Pollut 94:337.
Beyer WN, Chen Y, Henry P, May T, Mosby D, Rattner BA, Shearn-Bochsler VI, Sprague D, Weber J. 2013. Toxicity of Pb-contaminated soil to Japanese quail (Coturnix japonica) and the use of the blood/dietary Pb slope in risk assessment. Integr Environ Assess Manage 10:22-­29.
Weber JS, Goyne KW, Luxton TP, Thompson AL. 2015. Phosphate treatment of lead-contaminated soil: Effects on water quality, plant uptake, and lead speciation. J Environ Qual 44:1127-1136.
Webb SM. 2005. SIXpack: A graphical user interface for X-ray absorption spectroscopy analysis using IFEFFIT. Physica Scripta 2005:1011.
Furman O, Strawn DG, Heinz GH, Williams B. 2006. Risk assessment test for lead bioaccessibility to waterfowl in mine-impacted soils. J Environ Qual 35:450-458.
Brown S, Chaney RL, Sprenger M, Compton H. 2002. Soil remediation using biosolids-Part I. Biocycle 43:41-44.
Ruby MV, Schoof R, Brattin W, Goldade M, Post G, Harnois M, Mosby DE, Casteel SW, Berti W, Carpenter M. 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697-3705.
Ruby MV, Davis A, Link TE, Schoof R, Chaney RL, Freeman GB, Bergstrom P. 1993. Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ Sci Technol 27:2870-2877.
Scheckel KG, Ryan JA. 2004. Spectroscopic speciation and quantification of lead in phosphate-amended soils. J Environ Qual 33:1288-1295.
Hoet P. 2005. Speciation of lead in occupational exposure and clinical health aspects. In Cornelis R, Caruso J, Crews H, Heumann K, eds, Handbook of Elemental Speciation II. John Wiley & Sons, Chichester, UK, pp 252-276.
Davis A, Drexler JW, Ruby MV, Nicholson A. 1993. Micromineralogy of mine wastes in relation to lead bioavailability, Butte, Montana. Environ Sci Technol 27:1415-1425.
Duke GE, Jegers AA, Loff G, Evanson OA. 1975. Gastric digestion in some raptors. Comp Biochem Physiol A Physiol 50:649-656.
Dieter MP, Matthews H, Jeffcoat R, Moseman R. 1993. Comparison of lead bioavailability in F344 rats fed lead acetate, lead oxide, lead sulfide, or lead ore concentrate from Skagway, Alaska. J Toxicol Environ Health 39:79-93.
Casteel SW, Weis CP, Henningsen GM, Brattin WJ. 2006. Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environ Health Perspect 114:1162-1171.
Schoof RA, Butcher MK, Sellstone C, Ball RW, Fricke JR, Keller V, Keehn B. 1995. An assessment of lead absorption from soil affected by smelter emissions. Environ Geochem Health 17:189-199.
Attanayake CP, Hettiarachchi GM, Harms A, Presley D, Martin S, Pierzynski GM. 2014. Field evaluations on soil plant transfer of lead from an urban garden soil. J Environ Qual 43:475-487.
Ryan JA, Scheckel KG, Berti WR, Brown SL, Casteel SW, Chaney RL, Hallfrisch J, Doolan M, Grevatt P, Maddaloni M. 2004. Reducing children's risk from lead in soil. Environ Sci Technol 38:18-24.
Hoffman DJ, Heinz GH, Sileo L, Audet DJ, Campbell JK, LeCaptain LJ. 2000. Developmental toxicity of lead-contaminated sediment to mallard ducklings. Arch Environ Contam Toxicol 39:221-232.
Bonos E, Christaki E, Soultos N, Abrahim A, Florou-Paneri P. 2012. Comparative evaluation of mannan oligosaccharides and acidifier calcium formate on the quail digestive tract. J Life Sci 6:492-500.
Miretzky P, Fernandez-Cirelli A. 2008. Phosphates for Pb immobilization in soils: A review. Environ Chem Lett 6:121-133.
Heard MJ, Chamberlain AC, Sherlock JC. 1983. Uptake of lead by humans and effect of minerals and food. Sci Total Environ 30:245-253.
Drexler JW, Brattin WJ. 2007. An in vitro procedure for estimation of lead relative bioavailability: With validation. Hum Ecol Risk Assess 13:383-401.
Chaney RL, Mielke HW, Sterrett SB. 1989. Speciation, mobility and bioavailability of soil lead. Environ Geochem Health 11:105-129.
Wragg J, Cave M, Basta N, Brandon E, Casteel S, Denys S, Gron C, Oomen A, Reimer K, Tack K. 2011. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Sci Total Environ 409:4016-4030.
Morman S, Plumlee G, Smith D. 2009. Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada. Appl Geochem 24:1454-1463.
Heinz GH. 1999. Toxicity of lead-contaminated sediment to mallards. Arch Environ Contam Toxicol 36:323-333.
Brumbaugh WG, Schmitt CJ, May TW. 2005. Concentrations of cadmium, lead, and zinc in fish from mining-influenced waters of northeastern Oklahoma: Sampling of blood, carcass, and liver for aquatic biomonitoring. Arch Environ Contam Toxicol 49:76-88.
Pain DJ, Rattner BA. 1988. Mortality and hematology associated with the ingestion of one number four lead shot in black ducks, Anas rubripes. Bull Environ Contam Toxicol 40:159-164.
Casteel SW, Cowart RP, Weis CP, Henningsen GM, Hoffman E, Brattin WJ, Guzman RE, Starost MF, Payne JT, Stockham SL. 1997. Bioavailability of lead to juvenile swine dosed with soil from the Smuggler Mountain NPL site of Aspen, Colorado. Fundam Appl Toxicol 36:177-187.
Rose HE, Quarterman J. 1984. Effects of dietary phytic acid on lead and cadmium uptake and depletion in rats. Environ Res 35:482-489.
Scheckel KG, Diamond GL, Burgess MF, Klotzbach JM, Maddaloni M, Miller BW, Partridge CR, Serda SM. 2013. Amending soils with phosphate as means to mitigate soil lead hazard: A critical review of the state of the science. J Toxicol Environ Health B Crit Rev 16:337-380.
1993; 24
2009; 24
1993; 27
2012
1995; 17
2006; 35
2011
2000; 9
1996; 94
1996; 30
2007
2006
1983; 30
2005
2008; 6
2005; 49
1975; 50
2007; 13
2005; 2005
2006; 114
2014; 43
2004; 33
1989; 11
1982; 28
1993; 39
2000; 39
2013; 16
2013; 10
2000
2011; 409
2004; 38
1997; 36
2002; 43
2015; 44
1999; 36
1984; 35
1999; 33
1988; 40
2007; 42
2012; 6
2005; 12
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_41_1
Chaney RL (e_1_2_8_8_1) 1989; 11
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Wragg J (e_1_2_8_44_1) 2011; 409
Brown S (e_1_2_8_39_1) 2002; 43
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
Hoet P. (e_1_2_8_14_1) 2005
e_1_2_8_33_1
Bonos E (e_1_2_8_29_1) 2012; 6
e_1_2_8_30_1
References_xml – year: 2011
– volume: 24
  start-page: 478
  year: 1993
  end-page: 482
  article-title: The prevalence and retention of lead pellets in Japanese quail
  publication-title: Arch Environ Contam Toxicol
– volume: 50
  start-page: 649
  year: 1975
  end-page: 656
  article-title: Gastric digestion in some raptors
  publication-title: Comp Biochem Physiol A Physiol
– volume: 39
  start-page: 221
  year: 2000
  end-page: 232
  article-title: Developmental toxicity of lead‐contaminated sediment to mallard ducklings
  publication-title: Arch Environ Contam Toxicol
– volume: 43
  start-page: 475
  year: 2014
  end-page: 487
  article-title: Field evaluations on soil plant transfer of lead from an urban garden soil
  publication-title: J Environ Qual
– volume: 28
  start-page: 344
  year: 1982
  end-page: 363
  article-title: Morphological, pharmacokinetic, and hematological studies of lead‐exposed pigeons
  publication-title: Environ Res
– year: 2007
– volume: 33
  start-page: 3697
  year: 1999
  end-page: 3705
  article-title: Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment
  publication-title: Environ Sci Technol
– volume: 27
  start-page: 2870
  year: 1993
  end-page: 2877
  article-title: Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine‐waste lead
  publication-title: Environ Sci Technol
– volume: 9
  start-page: 207
  year: 2000
  end-page: 218
  article-title: Relation of waterfowl poisoning to sediment lead concentrations in the Coeur d'Alene River basin
  publication-title: Ecotoxicology
– volume: 35
  start-page: 450
  year: 2006
  end-page: 458
  article-title: Risk assessment test for lead bioaccessibility to waterfowl in mine‐impacted soils
  publication-title: J Environ Qual
– volume: 39
  start-page: 79–
  year: 1993
  end-page: 93
  article-title: Comparison of lead bioavailability in F344 rats fed lead acetate, lead oxide, lead sulfide, or lead ore concentrate from Skagway, Alaska
  publication-title: J Toxicol Environ Health
– year: 2000
– volume: 35
  start-page: 482
  year: 1984
  end-page: 489
  article-title: Effects of dietary phytic acid on lead and cadmium uptake and depletion in rats
  publication-title: Environ Res
– volume: 44
  start-page: 1127
  year: 2015
  end-page: 1136
  article-title: Phosphate treatment of lead‐contaminated soil: Effects on water quality, plant uptake, and lead speciation
  publication-title: J Environ Qual
– volume: 6
  start-page: 121
  year: 2008
  end-page: 133
  article-title: Phosphates for Pb immobilization in soils: A review
  publication-title: Environ Chem Lett
– volume: 33
  start-page: 1288
  year: 2004
  end-page: 1295
  article-title: Spectroscopic speciation and quantification of lead in phosphate‐amended soils
  publication-title: J Environ Qual
– volume: 43
  start-page: 41
  year: 2002
  end-page: 44
  article-title: Soil remediation using biosolids—Part I
  publication-title: Biocycle
– volume: 36
  start-page: 323
  year: 1999
  end-page: 333
  article-title: Toxicity of lead‐contaminated sediment to mallards
  publication-title: Arch Environ Contam Toxicol
– start-page: 252
  year: 2005
  end-page: 276
– volume: 42
  start-page: 1275
  year: 2007
  end-page: 1281
  article-title: The effect of dosing vehicle on arsenic bioaccessibility in smelter‐contaminated soils
  publication-title: J Environ Sci Health A Tox Hazard Subst Environ Eng
– volume: 27
  start-page: 1415
  year: 1993
  end-page: 1425
  article-title: Micromineralogy of mine wastes in relation to lead bioavailability, Butte, Montana
  publication-title: Environ Sci Technol
– year: 2012
– volume: 17
  start-page: 189
  year: 1995
  end-page: 199
  article-title: An assessment of lead absorption from soil affected by smelter emissions
  publication-title: Environ Geochem Health
– volume: 13
  start-page: 383
  year: 2007
  end-page: 401
  article-title: An in vitro procedure for estimation of lead relative bioavailability: With validation
  publication-title: Hum Ecol Risk Assess
– volume: 40
  start-page: 159
  year: 1988
  end-page: 164
  article-title: Mortality and hematology associated with the ingestion of one number four lead shot in black ducks,
  publication-title: Bull Environ Contam Toxicol
– volume: 49
  start-page: 76
  year: 2005
  end-page: 88
  article-title: Concentrations of cadmium, lead, and zinc in fish from mining‐influenced waters of northeastern Oklahoma: Sampling of blood, carcass, and liver for aquatic biomonitoring
  publication-title: Arch Environ Contam Toxicol
– volume: 2005
  start-page: 1011
  year: 2005
  article-title: SIXpack: A graphical user interface for X‐ray absorption spectroscopy analysis using IFEFFIT
  publication-title: Physica Scripta
– volume: 6
  start-page: 492
  year: 2012
  end-page: 500
  article-title: Comparative evaluation of mannan oligosaccharides and acidifier calcium formate on the quail digestive tract
  publication-title: J Life Sci
– volume: 11
  start-page: 105
  year: 1989
  end-page: 129
  article-title: Speciation, mobility and bioavailability of soil lead
  publication-title: Environ Geochem Health
– volume: 30
  start-page: 245
  year: 1983
  end-page: 253
  article-title: Uptake of lead by humans and effect of minerals and food
  publication-title: Sci Total Environ
– volume: 36
  start-page: 177
  year: 1997
  end-page: 187
  article-title: Bioavailability of lead to juvenile swine dosed with soil from the Smuggler Mountain NPL site of Aspen, Colorado
  publication-title: Fundam Appl Toxicol
– year: 2006
– volume: 94
  start-page: 337
  year: 1996
  article-title: Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds
  publication-title: Environ Pollut
– volume: 114
  start-page: 1162
  year: 2006
  end-page: 1171
  article-title: Estimation of relative bioavailability of lead in soil and soil‐like materials using young swine
  publication-title: Environ Health Perspect
– volume: 16
  start-page: 337
  year: 2013
  end-page: 380
  article-title: Amending soils with phosphate as means to mitigate soil lead hazard: A critical review of the state of the science
  publication-title: J Toxicol Environ Health B Crit Rev
– volume: 30
  start-page: 422
  year: 1996
  end-page: 430
  article-title: Estimation of lead and arsenic bioavailability using a physiologically based extraction test
  publication-title: Environ Sci Technol
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X‐ray absorption spectroscopy using IFEFFIT
  publication-title: J Synchrotron Radiat
– volume: 409
  start-page: 4016
  year: 2011
  end-page: 4030
  article-title: An inter‐laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil
  publication-title: Sci Total Environ
– volume: 10
  start-page: 22
  year: 2013
  end-page: 29
  article-title: Toxicity of Pb‐contaminated soil to Japanese quail ( ) and the use of the blood/dietary Pb slope in risk assessment
  publication-title: Integr Environ Assess Manage
– volume: 38
  start-page: 18
  year: 2004
  end-page: 24
  article-title: Reducing children's risk from lead in soil
  publication-title: Environ Sci Technol
– volume: 24
  start-page: 1454
  year: 2009
  end-page: 1463
  article-title: Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada
  publication-title: Appl Geochem
– start-page: 419
  year: 2000
  end-page: 422
– ident: e_1_2_8_41_1
  doi: 10.1080/10937404.2013.825216
– ident: e_1_2_8_42_1
  doi: 10.1007/s10311-007-0133-y
– ident: e_1_2_8_5_1
  doi: 10.1002/ieam.1453
– ident: e_1_2_8_38_1
  doi: 10.1016/0013-9351(84)90154-3
– ident: e_1_2_8_4_1
  doi: 10.1021/es00049a030
– ident: e_1_2_8_20_1
– ident: e_1_2_8_18_1
  doi: 10.1007/s00244-004-0172-3
– ident: e_1_2_8_43_1
  doi: 10.1016/j.apgeochem.2009.04.015
– ident: e_1_2_8_36_1
  doi: 10.1016/0048-9697(83)90016-5
– ident: e_1_2_8_7_1
  doi: 10.1006/faat.1997.2296
– ident: e_1_2_8_25_1
– volume: 409
  start-page: 4016
  year: 2011
  ident: e_1_2_8_44_1
  article-title: An inter‐laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil
  publication-title: Sci Total Environ
  contributor:
    fullname: Wragg J
– volume: 43
  start-page: 41
  year: 2002
  ident: e_1_2_8_39_1
  article-title: Soil remediation using biosolids—Part I
  publication-title: Biocycle
  contributor:
    fullname: Brown S
– ident: e_1_2_8_32_1
– ident: e_1_2_8_12_1
  doi: 10.1021/es990479z
– ident: e_1_2_8_16_1
  doi: 10.1016/0013-9351(82)90134-7
– ident: e_1_2_8_3_1
  doi: 10.1080/10807030701226350
– ident: e_1_2_8_15_1
  doi: 10.1007/BF01881033
– ident: e_1_2_8_22_1
  doi: 10.2134/jeq2013.07.0273
– ident: e_1_2_8_34_1
  doi: 10.1021/es00044a018
– ident: e_1_2_8_2_1
  doi: 10.1021/es040337r
– ident: e_1_2_8_9_1
  doi: 10.1007/s002440010099
– ident: e_1_2_8_24_1
– ident: e_1_2_8_10_1
  doi: 10.2134/jeq2005.0316
– ident: e_1_2_8_11_1
  doi: 10.2134/jeq2004.1288
– volume: 11
  start-page: 105
  year: 1989
  ident: e_1_2_8_8_1
  article-title: Speciation, mobility and bioavailability of soil lead
  publication-title: Environ Geochem Health
  contributor:
    fullname: Chaney RL
– ident: e_1_2_8_21_1
  doi: 10.1021/es950057z
– ident: e_1_2_8_35_1
– ident: e_1_2_8_28_1
  doi: 10.1238/Physica.Topical.115a01011
– volume: 6
  start-page: 492
  year: 2012
  ident: e_1_2_8_29_1
  article-title: Comparative evaluation of mannan oligosaccharides and acidifier calcium formate on the quail digestive tract
  publication-title: J Life Sci
  contributor:
    fullname: Bonos E
– ident: e_1_2_8_40_1
  doi: 10.2134/jeq2014.10.0447
– ident: e_1_2_8_19_1
  doi: 10.1080/10934520701434927
– ident: e_1_2_8_33_1
  doi: 10.1007/BF00661331
– ident: e_1_2_8_13_1
  doi: 10.1289/ehp.8852
– ident: e_1_2_8_6_1
  doi: 10.1023/A:1008998821913
– ident: e_1_2_8_17_1
  doi: 10.1007/s002449900478
– ident: e_1_2_8_31_1
  doi: 10.1016/0300-9629(75)90121-8
– start-page: 252
  volume-title: Handbook of Elemental Speciation II
  year: 2005
  ident: e_1_2_8_14_1
  contributor:
    fullname: Hoet P.
– ident: e_1_2_8_30_1
  doi: 10.1007/BF01146165
– ident: e_1_2_8_23_1
– ident: e_1_2_8_27_1
  doi: 10.1107/S0909049505012719
– ident: e_1_2_8_37_1
  doi: 10.1016/S0269-7491(96)00084-X
– ident: e_1_2_8_45_1
  doi: 10.1080/15287399309531737
– ident: e_1_2_8_26_1
SSID ssj0016999
Score 2.3534033
Snippet Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the...
Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the...
Abstract Hazards of soil‐borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 2311
SubjectTerms Absorption spectroscopy
Animals
Bioavailability
Biological Availability
Birds
Blood
Carbonates
Coturnix - blood
Coturnix japonica
Diet
Ecological risk assessment
Environmental Monitoring - methods
Leaching
Lead
Lead - blood
Metal bioavailability
Organic matter
Phosphorus - chemistry
Soil - chemistry
Soil contamination
Soil Pollutants - blood
Soil testing
Speciation
Sulfates
Superfund
United States
Waterfowl
Wildfowl
Wildlife toxicology
X-Ray Absorption Spectroscopy
Title Bioaccessibility tests accurately estimate bioavailability of lead to quail
URI https://api.istex.fr/ark:/67375/WNG-CS03R3RL-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fetc.3399
https://www.ncbi.nlm.nih.gov/pubmed/26876015
https://www.proquest.com/docview/1813217028
https://search.proquest.com/docview/1819137502
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iCL54H-tFBPGta5tukvbRe_F6WBUFH0KSpiAuW3Vbcf31TtJDFAXxqZBOyTEzyTfp5AtC2zwkPNKSelRCpNNJIU6JfGq8lGoW6Q6POsaeRr64ZN2bzukdvauyKu1ZmJIfotlws57h5mvr4FINdz9JQ6FX7RCWV5h-g5DbbK7DXsMcFbDYXR1pDdjjhEU176xPdusPv6xEE3ZQ336CmV9Rq1t2jmfQfd3gMtvksV3kqq3fv3E5_q9Hs2i6QqN4rzSfOTRmBvNo8sgxWY8W0Nn-QybdjYplDu0IAzDNhxjKCksx0R9hS9IBoNdgBaKv8qEvK8ksxX2wH5xn-LmA8kV0c3x0fdD1qtsXPA2YKvbsbjENoiQmmgQKYAFAER1pTlVgHddXxAS-ZpIxmnDFJSVpDMEc5ykF5YcsXELjg2xgVhDWBoIu7ieaQfSiEpgjDCUyipOUAfojqoW2ak2Ip5JkQ5R0ykTAoAg7KC2041TUCMiXR5uUxqm4vTwRB1d-2At756LbQuu1DkXlj0MBOCaE4AvAFNTVvAZPsr9H5MBkhZOJwZKoT1poudR9UxlYkE0eotAKp8FfmylgJO1z9a-Ca2gKMBgr09bW0Xj-UpgNwDm52nQW_QEKj_Zr
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5REGovtFBatqVgJMQtS-Ks7UScWl7bsuxhAcGhkmU7joRYbXgkVbe_nrGzCaJqpaqnSM4ksT0z9jfO-DPAtoipSIxiAVMY6fRyjFOSkNkgZ4YnpieSnnW7kU-HvH_R-3bFruZgr9kLU_NDtAtuzjP8eO0c3C1I7z6xhmKzujHOry9gAb09dscXHIxa7qiIp_7wSGfCgaA8aZhnQ7rbPPlsLlpw3frzT0DzOW71E8_Ra_jeVLnON7npVqXuml-_sTn-Z5vewNIMkJLPtQUtw5ydrMDioSeznr6Fky_XhfKHKtZptFOC2LR8IFhWOZaJ8ZQ4ng7EvZZoFP2hrsdqJlnkZIwmRMqC3FVYvgoXR4fn-_1gdgBDYBBWpYFbMGZRkqXU0EgjMkA0YhIjmI6c74aa2ig0XHHOMqGFYjRPMZ4TImeo_5jH72B-UkzsGhBjMe4SYWY4BjA6w2HCMqqSNMs5AkCqO7DVqELe1jwbsmZUphI7RbpO6cCO11EroO5vXF6aYPJyeCz3z8J4FI8Gst-B9UaJcuaSDxKhTIzxF-Ip_FZ7G53J_SFRE1tUXiaN8H0h7cD7Wvntx9CEXP4Qw1p4Ff61mhJ70l0__KvgJrzsn58O5ODr8OQjvEJIxusstnWYL-8r-wlhT6k3vHk_Am5N-oU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VViAu0JbXQktdCXHLNnFiOznSx7LQskILFZV6sGzHkaquNqVNULe_nrHzqFqBhDhFciaJ7Zmxv3HGnwHeiZiK1CgWMIWRTlJgnJKGzAYFMzw1iUgT63Yjf5nw8XHy-YSdtFmVbi9Mww_RL7g5z_DjtXPwi7zYuSUNxVYNY5xeH8BKwuPQpXPtT3vqqIhn_uxIZ8GBoDztiGdDutM9eWcqWnG9ev0nnHkXtvp5Z_QUTrsaN-km58O60kNzc4_M8f-atApPWjhKPjT2swZLdr4ODw88lfXiGRzunpXKH6nYJNEuCCLT6opgWe04JmYL4lg6EPVaolH0lzqbqVayLMgMDYhUJflZY_lzOB4dfN8bB-3xC4FBUJUFbrmYRWmeUUMjjbgAsYhJjWA6cp4bamqj0HDFOcuFForRIsNoToiCofZjHr-A5Xk5t6-AGItRlwhzwzF80TkOEpZRlWZ5wRH-UT2A7U4T8qJh2ZANnzKV2CnSdcoA3nsV9QLq8txlpQkmf0w-yr1vYTyNp0dyPICNToeydcgriUAmxugL0RR-q7-NruT-j6i5LWsvk0X4vpAO4GWj-_5jaEEue4hhLbwG_1pNiT3prq__VXALHn3dH8mjT5PDN_AY8RhvUtg2YLm6rO0mYp5Kv_XG_RuD0vk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioaccessibility+tests+accurately+estimate+bioavailability+of+lead+to+quail&rft.jtitle=Environmental+toxicology+and+chemistry&rft.au=Beyer%2C+WNelson&rft.au=Basta%2C+Nicholas+T&rft.au=Chaney%2C+Rufus+L&rft.au=Henry%2C+Paula+FP&rft.date=2016-09-01&rft.issn=0730-7268&rft.eissn=1552-8618&rft.volume=35&rft.issue=9&rft.spage=2311&rft.epage=2319&rft_id=info:doi/10.1002%2Fetc.3399&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-7268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-7268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-7268&client=summon