Retrograde Flow and Shear Rate Acutely Impair Endothelial Function in Humans
Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to ex...
Saved in:
Published in | Hypertension (Dallas, Tex. 1979) Vol. 53; no. 6; pp. 986 - 992 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
American Heart Association, Inc
01.06.2009
Lippincott Williams & Wilkins |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24±3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in “dose”-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (P<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (P<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (P=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo. |
---|---|
AbstractList | Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24±3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in “dose”-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (
P
<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (
P
<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (
P
=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo. Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24+/-3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in "dose"-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (P<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (P<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (P=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo. Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24+/-3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in "dose"-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (P<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (P<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (P=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo. Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear can occur through human conduit arteries. In animals, retrograde shear is associated with atherogenic effects. The aim of this study was to examine the impact of incremental levels of retrograde shear on endothelial function in vivo. On 3 separate days, we examined bilateral brachial artery flow-mediated dilation, an index of NO-mediated endothelial function, in healthy men (24±3 years) before and after a 30-minute intervention consisting of cuff inflation to 25, 50, or 75 mm Hg. Cuff inflations resulted in “dose”-dependent increases in retrograde shear rate, compared with the noncuffed arm, within subjects (P<0.001). Flow-mediated dilation in the cuffed arm did not change in response to the 25-mm Hg stimulus but decreased significantly after both the 50- and 75-mm Hg interventions (P<0.05). The decrease in flow-mediated dilation after the 75-mm Hg intervention was significantly larger than that observed after a 50-mm Hg intervention (P=0.03). In the noncuffed arm, no changes in shear rate or flow-mediated dilation were observed. These results demonstrate that an increase in retrograde shear rate induces a dose-dependent attenuation of endothelial function in humans. This finding contributes to our understanding regarding the possible detrimental effects of retrograde shear rate in vivo. |
Author | Tinken, Toni M Green, Daniel J Dawson, Ellen A Thijssen, Dick H.J Cable, N Timothy |
AuthorAffiliation | From the Research Institute for Sport and Exercise Science (D.H.J.T., E.A.D., T.M.T., N.T.C., D.J.G.), Liverpool John Moores University, Liverpool, United Kingdom; Department of Physiology (D.H.J.T.), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and the School of Sport Science (D.J.G.), Exercise and Health, University of Western Australia, Crawley, Western Australia, Australia |
AuthorAffiliation_xml | – name: From the Research Institute for Sport and Exercise Science (D.H.J.T., E.A.D., T.M.T., N.T.C., D.J.G.), Liverpool John Moores University, Liverpool, United Kingdom; Department of Physiology (D.H.J.T.), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and the School of Sport Science (D.J.G.), Exercise and Health, University of Western Australia, Crawley, Western Australia, Australia |
Author_xml | – sequence: 1 givenname: Dick surname: Thijssen middlename: H.J fullname: Thijssen, Dick H.J organization: From the Research Institute for Sport and Exercise Science (D.H.J.T., E.A.D., T.M.T., N.T.C., D.J.G.), Liverpool John Moores University, Liverpool, United Kingdom; Department of Physiology (D.H.J.T.), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and the School of Sport Science (D.J.G.), Exercise and Health, University of Western Australia, Crawley, Western Australia, Australia – sequence: 2 givenname: Ellen surname: Dawson middlename: A fullname: Dawson, Ellen A – sequence: 3 givenname: Toni surname: Tinken middlename: M fullname: Tinken, Toni M – sequence: 4 givenname: N surname: Cable middlename: Timothy fullname: Cable, N Timothy – sequence: 5 givenname: Daniel surname: Green middlename: J fullname: Green, Daniel J |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21539879$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19380611$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkFGLEzEQx4OceL3TryBB0LetmU2ySXwQytHaQrmT3gn6tGSzs3Y1m-0lu5T79q60KPjk0zDD7z8z_K7IRegDEvIG2ByggPfrb5-Xu4fl7f3m7naxXsyBmTlwkEw_IzOQuciELPgFmTEwIjMAXy_JVUo_GAMhhHpBLsFwzQqAGdnucIj992hrpCvfH6kNNb3fo410ZwekCzcO6J_opjvYNtJlqPthj761nq7G4Ia2D7QNdD12NqSX5HljfcJX53pNvqyWDzfrbHv3aXOz2GZOFqAzAShRS66dVMqoqqkMoNOFhLoS0mhe8alxtbOsycGqJi8cZw0AcrRKW35N3p32HmL_OGIayq5NDr23AfsxlYXKtVBMTOCHE-hin1LEpjzEtrPxqQRW_nZZ_uNympvy5HIKvz5fGasO67_Rs7wJeHsGbHLWN9EG16Y_XA6SG63MxH08ccfeDxjTTz8eMZaTZD_s_-eTXxYok7g |
CODEN | HPRTDN |
CitedBy_id | crossref_primary_10_1152_ajpheart_00647_2014 crossref_primary_10_1152_japplphysiol_00290_2011 crossref_primary_10_3389_fphar_2014_00209 crossref_primary_10_2991_artres_k_191224_153 crossref_primary_10_1186_s12889_015_2469_8 crossref_primary_10_3389_fphys_2019_00264 crossref_primary_10_1111_j_1748_1716_2010_02213_x crossref_primary_10_1139_apnm_2019_0138 crossref_primary_10_1038_hr_2012_169 crossref_primary_10_1249_MSS_0000000000002302 crossref_primary_10_14814_phy2_13965 crossref_primary_10_1152_ajpheart_00281_2018 crossref_primary_10_1179_2045772312Y_0000000052 crossref_primary_10_1152_ajpheart_00693_2018 crossref_primary_10_1152_ajpregu_00314_2022 crossref_primary_10_1152_japplphysiol_00386_2017 crossref_primary_10_1152_japplphysiol_00362_2023 crossref_primary_10_1210_jc_2013_3398 crossref_primary_10_1152_japplphysiol_01086_2014 crossref_primary_10_3390_ijerph18136723 crossref_primary_10_14814_phy2_13285 crossref_primary_10_1152_ajpheart_00732_2015 crossref_primary_10_1161_JAHA_123_033154 crossref_primary_10_1055_s_0040_1721694 crossref_primary_10_1161_HYPERTENSIONAHA_113_02854 crossref_primary_10_1007_s00421_016_3445_4 crossref_primary_10_1016_j_ultrasmedbio_2022_11_013 crossref_primary_10_1113_EP087576 crossref_primary_10_1139_apnm_2012_0169 crossref_primary_10_1113_expphysiol_2011_059584 crossref_primary_10_1152_japplphysiol_00001_2017 crossref_primary_10_1177_2047487314558377 crossref_primary_10_1249_MSS_0000000000000936 crossref_primary_10_1016_j_atherosclerosis_2015_04_017 crossref_primary_10_1097_HJH_0000000000000033 crossref_primary_10_1186_s12576_022_00841_5 crossref_primary_10_1007_s10439_011_0255_z crossref_primary_10_1016_j_redox_2020_101614 crossref_primary_10_1249_MSS_0000000000002201 crossref_primary_10_1016_j_atherosclerosis_2011_03_003 crossref_primary_10_1038_s41569_021_00547_y crossref_primary_10_1152_japplphysiol_01113_2014 crossref_primary_10_3389_fphys_2019_00727 crossref_primary_10_1152_japplphysiol_00936_2010 crossref_primary_10_1016_j_acmx_2016_03_001 crossref_primary_10_1152_physrev_00022_2020 crossref_primary_10_1007_s00421_022_04963_x crossref_primary_10_1007_s00421_012_2367_z crossref_primary_10_1152_ajpheart_00843_2020 crossref_primary_10_1152_japplphysiol_00042_2012 crossref_primary_10_1152_ajpheart_00717_2017 crossref_primary_10_1152_japplphysiol_00965_2015 crossref_primary_10_1111_sms_14106 crossref_primary_10_1161_HYPERTENSIONAHA_111_177907 crossref_primary_10_1007_s40279_020_01325_5 crossref_primary_10_1152_ajpheart_00226_2009 crossref_primary_10_14814_phy2_14705 crossref_primary_10_1016_j_rxeng_2012_07_001 crossref_primary_10_1152_japplphysiol_00735_2020 crossref_primary_10_1007_s00421_019_04154_1 crossref_primary_10_1161_ATVBAHA_122_317759 crossref_primary_10_1007_s00421_015_3157_1 crossref_primary_10_1097_SLA_0000000000002558 crossref_primary_10_1177_2047487312449294 crossref_primary_10_1113_expphysiol_2011_064212 crossref_primary_10_1093_ajh_hpu004 crossref_primary_10_1113_EP086677 crossref_primary_10_1155_2012_589213 crossref_primary_10_14814_phy2_15943 crossref_primary_10_1016_j_mvr_2017_10_004 crossref_primary_10_1152_ajpcell_00117_2012 crossref_primary_10_3109_10715762_2013_835045 crossref_primary_10_1113_JP270946 crossref_primary_10_1152_ajpheart_01252_2009 crossref_primary_10_1016_j_addr_2022_114180 crossref_primary_10_1080_10790268_2017_1360557 crossref_primary_10_1152_japplphysiol_00033_2011 crossref_primary_10_1042_CS20170031 crossref_primary_10_1016_j_lfs_2018_08_002 crossref_primary_10_1152_japplphysiol_00583_2017 crossref_primary_10_1002_phy2_22 crossref_primary_10_1113_EP085238 crossref_primary_10_1152_ajpheart_00471_2010 crossref_primary_10_1093_cvr_cvab038 crossref_primary_10_14814_phy2_12423 crossref_primary_10_1097_JES_0b013e3181b7b6e3 crossref_primary_10_1113_JP274751 crossref_primary_10_1152_japplphysiol_00378_2020 crossref_primary_10_1113_EP088743 crossref_primary_10_1113_EP085355 crossref_primary_10_1007_s00421_020_04483_6 crossref_primary_10_1152_japplphysiol_00141_2020 crossref_primary_10_3389_fphys_2022_998380 crossref_primary_10_1093_eurheartj_ehab757 crossref_primary_10_1152_japplphysiol_01065_2018 crossref_primary_10_1007_s00421_013_2817_2 crossref_primary_10_1097_MAT_0000000000001001 crossref_primary_10_1152_ajpheart_00943_2015 crossref_primary_10_1152_physrev_00047_2009 crossref_primary_10_1152_ajpheart_00649_2019 crossref_primary_10_1113_EP087065 crossref_primary_10_1152_ajpheart_00054_2013 crossref_primary_10_1152_ajpregu_00110_2021 crossref_primary_10_1113_EP086532 crossref_primary_10_1371_journal_pone_0096062 crossref_primary_10_3389_fphys_2022_808622 crossref_primary_10_1007_s00421_013_2612_0 crossref_primary_10_1042_CS20170130 crossref_primary_10_1152_ajpheart_00388_2016 crossref_primary_10_1097_FJC_0b013e318232b1a4 crossref_primary_10_1152_japplphysiol_00450_2013 crossref_primary_10_1161_HYPERTENSIONAHA_112_200618 crossref_primary_10_1556_2060_2022_00223 crossref_primary_10_1152_japplphysiol_00730_2022 crossref_primary_10_1016_j_rx_2010_12_009 crossref_primary_10_1097_HJH_0b013e32836030dd crossref_primary_10_1590_1414_431X20155100 crossref_primary_10_5551_jat_55731 crossref_primary_10_1016_j_atherosclerosis_2010_03_017 crossref_primary_10_1186_s12947_016_0063_6 crossref_primary_10_1152_ajpheart_00344_2017 crossref_primary_10_5551_jat_11395 crossref_primary_10_1139_apnm_2020_0902 crossref_primary_10_1111_sms_13332 crossref_primary_10_1161_HYPERTENSIONAHA_111_00561 crossref_primary_10_1152_physrev_00014_2016 crossref_primary_10_1249_MSS_0b013e3181ca7b06 crossref_primary_10_1152_ajpregu_00274_2020 crossref_primary_10_1002_phy2_193 crossref_primary_10_1152_japplphysiol_00558_2023 crossref_primary_10_3390_biology11040572 crossref_primary_10_1097_HJH_0000000000000777 crossref_primary_10_1007_s00421_013_2684_x crossref_primary_10_1007_s11332_018_0440_7 crossref_primary_10_1016_j_niox_2020_06_001 crossref_primary_10_1152_japplphysiol_00200_2022 crossref_primary_10_4330_wjc_v13_i9_399 crossref_primary_10_7600_jpfsm_7_19 crossref_primary_10_14814_phy2_15628 crossref_primary_10_1371_journal_pone_0113407 crossref_primary_10_1007_s00421_010_1657_6 crossref_primary_10_1249_MSS_0000000000002822 crossref_primary_10_1152_ajpheart_00282_2017 crossref_primary_10_1152_japplphysiol_00156_2019 crossref_primary_10_3389_fphys_2022_812942 crossref_primary_10_1152_japplphysiol_00009_2019 crossref_primary_10_1152_ajpheart_00335_2018 crossref_primary_10_1186_s12872_021_01849_2 crossref_primary_10_1016_j_atherosclerosis_2015_05_004 crossref_primary_10_1177_1358863X20926588 crossref_primary_10_1007_s10456_023_09903_7 crossref_primary_10_1111_sms_13434 crossref_primary_10_1007_s40279_019_01196_5 crossref_primary_10_1016_j_jvs_2013_08_094 crossref_primary_10_1152_japplphysiol_00260_2020 crossref_primary_10_1186_1476_7120_10_34 crossref_primary_10_1007_s00421_011_1993_1 crossref_primary_10_1038_s41598_017_17249_6 crossref_primary_10_1016_j_atherosclerosis_2013_02_001 crossref_primary_10_1007_s00421_019_04170_1 crossref_primary_10_1152_ajpheart_00430_2018 crossref_primary_10_1016_j_conctc_2021_100740 crossref_primary_10_1152_ajpheart_00345_2018 crossref_primary_10_1371_journal_pone_0255242 crossref_primary_10_1161_HYPERTENSIONAHA_110_165365 crossref_primary_10_1007_s40279_016_0596_8 crossref_primary_10_3233_CH_221395 crossref_primary_10_1042_CS20110469 crossref_primary_10_1007_s00421_012_2347_3 crossref_primary_10_1249_MSS_0b013e31824294f9 crossref_primary_10_1016_j_atherosclerosis_2015_10_013 crossref_primary_10_1152_japplphysiol_01233_2013 crossref_primary_10_1007_s00421_013_2694_8 crossref_primary_10_4015_S101623721100275X crossref_primary_10_1007_s00421_012_2505_7 crossref_primary_10_1152_ajpregu_00301_2016 crossref_primary_10_1159_000519558 crossref_primary_10_1016_j_atherosclerosis_2016_03_011 crossref_primary_10_1152_ajpheart_00128_2014 crossref_primary_10_1152_ajpheart_00985_2010 crossref_primary_10_1080_15438627_2021_1872573 crossref_primary_10_1016_j_jacbts_2023_06_004 crossref_primary_10_1152_japplphysiol_01489_2011 crossref_primary_10_1007_s12170_012_0241_5 crossref_primary_10_1249_MSS_0b013e3181ebe90e crossref_primary_10_1113_EP087005 crossref_primary_10_15857_ksep_2017_26_1_61 crossref_primary_10_1186_2042_6410_2_9 crossref_primary_10_1016_j_atherosclerosis_2016_12_004 crossref_primary_10_1152_japplphysiol_00394_2011 crossref_primary_10_1161_JAHA_115_001968 crossref_primary_10_1152_ajpheart_01133_2009 crossref_primary_10_1152_japplphysiol_00296_2020 crossref_primary_10_1007_s00421_021_04605_8 crossref_primary_10_1152_japplphysiol_00748_2021 crossref_primary_10_14814_phy2_13478 crossref_primary_10_1007_s00421_018_3979_8 crossref_primary_10_1111_cpf_12194 crossref_primary_10_1152_japplphysiol_00502_2020 crossref_primary_10_1111_sms_14600 crossref_primary_10_1152_japplphysiol_00729_2018 crossref_primary_10_1007_s00380_010_0087_z crossref_primary_10_1016_j_bbe_2021_04_007 crossref_primary_10_1155_2012_386387 crossref_primary_10_1016_j_jesf_2022_09_001 crossref_primary_10_1371_journal_pone_0108720 crossref_primary_10_1016_j_amjcard_2010_05_009 crossref_primary_10_1113_JP277191 crossref_primary_10_1113_expphysiol_2009_048694 crossref_primary_10_1007_s00421_024_05468_5 crossref_primary_10_1111_cpf_12894 crossref_primary_10_1016_j_jpeds_2010_06_005 crossref_primary_10_1113_EP090749 crossref_primary_10_1249_MSS_0000000000002763 crossref_primary_10_1113_EP085040 crossref_primary_10_1152_japplphysiol_00110_2014 crossref_primary_10_1111_j_1475_097X_2011_01116_x crossref_primary_10_1113_JP275459 crossref_primary_10_1097_HJH_0000000000001274 crossref_primary_10_1007_s00421_018_3813_3 crossref_primary_10_1016_j_thromres_2018_08_019 crossref_primary_10_1161_ATVBAHA_116_307948 crossref_primary_10_1152_japplphysiol_00935_2016 crossref_primary_10_1152_ajpheart_00174_2010 crossref_primary_10_1007_s00421_024_05419_0 crossref_primary_10_14814_phy2_12721 crossref_primary_10_1016_j_atherosclerosis_2015_11_011 crossref_primary_10_1159_000479871 crossref_primary_10_1177_1358863X11422109 crossref_primary_10_1007_s00421_015_3139_3 crossref_primary_10_1113_EP085056 crossref_primary_10_1113_EP087597 crossref_primary_10_1152_ajpheart_00297_2016 |
Cites_doi | 10.1016/S0735-1097(01)01786-7 10.1126/science.3941904 10.1161/circ.83.2.1991363 10.1172/JCI116092 10.1161/hypertensionaha.107.101014 10.1152/japplphysiol.00357.2007 10.1152/jappl.2001.91.2.929 10.1161/01.cir.0000074229.93804.5c 10.1152/japplphysiol.00051.2002 10.1161/01.HYP.0000103868.45064.81 10.1152/ajpheart.00686.2008 10.1161/circulationaha.105.590398 10.1152/japplphysiol.90553.2008 10.1056/NEJM200002173420702 10.1161/circ.100.16.1680 10.1152/japplphysiol.01024.2006 10.1113/jphysiol.2004.075929 10.1113/jphysiol.2004.068197 10.1152/japplphysiol.01245.2003 10.1161/atvb.18.5.686 10.1161/circ.105.4.452 10.1152/ajpheart.01087.2006 10.1161/circ.84.5.1934373 10.1152/japplphysiol.00601.2005 10.1161/circ.100.2.164 10.1161/res.88.2.145 10.1161/01.cir.0000130590.24107.d3 10.1161/01.res.0000104087.29395.66 10.1161/01.cir.0000028581.07992.56 10.1016/j.ijcard.2007.08.077 10.1152/ajpheart.00771.2005 10.1152/japplphysiol.01096.2007 10.1113/jphysiol.2007.145722 10.1016/S0735-1097(96)00393-2 10.1111/j.1365-2796.2006.01621.x 10.1152/ajpheart.00515.2003 10.1042/bj3290653 10.1161/01.hyp.8.1.37 10.1249/MSS.0b013e3181923957 10.1042/CS20040177 10.1152/ajpheart.2001.281.3.H1380 10.1016/S0735-1097(01)01746-6 10.1152/ajpheart.00049.2002 10.1161/res.82.5.532 |
ContentType | Journal Article |
Copyright | 2009 American Heart Association, Inc. 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 American Heart Association, Inc. – notice: 2009 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1161/HYPERTENSIONAHA.109.131508 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4563 |
EndPage | 992 |
ExternalDocumentID | 10_1161_HYPERTENSIONAHA_109_131508 19380611 21539879 10.1161/HYPERTENSIONAHA.109.131508 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .XZ .Z2 01R 08R 0R 1J1 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 55 5GY 5RE 5VS 71W 77Y 7O 7O~ AAAXR AAMOA AAMTA AAPBV AARTV AAXQO AAYEP ABBUW ABFLS ABOCM ABXVJ ABZAD ACDDN ACEWG ACGFS ACWDW ACWRI ACXNZ ADBBV ADFPA ADNKB AE3 AENEX AFFNX AFUWQ AHMBA AHULI AHVBC AIJEX AJIOK AJNYG AJYGW ALMA_UNASSIGNED_HOLDINGS AMJPA ASCII AWKKM BAWUL BOYCO BQLVK C1A C45 CS3 DIK DUNZO E.X E3Z EBS EJD EX3 F2K F2L F2M F2N F5P FL- FW0 GJ GX1 H0 H0~ H13 HZ IKYAY IN IN~ JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B LI0 N9A N~7 N~B N~M O0- O9- OAG OAH OB3 OCUKA ODA OGROG OHASI OK1 OL1 OLG OLH OLU OLV OLW OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWW OWY OXXIT P-K P2P PQEST PQQKQ R58 RAH RHF RIG RLZ RSW S4R S4S V2I WH7 WOQ WOW X3V X3W X7M XZ YHZ Z2 ZA5 ZGI --- .-D .3C .55 .GJ 0R~ 18M AAFWJ AAGIX AAHPQ AAJCS AAQKA AASCR AASOK ABASU ABDIG ABJNI ABMYL ABQRW ABVCZ ACCJW ACGFO ACILI ADGGA ADHPY AE6 AEBDS AEETU AFDTB AFEXH AGINI AHOMT AHRYX AINUH AJNWD AKULP ALMTX AMKUR AMNEI AOHHW AQVPL BCGUY BS7 DIWNM EEVPB ERAAH FCALG GNXGY GQDEL HLJTE HZ~ IKREB IPNFZ IQODW K-A K-F N4W ODMTH OHYEH OWBYB OWU OWV OWX OWZ T8P TEORI TR2 TSPGW VVN W3M W8F XXN XYM YFH YOC YYM YYP ZFV ZZMQN AAAAV AAIQE ACLDA ACXJB AHQNM AJZMW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c5618-41e5e8538c57797bfb91ec8651db45983b3865cdca0f21a7f26c30f11e3ea78a3 |
ISSN | 0194-911X |
IngestDate | Fri Oct 25 08:25:52 EDT 2024 Fri Aug 23 04:05:23 EDT 2024 Tue Oct 15 23:37:11 EDT 2024 Thu Mar 14 17:31:30 EDT 2024 Thu Aug 13 19:45:03 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Doppler ultrasound study Human Hypertension endothelial function Shear retrograde shear stress Shear stress Cardiovascular disease oscillatory shear stress pattern echo Doppler |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5618-41e5e8538c57797bfb91ec8651db45983b3865cdca0f21a7f26c30f11e3ea78a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/HYPERTENSIONAHA.109.131508 |
PMID | 19380611 |
PQID | 67284704 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_67284704 crossref_primary_10_1161_HYPERTENSIONAHA_109_131508 pubmed_primary_19380611 pascalfrancis_primary_21539879 wolterskluwer_health_10_1161_HYPERTENSIONAHA_109_131508 |
ProviderPackageCode | L-C C45 7O~ AARTV ADFPA OLH ASCII OLG AAMOA ODA ABZAD ABBUW JK3 ADNKB JK8 H0~ 1J1 OLV OLU JG8 OLW OLZ OLY F2K F2M F2L F2N OHASI AHVBC AJNYG FL- KMI K8S OGROG OVLEI AJIOK OPUJH V2I .XZ S4R S4S 4Q1 DUNZO OAG 4Q2 OVDNE 4Q3 AMJPA OAH OVD 71W AHULI ACEWG OB3 .Z2 N~7 IKYAY OVIDH AWKKM 40H N~B OUVQU ORVUJ X3V X3W ACDDN ACWRI BOYCO AIJEX AAXQO AAMTA AAAXR E.X OWW OCUKA OWY 01R ACXNZ OL1 ABXVJ IN~ KD2 OXXIT 77Y ACWDW JF9 FW0 |
PublicationCentury | 2000 |
PublicationDate | 2009-June |
PublicationDateYYYYMMDD | 2009-06-01 |
PublicationDate_xml | – month: 06 year: 2009 text: 2009-June |
PublicationDecade | 2000 |
PublicationPlace | Hagerstown, MD |
PublicationPlace_xml | – name: Hagerstown, MD – name: United States |
PublicationTitle | Hypertension (Dallas, Tex. 1979) |
PublicationTitleAlternate | Hypertension |
PublicationYear | 2009 |
Publisher | American Heart Association, Inc Lippincott Williams & Wilkins |
Publisher_xml | – name: American Heart Association, Inc – name: Lippincott Williams & Wilkins |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 (e_1_3_2_1_2) 1986; 250 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 (e_1_3_2_8_2) 1992; 263 |
References_xml | – ident: e_1_3_2_45_2 doi: 10.1016/S0735-1097(01)01786-7 – ident: e_1_3_2_5_2 doi: 10.1126/science.3941904 – ident: e_1_3_2_28_2 doi: 10.1161/circ.83.2.1991363 – ident: e_1_3_2_7_2 doi: 10.1172/JCI116092 – ident: e_1_3_2_22_2 doi: 10.1161/hypertensionaha.107.101014 – ident: e_1_3_2_36_2 doi: 10.1152/japplphysiol.00357.2007 – ident: e_1_3_2_21_2 doi: 10.1152/jappl.2001.91.2.929 – ident: e_1_3_2_9_2 doi: 10.1161/01.cir.0000074229.93804.5c – ident: e_1_3_2_25_2 doi: 10.1152/japplphysiol.00051.2002 – ident: e_1_3_2_38_2 doi: 10.1161/01.HYP.0000103868.45064.81 – ident: e_1_3_2_32_2 doi: 10.1152/ajpheart.00686.2008 – ident: e_1_3_2_46_2 doi: 10.1161/circulationaha.105.590398 – ident: e_1_3_2_43_2 doi: 10.1152/japplphysiol.90553.2008 – ident: e_1_3_2_10_2 doi: 10.1056/NEJM200002173420702 – ident: e_1_3_2_40_2 doi: 10.1161/circ.100.16.1680 – ident: e_1_3_2_24_2 doi: 10.1152/japplphysiol.01024.2006 – volume: 250 start-page: H1145 year: 1986 ident: e_1_3_2_1_2 publication-title: Am J Physiol – ident: e_1_3_2_34_2 doi: 10.1113/jphysiol.2004.075929 – ident: e_1_3_2_42_2 doi: 10.1113/jphysiol.2004.068197 – ident: e_1_3_2_23_2 doi: 10.1152/japplphysiol.01245.2003 – ident: e_1_3_2_12_2 doi: 10.1161/atvb.18.5.686 – ident: e_1_3_2_41_2 doi: 10.1161/circ.105.4.452 – volume: 263 start-page: H103 year: 1992 ident: e_1_3_2_8_2 publication-title: Am J Physiol – ident: e_1_3_2_13_2 doi: 10.1152/ajpheart.01087.2006 – ident: e_1_3_2_31_2 doi: 10.1161/circ.84.5.1934373 – ident: e_1_3_2_18_2 doi: 10.1152/japplphysiol.00601.2005 – ident: e_1_3_2_37_2 doi: 10.1161/circ.100.2.164 – ident: e_1_3_2_19_2 doi: 10.1161/res.88.2.145 – ident: e_1_3_2_39_2 doi: 10.1161/01.cir.0000130590.24107.d3 – ident: e_1_3_2_17_2 doi: 10.1161/01.res.0000104087.29395.66 – ident: e_1_3_2_27_2 doi: 10.1161/01.cir.0000028581.07992.56 – ident: e_1_3_2_29_2 doi: 10.1016/j.ijcard.2007.08.077 – ident: e_1_3_2_44_2 doi: 10.1152/ajpheart.00771.2005 – ident: e_1_3_2_4_2 doi: 10.1152/japplphysiol.01096.2007 – ident: e_1_3_2_30_2 doi: 10.1113/jphysiol.2007.145722 – ident: e_1_3_2_3_2 doi: 10.1016/S0735-1097(96)00393-2 – ident: e_1_3_2_11_2 doi: 10.1111/j.1365-2796.2006.01621.x – ident: e_1_3_2_15_2 doi: 10.1152/ajpheart.00515.2003 – ident: e_1_3_2_16_2 doi: 10.1042/bj3290653 – ident: e_1_3_2_2_2 doi: 10.1161/01.hyp.8.1.37 – ident: e_1_3_2_35_2 doi: 10.1249/MSS.0b013e3181923957 – ident: e_1_3_2_26_2 doi: 10.1042/CS20040177 – ident: e_1_3_2_6_2 doi: 10.1152/ajpheart.2001.281.3.H1380 – ident: e_1_3_2_20_2 doi: 10.1016/S0735-1097(01)01746-6 – ident: e_1_3_2_33_2 doi: 10.1152/ajpheart.00049.2002 – ident: e_1_3_2_14_2 doi: 10.1161/res.82.5.532 |
SSID | ssj0014447 |
Score | 2.47558 |
Snippet | Changes in arterial shear stress induce functional and structural vasculature adaptations. Recent studies indicate that substantial retrograde flow and shear... |
SourceID | proquest crossref pubmed pascalfrancis wolterskluwer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 986 |
SubjectTerms | Adult Analysis of Variance Area Under Curve Arterial hypertension. Arterial hypotension Biological and medical sciences Blood and lymphatic vessels Blood Flow Velocity - physiology Blood Pressure Determination - methods Brachial Artery - physiology Cardiology. Vascular system Endothelium, Vascular - physiopathology Experimental diseases Forearm - blood supply Humans Male Medical sciences Muscle Contraction - physiology Muscle, Smooth, Vascular - physiology Probability Reference Values Risk Factors Sampling Studies Sensitivity and Specificity Shear Strength - physiology Vasoconstriction - physiology Vasodilation - physiology Young Adult |
Title | Retrograde Flow and Shear Rate Acutely Impair Endothelial Function in Humans |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19380611 https://search.proquest.com/docview/67284704 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBASQtwJl-EH3qKWOHac-LGirSJgFUyZVJ6i2HG0siqdehGXv8af4zhOmpQNqewlaqM6bX0-n5u_c4zQW0_4npQa1rfieZ-Zztoiyoq-UDBCCyJ9YgqcT6Y8PmMfZsGs1_vdYS1tN3Kgfl1bV3ITqcI9kKupkv0Pye4eCjfgNcgXriBhuB4k41O9qehVuXYni6Xl9lZHVLun4EK6Q7Xd6MVP0wE4m6_ccZmbcquFyZFPwJw1NMcqj7_ueqkxBKeritpeYSMamWy75RPpHwOXiFB0MgjJ-fzbuk7kjObqwo0Hu-TzqNqUtfwxsG9t5jSBGNgOSUCruJ29EGkJztMGRnt5CdHypzqlAJnp1wXz0wXbFZIneJnMKN2ZtUm1IvZZH5w72tXUtq1wjciu2hVNO237zp6ud9U4cGMc4q-fxxAqTI2tGsZD009rQKhpi9-axB1R8ZBht9BtH7Sc4RN-_NJuYTHG6lp9--fqjrfwtHf_ftaed3TvMlvDQi3sCSvXhUDwme9Lw6pYX1RFFR3XKHmA7tcxDR5agD5EPV0-QndOatbGY_SpxSk2OMWAU1zhFBuc4hqn2OIUd3CKG5zieYktTp-gs8k4eR_361M8-gp88wjWvw40OIWRCsJQhLKQgmgV8YDkkgUiotIcO6tylXmFT7Kw8LmiXkGIpjoLo4w-RUflstTPEeZ5pimnuccLziKdi0IwJb2ckpxrv6AOos3spZe2WUtaBbmcpH_NuWFepHbOHXS8N9G7oeANUxGFwkFvmplPQfmaHbWs1MvtOuWh8e485qBnViDt1wIgwFUmDgr3JJTa8uYDftaLG498ie62C_IVOtqstvo1uM4beVxB9A_SrrtW |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrograde+Flow+and+Shear+Rate+Acutely+Impair+Endothelial+Function+in+Humans&rft.jtitle=Hypertension+%28Dallas%2C+Tex.+1979%29&rft.au=Thijssen%2C+Dick+H.J&rft.au=Dawson%2C+Ellen+A&rft.au=Tinken%2C+Toni+M&rft.au=Cable%2C+N+Timothy&rft.date=2009-06-01&rft.pub=American+Heart+Association%2C+Inc&rft.issn=0194-911X&rft.eissn=1524-4563&rft.volume=53&rft.issue=6&rft.spage=986&rft.epage=992&rft_id=info:doi/10.1161%2FHYPERTENSIONAHA.109.131508&rft.externalDocID=10.1161%2FHYPERTENSIONAHA.109.131508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-911X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-911X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-911X&client=summon |