Structural basis for ineffective T‐cell responses to MHC anchor residue‐improved “heteroclitic” peptides
MHC anchor residue‐modified “heteroclitic” peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild‐type peptide. The best‐studied system to date is the decamer MART‐1/Melan‐A26–35 peptide, EAAGIGILTV, where the natural alanine at position 2 has b...
Saved in:
Published in | European journal of immunology Vol. 45; no. 2; pp. 584 - 591 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2015
BlackWell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MHC anchor residue‐modified “heteroclitic” peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild‐type peptide. The best‐studied system to date is the decamer MART‐1/Melan‐A26–35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)‐A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor‐expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA‐A*0201‐EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA‐A*0201‐ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to “pull” the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced‐fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation. |
---|---|
AbstractList | MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A26-35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA-A*0201-ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to "pull" the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation.MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A26-35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA-A*0201-ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to "pull" the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation. MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A26-35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA-A*0201-ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to "pull" the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation. MHC anchor residue‐modified “heteroclitic” peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild‐type peptide. The best‐studied system to date is the decamer MART‐1/Melan‐A 26–35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)‐A*0201 anchoring. The resulting E L AGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the E L AGIGILTV peptide can fail to recognize the natural tumor‐expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA‐A*0201‐EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA‐A*0201‐E L AGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to “pull” the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced‐fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation. MHC anchor residue-modified “heteroclitic” peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A 26–35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the ELAGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart, HLA-A*0201-ELAGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to “pull” the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation. MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A sub(26-35) peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting E L AGIGILTV peptide has been used in many studies. We recently showed that T cells primed with the E L AGIGILTV peptide can fail to recognize the natural tumor-expressed peptide efficiently, thereby providing a potential molecular reason for why clinical trials of this peptide have been unsuccessful. Here, we solved the structure of a TCR in complex with HLA-A*0201-EAAGIGILTV peptide and compared it with its heteroclitic counterpart , HLA-A*0201-E L AGIGILTV. The data demonstrate that a suboptimal anchor residue at position 2 enables the TCR to "pull" the peptide away from the MHC binding groove, facilitating extra contacts with both the peptide and MHC surface. These data explain how a TCR can distinguish between two epitopes that differ by only a single MHC anchor residue and demonstrate how weak MHC anchoring can enable an induced-fit interaction with the TCR. Our findings constitute a novel demonstration of the extreme sensitivity of the TCR to minor alterations in peptide conformation. |
Author | Sewell, Andrew K. Schauenburg, Andrea J. Rizkallah, Pierre J. Fuller, Anna Madura, Florian Cole, David K. Godkin, Andrew J. Holland, Christopher J. Bulek, Anna |
Author_xml | – sequence: 1 givenname: Florian surname: Madura fullname: Madura, Florian organization: Cardiff University School of Medicine – sequence: 2 givenname: Pierre J. surname: Rizkallah fullname: Rizkallah, Pierre J. organization: Cardiff University School of Medicine – sequence: 3 givenname: Christopher J. surname: Holland fullname: Holland, Christopher J. organization: Cardiff University School of Medicine – sequence: 4 givenname: Anna surname: Fuller fullname: Fuller, Anna organization: Cardiff University School of Medicine – sequence: 5 givenname: Anna surname: Bulek fullname: Bulek, Anna organization: Cardiff University School of Medicine – sequence: 6 givenname: Andrew J. surname: Godkin fullname: Godkin, Andrew J. organization: Cardiff University School of Medicine – sequence: 7 givenname: Andrea J. surname: Schauenburg fullname: Schauenburg, Andrea J. organization: Cardiff University School of Medicine – sequence: 8 givenname: David K. surname: Cole fullname: Cole, David K. organization: Cardiff University School of Medicine – sequence: 9 givenname: Andrew K. surname: Sewell fullname: Sewell, Andrew K. organization: Cardiff University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25471691$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1u1DAQB3ALtaLbliNXZIkLl7T-TnJBQqtCi4o4tJytxBmzXmXtYCeLettH4AHg5fZJ8GrLCjggTrbGP4088z9FRz54QOg5JReUEHYJS3fBCBVCUiqeoBmVjBaCCnqEZiTXC1ZX5ASdprQkhNRK1k_RCZOipKqmMzTcjXEy4xSbHrdNcgnbELHzYC2Y0a0B32833wz0PY6QhuATJDwG_OF6jhtvFhnnuusmyMythhjW0OHt5vsCRojB9G50Zrv5gQcYRtdBOkfHtukTPHs8z9Cnt1f38-vi9uO7m_mb28JIRVUhjLDKtEA4ldSYTjS8403LWFmKtq2sFB1ToBgnTPLStra0UApCSpUv0lb8DL3e9x2mdgWdAT_mGfUQ3aqJDzo0Tv_54t1Cfw5rLbgsea1yg1ePDWL4MkEa9cql3SIaD2FKmipFeFVJyf-DSqHqinOR6cu_6DJM0edN7BTjTNWlzKrYKxNDShHs4d-U6F3sOseuD7Fn_-L3YQ_6V84ZsD346np4-Hc3ffX-hjOq-E_cnb7T |
CODEN | EJIMAF |
CitedBy_id | crossref_primary_10_1111_cei_12622 crossref_primary_10_1074_jbc_RA120_014016 crossref_primary_10_3389_fimmu_2023_1210044 crossref_primary_10_3389_fimmu_2021_769799 crossref_primary_10_3389_fimmu_2019_00319 crossref_primary_10_1002_eji_201445385 crossref_primary_10_1186_s12981_017_0170_y crossref_primary_10_3389_fimmu_2023_1256491 crossref_primary_10_1002_mc_23212 crossref_primary_10_1002_eji_201948085 crossref_primary_10_1021_acs_jctc_1c00870 crossref_primary_10_3389_fimmu_2017_00935 crossref_primary_10_1016_j_molimm_2020_06_025 crossref_primary_10_3389_fimmu_2023_1285899 crossref_primary_10_4049_jimmunol_1700242 crossref_primary_10_1038_s41467_022_32811_1 crossref_primary_10_1002_eji_202149745 crossref_primary_10_1186_s12967_021_02757_x crossref_primary_10_1172_jci_insight_86558 crossref_primary_10_3389_fimmu_2019_02047 crossref_primary_10_1021_acs_biochem_1c00035 crossref_primary_10_3389_fimmu_2021_664514 crossref_primary_10_1111_febs_15278 crossref_primary_10_1073_pnas_2100588118 crossref_primary_10_1016_j_molimm_2021_05_001 crossref_primary_10_1016_j_jim_2016_02_016 crossref_primary_10_1093_discim_kyac001 crossref_primary_10_1172_JCI85679 crossref_primary_10_4049_jimmunol_1700792 crossref_primary_10_1016_j_omto_2020_07_008 crossref_primary_10_3390_vaccines8040615 crossref_primary_10_4049_jimmunol_2300136 crossref_primary_10_1074_jbc_M116_741603 crossref_primary_10_1038_srep18851 crossref_primary_10_1016_j_cell_2023_06_020 crossref_primary_10_4049_jimmunol_2000756 crossref_primary_10_1073_pnas_2018125118 crossref_primary_10_1002_eji_201747082 crossref_primary_10_3389_fimmu_2018_01962 crossref_primary_10_1017_S0031182015001079 crossref_primary_10_1002_cmdc_202000038 crossref_primary_10_1016_j_smim_2020_101395 crossref_primary_10_1038_s41467_023_37532_7 crossref_primary_10_1074_jbc_M117_789511 crossref_primary_10_1074_jbc_M115_707414 crossref_primary_10_1016_j_jim_2018_10_011 crossref_primary_10_1182_blood_2017_05_787598 crossref_primary_10_1016_j_molimm_2019_03_010 crossref_primary_10_1111_imm_12499 crossref_primary_10_2174_1574892817666220414110335 crossref_primary_10_1016_j_biomaterials_2021_121306 crossref_primary_10_1039_D0CP05322H |
Cites_doi | 10.1038/srep00629 10.1007/BF00167086 10.1038/384134a0 10.1158/0008-5472.CAN-09-1724 10.1074/jbc.M113.522110 10.1002/eji.200535424 10.1016/j.molimm.2010.11.004 10.1016/j.molimm.2007.12.009 10.4049/jimmunol.160.4.1750 10.1084/jem.20042323 10.1038/ni.2206 10.1002/eji.201242606 10.1146/annurev.immunol.23.021704.115658 10.1016/j.vaccine.2007.05.008 10.1107/S0907444996012255 10.1093/nar/gks949 10.1038/nm1100 10.1007/BF00172063 10.1038/nm0398-321 10.1074/jbc.M113.509554 10.1107/S0907444904019158 10.1038/ni1257 10.1111/j.1365-2567.2011.03515.x 10.4049/jimmunol.1000629 10.1107/S0021889807021206 10.1073/pnas.0800080105 10.1074/jbc.M109.022509 10.1016/0022-2836(91)90567-P 10.1034/j.1600-065X.2002.18808.x 10.1016/j.jim.2012.06.007 10.1371/journal.ppat.1001198 10.1002/eji.201242588 10.1107/S0907444994003112 10.1074/jbc.M113.464560 10.4049/jimmunol.178.9.5727 10.1107/S0907444913015308 10.1016/j.jmb.2007.07.025 10.1007/s12026-012-8348-9 10.1016/S0952-7915(01)00298-9 10.1038/sj.emboj.7600771 10.1002/jmr.896 10.1074/jbc.M112.357673 10.1182/blood-2012-06-437202 10.4049/jimmunol.1101268 10.1038/nri3279 10.4049/jimmunol.0901460 10.1074/jbc.M112.386409 |
ContentType | Journal Article |
Copyright | 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 The Authors. European Journal of Immunology Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2014 |
Copyright_xml | – notice: 2014 The Authors. Published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 The Authors. European Journal of Immunology Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2014 |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7T5 7TK 7TM 8FD FR3 H94 K9. M7N P64 RC3 7X8 5PM |
DOI | 10.1002/eji.201445114 |
DatabaseName | Wiley Open Access Wiley-Blackwell Backfiles (Open access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE CrossRef AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1521-4141 |
EndPage | 591 |
ExternalDocumentID | 3583766101 10_1002_eji_201445114 25471691 EJI3216 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: RCUK Fellowship – fundername: Wellcome Trust Research Career Development Fellow funderid: WT095767 – fundername: Biotechnology and Biological Sciences Research Council funderid: Grant BB/H001085/1 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: WT095767 – fundername: Wellcome Trust grantid: 100327 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H001085/1 |
GroupedDBID | --- .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOETA ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 TEORI UB1 UPT V2E VH1 W8V W99 WBKPD WHWMO WIB WIH WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 XPP XV2 Y6R ZGI ZXP ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7T5 7TK 7TM 8FD FR3 H94 K9. M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5616-4c4f6cbe03151ccd4a3d3ab22774bb8f54d26e62302537fbf7fe7400767fe5f83 |
IEDL.DBID | 24P |
ISSN | 0014-2980 1521-4141 |
IngestDate | Tue Sep 17 21:26:35 EDT 2024 Fri Aug 16 03:55:53 EDT 2024 Sat Oct 26 04:45:50 EDT 2024 Thu Oct 10 16:11:03 EDT 2024 Fri Aug 23 00:22:25 EDT 2024 Sat Nov 02 12:28:31 EDT 2024 Sat Aug 24 01:19:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | TCR T-cell MART-1 Cross-reactivity Melanoma Peptide-major histocompatibility complex Surface plasmon resonance Melan-A Crystal structure |
Language | English |
License | Attribution 2014 The Authors. European Journal of Immunology Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5616-4c4f6cbe03151ccd4a3d3ab22774bb8f54d26e62302537fbf7fe7400767fe5f83 |
Notes | These authors contributed equally to this study. See accompanying Commentary by Dyson. http://dx.doi.org/10.1002/eji.201445385 See accompanying Commentary ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 See accompanying Commentary: http://dx.doi.org/10.1002/eji.201445385 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.201445114 |
PMID | 25471691 |
PQID | 1652326975 |
PQPubID | 986365 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4357396 proquest_miscellaneous_1660388553 proquest_miscellaneous_1654698334 proquest_journals_1652326975 crossref_primary_10_1002_eji_201445114 pubmed_primary_25471691 wiley_primary_10_1002_eji_201445114_EJI3216 |
PublicationCentury | 2000 |
PublicationDate | February 2015 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Oxford, UK |
PublicationTitle | European journal of immunology |
PublicationTitleAlternate | Eur J Immunol |
PublicationYear | 2015 |
Publisher | Wiley Subscription Services, Inc BlackWell Publishing Ltd |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: BlackWell Publishing Ltd |
References | 2012; 382 1998; 160 2002; 14 2009; 69 2012; 287 2013; 69 2004; 60 2006; 36 2013; 41 2004; 4 2013; 288 2010; 185 2008; 105 2013; 121 1996; 384 2012; 13 2012; 12 1994; 40 1991; 219 2005; 24 2004; 10 1995; 41 2007; 178 2012; 2 2012; 135 2013; 55 2006; 24 1997; 53 2005; 201 2002; 188 2007; 372 2003; 9 2008; 45 2005; 6 2009; 183 2008; 21 2011; 48 2009; 284 2007; 40 1994; 50 1998; 4 2012; 42 2007; 25 2010; 6 2011; 187 2014; 289 25581444 - Eur J Immunol. 2015 Feb;45(2):380-2. doi: 10.1002/eji.201445385 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Liénard D. (e_1_2_7_14_1) 2004; 4 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Ayyoub M. (e_1_2_7_22_1) 2003; 9 |
References_xml | – volume: 69 start-page: 7784 year: 2009 end-page: 7792 article-title: Design of agonistic altered peptides for the robust induction of CTL directed towards H‐2Db in complex with the melanoma‐associated epitope gp100 publication-title: Cancer Res. – volume: 69 start-page: 1260 year: 2013 end-page: 1273 article-title: Decision making in xia2 publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 185 start-page: 2600 year: 2010 end-page: 2610 article-title: Modification of MHC anchor residues generates heteroclitic peptides that alter TCR binding and T cell recognition publication-title: J. Immunol. – volume: 6 start-page: e1001198 year: 2010 article-title: Genetic and structural basis for selection of a ubiquitous T cell receptor deployed in Epstein‐Barr virus infection publication-title: PLoS Pathog. – volume: 50 start-page: 760 year: 1994 end-page: 763 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta. Crystallogr. D. Biol. Crystallogr. – volume: 289 start-page: 628 year: 2014 end-page: 638 article-title: T‐cell receptor (TCR)‐peptide specificity overrides affinity‐enhancing TCR‐major histocompatibility complex interactions publication-title: J. Biol. Chem. – volume: 48 start-page: 728 year: 2011 end-page: 732 article-title: Real time detection of peptide‐MHC dissociation reveals that improvement of primary MHC‐binding residues can have a minimal, or no, effect on stability publication-title: Mol. Immunol. – volume: 183 start-page: 5397 year: 2009 end-page: 5406 article-title: Fine structural variations of alphabetaTCRs selected by vaccination with natural versus altered self‐antigen in melanoma patients publication-title: J. Immunol. – volume: 45 start-page: 2700 year: 2008 end-page: 2709 article-title: T cell receptor engagement of peptide‐major histocompatibility complex class I does not modify CD8 binding publication-title: Mol. Immunol. – volume: 288 start-page: 33213 year: 2013 end-page: 33225 article-title: Improving antigenic peptide vaccines for cancer immunotherapy using a dominant tumor‐specific T cell receptor publication-title: J. Biol. Chem. – volume: 41 start-page: D1222 year: 2013 end-page: D1227 article-title: The IMGT/HLA database publication-title: Nucleic Acids Res. – volume: 384 start-page: 134 year: 1996 end-page: 141 article-title: Structure of the complex between human T‐cell receptor, viral peptide and HLA‐A2 publication-title: Nature – volume: 21 start-page: 275 year: 2008 end-page: 287 article-title: Thermodynamics of T‐cell receptor‐peptide/MHC interactions: progress and opportunities publication-title: J. Mol. Recognit. – volume: 14 start-page: 52 year: 2002 end-page: 65 article-title: The specificity of TCR/pMHC interaction publication-title: Curr. Opin. Immunol. – volume: 187 start-page: 2453 year: 2011 end-page: 2463 article-title: TCRs used in cancer gene therapy cross‐react with MART‐1/Melan‐A tumor antigens via distinct mechanisms publication-title: J. Immunol. – volume: 10 start-page: 909 year: 2004 end-page: 915 article-title: Cancer immunotherapy: moving beyond current vaccines publication-title: Nat. Med. – volume: 12 start-page: 669 year: 2012 end-page: 677 article-title: Why must T cells be cross‐reactive? publication-title: Nat. Rev. Immunol. – volume: 382 start-page: 203 year: 2012 end-page: 210 article-title: TCR/pMHC optimized protein crystallization screen publication-title: J. Immunol. Methods – volume: 284 start-page: 27281 year: 2009 end-page: 27289 article-title: Germ line‐governed recognition of a cancer epitope by an immunodominant human T‐cell receptor publication-title: J. Biol. Chem. – volume: 105 start-page: 3849 year: 2008 end-page: 3854 article-title: Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 283 year: 2012 end-page: 289 article-title: Structural basis for the killing of human beta cells by CD8(+) T cells in type 1 diabetes publication-title: Nat. Immunol. – volume: 53 start-page: 240 year: 1997 end-page: 255 article-title: Refinement of macromolecular structures by the maximum‐likelihood method publication-title: Acta. Crystallogr. D Biol. Crystallogr. – volume: 55 start-page: 34 year: 2013 end-page: 47 article-title: Improving T cell responses to modified peptides in tumor vaccines publication-title: Immunol. Res. – volume: 9 start-page: 669 year: 2003 end-page: 677 article-title: Activation of human melanoma reactive CD8+ T cells by vaccination with an immunogenic peptide analog derived from Melan‐A/melanoma antigen recognized by T cells‐1 publication-title: Clin. Cancer Res. – volume: 42 start-page: 2990 year: 2012 end-page: 3000 article-title: Unexpected T‐cell recognition of an altered peptide ligand is driven by reversed thermodynamics publication-title: Eur. J. Immunol. – volume: 40 start-page: 658 year: 2007 end-page: 674 article-title: Phaser crystallographic software publication-title: J. Appl. Crystallogr. – volume: 40 start-page: 238 year: 1994 end-page: 241 article-title: Peptide motifs of HLA‐A1, ‐A11, ‐A31, and ‐A33 molecules publication-title: Immunogenetics – volume: 287 start-page: 23068 year: 2012 end-page: 23078 article-title: Interplay between T cell receptor binding kinetics and the level of cognate peptide presented by major histocompatibility complexes governs CD8 +T cell responsiveness publication-title: J. Biol. Chem. – volume: 201 start-page: 1243 year: 2005 end-page: 1255 article-title: Structural and kinetic basis for heightened immunogenicity of T cell vaccines publication-title: J. Exp. Med. – volume: 188 start-page: 81 year: 2002 end-page: 96 article-title: Antigenicity and immunogenicity of Melan‐A/MART‐1 derived peptides as targets for tumor reactive CTL in human melanoma publication-title: Immunol. Rev. – volume: 25 start-page: 5330 year: 2007 end-page: 5342 article-title: Immunological validation of the EpitOptimizer program for streamlined design of heteroclitic epitopes publication-title: Vaccine – volume: 121 start-page: 1112 year: 2013 end-page: 1123 article-title: Peptide length determines the outcome of TCR/peptide‐MHCI engagement publication-title: Blood – volume: 178 start-page: 5727 year: 2007 end-page: 5734 article-title: Human TCR‐binding affinity is governed by MHC class restriction publication-title: J. Immunol. – volume: 287 start-page: 37269 year: 2012 end-page: 37281 article-title: T‐cell receptor‐optimized peptide skewing of the T‐cell repertoire can enhance antigen targeting publication-title: J. Biol. Chem. – volume: 41 start-page: 178 year: 1995 end-page: 228 article-title: MHC ligands and peptide motifs: first listing publication-title: Immunogenetics – volume: 24 start-page: 2968 year: 2005 end-page: 2979 article-title: Structure of a human autoimmune TCR bound to a myelin basic protein self‐peptide and a multiple sclerosis‐associated MHC class II molecule publication-title: EMBO J. – volume: 24 start-page: 419 year: 2006 end-page: 466 article-title: How TCRs bind MHCs, peptides, and coreceptors publication-title: Annu. Rev. Immunol. – volume: 42 start-page: 3174 year: 2012 end-page: 3179 article-title: Different affinity windows for virus and cancer‐specific T‐cell receptors: implications for therapeutic strategies publication-title: Eur. J. Immunol. – volume: 219 start-page: 277 year: 1991 end-page: 319 article-title: Refined structure of the human histocompatibility antigen HLA‐A2 at 2.6 A resolution publication-title: J. Mol. Biol. – volume: 6 start-page: 1114 year: 2005 end-page: 1122 article-title: T cell receptor recognition of a “super‐bulged” major histocompatibility complex class I‐bound peptide publication-title: Nat. Immunol. – volume: 4 start-page: 321 year: 1998 end-page: 327 article-title: Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma publication-title: Nat. Med. – volume: 36 start-page: 170 year: 2006 end-page: 179 article-title: Crystal structure of HLA‐A*2402 complexed with a telomerase peptide publication-title: Eur. J. Immunol. – volume: 135 start-page: 9 year: 2012 end-page: 18 article-title: Structural and biophysical determinants of αβ T‐cell antigen recognition publication-title: Immunology – volume: 4 start-page: 4 year: 2004 article-title: Ex vivo detectable activation of Melan‐A‐specific T cells correlating with inflammatory skin reactions in melanoma patients vaccinated with peptides in IFA publication-title: Cancer Immun. – volume: 60 start-page: 2126 year: 2004 end-page: 2132 article-title: Coot: model‐building tools for molecular graphics publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 288 start-page: 18766 year: 2013 end-page: 18775 article-title: T‐cell receptor specificity maintained by altered thermodynamics publication-title: J. Biol. Chem. – volume: 372 start-page: 1123 year: 2007 end-page: 1136 article-title: Structures of MART‐126/27–35 Peptide/HLA‐A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition publication-title: J. Mol. Biol. – volume: 160 start-page: 1750 year: 1998 end-page: 1758 article-title: Enhanced generation of specific tumor‐reactive CTL in vitro by selected Melan‐A/MART‐1 immunodominant peptide analogues publication-title: J. Immunol. – volume: 2 start-page: 629 year: 2012 article-title: Minimal conformational plasticity enables TCR cross‐reactivity to different MHC class II heterodimers publication-title: Sci. Rep. – ident: e_1_2_7_42_1 doi: 10.1038/srep00629 – ident: e_1_2_7_9_1 doi: 10.1007/BF00167086 – ident: e_1_2_7_18_1 doi: 10.1038/384134a0 – ident: e_1_2_7_34_1 doi: 10.1158/0008-5472.CAN-09-1724 – ident: e_1_2_7_36_1 doi: 10.1074/jbc.M113.522110 – volume: 4 start-page: 4 year: 2004 ident: e_1_2_7_14_1 article-title: Ex vivo detectable activation of Melan‐A‐specific T cells correlating with inflammatory skin reactions in melanoma patients vaccinated with peptides in IFA publication-title: Cancer Immun. contributor: fullname: Liénard D. – volume: 9 start-page: 669 year: 2003 ident: e_1_2_7_22_1 article-title: Activation of human melanoma reactive CD8+ T cells by vaccination with an immunogenic peptide analog derived from Melan‐A/melanoma antigen recognized by T cells‐1 publication-title: Clin. Cancer Res. contributor: fullname: Ayyoub M. – ident: e_1_2_7_44_1 doi: 10.1002/eji.200535424 – ident: e_1_2_7_7_1 doi: 10.1016/j.molimm.2010.11.004 – ident: e_1_2_7_43_1 doi: 10.1016/j.molimm.2007.12.009 – ident: e_1_2_7_21_1 doi: 10.4049/jimmunol.160.4.1750 – ident: e_1_2_7_17_1 doi: 10.1084/jem.20042323 – ident: e_1_2_7_33_1 doi: 10.1038/ni.2206 – ident: e_1_2_7_6_1 doi: 10.1002/eji.201242606 – ident: e_1_2_7_19_1 doi: 10.1146/annurev.immunol.23.021704.115658 – ident: e_1_2_7_16_1 doi: 10.1016/j.vaccine.2007.05.008 – ident: e_1_2_7_50_1 doi: 10.1107/S0907444996012255 – ident: e_1_2_7_13_1 doi: 10.1093/nar/gks949 – ident: e_1_2_7_2_1 doi: 10.1038/nm1100 – ident: e_1_2_7_10_1 doi: 10.1007/BF00172063 – ident: e_1_2_7_15_1 doi: 10.1038/nm0398-321 – ident: e_1_2_7_38_1 doi: 10.1074/jbc.M113.509554 – ident: e_1_2_7_49_1 doi: 10.1107/S0907444904019158 – ident: e_1_2_7_11_1 doi: 10.1038/ni1257 – ident: e_1_2_7_3_1 doi: 10.1111/j.1365-2567.2011.03515.x – ident: e_1_2_7_20_1 doi: 10.4049/jimmunol.1000629 – ident: e_1_2_7_48_1 doi: 10.1107/S0021889807021206 – ident: e_1_2_7_24_1 doi: 10.1073/pnas.0800080105 – ident: e_1_2_7_26_1 doi: 10.1074/jbc.M109.022509 – ident: e_1_2_7_8_1 doi: 10.1016/0022-2836(91)90567-P – ident: e_1_2_7_23_1 doi: 10.1034/j.1600-065X.2002.18808.x – ident: e_1_2_7_45_1 doi: 10.1016/j.jim.2012.06.007 – ident: e_1_2_7_30_1 doi: 10.1371/journal.ppat.1001198 – ident: e_1_2_7_37_1 doi: 10.1002/eji.201242588 – ident: e_1_2_7_47_1 doi: 10.1107/S0907444994003112 – ident: e_1_2_7_35_1 doi: 10.1074/jbc.M113.464560 – ident: e_1_2_7_5_1 doi: 10.4049/jimmunol.178.9.5727 – ident: e_1_2_7_46_1 doi: 10.1107/S0907444913015308 – ident: e_1_2_7_27_1 doi: 10.1016/j.jmb.2007.07.025 – ident: e_1_2_7_39_1 doi: 10.1007/s12026-012-8348-9 – ident: e_1_2_7_31_1 doi: 10.1016/S0952-7915(01)00298-9 – ident: e_1_2_7_32_1 doi: 10.1038/sj.emboj.7600771 – ident: e_1_2_7_29_1 doi: 10.1002/jmr.896 – ident: e_1_2_7_4_1 doi: 10.1074/jbc.M112.357673 – ident: e_1_2_7_12_1 doi: 10.1182/blood-2012-06-437202 – ident: e_1_2_7_28_1 doi: 10.4049/jimmunol.1101268 – ident: e_1_2_7_41_1 doi: 10.1038/nri3279 – ident: e_1_2_7_25_1 doi: 10.4049/jimmunol.0901460 – ident: e_1_2_7_40_1 doi: 10.1074/jbc.M112.386409 |
SSID | ssj0009659 |
Score | 2.427398 |
Snippet | MHC anchor residue‐modified “heteroclitic” peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild‐type... MHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type... MHC anchor residue-modified “heteroclitic” peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 584 |
SubjectTerms | Alanine - chemistry Alanine - genetics Amino Acid Sequence Amino Acid Substitution Cross‐reactivity Crystal structure Crystallography, X-Ray Epitopes, T-Lymphocyte - genetics Epitopes, T-Lymphocyte - immunology Epitopes, T-Lymphocyte - metabolism Escherichia coli - genetics Escherichia coli - metabolism Gene Expression HLA-A2 Antigen - chemistry HLA-A2 Antigen - genetics HLA-A2 Antigen - immunology Humans Leucine - chemistry Leucine - genetics MART-1 Antigen - chemistry MART-1 Antigen - genetics MART-1 Antigen - immunology MART‐1 Medical research Melanoma Melan‐A Models, Molecular Molecular Immunology Molecular Sequence Data Peptides Peptides - chemistry Peptides - genetics Peptides - immunology Peptide‐major histocompatibility complex Protein Binding Protein Interaction Domains and Motifs Receptors, Antigen, T-Cell, alpha-beta - chemistry Receptors, Antigen, T-Cell, alpha-beta - genetics Receptors, Antigen, T-Cell, alpha-beta - immunology Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - immunology Surface plasmon resonance T cell receptors T-Lymphocytes, Cytotoxic - cytology T-Lymphocytes, Cytotoxic - immunology T-Lymphocytes, Cytotoxic - metabolism TCR T‐cell |
Title | Structural basis for ineffective T‐cell responses to MHC anchor residue‐improved “heteroclitic” peptides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.201445114 https://www.ncbi.nlm.nih.gov/pubmed/25471691 https://www.proquest.com/docview/1652326975 https://www.proquest.com/docview/1654698334 https://search.proquest.com/docview/1660388553 https://pubmed.ncbi.nlm.nih.gov/PMC4357396 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BEYhLBeUvpSAjIS4o6vo3yRGVVkulRQhaqbcocWxtOGRXpD1w20fgAejL7ZN0xk5TVpUqcYmieBIlnrHnG2f8DcB7L-rGKqFSzhvakpObtLLGpDpDX1IUPvecdiPPvprpqTo-02dDnVPaCxP5IcYFNxoZYb6mAV7V_f4Naaj72VJmViDYUvfhAbHGEHm-UN9uWHeNjviXq1QU-WQg2cQH7G_cvumUbiHN2wmT_wLZ4ImOnsD2ACHZp6jzp3DPdTvwMBaV_L0Dj2bD7_JnsPwR2GGJWYOhu2p7hhCVYVNI4sB5jp2sV39o7Z79irmyrmfnCzabHjC0hjkK4_W2uXAo1oblB9ew9ervnJJoFjakzq1Xl2xJuTGN65_D6dHhycE0HUospBaBk0mVVd7Y2lGtB25toyrZyKoWAlFhXedeq0YYhxAJoZHMfO0z7zIqpW7wRPtcvoCtbtG5V8CkbqwuJlYUEwwa0cvl2lJ4VXDpuc15Ah-u-7hcRiaNMnImixKVUY7KSGDvWgPlMKD6khuMmIUpMp3Au7EZhwL1UdW5xUWQoXqYUqq7ZAzx32gtE3gZlTq-DcbKgTsogWxD3aMAUXFvtnTtPFByI-jMZGES-BgM4-4PLA-Pv0jBze5_Sb-Gx3hNx4zxPdhCA3JvEBCd12-D0ePx83dxBQW7CMk |
link.rule.ids | 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BET8XfgoUQ4FFQlyQ2-yv7SMqrdLS9ACp1Jtlr3cVU8mJSHKAUx6BB4CXy5Mwu-u4DZUqIW6Rd2xl1zM7366__QbgrWVlpQUTMaWVO5KTqrjQSsUywVySZTa11J1GHpyo_qk4OpNnl07xB32IbsPNRYafr12Auw3p3QvVUPO1dtQsr7AlbsItDHnuijd8_HwhIOXk8sJcLGKWpb1WZRMfsLt2-3pWugI1rzImLyNZn4oOHkCx6kRgoJzvzGfljv7xl77j__TyIdxvcSr5EBzrEdwwzSbcDpUrv2_CnUH7Tf4xTL54CVon30EwJ9ZTgjiYYJNniuBkSobLxU_3gYB8C4RcMyWzMRn09wi63AiN8XpdzQ2a1X6Pw1Rkufg1ckydsfb8vOXiN5k4Ak5lpk_g9GB_uNeP2zoOsUZ0pmKhhVW6NK6gBNW6EgWveFEyhtCzLFMrRcWUQRyG-IsntrSJNYmr167wh7Qpfwobzbgxz4BwWWmZ9TTLergyxVSaSu3WcBnlluqURvBu9R7zSZDryIMwM8txJPNuJCPYXr3lvI3aaU4VLsuZyhIZwZuuGePNjVHRmPHc27iim5yL62yUE9mRkkewFRyn-ze4IPcCRREkay7VGTi97_WWph553W9EtgnPVATvvcdc38F8_-iQM6qe_5P1a7jbHw6O8-PDk08v4B62y0BR34YNdCbzEhHYrHzlg-wPnyoswQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB5BERUXfgptDQUWCXFBTuP9s31EpVFaSIWglXoz8f4oppITkeQApzwCDwAvlydhdtdxCZUqIW6Wd2x51zM739rffgPw0tJSK055nCTabcnJZDxUUsYixVyS5zaziduNPDiR_TN-fC7Omzqnbi9M0IdoP7i5yPDztQvwibb7l6Kh5kvlmFleYIvfhFtcIvp1qOjjpX6UU8sLUzGPaZ51G5FNvMH-2uXrSekK0rxKmPwTyPpM1LsHn1d9CASUi858VnbU97_kHf-jk_fhboNSyZvgVg_ghqm34HaoW_ltCzYHzR_5hzD55AVonXgHwYxYTQmiYIJNnieCUyk5XS5-uN8D5Gug45opmY3JoH9A0OFGaIznKz03aFb5LxxGk-Xi58jxdMbKs_OWi19k4ug32kwfwVnv8PSgHzdVHGKF2EzGXHErVWlcOYlEKc2HTLNhSSkCz7LMrOCaSoMoDNEXS21pU2tSV61d4oGwGduGjXpcm10gTGgl8q6ieRfXpZhIM6HcCi5PmE1UlkTwavUai0kQ6yiCLDMtcCSLdiQj2Fu95KKJ2WmRSFyUU5mnIoIXbTNGmxujYW3Gc2_jSm4yxq-zkU5iRwgWwU7wm_ZpcDnu5YkiSNc8qjVwat_rLXU18qrfiGtTlssIXnuHub6DxeHxEaOJfPxP1s9h88PbXvH-6OTdE7iDzSLw0_dgA33JPEX4NSuf-RD7DQERK3A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+ineffective+T-cell+responses+to+MHC+anchor+residue-improved+%22heteroclitic%22+peptides&rft.jtitle=European+journal+of+immunology&rft.au=Madura%2C+Florian&rft.au=Rizkallah%2C+Pierre+J&rft.au=Holland%2C+Christopher+J&rft.au=Fuller%2C+Anna&rft.date=2015-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0014-2980&rft.eissn=1521-4141&rft.volume=45&rft.issue=2&rft.spage=584&rft_id=info:doi/10.1002%2Feji.201445114&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3583766101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon |