A Quick Route to Multiple Highly Potent SARS‐CoV‐2 Main Protease Inhibitors

The COVID‐19 pathogen, SARS‐CoV‐2, requires its main protease (SC2MPro) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus f...

Full description

Saved in:
Bibliographic Details
Published inChemMedChem Vol. 16; no. 6; pp. 942 - 948
Main Authors Yang, Kai S., Ma, Xinyu R., Ma, Yuying, Alugubelli, Yugendar R., Scott, Danielle A., Vatansever, Erol C., Drelich, Aleksandra K., Sankaran, Banumathi, Geng, Zhi Z., Blankenship, Lauren R., Ward, Hannah E., Sheng, Yan J., Hsu, Jason C., Kratch, Kaci C., Zhao, Baoyu, Hayatshahi, Hamed S., Liu, Jin, Li, Pingwei, Fierke, Carol A., Tseng, Chien‐Te K., Xu, Shiqing, Liu, Wenshe Ray
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 18.03.2021
Wiley Subscription Services, Inc
ChemPubSoc Europe
Subjects
Online AccessGet full text
ISSN1860-7179
1860-7187
1860-7187
DOI10.1002/cmdc.202000924

Cover

Loading…
Abstract The COVID‐19 pathogen, SARS‐CoV‐2, requires its main protease (SC2MPro) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID‐19 treatment option. Guided by previous medicinal chemistry studies about SARS‐CoV‐1 main protease (SC1MPro), we have designed and synthesized a series of SC2MPro inhibitors that contain β‐(S‐2‐oxopyrrolidin‐3‐yl)‐alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active‐site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS‐CoV‐2‐induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS‐CoV‐2‐induced cytopathogenic effect in Vero E6 cells at 2.5–5 μM and A549/ACE2 cells at 0.16–0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID‐19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra‐high antiviral potency. Small but strong: A series of SARS‐CoV‐2 MPro covalent inhibitors exhibit excellent activity. Protein crystallography analysis and a live virus‐based microneutralization assay found two of the most potent anti‐SARS‐CoV‐2 small molecules so far. Due to the urgent matter of the COVID‐19 pandemic, these two inhibitors could be quickly advanced to preclinical and clinical tests for COVID‐19.
AbstractList The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M(Pro)) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1M(Pro)), we have designed and synthesized a series of SC2M(Pro) inhibitors that contain beta-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2M(Pro) active-site cysteine C145. All inhibitors display high potency with K-i values at or below 100 nM. The most potent compound, MPI3, has as a K-i value of 8.3 nM. Crystallographic analyses of SC2M(Pro) bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 mu M and A549/ACE2 cells at 0.16-0.31 mu M. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2M(Pro) inhibitors with ultra-high antiviral potency.
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M Pro ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replication in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1M Pro ), we have designed and synthesized a series of SC2M Pro inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2M Pro active site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound MPI3 has as a Ki value as 8.3 nM. Crystallographic analyses of SC2M Pro bound to 7 inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors MPI5 and MPI8 completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5–5 μM and A549/ACE2 cells at 0.16–0.31 μM. Their virus inhibition potency is much higher than some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2M Pro inhibitors with ultra-high antiviral potency. We designed and synthesized a series of SARS-CoV-2 M Pro covalent inhibitors that exhibited excellent inhibitory activity. Protein crystallography analysis and a live virus-based microneutralization assay found two most potent anti-SARS-CoV-2 small molecules so far. Due to the urgent matter of the COVID-19 pandemic, these two inhibitors may be quickly advanced to preclinical and clinical tests for COVID-19.
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro ), we have designed and synthesized a series of SC2MPro inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active-site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549/ACE2 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra-high antiviral potency.
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro ), we have designed and synthesized a series of SC2MPro inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active-site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549/ACE2 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra-high antiviral potency.The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro ), we have designed and synthesized a series of SC2MPro inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active-site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549/ACE2 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra-high antiviral potency.
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1M ), we have designed and synthesized a series of SC2M inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2M active-site cysteine C145. All inhibitors display high potency with K values at or below 100 nM. The most potent compound, MPI3, has as a K value of 8.3 nM. Crystallographic analyses of SC2M bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549/ACE2 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2M inhibitors with ultra-high antiviral potency.
The COVID‐19 pathogen, SARS‐CoV‐2, requires its main protease (SC2M Pro ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID‐19 treatment option. Guided by previous medicinal chemistry studies about SARS‐CoV‐1 main protease (SC1M Pro ), we have designed and synthesized a series of SC2M Pro inhibitors that contain β‐(S‐2‐oxopyrrolidin‐3‐yl)‐alaninal (Opal) for the formation of a reversible covalent bond with the SC2M Pro active‐site cysteine C145. All inhibitors display high potency with K i values at or below 100 nM. The most potent compound, MPI3, has as a K i value of 8.3 nM. Crystallographic analyses of SC2M Pro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS‐CoV‐2‐induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS‐CoV‐2‐induced cytopathogenic effect in Vero E6 cells at 2.5–5 μM and A549/ACE2 cells at 0.16–0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID‐19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2M Pro inhibitors with ultra‐high antiviral potency.
The COVID‐19 pathogen, SARS‐CoV‐2, requires its main protease (SC2MPro) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID‐19 treatment option. Guided by previous medicinal chemistry studies about SARS‐CoV‐1 main protease (SC1MPro), we have designed and synthesized a series of SC2MPro inhibitors that contain β‐(S‐2‐oxopyrrolidin‐3‐yl)‐alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active‐site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS‐CoV‐2‐induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS‐CoV‐2‐induced cytopathogenic effect in Vero E6 cells at 2.5–5 μM and A549/ACE2 cells at 0.16–0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID‐19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra‐high antiviral potency. Small but strong: A series of SARS‐CoV‐2 MPro covalent inhibitors exhibit excellent activity. Protein crystallography analysis and a live virus‐based microneutralization assay found two of the most potent anti‐SARS‐CoV‐2 small molecules so far. Due to the urgent matter of the COVID‐19 pandemic, these two inhibitors could be quickly advanced to preclinical and clinical tests for COVID‐19.
Author Sheng, Yan J.
Kratch, Kaci C.
Yang, Kai S.
Xu, Shiqing
Ma, Yuying
Ma, Xinyu R.
Alugubelli, Yugendar R.
Vatansever, Erol C.
Liu, Jin
Geng, Zhi Z.
Blankenship, Lauren R.
Sankaran, Banumathi
Liu, Wenshe Ray
Tseng, Chien‐Te K.
Li, Pingwei
Ward, Hannah E.
Zhao, Baoyu
Hsu, Jason C.
Hayatshahi, Hamed S.
Scott, Danielle A.
Drelich, Aleksandra K.
Fierke, Carol A.
AuthorAffiliation f Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
b Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
d Department of Biochemistry and Biophysics, Texas A&M University College Station, TX 77843, USA
e Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
g Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
c Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
a Department of Chemistry, Texas A&M University College Station, TX 77843-3255, USA
AuthorAffiliation_xml – name: d Department of Biochemistry and Biophysics, Texas A&M University College Station, TX 77843, USA
– name: a Department of Chemistry, Texas A&M University College Station, TX 77843-3255, USA
– name: g Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
– name: e Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
– name: b Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
– name: c Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– name: f Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
Author_xml – sequence: 1
  givenname: Kai S.
  surname: Yang
  fullname: Yang, Kai S.
  organization: Texas A&M University
– sequence: 2
  givenname: Xinyu R.
  surname: Ma
  fullname: Ma, Xinyu R.
  organization: Texas A&M University
– sequence: 3
  givenname: Yuying
  surname: Ma
  fullname: Ma, Yuying
  organization: Texas A&M University
– sequence: 4
  givenname: Yugendar R.
  surname: Alugubelli
  fullname: Alugubelli, Yugendar R.
  organization: Texas A&M University
– sequence: 5
  givenname: Danielle A.
  surname: Scott
  fullname: Scott, Danielle A.
  organization: Texas A&M University
– sequence: 6
  givenname: Erol C.
  surname: Vatansever
  fullname: Vatansever, Erol C.
  organization: Texas A&M University
– sequence: 7
  givenname: Aleksandra K.
  surname: Drelich
  fullname: Drelich, Aleksandra K.
  organization: University of Texas Medical Branch
– sequence: 8
  givenname: Banumathi
  surname: Sankaran
  fullname: Sankaran, Banumathi
  organization: Lawrence Berkeley National Laboratory
– sequence: 9
  givenname: Zhi Z.
  surname: Geng
  fullname: Geng, Zhi Z.
  organization: Texas A&M University
– sequence: 10
  givenname: Lauren R.
  surname: Blankenship
  fullname: Blankenship, Lauren R.
  organization: Texas A&M University
– sequence: 11
  givenname: Hannah E.
  surname: Ward
  fullname: Ward, Hannah E.
  organization: Texas A&M University
– sequence: 12
  givenname: Yan J.
  surname: Sheng
  fullname: Sheng, Yan J.
  organization: Texas A&M University
– sequence: 13
  givenname: Jason C.
  surname: Hsu
  fullname: Hsu, Jason C.
  organization: University of Texas Medical Branch
– sequence: 14
  givenname: Kaci C.
  surname: Kratch
  fullname: Kratch, Kaci C.
  organization: Texas A&M University
– sequence: 15
  givenname: Baoyu
  surname: Zhao
  fullname: Zhao, Baoyu
  organization: Texas A&M University
– sequence: 16
  givenname: Hamed S.
  surname: Hayatshahi
  fullname: Hayatshahi, Hamed S.
  organization: UNT Health Science Center
– sequence: 17
  givenname: Jin
  orcidid: 0000-0002-7078-6534
  surname: Liu
  fullname: Liu, Jin
  organization: UNT Health Science Center
– sequence: 18
  givenname: Pingwei
  surname: Li
  fullname: Li, Pingwei
  organization: Texas A&M University
– sequence: 19
  givenname: Carol A.
  surname: Fierke
  fullname: Fierke, Carol A.
  email: cafierke@tamu.edu
  organization: Texas A&M University
– sequence: 20
  givenname: Chien‐Te K.
  surname: Tseng
  fullname: Tseng, Chien‐Te K.
  email: sktseng@utmb.edu
  organization: University of Texas Medical Branch
– sequence: 21
  givenname: Shiqing
  surname: Xu
  fullname: Xu, Shiqing
  email: shiqing.xu@tamu.edu
  organization: Texas A&M University
– sequence: 22
  givenname: Wenshe Ray
  surname: Liu
  fullname: Liu, Wenshe Ray
  email: wliu@chem.tamu.edu
  organization: Texas A&M University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33283984$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1837373$$D View this record in Osti.gov
BookMark eNqNktuKFDEQhhtZcQ9666UEvRFkxpy6k74RhvawCzvsuqvehiST3snak4ydtDJ3PoLP6JNYy4ytLogSSAry_VU_VXVY7IUYXFE8JHhKMKbP7WphpxRTjHFN-Z3igMgKTwSRYm-MRb1fHKZ0jTHnksh7xT5jVLJa8oPibIbeDt5-RBdxyA7liOZDl_26c-jYXy27DTqP2YWMLmcXl9-_fmviB7gpmmsf0HkPfzo5dBKW3vgc-3S_uNvqLrkHu_eoeP_61bvmeHJ69uakmZ1ObFkRPrGspIuSk9oYYVoiuCyNkU5ijStChCHSWiGM5VgvWspwaYRubcsk0ax2vGRHxYtt3vVgVm5hwWKvO7Xu_Ur3GxW1V3_-BL9UV_GzErWouZSQ4PE2QUzZq2R9dnZpYwjOZkUkE3AAerqr0sdPg0tZrXyyrut0cHFIivJKSM4Fo4A-uYVex6EP0ANFS5gNo-AaqEe_2x79_hwIAHILfHEmtmDLBetGDKZc1hX4ryDCpPFZZx9DE4eQQfrs_6VAT7e07WNKvWtHkmB1s1rqZrXUuFog4LcEdlce-uu7v8vqnSvfuc0_iqhm_rL5pf0B4K3gvA
CitedBy_id crossref_primary_10_1016_j_ejmech_2024_116704
crossref_primary_10_1016_j_molstruc_2024_137947
crossref_primary_10_1021_acs_jmedchem_2c01229
crossref_primary_10_3390_biom13091339
crossref_primary_10_1021_jacs_1c08060
crossref_primary_10_1002_cbdv_202403202
crossref_primary_10_1007_s10989_022_10478_y
crossref_primary_10_3389_fchem_2022_816576
crossref_primary_10_1021_acs_jmedchem_0c02258
crossref_primary_10_1016_j_bmcl_2021_128263
crossref_primary_10_1002_smtd_202301191
crossref_primary_10_1186_s12929_022_00847_6
crossref_primary_10_1021_acsmedchemlett_4c00146
crossref_primary_10_1038_s41579_021_00630_8
crossref_primary_10_1016_j_antiviral_2024_105874
crossref_primary_10_1021_acscentsci_2c01359
crossref_primary_10_1007_s00044_023_03065_3
crossref_primary_10_1128_jvi_02013_21
crossref_primary_10_4236_pp_2023_141002
crossref_primary_10_1021_acs_jmedchem_3c00221
crossref_primary_10_1177_1934578X221143082
crossref_primary_10_1021_acs_jmedchem_2c01627
crossref_primary_10_1038_s41598_023_44476_x
crossref_primary_10_1002_minf_202300279
crossref_primary_10_1021_acs_oprd_2c00375
crossref_primary_10_1039_D1SC06750H
crossref_primary_10_1016_j_crchbi_2022_100025
crossref_primary_10_1016_j_beha_2022_101373
crossref_primary_10_1016_j_ejmech_2022_114570
crossref_primary_10_1016_j_jmb_2022_167876
crossref_primary_10_1039_D1SC06596C
crossref_primary_10_1039_D3RA06479D
crossref_primary_10_1021_acs_jmedchem_1c02214
crossref_primary_10_1016_j_csbj_2021_08_029
crossref_primary_10_1021_acs_jmedchem_2c01081
crossref_primary_10_3390_futurepharmacol3010006
crossref_primary_10_3389_fchem_2022_963701
crossref_primary_10_3390_molecules27030683
crossref_primary_10_1016_j_ejmech_2023_115512
crossref_primary_10_2174_1570180820666230111141203
crossref_primary_10_3390_molecules30020351
crossref_primary_10_1016_j_bmc_2021_116386
crossref_primary_10_1021_acs_biochem_3c00685
crossref_primary_10_1016_j_apsb_2021_06_016
crossref_primary_10_1021_acs_jmedchem_1c01475
crossref_primary_10_1016_j_apsb_2024_03_001
crossref_primary_10_1080_14756366_2025_2460045
crossref_primary_10_1021_acsmedchemlett_1c00299
crossref_primary_10_1021_acs_jmedchem_2c01005
crossref_primary_10_1042_BST20211180
crossref_primary_10_1111_cbdd_14425
crossref_primary_10_1039_D3NJ03598K
crossref_primary_10_1002_pro_4712
crossref_primary_10_3390_ph15060676
crossref_primary_10_1080_07391102_2021_1898475
crossref_primary_10_1021_acschembio_2c00695
crossref_primary_10_1021_acs_jmedchem_4c01781
crossref_primary_10_1021_acs_jmedchem_1c00628
crossref_primary_10_1080_1062936X_2024_2375513
crossref_primary_10_1038_s41467_022_29915_z
crossref_primary_10_1007_s10822_022_00460_7
crossref_primary_10_1016_j_ejmech_2024_116498
crossref_primary_10_1021_acs_jcim_3c01280
crossref_primary_10_1002_mco2_151
crossref_primary_10_1002_med_21862
crossref_primary_10_1002_cmdc_202100576
crossref_primary_10_1021_acs_jmedchem_2c00404
crossref_primary_10_1080_07391102_2023_2189478
crossref_primary_10_1002_cmdc_202100456
crossref_primary_10_1016_j_ejmech_2022_114596
crossref_primary_10_3390_ijms23010259
crossref_primary_10_1134_S0036023623700274
crossref_primary_10_1016_j_jmgm_2023_108672
crossref_primary_10_1021_acscentsci_1c00910
crossref_primary_10_1042_BSR20231395
crossref_primary_10_1021_acs_jmedchem_1c00058
crossref_primary_10_1016_j_molstruc_2024_139430
crossref_primary_10_1016_j_csbj_2022_03_009
crossref_primary_10_1039_D3MD00493G
crossref_primary_10_1080_0889311X_2023_2222275
crossref_primary_10_2139_ssrn_4048197
crossref_primary_10_1021_acs_chemrev_4c00570
crossref_primary_10_1016_j_bpc_2022_106908
crossref_primary_10_1016_j_ejmech_2023_115772
crossref_primary_10_1021_acs_jmedchem_3c02416
crossref_primary_10_1021_jacs_2c04626
Cites_doi 10.1016/j.jinf.2012.10.002
10.1128/JVI.01348-12
10.1038/s41422-020-0356-z
10.1128/JVI.80.6.2684-2693.2006
10.1056/NEJMoa030747
10.12688/f1000research.22457.2
10.1128/JVI.79.2.884-895.2005
10.1126/science.abb4489
10.1126/science.abb3405
10.1177/1098612X17729626
10.1016/j.ijsu.2020.02.034
10.1021/acs.jmedchem.5b01461
10.1002/cbic.202000047
10.1016/j.bmcl.2008.08.082
10.3181/00379727-121-30734
10.1038/nm1024
10.1073/pnas.57.4.933
10.1038/s41586-020-2223-y
10.1016/j.genrep.2020.100682
10.1073/pnas.1601327113
10.1016/j.meegid.2020.104260
10.3389/fimmu.2020.00811
10.1099/vir.0.19505-0
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
17B
1KM
BLEPL
DTL
EGQ
HGBXW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1002/cmdc.202000924
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Web of Science - Science Citation Index Expanded - 2021
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Web of Science


MEDLINE - Academic
MEDLINE
Genetics Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KM
  name: Index Chemicus
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1860-7187
EndPage 948
ExternalDocumentID PMC7979488
1837373
33283984
000596948600001
10_1002_cmdc_202000924
CMDC202000924
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Texas A&M University X Grant Mechanism
– fundername: National Institutes of Health
  funderid: R01 GM121584; R01AI145287
– fundername: Texas A&M University Translational Investment Fund
– fundername: Texas A&M University President's Excellence Fund
– fundername: National Institutes of Health
– fundername: National Institute of General Medical Sciences
  funderid: GM124169-01
– fundername: Howard Hughes Medical Institute
– fundername: Welch Foundation
  funderid: A-1715; A-1987
– fundername: Texas A&M University Strategic Transformative Research Program
– fundername: Energy Office of Science User Facility
  funderid: DE-AC02-05CH11231
– fundername: Welch Foundation; The Welch Foundation
  grantid: A-1715; A-1987
– fundername: National Institutes of Health; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA
  grantid: R01GM121584; R01AI145287
– fundername: National Institutes of Health, National Institute of General Medical Sciences; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA; NIH National Institute of General Medical Sciences (NIGMS)
  grantid: P30 GM124169-01
– fundername: Department of Energy Office of Science User Facility; United States Department of Energy (DOE)
  grantid: DE-AC02-05CH11231
– fundername: NIAID NIH HHS
  grantid: U54 AI057156
– fundername: NIGMS NIH HHS
  grantid: P30 GM124169
– fundername: NIH HHS
– fundername: Energy Office of Science User Facility
  grantid: DE-AC02-05CH11231
– fundername: Welch Foundation
  grantid: A-1715
– fundername: NIAID NIH HHS
  grantid: R21 AI113206
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
53G
5GY
66C
6J9
77Q
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HBH
HGLYW
HHZ
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
RWI
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
YZZ
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
17B
1KM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
AAJUZ
AAPBV
AASGY
ABCVL
ABHUG
ADDAD
AGJLS
OIOZB
OTOTI
PQEST
5PM
ID FETCH-LOGICAL-c5614-c352d5419bb7bf17485bb8e80a06117b18cc77bc40adf2305b7afcf381a39e453
IEDL.DBID DR2
ISICitedReferencesCount 91
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000596948600001
ISSN 1860-7179
1860-7187
IngestDate Thu Aug 21 18:31:15 EDT 2025
Mon Jul 10 02:32:55 EDT 2023
Thu Jul 10 22:02:28 EDT 2025
Fri Jul 25 12:17:52 EDT 2025
Mon Jul 21 06:08:10 EDT 2025
Wed Jul 09 19:19:48 EDT 2025
Fri Aug 29 16:09:40 EDT 2025
Thu Apr 24 23:11:03 EDT 2025
Tue Jul 01 00:20:23 EDT 2025
Wed Jan 22 16:29:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords COVID-19
3C-like protease
antivirals
reversible covalent inhibitors
SARS-CoV-2
EFFICACY
main protease
IDENTIFICATION
CORONAVIRUS
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c5614-c352d5419bb7bf17485bb8e80a06117b18cc77bc40adf2305b7afcf381a39e453
Notes )
A previous version of this manuscript has been deposited on a preprint server
https://doi.org/10.1101/2020.07.28.223784
These authors contributed equally to the paper.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
AC02-05CH11231; P30 GM124169-01; R01GM127575; R01GM121584; R01AI145287
ORCID 0000-0002-7078-6534
0000-0001-6260-9290
0000-0001-9016-1809
0000-0002-1890-4169
0000-0002-0530-2580
0000-0002-1714-4399
0000000270786534
OpenAccessLink https://www.osti.gov/servlets/purl/1837373
PMID 33283984
PQID 2509232453
PQPubID 986335
PageCount 7
ParticipantIDs osti_scitechconnect_1837373
webofscience_primary_000596948600001CitationCount
proquest_miscellaneous_2467844732
crossref_primary_10_1002_cmdc_202000924
webofscience_primary_000596948600001
proquest_journals_2509232453
crossref_citationtrail_10_1002_cmdc_202000924
pubmed_primary_33283984
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7979488
wiley_primary_10_1002_cmdc_202000924_CMDC202000924
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 18, 2021
PublicationDateYYYYMMDD 2021-03-18
PublicationDate_xml – month: 03
  year: 2021
  text: March 18, 2021
  day: 18
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
– name: United States
PublicationTitle ChemMedChem
PublicationTitleAbbrev CHEMMEDCHEM
PublicationTitleAlternate ChemMedChem
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
ChemPubSoc Europe
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
– name: ChemPubSoc Europe
References 2004; 10
1966; 121
2006; 80
2003; 348
2020; 30
2020; 582
2008; 18
2020; 81
2020; 9
2016; 113
2020; 368
1967; 57
2020; 11
2020; 76
2020; 21
2003; 84
2016; 59
2018; 20
2012; 65
2012; 86
2005; 79
2020; 19
e_1_2_6_10_1
e_1_2_6_18_2
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_15_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_8_2
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_4_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
Hoek, L. van der (CABI:20043211362) 2004; 10
JIN ZM (WOS:000596948600001.8) 2020; 582
Phan, T (WOS:000532689800008) 2020; 81
Ng, ML (WOS:000220465300011) 2003; 84
Pedersen, NC (WOS:000429871100017) 2018; 20
Adachi, S (WOS:000531710400001) 2020; 11
Muramatsu, T (WOS:000388970100049) 2016; 113
Sohrabi, C (WOS:000522649400028) 2020; 76
Ghosh, AK (WOS:000259972800079) 2008; 18
Vatansever, E.C. (000596948600001.21) 2020; 382
Ma, CL (WOS:000540389900001) 2020; 30
Drosten, C (WOS:000182823400005) 2003; 348
Dai, WH (WOS:000544017600040) 2020; 368
Kim, Y (WOS:000309657100033) 2012; 86
Chen, Yu Wai (MEDLINE:32194944) 2020; 9
Khailany, RA (WOS:000539267800034) 2020; 19
Morse, JS (WOS:000515400100001) 2020; 21
Zhang, LL (WOS:000528513300041) 2020; 368
Pillaiyar, T (WOS:000380730600003) 2016; 59
HAMRE, D (WOS:A19667282500055) 1966; 121
Chan, JFW (WOS:000311087300001) 2012; 65
Woo, PCY (WOS:000226149700024) 2005; 79
MCINTOSH, K (WOS:A19679197800015) 1967; 57
Yen, YT (WOS:000236131400010) 2006; 80
32766582 - bioRxiv. 2020 Jul 28
References_xml – volume: 59
  start-page: 6595
  year: 2016
  end-page: 6628
  publication-title: J. Med. Chem.
– volume: 79
  start-page: 884
  year: 2005
  end-page: 895
  publication-title: J. Virol.
– volume: 9
  start-page: 129
  year: 2020
  publication-title: F1000Research
– volume: 11
  start-page: 811
  year: 2020
  publication-title: Front. Immunol.
– volume: 76
  start-page: 71
  year: 2020
  end-page: 76
  publication-title: Int. J. Surg.
– volume: 65
  start-page: 477
  year: 2012
  end-page: 489
  publication-title: J. Infect.
– volume: 113
  start-page: 12997
  year: 2016
  end-page: 13002
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 81
  year: 2020
  publication-title: Infect. Genet. Evol.
– volume: 86
  start-page: 11754
  year: 2012
  end-page: 11762
  publication-title: J. Virol.
– volume: 348
  start-page: 1967
  year: 2003
  end-page: 1976
  publication-title: N. Engl. J. Med.
– volume: 368
  start-page: 1331
  year: 2020
  end-page: 1335
  publication-title: Science
– volume: 10
  start-page: 368
  year: 2004
  end-page: 373
  publication-title: Nat. Med.
– volume: 19
  year: 2020
  publication-title: Gene Rep.
– volume: 20
  start-page: 378
  year: 2018
  end-page: 392
  publication-title: J. Feline Med. Surg.
– volume: 57
  start-page: 933
  year: 1967
  end-page: 940
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 368
  start-page: 409
  year: 2020
  end-page: 412
  publication-title: Science
– volume: 30
  start-page: 678
  year: 2020
  end-page: 692
  publication-title: Cell Res.
– volume: 80
  start-page: 2684
  year: 2006
  end-page: 2693
  publication-title: J. Virol.
– volume: 18
  start-page: 5684
  year: 2008
  end-page: 5688
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 582
  start-page: 289
  year: 2020
  end-page: 293
  publication-title: Nature
– volume: 121
  start-page: 190
  year: 1966
  end-page: 193
  publication-title: Proc. Soc. Exp. Biol. Med.
– volume: 21
  start-page: 730
  year: 2020
  end-page: 738
  publication-title: ChemBioChem
– volume: 84
  start-page: 3291
  year: 2003
  end-page: 3303
  publication-title: J. Gen. Virol.
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jinf.2012.10.002
– ident: e_1_2_6_25_1
  doi: 10.1128/JVI.01348-12
– ident: e_1_2_6_27_1
  doi: 10.1038/s41422-020-0356-z
– ident: e_1_2_6_29_1
  doi: 10.1128/JVI.80.6.2684-2693.2006
– ident: e_1_2_6_5_1
  doi: 10.1056/NEJMoa030747
– ident: e_1_2_6_14_1
  doi: 10.12688/f1000research.22457.2
– ident: e_1_2_6_8_2
  doi: 10.1128/JVI.79.2.884-895.2005
– ident: e_1_2_6_11_1
– ident: e_1_2_6_24_2
  doi: 10.1126/science.abb4489
– ident: e_1_2_6_17_2
  doi: 10.1126/science.abb3405
– ident: e_1_2_6_22_1
– ident: e_1_2_6_23_2
  doi: 10.1177/1098612X17729626
– ident: e_1_2_6_10_1
  doi: 10.1016/j.ijsu.2020.02.034
– ident: e_1_2_6_21_1
  doi: 10.1021/acs.jmedchem.5b01461
– ident: e_1_2_6_19_1
  doi: 10.1002/cbic.202000047
– ident: e_1_2_6_26_1
  doi: 10.1016/j.bmcl.2008.08.082
– ident: e_1_2_6_2_1
– ident: e_1_2_6_4_2
  doi: 10.3181/00379727-121-30734
– ident: e_1_2_6_7_2
  doi: 10.1038/nm1024
– ident: e_1_2_6_3_2
  doi: 10.1073/pnas.57.4.933
– ident: e_1_2_6_16_2
  doi: 10.1038/s41586-020-2223-y
– ident: e_1_2_6_18_2
– ident: e_1_2_6_12_1
  doi: 10.1016/j.genrep.2020.100682
– ident: e_1_2_6_6_1
– ident: e_1_2_6_20_1
  doi: 10.1073/pnas.1601327113
– ident: e_1_2_6_13_1
  doi: 10.1016/j.meegid.2020.104260
– ident: e_1_2_6_15_1
– ident: e_1_2_6_1_1
  doi: 10.3389/fimmu.2020.00811
– ident: e_1_2_6_28_1
  doi: 10.1099/vir.0.19505-0
– volume: 11
  start-page: ARTN 811
  year: 2020
  ident: WOS:000531710400001
  article-title: Commentary: Origin and evolution of pathogenic coronaviruses
  publication-title: FRONTIERS IN IMMUNOLOGY
  doi: 10.3389/fimmu.2020.00811
– volume: 10
  start-page: 368
  year: 2004
  ident: CABI:20043211362
  article-title: Identification of a new human coronavirus.
  publication-title: Nature Medicine
– volume: 21
  start-page: 730
  year: 2020
  ident: WOS:000515400100001
  article-title: Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV
  publication-title: CHEMBIOCHEM
  doi: 10.1002/cbic.202000047
– volume: 84
  start-page: 3291
  year: 2003
  ident: WOS:000220465300011
  article-title: Proliferative growth of SARS coronavirus in Vero E6 cells
  publication-title: JOURNAL OF GENERAL VIROLOGY
  doi: 10.1099/vir.0.19505-0
– volume: 30
  start-page: 678
  year: 2020
  ident: WOS:000540389900001
  article-title: Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease
  publication-title: CELL RESEARCH
  doi: 10.1038/s41422-020-0356-z
– volume: 79
  start-page: 884
  year: 2005
  ident: WOS:000226149700024
  article-title: Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia
  publication-title: JOURNAL OF VIROLOGY
– volume: 57
  start-page: 933
  year: 1967
  ident: WOS:A19679197800015
  article-title: RECOVERY IN TRACHEAL ORGAN CULTURES OF NOVEL VIRUSES FROM PATIENTS WITH RESPIRATORY DISEASE
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
– volume: 9
  start-page: 129
  year: 2020
  ident: MEDLINE:32194944
  article-title: Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates.
  publication-title: F1000Research
  doi: 10.12688/f1000research.22457.2
– volume: 582
  year: 2020
  ident: WOS:000596948600001.8
  publication-title: NATURE
– volume: 18
  start-page: 5684
  year: 2008
  ident: WOS:000259972800079
  article-title: Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors
  publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS
  doi: 10.1016/j.bmcl.2008.08.082
– volume: 19
  start-page: ARTN 100682
  year: 2020
  ident: WOS:000539267800034
  article-title: Genomic characterization of a novel SARS-CoV-2
  publication-title: GENE REPORTS
  doi: 10.1016/j.genrep.2020.100682
– volume: 59
  start-page: 6595
  year: 2016
  ident: WOS:000380730600003
  article-title: An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/acs.jmedchem.5b01461
– volume: 382
  start-page: 1677
  year: 2020
  ident: 000596948600001.21
  publication-title: bioRxiv preprint
– volume: 20
  start-page: 378
  year: 2018
  ident: WOS:000429871100017
  article-title: Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis
  publication-title: JOURNAL OF FELINE MEDICINE AND SURGERY
  doi: 10.1177/1098612X17729626
– volume: 76
  start-page: 71
  year: 2020
  ident: WOS:000522649400028
  article-title: World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19)
  publication-title: INTERNATIONAL JOURNAL OF SURGERY
  doi: 10.1016/j.ijsu.2020.02.034
– volume: 65
  start-page: 477
  year: 2012
  ident: WOS:000311087300001
  article-title: Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic?
  publication-title: JOURNAL OF INFECTION
  doi: 10.1016/j.jinf.2012.10.002
– volume: 368
  start-page: 1331
  year: 2020
  ident: WOS:000544017600040
  article-title: Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease
  publication-title: SCIENCE
  doi: 10.1126/science.abb4489
– volume: 81
  start-page: ARTN 104260
  year: 2020
  ident: WOS:000532689800008
  article-title: Genetic diversity and evolution of SARS-CoV-2
  publication-title: INFECTION GENETICS AND EVOLUTION
  doi: 10.1016/j.meegid.2020.104260
– volume: 86
  start-page: 11754
  year: 2012
  ident: WOS:000309657100033
  article-title: Broad-Spectrum Antivirals against 3C or 3C-Like Proteases of Picornaviruses, Noroviruses, and Coronaviruses
  publication-title: JOURNAL OF VIROLOGY
  doi: 10.1128/JVI.01348-12
– volume: 368
  start-page: 409
  year: 2020
  ident: WOS:000528513300041
  article-title: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors
  publication-title: SCIENCE
  doi: 10.1126/science.abb3405
– volume: 348
  start-page: 1967
  year: 2003
  ident: WOS:000182823400005
  article-title: Identification of a novel coronavirus in patients with severe acute respiratory syndrome
  publication-title: NEW ENGLAND JOURNAL OF MEDICINE
– volume: 113
  start-page: 12997
  year: 2016
  ident: WOS:000388970100049
  article-title: SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity
  publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
  doi: 10.1073/pnas.1601327113
– volume: 121
  start-page: 190
  year: 1966
  ident: WOS:A19667282500055
  article-title: A NEW VIRUS ISOLATED FROM HUMAN RESPIRATORY TRACT
  publication-title: PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE
– volume: 80
  start-page: 2684
  year: 2006
  ident: WOS:000236131400010
  article-title: Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro
  publication-title: JOURNAL OF VIROLOGY
  doi: 10.1128/JVI.80.6.2684-2693.2006
– reference: 32766582 - bioRxiv. 2020 Jul 28;:
SSID ssj0044818
Score 2.5604706
Snippet The COVID‐19 pathogen, SARS‐CoV‐2, requires its main protease (SC2MPro) to digest two of its translated long polypeptides to form a number of mature proteins...
The COVID‐19 pathogen, SARS‐CoV‐2, requires its main protease (SC2M Pro ) to digest two of its translated long polypeptides to form a number of mature proteins...
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M(Pro)) to digest two of its translated long polypeptides to form a number of mature proteins...
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M ) to digest two of its translated long polypeptides to form a number of mature proteins...
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro ) to digest two of its translated long polypeptides to form a number of mature proteins...
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M Pro ) to digest two of its translated long polypeptides to form a number of mature proteins...
Source Web of Science
SourceID pubmedcentral
osti
proquest
pubmed
webofscience
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 942
SubjectTerms 3C-like protease
60 APPLIED LIFE SCIENCES
A549 Cells
ACE2
Alanine - analogs & derivatives
Alanine - metabolism
Alanine - pharmacology
Angiotensin-converting enzyme 2
Animals
Antiviral Agents - chemical synthesis
Antiviral Agents - metabolism
Antiviral Agents - pharmacology
Antiviral drugs
antivirals
Catalytic Domain
Chemical bonds
Chemistry, Medicinal
Chlorocebus aethiops
Coronavirus 3C Proteases - antagonists & inhibitors
Coronavirus 3C Proteases - chemistry
Coronavirus 3C Proteases - metabolism
Covalent bonds
COVID-19
Crystallography
Cysteine - chemistry
Cysteine Proteinase Inhibitors - chemical synthesis
Cysteine Proteinase Inhibitors - metabolism
Cysteine Proteinase Inhibitors - pharmacology
Humans
Life Sciences & Biomedicine
main protease
Microbial Sensitivity Tests
Pathogenesis
Pharmacology & Pharmacy
Polypeptides
Protease
Protease inhibitors
Protein Binding
Proteinase inhibitors
Proteolysis
Pyrrolidinones - chemical synthesis
Pyrrolidinones - metabolism
Pyrrolidinones - pharmacology
reversible covalent inhibitors
SARS-CoV-2
SARS-CoV-2 - drug effects
SARS-CoV-2 - enzymology
Science & Technology
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Vero Cells
Viral diseases
Viruses
Title A Quick Route to Multiple Highly Potent SARS‐CoV‐2 Main Protease Inhibitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcmdc.202000924
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000596948600001
https://www.ncbi.nlm.nih.gov/pubmed/33283984
https://www.proquest.com/docview/2509232453
https://www.proquest.com/docview/2467844732
https://www.osti.gov/servlets/purl/1837373
https://pubmed.ncbi.nlm.nih.gov/PMC7979488
Volume 16
WOS 000596948600001
WOSCitedRecordID wos000596948600001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZQn3jhfsk2kJGm8bJsSWzH9mMVmAZSoeyC9hbZTqJFG8m0pg_liZ_Ab-SXcE6SpisaAoEqVap8rDbOuXwn_fyZkO2COxNlovA1Z7HPMxn6NmDGz7jObSZEIVstvcmH-PCUvz8TZzd28Xf6EMMDN4yMNl9jgBs721-JhrovGUoQ4lYT6CEgCSNhC1HR0aAfBa1H-4AvVHHgQ9-il6qNQbS_Pn2tKo1qiK7bEOftxMmhWK3j27ZAHdwnZnlpHS_lYm_e2D339RfVx_-59gfkXo9e6bhzt4fkTl49IjvTTv56sUtPVru5Zrt0h05XwtiLx-TjmH6al-6CIg0pp01NJz2dkSLd5HJBpzVA-IYej4-Of3z7ntSf4T2iE1NWdIqCElBy6bvqvLQlHhL0hJwevD1JDv3-QAffoeCo7wDtZYKH2lppC-iFlLBW5SowgCpCaUPlnJTW8cBkBfRGwkpTuAJAhWE654I9JaOqrvLnhAIsc84qzmQRcCcy62LNmItzBglIaOMRf3lDU9erneOhG5dpp9McpbiG6bCGHnk92F91Oh-_tdxE_0jhpqPMrkM-kmtSSI0SXh7ZWrpN2meDWQowUyNyFTD8ahiGOMY_Z0yV13OwgYqlOJcs8sizzsuGH8IYgECt4Kvlmv8NBqgRvj5SleetVrjUkHCV8sj2TU8dJrb6PLHGk8gQ7Xsk_BuzpF9QlE1oPBK1rvqHZUuTyZtk-LTxL5M2yd0IGUXIplRbZNRcz_MXAAkb-7IN-5_82lfQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgOcCF9yO0gJGqcmnaJLZj-7jaUm2hW5Z2i3qLYidRVy0JotnDcuIn8Bv5JczktQQVgUCRIkUeK4kznvnGGX9DyEbGbRwkInM1Z6HLE-m7xmOxm3CdmkSITFZcepPDcHzC35yKNpsQ98LU_BDdghvOjMpe4wTHBemdFWuo_ZggByHuNYEg4jq5gWW9sYjB7lHHIAXBR7XE56vQcyFy0S1voxfs9Pv3_NKggPl1Fea8OnWyc1d9hFu5qL07xLQvV2emnG8vSrNtv_zC-_hfb3-X3G4ALB3WGnePXEvz-2RzWjNgL7fobLWh63KLbtLpiht7-YC8G9L3i7k9p5iJlNKyoJMmo5FixsnFkk4LQPElPR4eHX__-m1UfIBzQCfxPKdT5JQAr0v387O5mWOdoIfkZO_1bDR2m5oOrkXOUdcC4EsE97Ux0mQQDilhjEqVFwOw8KXxlbVSGsu9OMkgPBJGxpnNAFfETKdcsEdkkBd5-oRQQGbWGsWZzDxuRWJsqBmzYcrABgkdO8Rtv2hkG8JzrLtxEdVUzUGEYxh1Y-iQV538p5rq47eSa6ggEXx1ZNq1mJJkywiso4TDIeut3kSNQbiMAGlqBK8Cml92zTCV8f9MnKfFAmTAaSnOJQsc8rhWs-5BGAMcqBXcWvYUsBNAmvB-Sz4_q-jCpQabq5RDNn5W1a5jRdETaixGhoDfIf7fiI2aAUXmhNIhQaWrfxi2aDTZHXVXT_-l0wtyczybHEQH-4dv18itABOMMLlSrZNB-XmRPgOEWJrnlQ34AU3TW-o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dbtMwFMctKBLihm9G2AAjTeNm2ZLYju3LqqPagI6wD7S7KHYSrdpIJpZelCsegWfkSTgnSdMFDYFAlSpVttXGOef4f9LjnwlZz7lNglTkruYsdHkqfdd4LHFTrjOTCpHLmqU32Q93j_nbE3FyZRd_w4foHrihZ9TxGh38Is23l9BQ-zlFBCFuNYEc4ia5xUPwGJRFBx1ACnKP-gmfr0LPhcRFL7CNXrDdH99blgYluNd1kvP6ysluteoL3HqFGt8jyeLamsKUs61ZZbbs11-wj_9z8ffJ3Va-0mFjbw_Ijax4SDaihn8936RHy-1cl5t0g0ZLMvb8EfkwpB9nU3tGsQ4po1VJJ209I8V6k_M5jUrQ8BU9HB4c_vj2fVR-gveATpJpQSMkSsCaS_eK06mZ4ilBj8nx-M3RaNdtT3RwLRJHXQtyLxXc18ZIk0MypIQxKlNeArLCl8ZX1kppLPeSNIfkSBiZ5DYHVZEwnXHBnpBBURbZU0JBl1lrFGcy97gVqbGhZsyGGYMIJHTiEHdxQ2Pb4s7x1I3zuAE1BzHOYdzNoUNed_0vGtDHb3uuon3EcNORs2uxIMlWMcRGCS-HrC3MJm7DwWUMOlOjdBXQ_KprBkfGf2eSIitn0AeWLMW5ZIFDVhor634IY6ACtYKvlj376zogJLzfUkxPa1i41BBxlXLI-lVL7QbWgJ5Q41FkKPcd4v9Nt1E7ochNqBwS1Kb6h2mLR5OdUffp2b8MekluRzvj-P3e_rtVcifA6iKsrFRrZFB9mWXPQR5W5kUdAX4CDnNaog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quick+Route+to+Multiple+Highly+Potent+SARS-CoV-2+Main+Protease+Inhibitors&rft.jtitle=ChemMedChem&rft.au=Yang%2C+Kai+S.&rft.au=Ma%2C+Xinyu+R.&rft.au=Ma%2C+Yuying&rft.au=Alugubelli%2C+Yugendar+R.&rft.date=2021-03-18&rft.pub=ChemPubSoc+Europe&rft.issn=1860-7179&rft.eissn=1860-7187&rft.volume=16&rft.issue=6&rft_id=info:doi/10.1002%2Fcmdc.202000924&rft.externalDocID=1837373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-7179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-7179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-7179&client=summon