Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells
Ferroptosis is an iron‐dependent, lipid peroxide‐driven cell death caused by inhibition of the cystine/glutamate transporter, which is of importance for the survival of triple‐negative breast cancer (TNBC) cells. Erastin is a low molecular weight chemotherapy drug that induces ferroptosis; however,...
Saved in:
Published in | Cancer science Vol. 110; no. 10; pp. 3173 - 3182 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.10.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ferroptosis is an iron‐dependent, lipid peroxide‐driven cell death caused by inhibition of the cystine/glutamate transporter, which is of importance for the survival of triple‐negative breast cancer (TNBC) cells. Erastin is a low molecular weight chemotherapy drug that induces ferroptosis; however, poor water solubility and renal toxicity have limited its application. Exosomes, as drug delivery vehicles with low immunogenicity, high biocompatibility and high efficiency, have attracted increasing attention in recent years. Herein, we developed a formulation of erastin‐loaded exosomes labeled with folate (FA) to form FA‐vectorized exosomes loaded with erastin (erastin@FA‐exo) to target TNBC cells with overexpression of FA receptors. The characterization, drug release, internalization and anti–tumor effect in vitro of erastin@FA‐exo were determined. Erastin@FA‐exo could increase the uptake efficiency of erastin into MDA‐MB‐231 cells; compared with erastin@exo and free erastin, erastin@FA‐exo has a better inhibitory effect on the proliferation and migration of MDA‐MB‐231 cells. Furthermore, erastin@FA‐exo promoted ferroptosis with intracellular depletion of glutathione and reactive oxygen species overgeneration. Western blot analyses revealed that erastin@FA‐exo suppressed expression of glutathione peroxidase 4 (GPX4) and upregulated expression of cysteine dioxygenase (CDO1). We conclude that targeting and biocompatibility of exosome‐based erastin preparations provide an innovative and powerful delivery platform for anti–cancer therapy.
Exosome was isolated from serum‐free cell culture medium by differential centrifugation, and then erastin was loaded into exosomes with ultrasonic, and then FA was modified on erastin@exo. Then erastin@FA‐exo was characterized by TEM and DLS, and erastin@FA‐exo was evaluated by HPLC. In the cell experiment, in order to compare the killing effect of erastin@FA‐exo, erastin@exo and free erastin on MDA‐MB‐231 cells, we conducted cell viability assay, EdU assay and flow cytometric analysis, etc., and then we tested the ROS and GSH experiments to detect the reactive oxygen species generated by the cells after drug addition, and at the same time we detected the mitochondrial membrane potential of the cells. These results all proved that erastin@ FA‐exo was more effective in killing MDA‐MB‐231 cells. |
---|---|
AbstractList | Ferroptosis is an iron-dependent, lipid peroxide-driven cell death caused by inhibition of the cystine/glutamate transporter, which is of importance for the survival of triple-negative breast cancer (TNBC) cells. Erastin is a low molecular weight chemotherapy drug that induces ferroptosis; however, poor water solubility and renal toxicity have limited its application. Exosomes, as drug delivery vehicles with low immunogenicity, high biocompatibility and high efficiency, have attracted increasing attention in recent years. Herein, we developed a formulation of erastin-loaded exosomes labeled with folate (FA) to form FA-vectorized exosomes loaded with erastin (erastin@FA-exo) to target TNBC cells with overexpression of FA receptors. The characterization, drug release, internalization and anti–tumor effect in vitro of erastin@FA-exo were determined. Erastin@FA-exo could increase the uptake efficiency of erastin into MDA-MB-231 cells; compared with erastin@exo and free erastin, erastin@FA-exo has a better inhibitory effect on the proliferation and migration of MDA-MB-231 cells. Furthermore, erastin@FA-exo promoted ferroptosis with intracellular depletion of glutathione and reactive oxygen species overgeneration. Western blot analyses revealed that erastin@FA-exo suppressed expression of glutathione peroxidase 4 (GPX4) and upregulated expression of cysteine dioxygenase (CDO1). We conclude that targeting and biocompatibility of exosome-based erastin preparations provide an innovative and powerful delivery platform for anti–cancer therapy. Ferroptosis is an iron‐dependent, lipid peroxide‐driven cell death caused by inhibition of the cystine/glutamate transporter, which is of importance for the survival of triple‐negative breast cancer (TNBC) cells. Erastin is a low molecular weight chemotherapy drug that induces ferroptosis; however, poor water solubility and renal toxicity have limited its application. Exosomes, as drug delivery vehicles with low immunogenicity, high biocompatibility and high efficiency, have attracted increasing attention in recent years. Herein, we developed a formulation of erastin‐loaded exosomes labeled with folate (FA) to form FA‐vectorized exosomes loaded with erastin (erastin@FA‐exo) to target TNBC cells with overexpression of FA receptors. The characterization, drug release, internalization and anti–tumor effect in vitro of erastin@FA‐exo were determined. Erastin@FA‐exo could increase the uptake efficiency of erastin into MDA‐MB‐231 cells; compared with erastin@exo and free erastin, erastin@FA‐exo has a better inhibitory effect on the proliferation and migration of MDA‐MB‐231 cells. Furthermore, erastin@FA‐exo promoted ferroptosis with intracellular depletion of glutathione and reactive oxygen species overgeneration. Western blot analyses revealed that erastin@FA‐exo suppressed expression of glutathione peroxidase 4 (GPX4) and upregulated expression of cysteine dioxygenase (CDO1). We conclude that targeting and biocompatibility of exosome‐based erastin preparations provide an innovative and powerful delivery platform for anti–cancer therapy. Exosome was isolated from serum‐free cell culture medium by differential centrifugation, and then erastin was loaded into exosomes with ultrasonic, and then FA was modified on erastin@exo. Then erastin@FA‐exo was characterized by TEM and DLS, and erastin@FA‐exo was evaluated by HPLC. In the cell experiment, in order to compare the killing effect of erastin@FA‐exo, erastin@exo and free erastin on MDA‐MB‐231 cells, we conducted cell viability assay, EdU assay and flow cytometric analysis, etc., and then we tested the ROS and GSH experiments to detect the reactive oxygen species generated by the cells after drug addition, and at the same time we detected the mitochondrial membrane potential of the cells. These results all proved that erastin@ FA‐exo was more effective in killing MDA‐MB‐231 cells. Ferroptosis is an iron‐dependent, lipid peroxide‐driven cell death caused by inhibition of the cystine/glutamate transporter, which is of importance for the survival of triple‐negative breast cancer ( TNBC ) cells. Erastin is a low molecular weight chemotherapy drug that induces ferroptosis; however, poor water solubility and renal toxicity have limited its application. Exosomes, as drug delivery vehicles with low immunogenicity, high biocompatibility and high efficiency, have attracted increasing attention in recent years. Herein, we developed a formulation of erastin‐loaded exosomes labeled with folate ( FA ) to form FA ‐vectorized exosomes loaded with erastin (erastin@FA‐exo) to target TNBC cells with overexpression of FA receptors. The characterization, drug release, internalization and anti–tumor effect in vitro of erastin@ FA ‐exo were determined. Erastin@FA‐exo could increase the uptake efficiency of erastin into MDA ‐ MB ‐231 cells; compared with erastin@exo and free erastin, erastin@ FA ‐exo has a better inhibitory effect on the proliferation and migration of MDA ‐ MB ‐231 cells. Furthermore, erastin@ FA ‐exo promoted ferroptosis with intracellular depletion of glutathione and reactive oxygen species overgeneration. Western blot analyses revealed that erastin@ FA ‐exo suppressed expression of glutathione peroxidase 4 ( GPX 4) and upregulated expression of cysteine dioxygenase ( CDO 1). We conclude that targeting and biocompatibility of exosome‐based erastin preparations provide an innovative and powerful delivery platform for anti–cancer therapy. Ferroptosis is an iron-dependent, lipid peroxide-driven cell death caused by inhibition of the cystine/glutamate transporter, which is of importance for the survival of triple-negative breast cancer (TNBC) cells. Erastin is a low molecular weight chemotherapy drug that induces ferroptosis; however, poor water solubility and renal toxicity have limited its application. Exosomes, as drug delivery vehicles with low immunogenicity, high biocompatibility and high efficiency, have attracted increasing attention in recent years. Herein, we developed a formulation of erastin-loaded exosomes labeled with folate (FA) to form FA-vectorized exosomes loaded with erastin (erastin@FA-exo) to target TNBC cells with overexpression of FA receptors. The characterization, drug release, internalization and anti-tumor effect in vitro of erastin@FA-exo were determined. Erastin@FA-exo could increase the uptake efficiency of erastin into MDA-MB-231 cells; compared with erastin@exo and free erastin, erastin@FA-exo has a better inhibitory effect on the proliferation and migration of MDA-MB-231 cells. Furthermore, erastin@FA-exo promoted ferroptosis with intracellular depletion of glutathione and reactive oxygen species overgeneration. Western blot analyses revealed that erastin@FA-exo suppressed expression of glutathione peroxidase 4 (GPX4) and upregulated expression of cysteine dioxygenase (CDO1). We conclude that targeting and biocompatibility of exosome-based erastin preparations provide an innovative and powerful delivery platform for anti-cancer therapy.Ferroptosis is an iron-dependent, lipid peroxide-driven cell death caused by inhibition of the cystine/glutamate transporter, which is of importance for the survival of triple-negative breast cancer (TNBC) cells. Erastin is a low molecular weight chemotherapy drug that induces ferroptosis; however, poor water solubility and renal toxicity have limited its application. Exosomes, as drug delivery vehicles with low immunogenicity, high biocompatibility and high efficiency, have attracted increasing attention in recent years. Herein, we developed a formulation of erastin-loaded exosomes labeled with folate (FA) to form FA-vectorized exosomes loaded with erastin (erastin@FA-exo) to target TNBC cells with overexpression of FA receptors. The characterization, drug release, internalization and anti-tumor effect in vitro of erastin@FA-exo were determined. Erastin@FA-exo could increase the uptake efficiency of erastin into MDA-MB-231 cells; compared with erastin@exo and free erastin, erastin@FA-exo has a better inhibitory effect on the proliferation and migration of MDA-MB-231 cells. Furthermore, erastin@FA-exo promoted ferroptosis with intracellular depletion of glutathione and reactive oxygen species overgeneration. Western blot analyses revealed that erastin@FA-exo suppressed expression of glutathione peroxidase 4 (GPX4) and upregulated expression of cysteine dioxygenase (CDO1). We conclude that targeting and biocompatibility of exosome-based erastin preparations provide an innovative and powerful delivery platform for anti-cancer therapy. |
Author | Gai, Chengcheng Zheng, Jie Ding, Dejun Li, Wentong Li, Zihaoran Lv, Shijun Yu, Mengyu Zhang, Weifen |
AuthorAffiliation | 1 Department of Pathology Weifang Medical University Weifang China 2 Collaborative Innovation Center for Target Drug Delivery System Weifang Medical University Weifang China 3 Department of Pharmacology Weifang Medical University Weifang China |
AuthorAffiliation_xml | – name: 1 Department of Pathology Weifang Medical University Weifang China – name: 2 Collaborative Innovation Center for Target Drug Delivery System Weifang Medical University Weifang China – name: 3 Department of Pharmacology Weifang Medical University Weifang China |
Author_xml | – sequence: 1 givenname: Mengyu surname: Yu fullname: Yu, Mengyu organization: Weifang Medical University – sequence: 2 givenname: Chengcheng surname: Gai fullname: Gai, Chengcheng organization: Weifang Medical University – sequence: 3 givenname: Zihaoran surname: Li fullname: Li, Zihaoran organization: Weifang Medical University – sequence: 4 givenname: Dejun surname: Ding fullname: Ding, Dejun organization: Weifang Medical University – sequence: 5 givenname: Jie orcidid: 0000-0003-1526-0617 surname: Zheng fullname: Zheng, Jie organization: Weifang Medical University – sequence: 6 givenname: Weifen surname: Zhang fullname: Zhang, Weifen organization: Weifang Medical University – sequence: 7 givenname: Shijun surname: Lv fullname: Lv, Shijun email: sjlu@wfmc.edu.cn organization: Weifang Medical University – sequence: 8 givenname: Wentong orcidid: 0000-0002-8855-2162 surname: Li fullname: Li, Wentong email: liwentong11@163.com organization: Weifang Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31464035$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhi1URNsDC14ARWIDi7TjS-xkg1QdcZMqsaCsLceZHFzl2MFOWrrjEfqMfRJ8LkVQAd7YM_7m1_z2HJMDHzwS8pzCCc3r1Jp0QgWt6SNyRLloSgUgD7ZnVTbA2SE5TukSgEvRiCfkkFMhBfDqiLQXJq5wwq7A7yGFNd79uEVvzZjmwWzT0aTJ-cL5brY57jHGME4huZRzxRTdOGDhcWUmd4VFGzHzhTXeYiwsDkN6Sh73Zkj4bL8vyJd3by-WH8rzT-8_Ls_OS1tJSksKtQW0YDgHC9wq4EoyJhvKcw5UK2lL-0oxXvOeW9ExBqbvmlp0Jlu3fEHe7HTHuV1jZ9FP0Qx6jG5t4o0Oxuk_b7z7qlfhSkulaplVF-TVXiCGbzOmSa9d2lgwHsOcNGM1q2iVm8roywfoZZijz_Y0E1IxCZSr_1IcKFQAjcjUi9_7_tXw_Sdl4HQH2BhSithr66b83GFjww2agt6Mgc5joLdjkCteP6i4F_0bu1e_dgPe_BvUy7PPu4qfXfvBtg |
CitedBy_id | crossref_primary_10_1016_j_critrevonc_2022_103628 crossref_primary_10_3390_cells12020311 crossref_primary_10_1186_s13045_022_01260_0 crossref_primary_10_1038_s41420_024_01799_6 crossref_primary_10_1002_mabi_202000269 crossref_primary_10_3892_ijo_2024_5634 crossref_primary_10_1016_j_biomaterials_2021_121110 crossref_primary_10_1007_s12094_023_03089_6 crossref_primary_10_1016_j_neo_2024_101017 crossref_primary_10_1186_s13045_022_01392_3 crossref_primary_10_1002_ibra_12118 crossref_primary_10_3390_cancers13133357 crossref_primary_10_1002_1878_0261_13649 crossref_primary_10_3389_fgene_2023_1275154 crossref_primary_10_2217_nnm_2021_0281 crossref_primary_10_3390_ijms231710068 crossref_primary_10_3390_immuno2010014 crossref_primary_10_1039_D2NH00070A crossref_primary_10_3389_fonc_2022_983878 crossref_primary_10_1016_j_freeradbiomed_2019_12_026 crossref_primary_10_3389_fcell_2021_801365 crossref_primary_10_1155_2022_3112388 crossref_primary_10_3389_fphar_2021_629379 crossref_primary_10_2196_66286 crossref_primary_10_1016_j_onano_2022_100091 crossref_primary_10_1016_j_pharmthera_2021_107992 crossref_primary_10_3389_fphar_2021_625699 crossref_primary_10_3389_fmolb_2022_892957 crossref_primary_10_3390_pr9020356 crossref_primary_10_2217_nnm_2023_0074 crossref_primary_10_1016_j_impact_2020_100261 crossref_primary_10_17650_2313_805X_2022_9_1_48_56 crossref_primary_10_3389_fimmu_2023_1284057 crossref_primary_10_3390_cancers13236137 crossref_primary_10_1016_j_addr_2021_113910 crossref_primary_10_1039_D2RA02351B crossref_primary_10_1186_s40364_020_00230_3 crossref_primary_10_1007_s40259_020_00434_x crossref_primary_10_3390_ijms232315236 crossref_primary_10_1021_acsnano_4c04901 crossref_primary_10_3390_pharmaceutics12111006 crossref_primary_10_1016_j_ajps_2022_09_002 crossref_primary_10_3892_or_2024_8813 crossref_primary_10_1016_j_mad_2021_111551 crossref_primary_10_1007_s00210_025_03927_0 crossref_primary_10_1016_j_gendis_2020_11_019 crossref_primary_10_3389_fonc_2022_798304 crossref_primary_10_3389_fgene_2021_819632 crossref_primary_10_3390_molecules28041802 crossref_primary_10_1039_D3BM01832F crossref_primary_10_3390_cells11132040 crossref_primary_10_1016_j_biopha_2022_113480 crossref_primary_10_3389_fmolb_2022_1022725 crossref_primary_10_1016_j_mcp_2024_101968 crossref_primary_10_1080_02648725_2023_2202511 crossref_primary_10_1111_jcmm_18044 crossref_primary_10_1016_j_ijpharm_2024_124815 crossref_primary_10_2174_1568009621666210601115707 crossref_primary_10_1186_s13058_024_01810_z crossref_primary_10_4103_jcrt_jcrt_806_23 crossref_primary_10_1186_s12935_024_03494_z crossref_primary_10_1016_j_jconrel_2022_01_034 crossref_primary_10_1016_j_imlet_2024_106936 crossref_primary_10_3390_cancers14061435 crossref_primary_10_3389_fphar_2022_910292 crossref_primary_10_1155_2022_2148215 crossref_primary_10_1155_2022_6032076 crossref_primary_10_1039_D2BM00062H crossref_primary_10_1016_j_smaim_2021_12_008 crossref_primary_10_1016_j_biopha_2023_114615 crossref_primary_10_1002_smll_202300666 crossref_primary_10_1111_cas_15131 crossref_primary_10_1016_j_vesic_2024_100039 crossref_primary_10_3390_nano12172948 crossref_primary_10_1007_s12265_024_10508_8 crossref_primary_10_3389_fcell_2021_629150 crossref_primary_10_1007_s12035_022_02738_1 crossref_primary_10_1080_1061186X_2020_1808001 crossref_primary_10_1016_j_bbrc_2022_06_024 crossref_primary_10_31083_j_fbl2812332 crossref_primary_10_1016_j_phymed_2024_155560 crossref_primary_10_1007_s10495_020_01638_w crossref_primary_10_3389_fonc_2022_862743 crossref_primary_10_3390_cancers14020451 crossref_primary_10_1016_j_bcp_2024_116699 crossref_primary_10_3390_brainsci13040639 crossref_primary_10_1016_j_bcp_2022_115241 crossref_primary_10_1016_j_cbi_2020_109250 crossref_primary_10_3389_fonc_2022_896927 crossref_primary_10_1016_j_cej_2024_149313 crossref_primary_10_1002_jev2_12386 crossref_primary_10_1016_j_biomaterials_2023_122395 crossref_primary_10_2147_CMAR_S503932 crossref_primary_10_1016_j_ejmech_2024_116290 crossref_primary_10_17650_2313_805X_2023_10_2_58_69 crossref_primary_10_1039_D1BM00721A crossref_primary_10_2147_OTT_S272312 crossref_primary_10_1016_j_canlet_2021_12_009 crossref_primary_10_1186_s12964_022_00945_w crossref_primary_10_1002_tox_23509 crossref_primary_10_1177_17588359251322291 crossref_primary_10_3390_pr9020224 crossref_primary_10_1016_j_plipres_2022_101159 crossref_primary_10_3389_fimmu_2023_1264206 crossref_primary_10_1111_tra_12905 crossref_primary_10_1021_acsbiomaterials_3c01404 crossref_primary_10_1039_D0NR00523A crossref_primary_10_1002_adtp_202200255 crossref_primary_10_1021_acsanm_2c04364 crossref_primary_10_1016_j_intimp_2024_112656 crossref_primary_10_1097_MD_0000000000038549 crossref_primary_10_1016_j_bbcan_2024_189177 crossref_primary_10_1186_s13045_024_01564_3 crossref_primary_10_1186_s12951_021_01058_1 crossref_primary_10_2147_IJN_S291956 crossref_primary_10_1186_s12951_024_02508_2 crossref_primary_10_1016_j_virol_2021_01_008 crossref_primary_10_1111_imm_13789 crossref_primary_10_4155_tde_2023_0131 crossref_primary_10_2174_1566524022666220509124608 crossref_primary_10_1186_s12951_021_01171_1 crossref_primary_10_3389_fphar_2021_775506 crossref_primary_10_1177_09603271221142818 crossref_primary_10_1002_jcp_30780 crossref_primary_10_2147_IJN_S448715 crossref_primary_10_1016_j_apsb_2022_03_020 crossref_primary_10_18632_aging_103882 crossref_primary_10_1002_ijc_34934 crossref_primary_10_3389_fimmu_2021_747408 crossref_primary_10_3390_ijms242417279 crossref_primary_10_1016_j_tranon_2021_101286 crossref_primary_10_3389_fphar_2020_01061 crossref_primary_10_3390_ijms232213974 crossref_primary_10_1186_s12951_024_02842_5 crossref_primary_10_1038_s41392_023_01606_1 crossref_primary_10_1007_s11095_022_03224_y crossref_primary_10_1016_j_ymthe_2021_03_022 crossref_primary_10_1039_D2NA00719C crossref_primary_10_7717_peerj_15060 crossref_primary_10_1007_s40259_023_00595_5 crossref_primary_10_1016_j_ijpharm_2022_122575 crossref_primary_10_3389_fonc_2020_571127 crossref_primary_10_1007_s10495_023_01866_w crossref_primary_10_1111_cpr_12761 crossref_primary_10_1038_s41392_022_01110_y crossref_primary_10_3389_fonc_2022_998964 crossref_primary_10_3389_fimmu_2022_1038225 crossref_primary_10_1021_acsbiomaterials_4c00856 crossref_primary_10_1038_s41598_022_14964_7 crossref_primary_10_1210_endocr_bqaa250 crossref_primary_10_1016_j_lfs_2024_122629 crossref_primary_10_1016_j_job_2025_100621 crossref_primary_10_1667_RADE_23_00018_1 crossref_primary_10_3389_fcell_2021_733751 crossref_primary_10_1016_j_biopha_2023_115853 crossref_primary_10_1016_j_cytogfr_2022_01_006 crossref_primary_10_1016_j_tranon_2022_101439 crossref_primary_10_3389_fmolb_2023_1075704 crossref_primary_10_1016_j_canlet_2021_11_015 crossref_primary_10_2174_1566524023666230913105735 crossref_primary_10_1007_s00109_025_02528_x crossref_primary_10_3390_pharmaceutics16050639 crossref_primary_10_2174_0113894501294136240610061328 crossref_primary_10_1007_s12672_024_01024_x crossref_primary_10_1002_cac2_12250 crossref_primary_10_1186_s12935_024_03606_9 crossref_primary_10_3390_antiox12010183 crossref_primary_10_1007_s13346_024_01783_8 crossref_primary_10_1038_s41420_024_02037_9 crossref_primary_10_1038_s41420_022_01277_x crossref_primary_10_1016_j_bcp_2021_114714 crossref_primary_10_1007_s11051_024_06000_8 crossref_primary_10_3389_fcell_2021_701788 crossref_primary_10_1002_jcp_31278 crossref_primary_10_1007_s12032_023_02285_2 crossref_primary_10_1007_s00266_023_03782_5 crossref_primary_10_1016_j_msec_2021_112494 crossref_primary_10_3390_cancers15102838 crossref_primary_10_1016_j_bbamcr_2022_119328 crossref_primary_10_1016_j_lfs_2022_120704 crossref_primary_10_3389_fonc_2023_1032364 crossref_primary_10_1016_j_adcanc_2022_100083 crossref_primary_10_1111_jcmm_70448 crossref_primary_10_1016_j_biomaterials_2022_121832 crossref_primary_10_1016_j_tranon_2023_101817 crossref_primary_10_3389_fcell_2022_842898 crossref_primary_10_1016_j_yexcr_2022_113436 crossref_primary_10_1016_j_cellsig_2025_111649 crossref_primary_10_3390_diagnostics13111926 crossref_primary_10_7759_cureus_51719 crossref_primary_10_1016_j_isci_2024_108780 crossref_primary_10_1089_dna_2020_5730 crossref_primary_10_1177_09636897231219830 crossref_primary_10_1038_s41598_024_55050_4 crossref_primary_10_1016_j_jddst_2024_106262 crossref_primary_10_1093_carcin_bgad060 crossref_primary_10_3390_app122312259 crossref_primary_10_1016_j_jconrel_2020_03_039 crossref_primary_10_1016_j_canlet_2022_216036 crossref_primary_10_3390_cimb46050286 crossref_primary_10_3390_ph15111360 crossref_primary_10_1021_acs_chemrev_4c00546 crossref_primary_10_1080_21655979_2021_1925003 crossref_primary_10_15252_embj_2021109288 crossref_primary_10_3389_fgene_2021_793636 crossref_primary_10_1016_j_cclet_2024_109538 crossref_primary_10_1016_j_jconrel_2023_09_038 crossref_primary_10_1186_s13045_020_01016_8 crossref_primary_10_3390_cancers14030646 crossref_primary_10_3389_fcell_2024_1252064 crossref_primary_10_3389_fimmu_2023_1170754 crossref_primary_10_3390_cancers12010164 crossref_primary_10_1007_s12032_023_01988_w crossref_primary_10_1039_D1TB01289D crossref_primary_10_3892_ol_2022_13186 crossref_primary_10_3389_fonc_2022_898156 crossref_primary_10_7717_peerj_13238 crossref_primary_10_1002_advs_202310266 crossref_primary_10_1186_s12943_024_01932_0 crossref_primary_10_3389_fmolb_2022_917602 crossref_primary_10_3390_membranes12080775 crossref_primary_10_1016_j_msec_2021_112224 crossref_primary_10_18632_aging_202579 crossref_primary_10_1128_mcb_00522_21 crossref_primary_10_3389_fbioe_2022_980548 crossref_primary_10_1021_acsnano_4c11630 crossref_primary_10_3389_fimmu_2021_614294 crossref_primary_10_1021_acsanm_3c01809 crossref_primary_10_3390_nano11123391 crossref_primary_10_1093_abbs_gmaa180 crossref_primary_10_1113_JP282799 crossref_primary_10_1016_j_biopha_2024_116591 crossref_primary_10_2144_fsoa_2021_0102 crossref_primary_10_1007_s11033_022_07296_2 crossref_primary_10_12677_ACM_2023_1351222 crossref_primary_10_1186_s11658_024_00560_2 crossref_primary_10_2174_1389201023666211230113658 crossref_primary_10_1186_s13045_022_01297_1 crossref_primary_10_1016_j_jpha_2024_03_001 crossref_primary_10_1038_s43018_023_00554_7 crossref_primary_10_3389_fcell_2021_670184 crossref_primary_10_3389_fonc_2022_898605 crossref_primary_10_1016_j_ejphar_2022_174970 crossref_primary_10_1155_2022_1458143 crossref_primary_10_2147_IJN_S409588 crossref_primary_10_1038_s41389_022_00431_5 crossref_primary_10_1080_01932691_2023_2295024 crossref_primary_10_1186_s12943_025_02258_1 crossref_primary_10_1186_s13046_023_02753_7 crossref_primary_10_2147_IJN_S272378 crossref_primary_10_3389_fonc_2022_941618 |
Cites_doi | 10.1016/j.ccr.2013.08.020 10.1111/cas.12715 10.1080/23723556.2015.1054549 10.1016/j.nano.2015.10.012 10.1038/onc.2008.414 10.1016/j.nano.2017.09.011 10.1038/nature10933 10.18632/oncotarget.11687 10.3390/pharmaceutics10040218 10.1016/j.biomaterials.2013.07.102 10.1172/JCI45014 10.1016/j.jconrel.2015.03.033 10.1038/nrd.2015.6 10.1039/C5NR03693C 10.1002/adma.201803717 10.1158/0008-5472.CAN-17-2880 10.1038/onc.2012.638 10.1016/j.cell.2012.02.053 10.1016/j.tips.2015.08.009 10.1038/mt.2010.105 10.1038/onc.2016.131 10.2147/IJN.S191313 10.1016/j.msec.2017.05.064 10.1016/j.cell.2012.03.042 10.1016/j.tcb.2015.01.004 10.1016/j.cell.2012.11.024 10.1111/jcmm.13008 10.1016/j.biomaterials.2013.11.083 10.1021/bm501394m 10.1016/j.lfs.2014.04.018 10.1016/j.neo.2017.10.005 |
ContentType | Journal Article |
Copyright | 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. 2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. – notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/cas.14181 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | YU et al |
EISSN | 1349-7006 |
EndPage | 3182 |
ExternalDocumentID | PMC6778638 31464035 10_1111_cas_14181 CAS14181 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81472365; 81774125; 81802474 – fundername: National Natural Science Foundation of China grantid: 81472365 – fundername: National Natural Science Foundation of China grantid: 81774125 – fundername: National Natural Science Foundation of China grantid: 81802474 – fundername: National Natural Science Foundation of China grantid: 81472365; 81774125; 81802474 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABEML ACCFJ ACCMX ACSCC ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ HCIFZ HF~ HOLLA HYE HZI HZ~ IAO IHR IPNFZ ITC IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY PROAC Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 W8V WIN WOW WQJ WRC WXI X7M XG1 ZXP ~IA ~WT 7X7 88E 8FI 8FJ AAFWJ AAYXX ABUWG CITATION FYUFA HMCUK M1P PHGZM PHGZT PSQYO UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c5611-108c0ec0a330c03c703762269130a307b61b1f572383f3c4d220afd984da181c3 |
IEDL.DBID | 7X7 |
ISSN | 1347-9032 1349-7006 |
IngestDate | Thu Aug 21 18:36:50 EDT 2025 Fri Jul 11 08:50:45 EDT 2025 Wed Aug 13 11:15:27 EDT 2025 Wed Aug 13 09:06:38 EDT 2025 Thu Apr 03 06:57:56 EDT 2025 Tue Jul 01 01:31:07 EDT 2025 Thu Apr 24 23:02:05 EDT 2025 Wed Jan 22 16:37:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | erastin triple negative breast cancer ferroptosis exosomes reactive oxygen species |
Language | English |
License | Attribution-NonCommercial 2019 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5611-108c0ec0a330c03c703762269130a307b61b1f572383f3c4d220afd984da181c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1526-0617 0000-0002-8855-2162 |
OpenAccessLink | https://www.proquest.com/docview/2301050094?pq-origsite=%requestingapplication% |
PMID | 31464035 |
PQID | 2301050094 |
PQPubID | 4378882 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6778638 proquest_miscellaneous_2282515622 proquest_journals_2467260137 proquest_journals_2301050094 pubmed_primary_31464035 crossref_citationtrail_10_1111_cas_14181 crossref_primary_10_1111_cas_14181 wiley_primary_10_1111_cas_14181_CAS14181 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 2019-Oct 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Tokyo – name: Hoboken |
PublicationTitle | Cancer science |
PublicationTitleAlternate | Cancer Sci |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2015; 2 2015; 36 2017; 80 2015; 16 2012; 486 2013; 24 2010; 18 2017; 21 2019; 14 2016; 76 2015; 207 2015; 106 2012; 149 2016; 15 2015; 7 2016; 35 2016; 12 2009; 28 2014; 107 2012; 151 2015; 25 2016; 7 2013; 32 2013; 34 2014; 35 2018; 30 2017; 19 2018; 78 2018; 10 2011; 121 2018; 14 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 Lineton W (e_1_2_6_31_1) 2016; 76 Wang J (e_1_2_6_29_1) 2016; 7 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 14 start-page: 195 year: 2018 end-page: 204 article-title: Engineering macrophage‐derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations publication-title: Nanomedicine – volume: 21 start-page: 648 year: 2017 end-page: 657 article-title: Ferroptosis, a new form of cell death, and its relationships with tumourous diseases publication-title: J Cell Mol Med – volume: 76 start-page: 115 year: 2016 end-page: 132 article-title: Thermal oxidation protective surface for steel pistons publication-title: Biomaterials – volume: 121 start-page: 2750 year: 2011 end-page: 2767 article-title: Identification of human triple‐negative breast cancer subtypes and preclinical models for selection of targeted therapies publication-title: J Clin Invest – volume: 30 start-page: e1803717 year: 2018 article-title: Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine publication-title: Adv Mater – volume: 35 start-page: 2383 year: 2014 end-page: 2390 article-title: A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy publication-title: Biomaterials – volume: 149 start-page: 307 year: 2012 end-page: 321 article-title: Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple‐negative breast cancer publication-title: Cell – volume: 207 start-page: 18 year: 2015 end-page: 30 article-title: Exosomes as drug delivery vehicles for Parkinson's disease therapy publication-title: J Control Release – volume: 106 start-page: 959 year: 2015 end-page: 964 article-title: Exosomes in development, metastasis and drug resistance of breast cancer publication-title: Cancer Sci – volume: 24 start-page: 450 year: 2013 end-page: 465 article-title: Glutamine sensitivity analysis identifies the xCT antiporter as a common triple‐negative breast tumor therapeutic target publication-title: Cancer Cell – volume: 34 start-page: 8521 year: 2013 end-page: 8530 article-title: Preformed albumin corona, a protective coating for nanoparticles based drug delivery system publication-title: Biomaterials – volume: 28 start-page: 599 year: 2009 end-page: 609 article-title: Disruption of xCT inhibits cancer cell metastasis via the caveolin‐1/β‐catenin pathway publication-title: Oncogene – volume: 7 start-page: 63779 year: 2016 end-page: 63792 article-title: RSL3 and erastin differentially regulate redox signaling to promote Smac mimetic‐induced cell death publication-title: Oncotarget – volume: 12 start-page: 655 year: 2016 end-page: 664 article-title: Development of exosome‐encapsulated paclitaxel to overcome MDR in cancer cells publication-title: Nanomedicine – volume: 7 start-page: 14854 year: 2015 end-page: 14864 article-title: Near infrared light‐actuated gold nanorods with cisplatin‐polypeptide wrapping for targeted therapy of triple negative breast cancer publication-title: Nanoscale – volume: 149 start-page: 1060 year: 2012 end-page: 1072 article-title: Ferroptosis: an iron‐dependent form of nonapoptotic cell death publication-title: Cell – volume: 16 start-page: 192 year: 2015 end-page: 201 article-title: Dual MMP7‐proximity‐activated and folate receptor‐targeted nanoparticles for siRNA delivery publication-title: Biomacromol – volume: 78 start-page: 798 year: 2018 end-page: 808 article-title: Aptamer‐conjugated extracellular nanovesicles for targeted drug delivery publication-title: Can Res – volume: 80 start-page: 362 year: 2017 end-page: 370 article-title: Near infrared radiated stimulus‐responsive liposomes based on photothermal conversion as drug carriers for co‐delivery of CJM126 and cisplatin publication-title: Mater Sci Eng C Mater Biol Appl – volume: 15 start-page: 348 year: 2016 end-page: 366 article-title: Regulated necrosis: disease relevance and therapeutic opportunities publication-title: Nat Rev Drug Discov – volume: 14 start-page: 531 year: 2019 end-page: 541 article-title: Drug‐loaded exosomal preparations from different cell types exhibit distinctive loading capability, yield, and antitumor efficacies: a comparative analysis publication-title: Int J Nanomed – volume: 35 start-page: 6038 year: 2016 end-page: 6042 article-title: Tumour cell‐derived exosomes endow mesenchymal stromal cells with tumour‐promotion capabilities publication-title: Oncogene – volume: 10 year: 2018 article-title: Exosomes and exosome‐inspired vesicles for targeted drug delivery publication-title: Pharmaceutics – volume: 7 start-page: 533 year: 2016 article-title: Exosome‐based cancer therapy: implication for targeting cancer stem cells publication-title: Front Pharmacol – volume: 151 start-page: 1542 year: 2012 end-page: 1556 article-title: Exosomes mediate stromal mobilization of autocrine Wnt‐PCP signaling in breast cancer cell migration publication-title: Cell – volume: 36 start-page: 822 year: 2015 end-page: 846 article-title: Targeted therapies for triple‐negative breast cancer: combating a stubborn disease publication-title: Trends Pharmacol Sci – volume: 19 start-page: 1022 year: 2017 end-page: 1032 article-title: Cysteine dioxygenase 1 mediates erastin‐induced ferroptosis in human gastric cancer cells publication-title: Neoplasia – volume: 2 start-page: e1054549 year: 2015 article-title: The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents publication-title: Mol Cell Oncol – volume: 107 start-page: 1 year: 2014 end-page: 7 article-title: Curcumin‐primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia publication-title: Life Sci – volume: 32 start-page: 5191 year: 2013 end-page: 5198 article-title: Redox regulation in stem‐like cancer cells by CD44 variant isoforms publication-title: Oncogene – volume: 25 start-page: 364 year: 2015 end-page: 372 article-title: Ectosomes and exosomes: shedding the confusion between extracellular vesicles publication-title: Trends Cell Biol – volume: 486 start-page: 395 year: 2012 end-page: 399 article-title: The clonal and mutational evolution spectrum of primary triple‐negative breast cancers publication-title: Nature – volume: 18 start-page: 1606 year: 2010 end-page: 1614 article-title: A novel nanoparticle drug delivery system: the anti‐inflammatory activity of curcumin is enhanced when encapsulated in exosomes publication-title: Mol Ther – ident: e_1_2_6_8_1 doi: 10.1016/j.ccr.2013.08.020 – ident: e_1_2_6_13_1 doi: 10.1111/cas.12715 – ident: e_1_2_6_27_1 doi: 10.1080/23723556.2015.1054549 – ident: e_1_2_6_18_1 doi: 10.1016/j.nano.2015.10.012 – ident: e_1_2_6_25_1 doi: 10.1038/onc.2008.414 – ident: e_1_2_6_17_1 doi: 10.1016/j.nano.2017.09.011 – ident: e_1_2_6_4_1 doi: 10.1038/nature10933 – ident: e_1_2_6_33_1 doi: 10.18632/oncotarget.11687 – ident: e_1_2_6_28_1 doi: 10.3390/pharmaceutics10040218 – ident: e_1_2_6_9_1 doi: 10.1016/j.biomaterials.2013.07.102 – ident: e_1_2_6_5_1 doi: 10.1172/JCI45014 – ident: e_1_2_6_11_1 doi: 10.1016/j.jconrel.2015.03.033 – ident: e_1_2_6_26_1 doi: 10.1038/nrd.2015.6 – ident: e_1_2_6_32_1 doi: 10.1039/C5NR03693C – ident: e_1_2_6_10_1 doi: 10.1002/adma.201803717 – ident: e_1_2_6_30_1 doi: 10.1158/0008-5472.CAN-17-2880 – ident: e_1_2_6_24_1 doi: 10.1038/onc.2012.638 – ident: e_1_2_6_2_1 doi: 10.1016/j.cell.2012.02.053 – ident: e_1_2_6_3_1 doi: 10.1016/j.tips.2015.08.009 – volume: 76 start-page: 115 year: 2016 ident: e_1_2_6_31_1 article-title: Thermal oxidation protective surface for steel pistons publication-title: Biomaterials – ident: e_1_2_6_22_1 doi: 10.1038/mt.2010.105 – ident: e_1_2_6_21_1 doi: 10.1038/onc.2016.131 – ident: e_1_2_6_16_1 doi: 10.2147/IJN.S191313 – ident: e_1_2_6_19_1 doi: 10.1016/j.msec.2017.05.064 – ident: e_1_2_6_7_1 doi: 10.1016/j.cell.2012.03.042 – ident: e_1_2_6_12_1 doi: 10.1016/j.tcb.2015.01.004 – ident: e_1_2_6_23_1 doi: 10.1016/j.cell.2012.11.024 – ident: e_1_2_6_6_1 doi: 10.1111/jcmm.13008 – ident: e_1_2_6_15_1 doi: 10.1016/j.biomaterials.2013.11.083 – ident: e_1_2_6_20_1 doi: 10.1021/bm501394m – volume: 7 start-page: 533 year: 2016 ident: e_1_2_6_29_1 article-title: Exosome‐based cancer therapy: implication for targeting cancer stem cells publication-title: Front Pharmacol – ident: e_1_2_6_14_1 doi: 10.1016/j.lfs.2014.04.018 – ident: e_1_2_6_34_1 doi: 10.1016/j.neo.2017.10.005 |
SSID | ssj0036494 |
Score | 2.6574526 |
Snippet | Ferroptosis is an iron‐dependent, lipid peroxide‐driven cell death caused by inhibition of the cystine/glutamate transporter, which is of importance for the... Ferroptosis is an iron-dependent, lipid peroxide-driven cell death caused by inhibition of the cystine/glutamate transporter, which is of importance for the... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3173 |
SubjectTerms | Apoptosis Biocompatibility Biotechnology Breast cancer Cancer therapies Cell Death Cell growth Cell Line, Tumor Cell Movement - drug effects Cell proliferation Cell Proliferation - drug effects Cell Survival - drug effects Chemotherapy Cysteine dioxygenase Cysteine Dioxygenase - metabolism Cytotoxicity Drug delivery Drug Delivery Systems Drugs erastin Exosomes Exosomes - chemistry Ferroptosis Folic acid Folic Acid - chemistry Gene Expression Regulation, Neoplastic - drug effects Glutamic acid transporter Glutathione peroxidase Glutathione Peroxidase - metabolism Humans Immunogenicity Internalization Lipids Microscopy Molecular weight Nanotechnology Original Peroxide Phospholipid Hydroperoxide Glutathione Peroxidase Piperazines - chemistry Piperazines - pharmacology Proteins Reactive oxygen species Reactive Oxygen Species - metabolism Toxicity triple negative breast cancer Triple Negative Breast Neoplasms - drug therapy Triple Negative Breast Neoplasms - metabolism Ultrasonic imaging |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9VAFD6ULoobtT6jrYziwk3KZGZubgZXpbQUQRfaQhdCmFe0WJOS5IK48if4G_0lnjN50GsriLtL5lzITM7jm-Sb7wC89JWojJAqVc7LVGmTp1iGbcq1M1xZSxiA2Bbv8uNT9eZscbYBr6ezMIM-xPzCjSIj5msKcGO7K0FOLcEylcVj18TVIkD0fpaOkrnSQ0NbtUw1l2JUFSIWz_zP9Vp0DWBe50lexa-xAB3dgY_TrQ-8ky97q97uue9_qDr-59zuwu0RmLL9wZO2YSPU92Dr7fjp_T7Yk8gZD56Fb03XfA2_fvxEDze4y74w8XJrMF3UDDf56C6eVaFtm8u-6c47vMb6ll7pszp8ilLjzBIbvmeOvK5l9P2gewCnR4cnB8fp2KAhdQi7iApXOB4cN1Jyx6XD7IG5VeQaC6PB5GHzzGbVgvqayUo65YXgpvK6UN7g5Jx8CJt1U4fHwHjmnCxclVvplS-E1cIZHbTVhcnUwiXwanpUpRvVy6mJxkU57WJwzcq4Zgm8mE0vB8mOm4x2puddjlHblbgdQ7hJZMubh7GokAKbXCbwfB7GcKQ1MnVoVmgTzwIjqBQJPBq8Z74JiVVJcblIYLnmV7MBSX2vj9Tnn6Pkd5T5kwWuQnSbv8-rPNj_EH88-XfTp3ALYaAeKIo7sNm3q7CLUKu3z2JM_QZx8yZy priority: 102 providerName: Wiley-Blackwell |
Title | Targeted exosome‐encapsulated erastin induced ferroptosis in triple negative breast cancer cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcas.14181 https://www.ncbi.nlm.nih.gov/pubmed/31464035 https://www.proquest.com/docview/2301050094 https://www.proquest.com/docview/2467260137 https://www.proquest.com/docview/2282515622 https://pubmed.ncbi.nlm.nih.gov/PMC6778638 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RVkJcEG9SysogDlwiHNubjU-oVK0qJKqqtNLegl-BSiVZklTqz2fGyQZWLVyiKPYhmYfn8_jLDMA7X4nKCKlS5bxMlTZ5imHYplw7w5W1hAGIbXGSH1-oz8v5cky4dSOtcr0mxoXaN45y5B8QKiMUICLcx9WvlLpG0enq2EJjC3aodBlRuhbLacMlc6WHprZqkWouxVhZiJg81FAsU1mRbcajWyDzNlfybwwbg9DRI3g4oke2P6j7MdwL9RO4_2U8H38K384jsTt4Fm6arvkZUjRCgxvhKxMftgY9uma4D0eNelaFtm1WfdNddviM9S1l3Vkdvsdq4MwSYb1njgyjZZTi757BxdHh-cFxOvZQSB0iI2KrFY4Hx42U3HHp0MFx-RO5xthl0L9tntmsmlPrMVlJp7wQ3FReF8oblI6Tz2G7burwEhjPnJOFq3IrvfKFsFo4o4O2ujCZmrsE3q8lWbqxwDj1ubgq1xsNFHoZhZ7A22nqaqiqcdekvbU6ytGxuvKPGdw9jOs-FUmTiwTeTMPoMSQjU4fmGufE33UR94kEXgzKnV5CYuBQXM4TWGyofZpA1bg3R-rLH7Eqd6zEJwuUQjSQf39XebD_Nd7s_v8DX8EDRGd6YA7uwXbfXofXiIB6O4MtoU5n0dhnsPPp8OT0bBazCXQ9E78BHWUI8g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9RAEJ7gkagvxN8WUVejiS8N7e5er_tgCCLkELgYPRLeyv6qkEB7tiXqP-XfyOy2Pb2AvvF26W6a6-y3M990v84AvDE5zSVlPOTasJALmYQYhlUYCS0jrpTjAE5tMUnGh_zT0fBoCX7338I4WWXvE72jNqV278jXkSojFXBCuI3Z99B1jXKnq30LjRYWe_bXD0zZ6ve7H3F931K6sz3dGoddV4FQI1dw-q1UR1ZHEjN5HTGNkEeHQBOB3lwi4lUSqzgfumZcLGeaG0ojmRuRciMxHGqG970Fy5xhKjOA5Q_bk89fet_PEi7aNrp8FIqI0a6WkdMOuRZmMY_TeDECXqG1V9WZf7NmH_Z27sFKx1fJZguw-7Bkiwdw-6A7kX8Ix1MvJbeG2J9lXZ7bEGEvMfU-k_5iJdGHFAQzf8SQIbmtqnLWlPVpjddIU7n3_KSw33z9caKcRL4h2kGxIu5QoX4Ehzdi38cwKMrCPgUSxVqzVOeJYoablCpBtRRWKJHKmA91AO96S2a6K2nuOmucZX1qg0bPvNEDeD2fOmvreFw3aa1fjqzbynX2B3jXD2OkcWXZ2CiAV_Nh3KPORrKw5QXO8R8II9OkATxpF3f-JxiGKh6xYQCjhWWfT3D1vxdHitMTXwfc1_5jKVrBA-Tfz5VtbX71P1b__4Av4c54erCf7e9O9p7BXeSGotUtrsGgqS7sc-RfjXrRgZ7A8U3vs0vVsD_i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qheKLeG-06ioKvoQmu5vLPoiU1kNrtQi2cN7SvUUP1OSYpKh_zV_n7Oaih1bf-hayS0hm5_LN7pcZgBempKWkjIdcGxZyIdMQw7AKI6FlxJVyGMCxLY7S_RP-bp7M1-DX-C-Mo1WOPtE7alNrt0e-jVAZoYAjwm2XAy3i497szfJb6DpIuZPWsZ1GryKH9ud3TN_a1wd7uNYvKZ29Pd7dD4cOA6FG3OC4XLmOrI4kZvU6YhrVH50DTQV6donar9JYxWXiGnOxkmluKI1kaUTOjcTQqBk-9xpcz1gSOxvL5lOyx1Iu-oa6PAtFxOhQ1cixiFwzs5jHebwaCy8A3Is8zb_xsw-As1twc0CuZKdXtduwZqs7sPFhOJu_C6fHnlRuDbE_6rb-akM0AIlJ-Jn0NxuJ3qQii8qgNhlS2qapl13dLlq8R7rG7fiTyn72lciJcmT5jminlA1xxwvtPTi5Euneh_WqruwmkCjWmuW6TBUz3ORUCaqlsEKJXMY80QG8GiVZ6KG4ueuxcVaMSQ4KvfBCD-D5NHXZV_S4bNLWuBzFYNRt8UcFLx_GmOMKtLEsgGfTMFqrk5GsbH2Oc_yvwog5aQAP-sWdXoJh0OIRSwLIVpZ9muAqga-OVIsvviK4rwLIcpSCV5B_f1exu_PJXzz8_wc-hQ20ruL9wdHhI7iBIFH0BMYtWO-ac_sYgVinnniNJ3B61Sb2G1IBQrI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+exosome-encapsulated+erastin+induced+ferroptosis+in+triple+negative+breast+cancer+cells&rft.jtitle=Cancer+science&rft.au=Yu%2C+Mengyu&rft.au=Gai%2C+Chengcheng&rft.au=Li%2C+Zihaoran&rft.au=Ding%2C+Dejun&rft.date=2019-10-01&rft.eissn=1349-7006&rft.volume=110&rft.issue=10&rft.spage=3173&rft_id=info:doi/10.1111%2Fcas.14181&rft_id=info%3Apmid%2F31464035&rft.externalDocID=31464035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |